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Executive Summary

Southern California Gas Company, California American Water Company, and Valor Water
Analytics partnered for a twelve-month Water-Energy Nexus pilot from February 2017-2018, per
California Public Utilities Commission ruling. The objectives for Southern California Gas Company
were:

e To demonstrate the feasibility of a water utility “piggybacking” meter data on the
SoCalGas Advanced Metering network

e To investigate hot water leak detection analytics and potential to address residential hot
water leaks

e To calculate the embedded energy savings from reduced water loss from hot water leaks

e To test the hypothesis that AMI technology results in greater water (and associated
energy savings) than monthly meter read technology

e To gain insights that can inform baselines for future program performance metrics

A quasi-randomized (based on a pre-existing meter replacement schedule) experimental design
was used to evaluate the potential impact of AMI on water consumption. The study set consisted
of 1,190 treatment accounts in Ventura, and equivalent control accounts. The characteristic of
the treatment accounts was that they had AMI water meter reads and AMI gas meter reads, while
the control accounts had AMR water meter reads and AMI gas reads. Treatment accounts also
had the ability to ‘opt in’ and access their water consumption data through customer engagement
portals.

Shared network AMI was successfully implemented and performed well over the course of the
pilot. Six potential hot water leaks were detected by AMI analytics over the course of the pilot.
Field investigation confirmed one hot water leak and two yard-line leaks. The remaining three
issues were unverifiable. A total of 1,343 gallons of water savings and 5.4 kWh embedded energy
savings due to hot water leak reduction by AMI analytics was estimated.

Treatment group customers were slow to adopt water AMI customer engagement portal
technology, and only 6% residential customers signed on over the course of the pilot. No
behavioral effect on water consumption could be discerned or used in advanced impact analysis.

Statistical models of advanced complexity were constructed to evaluate whether AMI technology
resulted in greater water (and associated energy savings) than monthly meter read technology.
Despite the significant increase in number of water (hot and not hot) leaks detected through AMI
technology, there was no statistically significant effects on water and gas consumption through
combined AMI leak detection and customer engagement. Given the variability seen in this data,
similar non-randomized experiments will need to be at least three times larger, to confidently
determine plausible effects of AMI on water and gas consumption.

Water and Gas Trends Analysis revealed that gas consumption has a significant and positive
correlation with water consumption, and potentially provides more information on water
consumption patterns than household characteristics such as square footage and number of



bathrooms. Gas consumption explained an additional 7% of the variance in water consumption
between premises. Within a consistent weather period, a premise that increased its gas use also
increased its water use. This finding encourages the use of joint water and gas consumption data
in evaluations of policies or programs designed to affect one service demand, since it could also
impact the other.

Introduction

Advanced metering infrastructure (AMI) technology allows utilities to gather data automatically
and wirelessly from their meters. It has been in use for a number of years in the energy sector
and is slowly gaining traction in the water sector. The focus on advanced metering for water is
greater in states like California, due to drought conditions and conservation mandates.

AMI can be deployed in multiple ways; a typical scenario is to use a ‘fixed network’, where by a
utility will install data collectors in their service areas in order to receive radio frequency data
transmissions from the meter measurement devices. Given the deployment cost, length of time
to deploy, and maintenance requirements of implementing a fixed network AMI solution, such
solutions may not always be feasible for water utilities.

AMI technology for water utilities opens up possibilities for continual advanced meter-level data
analytics, in particular around apparent loss management. Apparent water losses are the non-
physical losses that occur in utility operations due to customer metering inaccuracies, systematic
data handling errors in customer billing systems, and unauthorized consumption. This is water
that is consumed but not properly measured, accounted for, or billed. Having knowledge of the
what, why, and how much of apparent water losses, enables utilities to recover revenue where
possible, optimize meter replacement programs, and undertake appropriate demand
management measures. In absence of AMI data, apparent loss analysis would be restricted to
detection using monthly data, and in many cases, an exercise that occurs once a year during a
top-down non-revenue water audit.

Valor Water Analytics has implemented ongoing apparent loss detection at multiple clients across
the USA since 2015, and identified 1.5% of top line revenue for recovery, on average. Two
apparent loss indicators of high interest to many utilities are customer leaks and meter under-
registration. Knowledge of customer water leaks allows utilities to engage their customers and
help them better understand the issue and identify the source. This, in turn, can lead to reduced
time to correct the issue and increased water and energy savings. Knowledge of water meter
under-registration or dying meters allows utilities to instate effective meter asset management
programs, charge customers for true consumption, and enhance water demand management.
There is great value for reducing water loss and recovering revenue through proactive, ongoing
apparent loss management.

In addition to apparent loss management analytics, a unique opportunity offered by shared
network AMI is the ability to detect hot water leaks across customers using joint water and gas
data. Without shared network AMI, this analysis would be restricted to detection via gas data



only. Undetected hot water leaks can lead to property damage and wasted water and gas.
Communication to customers without sufficient data confirmation and field investigation is a risky
proposition. With automated and accurate detection, utilities with energy efficiency goals could
work with customers to reduce instances of excess gas consumption from hot water leaks and
improve on both compliance and customer satisfaction. Southern California Gas Company
conducted an exploratory analysis from 2015 to 2018 and identified that approximately 30% of
anomalous gas consumption investigations were the result of a hot water leak at the customer
premise. There is value for accelerated and accurate detection of hot water leaks, where joint
water and gas data is available, and utilities are better equipped to work with their customers to
better understand and identify the source of the leak, which may lead to reduced time to correct
the issue and increased water and energy savings.

Keeping the dual concepts of shared network and joint utility analytics in mind, the California
Public Utilities Commission approved a twelve-month Water-Energy Nexus (WEN) Shared
Network AMI Pilot in 2016. The pilot involved 3 key partners — Southern California Gas Company
(SoCalGas), California American Water Company (CalAm), and Valor Water Analytics (Valor).
Aclara Technologies LLC (Aclara) was the AMI vendor for this pilot, as they provide the AMI
solution for SoCalGas. In order to utilize the SoCalGas AMI network infrastructure, CalAm also
used Aclara technology as their pilot AMI solution.

The objectives of the pilot for SoCalGas are:

e To demonstrate the feasibility of a water utility “piggybacking” meter data on the
SoCalGas Advanced Metering network

e To investigate hot water leak detection analytics and potential to address residential hot
water leaks

e To calculate the embedded energy savings from reduced water loss from hot water leaks

e To test the hypothesis that AMI technology results in greater water (and associated
energy savings) than monthly meter read technology

e To gain insights that can inform baselines for future program performance metrics

Pilot Background

Service Areas and Partners
The pilot was conducted within CalAm’s Ventura service area, covering neighborhoods like
Thousand Oaks, Newbury Park, and Camarillo. As part of CalAm’s Ventura meter replacement
program, approximately 1,300 meters were identified for potential replacement and conversion
to AMI. CalAm desired these meters to form the experimental treatment group. Equivalent
control accounts were determined, per the methodology described in sections below. The
characteristic of the treatment accounts was that they had AMI water meter reads and AMI gas
meter reads, whereas the control accounts had AMR water meter reads and AMI gas reads.
Residential and Commercial customer classifications were included in consideration. While not
specifically selected, Residential classification included a mix of low income, moderate income,



multifamily buildings and rental units. Table 1 outlines the roles and responsibilities of the parties
involved in the pilot.

Table 1: AMI WEN Pilot partners and their roles

Partners SoCalGas CalAm Aclara Valor
Roles e  Provide Trial AMI Provide AMI Provide CalAm with
Network Technology and Technology Apparent Water Loss
Infrastructure Network and Management Solutions
e  RunInternal Piggybacking Infrastructure (Hidden Revenue Locator)
Gas Analytics Leverage Valor Support Provide CalAm with WEN
. Leverage Apparent Water Loss Reporting (Water Energy
Valor Hot Analytics Nexus Calculator)
Water Leak e Investigate Apparent e  Provide SoCalGas with Hot
Analytics Water Loss Flags Water Leak Management

Solutions (Hot Water Leak
Detector)

(Valor findings)
Maintain Smart

° Investigate
Potential Hot e

Water Leak Energy Water e  Provide SoCalGas with
Flags in Field Customer Portal for WEN Reporting (Water
(both Internal Treatment Group Energy Nexus Calculator)
and Valor Customers e  Perform advanced
findings) analytics on the water and

gas dataset
(AMI/treatment vs
control, pre and post) and
hypothesis testing

Data and Experimental Selection Methodology

Data Exclusions

The list of potential treatment accounts was provided to Valor in the file ‘Ventura Pilot
Meters for Valor.xlsx’ and contained 1301 rows. A supplementary file,
'MeterDetail+(CA0560).xIsx' was used to obtain premise values for the potential
treatment accounts. Accounts were reviewed for data completeness, and the following
exclusions were conducted:

e 3 rows were removed since they did not connect to a premise value

e 2 rows were removed since they had duplicate SoCalGas GNN IDs

e 79 rows were removed since they did not have SoCalGas GNN IDs (no Gas AMI)

e 7 rows were removed based off information from SoCalGas (opt-out for Gas AMI,

no meter transmission unit, etc.)
e 20 rows were removed that could not be appropriately segmented

Appendix 1 details the files examined and the count of accounts removed at each step of
the data exclusions process. After application of data exclusion, the treatment group
comprised of 1,190 accounts. Treatment/Control pairs were identified through a
segmentation process, described below.



Customer Segmentation
Customer segmentation was carried out to group accounts by their customer information
and use behavior. The steps are outlined below:

e Monthly Imputation: To compare equivalent customer use within equivalent time
frames, the data was normalized to a monthly scale.

e Segmentation: In order to draw a sample that best represents the attributes of
the underlying population, customer segmentation was done by Region
(Ventura), Customer Type Classification, Meter Size, and then further based on
their usage.

0 Customer Type Classification and Meter Size were pre-determined by
CalAm, and included Residential, Commercial, Industrial, and Public
Authority classes, and water meter sizes from 5/8 inch to 2 inch.

0 Usage was used to further segment customers into one of four possible
quadrants (A-D), based on their baseline use and peaking factors.

= Segment A: Low Users, High Peakers
=  Segment B: High Users, High Peakers
= Segment C: Low Users, Low Peakers
= Segment D: High Users, Low Peakers

Treatment and Control Group Determination

Once the treatment accounts were segmented suitably, controls were identified by
randomly sampling from the matching segments. A pool of 20,804 premises in the
Ventura service area was available for controls determination. All treatment and control
accounts were re-checked for data completeness from a historical water billing
perspective. Accounts were also verified by SoCalGas to be active AMI gas accounts. In
instances where accounts were either opt-out for AMI gas or without a meter
transmission unit, alternate accounts were selected. At the end of this process, the 1,190
treatment and 1,190 control accounts were assigned with Valor IDs using the following
naming convention: Ventura Treatment accounts “T-Vent(Number)”, Ventura Control
accounts “C-Vent (Number).” AMI water meters were subsequently installed by CalAm
for the treatment accounts over an eight-week period. The final list of 1,190
Treatment/Control pairs for Ventura used in WEN analysis is presented in Appendix 2.

Analytics reporting period

Once the AMI water meters were successfully installed and steadily transmitting hourly
water data, Valor completed CalAm enterprise and water meter data integration and
configuration and launched the Hidden Revenue Locator online dashboard. In parallel,
Valor completed SoCalGas gas meter data integration and configuration, and launched
the Hot Water Leak Detector online dashboard. The start date of the twelve-month
analytical reporting period for both CalAm and SoCalGas was February 6, 2017; the date
when CalAm’s customer engagement portal was potentially available for treatment
accounts. The analytical reporting period ended on February 6, 2018.



CalAm Sample Size Significance
The standard recommendation for experimental studies like this pilot is to include as large
a sample size as practically possible. For the CalAm engagement, standard statistical
estimation techniques [1] were used to determine the minimal treatment group sample
size.

The minimal treatment group sample size calculation is:
n =z%(p*q)/ &%, with z=2, p=0.5, 6=0.05 = n = 400

It was therefore determined prior to analytics start that at least 400 treatment accounts
would be needed over a twelve-month period, to make statistically plausible inferences
about pilot hypotheses. It must be noted that with any statistical experiment, it is not
possible to have any a priori determination [1].

SoCalGas Analytics Dashboards

A process was set up to send Valor gas data from SoCalGas two days after the gas meter
read date, and for Valor to ingest and publish flags on a “next day” basis. A separate
process was set up to send Valor AMI water meter data from Aclara on a daily basis, and
billing and monthly water meter data from CalAm on a monthly basis. As indicated in
Table 1, the analytics dashboards provided by Valor to SoCalGas were:

e Hot Water Leak Detector

e Water Energy Nexus Calculator

The Hot Water Leak Detector dashboard is a ‘Call-to-Action’ dashboard and ingests and
analyzes water and gas data to flag potential hot water leaks in a timely manner. Two
types of potential hot water leak flags are determined, depending on data source.

e Other Anomalous Gas Use (OAG): This is a potential hot water leak, predicted
using hourly gas data only. The account/customer gas usage reveals the digital
signature of a hot water leak; however, a corresponding pattern in the water data
is not observed for the synchronized time period. The absence of the water
pattern may be due to lack of availability of AMI water data, or because it does
not meet the criteria for detection in the monthly water leak analysis. OAG flags
are updated on a “next day” basis for both treatment and control accounts.

e Suspect Hot Water Leak (HWL): This is a potential hot water leak, predicted with
high confidence, since it leverages both gas and water data. The digital signature
of aleakis present in the synchronized gas and water data. HWL flags are updated
on a “next day” basis for treatment accounts, and monthly for the control
accounts.

The Water Energy Nexus Calculator dashboard for SoCalGas is an online ‘Reporting’
dashboard that quantifies water, embedded energy, greenhouse gas (GHG), and
monetary savings associated with hot water leak detection. To calculate these savings,
Valor measures the water saved via early detection with AMI technology as follows:
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e Water Saved (Estimated): The theoretical gallons of water saved by early
detection of hot water leaks in the treatment group. It is calculated by comparing
the amount of excess water leakage and/or usage that would have occurred
should Valor have not detected and reported the hot water leak before the end
of the billing period.

e Therms Saved (Estimated): The theoretical therms of natural gas saved via early
detection of hot water leaks in the treatment group. It is calculated by comparing
the amount of excess leakage and/or usage that would have occurred should
Valor have not detected and reported the hot water leak before the end of the
billing period.

O Excess gallons and therms detected are measuring using the formula,
Qiwg = At * BASELINEiwg. Q is the quantity of water leaked or gas used,
measured in gallons or therms, respectively, At is duration of the time
period where a customer consumes a continuous nonzero amount of
water or gas, measured in hours, and BASELINE is the minimum rate of
nonzero hourly consumption of water or gas during the time period At.
w indicates water meter data while g indicates gas meter data. i is the
individual meter. Q is measured using the data provided by the AMR and
AMI meters.

e kWh Saved (Estimated): The theoretical kWh of electricity saved via early
detection of hot water leaks in the treatment group. It is calculated by comparing
the amount of excess water leakage and/or usage that would have occurred
should Valor have not detected and reported the hot water leak before the end
of the billing period, and then calculating the embedded energy per water volume
saved, per the 2016 CPUC Water Energy Nexus Calculator [2].

e Avoided Energy Cost (Estimated): The average annual monetary savings
associated with Therms of natural gas and kWh of embedded energy avoided.
The avoided energy cost was calculated per the methodology in the 2016 CPUC
Water Energy Nexus Calculator [2].

e Kg CO, Equivalent Saved (Estimated): The total kilograms of carbon dioxide
equivalent that were avoided as a result of the saved natural gas therms and
embedded energy of water in hot water leaks. Carbon dioxide equivalent is a
metric that describes, for a given mixture and amount of greenhouse gas, the
amount of carbon dioxide that would yield the same global warming potential
when measured over a timescale of 100 years. The California Air Resources Board
GHG Calculator methodologies were applied for this calculation [3].

Analytics Delivery Overview
SoCalGas’ receipt of approval for the Commission filing in August 2016 triggered the installation
of the AMI meters for treatment accounts by CalAm and the project planning process for analytics
by Valor. Figure 1 outlines the phases involved in Valor’s analytics deployment process. Planning,
Integration, and Configuration activities occurred October 2016 to January 2017, and the Hot
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Water Leak Detector dashboard was launched in the first week of February 2017. The Water
Energy Nexus Detector dashboard was launched in the first week of March 2017.

Launch and
Training

Integration Configuration Deployment

e Agree upon study eDelivery meter eValor cleans and eLaunch of Hot *SoCalGas begin e Valor delivers

design. data history and loads provided Water Leak investigating flags. interim and final
«Create project some validated data. Detector «Hold bi-weekly results report.
plan. flags per contract. dashboard to key  check in meetings.
«|dentify and *Valor integrates client team. e Launch Water
secure key with AMI head- e User Training on Energy.Nexus
resources. end. dashboards. Calculator
«|dentify ¢ Automated dashboard to key
milestones and process set up to client team.
assign provisional ~send Valor ¢ Continually
dates. ongoing data. monitor program
eDetermine key success.
performance
metrics.

Figure 1: Analytics Deployment Phases Overview

Hot Water Leak Detector Flag Investigation and Feedback Process
An investigation process (Figure 2) was established to check the flags produced on the Hot Water
Leak Detector dashboard. The field checks aligned with protocols that SoCalGas already had in
place. It was determined during kickoff that SoCalGas would only validate Residential hot water
leaks within pilot scope. Validation of Commercial hot water leaks would require new resources
and procedures to be established, and deferred post-pilot. Information regarding hot water leak
investigations were shared by SoCalGas with CalAm through email communication.
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Figure 2: Schematic of Hot Water Leak Detector flag investigation and feedback process
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Hot Water Leak
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Final Report Results Data Description
Table 2 summarizes the water and gas records included in the final report results analysis. The

final billing month considered for analysis is January 2018.

Table 2: Description of water data from January 2014 to January 2018, and gas data

from December 2015 to January 2018

Field Technician visits

Premise and
performs gas and
water leak
investigation

4 communicated to

If TRUE water leak, form left with customer
#  to have licensed professional investigate
further and water utility notified

* \F TRUE gas leak, immediate action and

resolution by Field Technician

| IF FALSE gas and water leak, no further
action

Findings

Valor

Insight on flags that are TRUE
and FALSE used to improve
algorithms and future reparting

O

END

Treatment  Control
Unique Premises 1,190 1,190
Months of Data (Water) 49 49
Number of Meter Reads (Water) 56,992 56,434
Months of Data (Gas) 26 26
Number of Meter Reads (Gas) 26,642 27,043

Results and Discussion
Network Sharing

Network performance during the course of the pilot was monitored via Aclara-provided reports
for MTU/DCU Redundancy, Installed MTU Count, MTU Transmission Frequency, MTU Read
Interval Length, and MTU Read Reception Rate.

Table 3: Overall DCU Count

DCUs Installed

Ventura

Before Pilot Start

21
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After Pilot Start 0

Grand Total 21

DCUs in Ventura

e Thereis a total of 21 DCUs in Ventura

e Map below highlights the service territory for California American Water (Ventura) and the
DCUs within and in the surrounding area

Figure 3: DCU in Ventura

The average DCU redundancy is 6. This means that each MTU is heard, on average, by 6 DCUs.

California American Water
Weekly Aerage DCU Redundancy
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Figure 4: Average DCU redundancy

For California American Water, there are a total of 138 unique DCUs that have picked up
transmissions from California American Water MTUs in that service territory. The map below
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plots all of the SoCalGas DCUs which have received transmissions at least once from California
American Water MTU.
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Figure 5: Ventura water MTU transmissions

The total number of installed MTUs is 1,287 (as of 2/25/18).

Table 4: MTU Installation Summary

Water Company Installs Total % of total Installs

California American Water 1,287 100.00

The average monthly RSR for California American Water is 98.3 for the period from August 2016
to February 2018. It is important to note that RSR is captured. Generally, RSR will increase over
time as installation issues are resolved, and this is what is attributed to the peaks and valleys seen
in the chart below. The average RSR for California American Water in February 2018 was 98.4.

o California American Water Monthly Average RSR
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Figure 6: California American Water monthly average RSR summary

Hot Water Leak Detection and Analytics
Six potential hot water leaks were detected by Valor between February 2017 and February 2018.
In general, aggregate water savings from hot water leak reduction was estimated by noting the
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start and end time for each leak, calculating the flow rate of that leak by comparing the flowrate
during the leak period to normal consumption periods, and assuming that the leak would have
continued at this flowrate until the next bill date, at which point the customer is assumed to have
taken action from the high bill.

This approach is an accepted way to estimate aggregate water savings; however, it does have
some limitations. The approach under-estimates water savings associated with leaks that span
multiple months, since it assumes customers are prompted to action upon receipt of their bill.
Another variable that is not factored in is the timeliness of outreach from the utility to the
customer; it is assumed that utilities will have notified customers and/or investigated flags soon
after their detection. In reality, the timeliness of leak notification may vary between flags, during
which period a leak could self-resolve; this was beyond the scope of the program to analyze.

C-Vent1454 OAG
The first flag was an OAG (hot water leak signature based off gas AMI data only) on a control group
account, C-Vent1454. The leak was active from July 3, 2017 to August 16, 2017 and caused an
excess gas use of 21.6 therms. The premise is a single-family home with 4 bedrooms, 2 bathrooms,
with 1,639 finished sq. ft. and 7,147 sq. ft. of potentially irrigated area

SoCalGas conducted a field visit and verified a gas leak on the pool heater gas line. They also
confirmed that the water meter was not spinning. A form was left for the customer to contact a
licensed plumber to repair the yard line leak.

C-Vent1562 OAG
The second flag was an OAG (hot water leak signature based off gas AMI data only) on a control
group account, C-Vent1562. The leak was active from August 25, 2017 to September 21, 2017 and
caused an excess gas use of 13.5 therms. The premise is a single-family home with 4 bedrooms,
2.5 bathrooms, with 2,589 finished sq. ft. and 10,508 sq. ft. of potentially irrigated area.

SoCalGas conducted a field check and verified a leaking gas line for a BBQ. A form was left for the
customer to contact a licensed plumber to repair the yard line leak.

T-Vent1360 HWL
The third flag was a HWL (hot water leak signature based off both gas and water AMI data) on a
treatment group account, T-Vent1360. The leak was active from September 29, 2017 to October
30, 2017. Excess water use of 3,456 gallons and excess gas use of 15.3 therms was observed. The
premise is a single-family home with 4 bedrooms, 3 bathrooms, 1,996 finished sq. ft. and 8,404
sq. ft. of potentially irrigated area.

SoCalGas conducted a field check, and confirmed a hot water leak at this facility. The field

representative logged the following notes:
e Confirmed water meter was spinning with no water in use
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e There was normal registration once the water heater was not in demand
e Customer confirmed bathroom floor tile was warm
e Thermostat at water heater was left in vacation (status)
e Water heater access is outside
0 Whirlpool 40 Gal
0 34,000 input BTU
0 Year of manufacturer — 2010

C-Vent653 OAG
The fourth flag was an OAG (hot water leak signature based off gas AMI data only) on a control
group account, C-Vent653. The flag was active from November 11, 2017 to November 22, 2017
and caused an excess gas use of 11.7 therms. The premise is a single-family home with 4
bedrooms, 2.5 bathrooms, with 1,635 finished sq. ft. and 527 sq. ft. of potentially irrigated area.

SoCalGas office investigation determined that the usage appeared to be normal for heating
season; a field check was not conducted.

T-Vent1600 OAG
The fifth flag was an OAG (hot water leak signature based off gas AMI data only) on a treatment
group account, T-Vent1600. The flag was active from December 13, 2017 to January 2, 2018 and
caused an excess gas use of 40.3 therms. The premise is a single-family home with 4 bedrooms, 3
bathrooms, with 2,855 finished sq. ft. and 4,126 sq. ft. of potentially irrigated area.

SoCalGas conducted a field check on February 2, 2018, some days after consumption returned to
normal. The customer was not home; SoCalGas could therefore not evaluate appliances or
discover if the customer was aware of the consumption anomaly or had made any repairs.

T-Vent1549 OAG
The sixth flag was an OAG (hot water leak signature based off gas AMI data only) on a treatment
group account, T-Vent1549. The flag was active from December 19, 2017 to December 28, 2017
and caused an excess gas use of 9.1 therms. The premise is a single-family home with 4 bedroomes,
2 bathrooms, with 2,313 finished sq. ft. and 6,703 sq. ft. of potentially irrigated area.

SoCalGas conducted a field check on February 2, 2018, some days after consumption returned to
normal. The customer was home and appliances were tested to ensure there was no safety
concern. No repairs appeared to have been made. The customer was not aware of the
consumption anomaly.

Table 5 summarizes the potential hot water leaks detected from February 2017 to February 2018,
and the water savings associated with the verified hot water leak.

Table 5: Hot Water Leak Detection and Analytics, Post-treatment

17



Control Treatment

Number of OAG and HWL Flags 3 3
Detected
Number of Hot Water Leaks 1
Confirmed
Gallons Saved 0 1,343

An offline exercise was conducted a couple of times over the course of the pilot, where Valor’s
thresholds for hot water leak detection were loosened and additional ‘interesting patterns’
reviewed as a collaborative office exercise between SoCalGas and Valor. None of the flags
determined were worthy of field investigation.

Hot water leaks were a small subset of the overall leaks established in this pilot; in total, one
hundred and eighty-eight water leaks were identified using AMI water data. Established processes
were used by CalAm to confirm some of the other (not hot) water leaks. Aggregate water savings
for those water leaks have been estimated and shared with CalAm.

Water Customer Portal Engagement

CalAm elected to use an ‘opt-in’ approach to engage treatment group customers through the
Smart Energy Water online portal. In addition, customers that had leaks flagged were contacted
by phone and encouraged to use the portal. Despite multiple outreach attempts by CalAm, the
sign on rates were low. A total of 70 residential customers in the treatment group were active on
the customer portal over the course of the analytics reporting period. A total of 105 residential
customers had at least one (not hot) water leak flag during the analytics period. Only four
customers both elected to use the portal and had a leak flag. Although it is possible that these
four customers adopted the portal after being notified of a leak, there is no average correlation
between being flagged for leaks and adopting the portal. Table 6 summarizes the counts of
treatment group residential customers in each combination of having leaks flagged and portal
adoption.

Table 6: Portal Adoption and Leak Flags for Residential Treatment Group Premises

Total Residential
Leak Flagged No Leak Flagged Treatment Group
Used Portal 4 66 70
Did Not Use Portal 101 996 1,097
Total 105 1,062 1,167

The four customers with leak flags that adopted the customer engagement portal are T-Vent1187,
T-Vent773, T-Vent1508, and T-Vent903. All had substantial water leaks of over 300 gallons. Figure
7 shows the water consumption pattern of these four customers superimposed with the periods
where leaks were flagged. By visual inspection, for T-Vent773 and T-Vent903, the billed
consumption for the billing month during which leaks were detected does appear to be larger
than the same months in the previous year. For T-Vent1187 and T-Vent1508, the effect is more
ambiguous. In all cases, the billed consumption for the billing month following the ones where
leaks were flagged do not appear to be lower than consumption in the same month the previous
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year. These four customers therefore did not demonstrate any additional conservation effect due
to using the portal, other than fixing a leak in response to leak flags.
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Figure 7: Water consumption patterns for residential treatment premises that experienced leaks and
adopted customer engagement portal. Red shaded regions indicate flagged leak events

Water and Energy Savings
Table 7 summarizes the water and energy savings associated with hot water leak analytics and
proactive intervention. Energy savings are calculated by multiplying the water savings by a
constant for the average embodied energy per gallon of water produced and distributed by
CalAm.

Table 7: Water and Energy Savings in Treatment Period

Treatment Control
Hot Water Leak/Gas Anomaly Savings (Gallons) 1,343 0
Embedded Energy Savings (kWh) 5.4 0

Advanced Statistical Modeling Results
Statistical analysis was conducted to evaluate the extent to which using AMI for water metering
affected water and energy conservation—that is, caused reductions in water and gas
consumption. Since only 6% of residential treatment group customers elected to use the
customer engagement portal to monitor their water consumption on an hourly or daily basis, the
AMI program impact on water savings was primarily from leak detection and customer
notification. Improved leak detection and resolution was due to more frequent meter readings
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with AMI technology, enabling shorter periods between leak start and leak detection, as well due
to detection of smaller leaks that may not have been picked up in leak detection algorithms based
on monthly meter reads.

All of the analyses considered the effect of a binary treatment (the use of AMI analytics, without
adoption of the customer engagement (CE) portal). In addition, models were specified with a
secondary treatment, the use of the CE portal. Premises associated with accounts that enrolled in
the CE portal at any time over the pilot are considered in this secondary treatment group; it was
not possible to determine when each customer first enrolled. Among customers that did log into
the portal, it was not possible to distinguish between impacts due to the enhanced resolution of
water consumption information made available and conservation efforts motivated
independently of and/or prior to enrollment in the portal. This is due to the voluntary, self-
selected nature of the sample of customers participating in this aspect of the treatment.

Since hot water leaks represented a small portion of the 188 water leak flags, further references
to ‘leaks’ in this section refers to ‘all’ water leaks.

The statistical modeling is based on a hypothesis-testing framework, where each outcome of
interest has an associated null hypothesis (Ho) of there being no effect of the AMI program. The
statistical models quantify the probability of observing differences between the treatment and
control groups assuming that Ho is true (i.e., that there is no difference in outcomes between the
treatment and control groups). This information can be translated into a confidence interval—a
range of values of the difference between the treatment and control groups with a specified
probability (e.g. 95%) that the true difference is within that range. When 0 does not lie within this
confidence interval, the null hypothesis is rejected in favor of an alternate hypothesis (H1) that
the difference in the outcome of interest between treatment and control groups is statistically
significant. The following hypotheses were tested:

i. Water Consumption:
a. Ho: There is no difference in water consumption trends between the treatment
premises (those with water AMI) and the control premises
b. Hi: Water consumption in treatment premises (those with water AMI) is different
(lower) than in control premises

The AMI treatment is hypothesized to reduce water consumption, primarily through the
detection and repair of leaks faster with hourly interval data than is possible from using
monthly billing data, as well as through the ability to detect smaller leaks. This is
effectively a measure of the water savings resulting from the AMI treatment. While
embedded energy impacts per premise could be calculated on the basis of the average
change in water consumption, the dependent variable would be a constant unit
conversion from water to energy units for the premises in each service area, based on the
energy intensity of retail water in each service area. Thus, the effect of the AMI treatment
on embedded energy in percentage terms would be the same as for water consumption.

ii. Gas Consumption:
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a. Ho:Thereis no difference in gas consumption trends between the treatment premises
(those with water AMI) and the control premises

b. Hi: Gas consumption in treatment premises (those with water AMI) is different
(lower) than in control premises

The AMI treatment is hypothesized to reduce gas consumption, primarily through the
detection and repair of hot water leaks faster than is possible from using monthly water
billing data with gas AMI data. This is effectively a measure of the gas savings resulting
from the AMI treatment.

iii. Leaks Detected from monthly billing data:

a. Ho: There is no difference in the proportion of premises being flagged for water leaks
in a given billing period by the monthly leak detection algorithm between the
treatment premises and the control premises

b. Hi: The proportion of treatment premises (those with water AMI) being flagged for
water leaks by the monthly leak detection algorithm in a given billing period is
different (lower) than the proportion of control premises being flagged

The AMI treatment is hypothesized to reduce the probability of a monthly leak detection
algorithm flagging a leak, since the AMI-based leak detection algorithms would have
already picked up leaks, and customers would have repaired leaks more quickly than they
could otherwise. This would reduce the overall volume of outstanding leaks, and thus the
probability of leaks in treatment premises being detected by monthly algorithms. This
effect would be a measure of the degree to which the AMI treatment works to decrease
water loss by detecting leaks more quickly.

iv. Total Leaks Detected using all available data:

a. Ho: There is no difference in the proportion of treatment and control premises being
flagged for water leaks in a given billing period by either monthly or AMI leak
detection algorithms

b. Hi: The proportion of treatment premises (those with water AMI) flagged for water
leaks by either monthly or AMI algorithm in a given billing period is different (higher)
than the proportion of control premises being flagged.

The AMI treatment is hypothesized to increase outright the probability of a leak being
detected for given premises with a leak, due to AMI algorithms detecting smaller leaks
that monthly algorithms may not be sensitive to, whether due to low flowrates or because
the leak starts later in the billing cycle. The difference between this effect and effect from
hypothesis (iii) above is a measure of the degree to which the AMI treatment works to
decrease water loss by detecting leaks with low flowrates relative to “normal”
consumption.

22



Model set up and initial checks
Motivation: Data availability is one limitation that informs the construction of statistical models.
This section describes the data available and the initial characteristics of the study area.

Result Summary: Data available for investigation included outcome information, daily weather
and precipitation, and some characteristics of residential premises available from local
government tax rolls for 2016. There was substantial geographic clustering of treatment group
premises, as these were pre-determined from CalAm’s meter replacement program. The strong
non-random component to the AMI treatment will need to be accounted for statistically. In
particular, measured effects of AMI on water consumption requires cautious interpretation, since
it may also be impacted by differences in water meter accuracy between the treatment and
control groups.

Result Details: The following data and results were included in the advanced analysis:

e Monthly CalAm meter-level water billing records (metered consumption and bills) for
treatment and control premises. Consumption data was cleaned of data entry and
meter reading errors to best represent actual consumption. Meter-level data was
aggregated to premise level

e SoCalGas consumption AMI data aggregated by water billing periods for treatment
and control premises

e Flags of water leaks generated by Valor monthly leak algorithms

e Flags of water leaks detected by Valor AMI hourly leak algorithms

Since AMI treatment was quasi-randomized (based on a pre-existing meter replacement
schedule), investigation was done on variables that might correlate with levels of water and gas
consumption as well as the propensity for water leaks. A check for balance across treatment and
control groups was done to ensure that the two groups were equivalent, and controls were
included for these variables statistically in order to improve the precision of the treatment effect
estimate and increase statistical power. A list of the variables is as follows:

e Premise-level variables — data collected:
0 Premises were address-standardized using the World Geocoding Service
0 Premise standardized addresses were geolocated using the World Geocoding
Service.
0 For residential premises, other than multi-family, the following data was
pulled from the Ventura County Assessors’ offices:
= 2016 Tax Assessment value of property (USD)
= Year built
= Lot size (sq. ft.)
= Finished area (sq. ft.)
=  Number bathrooms
=  Number bedrooms
=  Total number of rooms
e Premise-level variables — data calculated:
0 Potentially Irrigated area (sq. ft.; Difference of Lot size and Finished area)
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e Weather — data collected:

0 For all premises, weather data from PRISM, which aggregates daily climate
data from all available sources into a global gridded dataset with 2km-square
resolution.

0 For each premise and water billing period, the daily data for the PRISM grid
cell overlapping the geocoded location of the premises was aggregated to
create the following variables:

= Average Daily Precipitation (mm)

=  Proportion of days in billing period with non-zero precipitation

= Cooling Degree Days- base 65 (Average temperature — 65°F, averaged
across all days in billing period)

= Cooling Degree Days- base 80 (Average temperature — 80°F, averaged
across all days in billing period)

= Heating Degree Days (65°F — Average temperature, averaged across
all days in billing period)

It is important to control for weather to ensure that differences in consumption trends between
the treatment and control groups are not due to differences in weather trends. In Southern
California, weather affects water consumption primarily through irrigation requirements.
Evapotranspiration would be a logical variable with which to control for variation in water
consumption due to weather. However, evapotranspiration data in Southern California is limited
to a few monitoring stations that have wide periods of missing data, and these do not provide
sufficient coverage to estimate evapotranspiration variation within urbanized areas. As an
alternative, weather normalization was conducted using precipitation and temperature.

Precipitation over a billing period affects water consumption through the decision of whether to
irrigate, and by how much. Cooling degree days (CDD) have been calculated over each billing
period. This is calculated by subtracting a base temperature from the average daily temperature
and summing this value over all of the days in the billing period. This is an aggregate monthly
measure of the amount of heat over the threshold base value experienced. CDD is calculated using
both the standard base value of 65°F as well as 80°F as recommended by PG&E’s Pacific Energy
Center in “Guide to California Climate Zones and Bioclimatic Design” [4]. For gas consumption,
instead of precipitation and CDD, we use heating degree days (HDD), which is similar to CDD
except that the average daily temperature is subtracted from a base value of 65°F, resulting in a
monthly measure of the amount of heat likely to be demanded.

The average water price and any pricing changes faced by customers can also affect water
consumption. No changes occurred in CalAm rates over the course of the analytics reporting
period. Prices were therefore not considered for further investigation, as the increasing block rate
would just introduce unnecessary autocorrelation into the predictor equation.

Figure 8 presents the locations of the 2,380 premises in Ventura. While the spatial distribution of
control premises looks random, a high proportion of the treatment premises are tightly clustered.
Treatments premises may therefore be systematically different in observed and unobserved ways
from control premises. Since AMI was installed based off a pre-existing meter replacement
schedule, it is possible that the older water meters in the treatment group had a higher rate of
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under-registration issues than water meters in the control group. The measured effects of AMI
on measured water consumption could conflate real effects with measurement changes due to
new meter installation within the treatment group.

Camarillo

Customers
= Control

2 Miles @ Treatment

Figure 8: Spatial distribution of control and treatment premises in Ventura

Table 8 shows the average water consumption, gas consumption, number of leaks detected,
climate variables and housing values for the study premises in the pre-treatment period,
averaged over January 2014-January 2017.

Table 8: Ventura characteristics in the pre-treatment period, averaged over January 2014 to

January 2017
Median Median
Water Use Gas Use Average Average
(Average (Average monthly leaks Average Average Daily Proportion Average
Service Daily Daily detected per daily CDD daily HDD Precipitation days with value/ sq.
Area Gallons) Therms) premises (80F base) (65F base) (mm) precipitation ft.
Ventura 516 1.57 0.007 2.79 3.49 0.77 0.1 $223
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Sample Size Impact:
Motivation: Statistical hypothesis testing relies on the ability of models to construct confidence
intervals that are sufficiently narrow to reject Hp, assuming that Hy is false (i.e., that there is a true
difference in outcome between groups). This requires a sufficient sample size, with generally
larger sample sizes resulting in narrower confidence intervals and a higher probability of rejecting
(false) Ho. This section evaluates the sufficiency of the study sample size for this purpose.

Result Summary: The sample size is likely sufficient to detect the changes in water consumption
that would plausibly be caused by the AMI program at this point. The most complex statistical
models may be able to detect a reduction of water and gas consumption of about 3.5%.

Result Details: A total of 2,380 premises are available for analysis, divided evenly between the
treatment and control groups. Table 9 shows the full sample size in units of observations. An
observation refers to a billing record (i.e. each combination of a premises with a water billing

period).
Table 9: Sample Sizes for Water
Full Sample Residential Premises Only
Post-Treatment Post-Treatment
Service Area Premises Observations Observations Premises Observations Observations
Ventura 2,380 106,566 25,309 2,334 104,598 24,845

In order to determine if the sample size is of sufficient power to detect the effect of AMI with
statistical significance, supposing AMI does indeed have an effect in reality, a power analysis is
done to determine the effect on water consumption levels.

While the number of observations is quite large, they are not independent (since observations
are repeated for the same units) and cannot be treated as such for power calculations. It is
necessary to calculate the minimum detectable effect (MDE) given the data available. The MDE
at 80% statistical power is the smallest true effect that would be estimated to be statistically
significant with the given samples sizes at least 80% of the time in repeated experiments on the
same population. The MDE of the AMI pilot in terms of percent change in water use, as measured
by simple post-treatment difference in means of the logarithm of water consumption, would be
calculated per the equation below:

MDE = ( +q;) Var@)
~ Mg T W i —p)
In this equation g, _a = 1.96 for two-sided 5% p-level (i.e. 95% confidence interval), q; = 0.85 for
2

80% power. Var(y) is the variance of the outcome variable in the sample. For the purposes of
power calculations, the dependent variable y is the natural logarithm of average daily water
consumption. In this data, the variance of y is ~0.78. n=2,380 is the sample size, and p=0.5 is the
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proportion of the sample in the treatment group. With these numbers, the MDE for water
consumption of the AMI program is 10.2%. For gas, in this data, the variance of y is ~0.6, and the
associated MDE is 8.9%.

Given that similar randomized control trials of U.S. water and energy utility customer
conservation and information programs typically find effect sizes between 1-5% [5,6,7], this pilot
is underpowered for post-treatment only analysis. To accommodate this, panel econometric
methods are used. These methods involve analyzing data collected over time following the same
units, so that each unit has multiple observations. At their most simple, panel methods increase
the sample size. Panel methods also allow for more complex types of analysis such as averaging
the change in a response before and after a treatment across many units, while accounting for
the fact that observations from the same unit are correlated. Thus, rather than comparing the
average value of a response between treatment and control groups, panel methods can quantify
the difference in trends between treatment and control groups.

In the econometrics literature, power calculations for panel data are still under study. However,
an optimistic power calculation for the panel regression for a binary treatment with unit and time
fixed effects and no other covariates is shown below [8].

Var(9) (m + r)

MDE = +

Where mis the number of pre-treatment observation times and r is the number of post-treatment
observation times. In this data for water, m=36 and r=12. A simple two-way fixed-effects
specification thus yields a minimum detectable effect (with 80% power) of 3.4%. Additional time-
varying controls such as weather, or interactions between the treatment and initial consumption
can reduce the residual variation of y within the treatment and control groups and enable greater
precision in the detection of this effect. For gas, with m=14 and r =12, the MDE is 3.5%.

The findings after detailed sample size impact analysis is that given the number of premises
included in the study, the variability in water and gas consumption, and the likely range of effect
sizes for the AMI program, this study is still unlikely to detect the true effect of AMI on water
conservation by simply comparing average water and gas consumption or water leak detection
rates between the treatment and control groups. However, by utilizing multiple observations and
exploiting available information about premises structural properties and the weather, the study
at the current time should be able to identify the effect on water and gas consumption levels as
long as the true effect is greater than 3.5%. Unfortunately, it is quite possible that the true effect
size is smaller than these values.

Assuming the sample size is sufficient to detect the true effect size, the next concern to address

is whether the observed effect sizes can be interpreted as the causal effects of the AMI program.

Pre-treatment balance
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Motivation: In order to interpret statistically significant differences between the treatment and
control groups as causal impacts of the AMI program, the treatment and control groups need to
be exchangeable, to the extent that the program would have the same average effect on the
premises in the control group as on the treatment group. This is never guaranteed, even in
randomized experiments. This section investigates whether there are statistically significant
differences between treatment and control premises along relevant variables that are available.

Result Summary: There is some evidence for lack of balance in average initial gas consumption
between the treatment and control groups in Ventura. In addition, the treatment group appears
to have on average newer, more expensive, and larger houses. This motivates directly accounting
for variability in premises characteristics through statistical controls or using premises fixed
effects.

Result Details: Table 10 demonstrates the pre-treatment balance between treatment and control
groups across the dependent variables, and the observables available for the residential premises.
Mean values for the control and treatment groups are presented. The second-to-last column
shows the percentage difference in means between the control group and treatment group. The
last column shows the p-value for a Student’s t-test comparing the two groups. Values of p<0.05
indicate statistically significant differences.

In general, the treatment and control groups are not balanced. Student’s t-tests of the difference
in means in each of these variables shows that treatment premises on average were more
expensive, more recently constructed, larger in terms of square footage and number of bedrooms
and bathrooms, and built on smaller lot sizes, than control premises. However, these can (and
should) be controlled for either directly or with premises fixed effects.

Table 10: Pre-treatment balance with Student’s t-test p-values for water and gas consumption
and residential characteristics across treatment and control premises

Variable Control Treatment Difference (%) p-value

Mean Daily Water Use (Gallons) 479 472 1.30% 0.771
Mean Daily Gas Use (Therms) 1.42 1.47 -3.60% 0.195
Assessed tax Value 2016 (USD) 498,052 561,320 -12.70% 0.001
Assessed Value per Sq. Ft. (USD) 216 230 -6.50% 0.003
Year Built 1978 1979 -0.06% 0.06

Lot Size (Sq. Ft.) 14,486 13,552 8.70% 0.565
Finished Area (Sq. Ft.) 2,246 2,400 -6.90% <0.001
Irrigable Area (Sq. Ft.) 12,583 11,154 11% 0.522
Bathrooms 2.61 2.74 -4.70% <0.001
Bedrooms 3.77 3.9 -3.60% <0.001
Total Rooms 7.51 7.78 -3.60% <0.001

Dependent Variable Trends
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Motivation: Given the evidence of lack of balance across the treatment and control groups
highlighted above, the most robust way to estimate the impact of the water AMI program is to
compare the trends in water consumption, water leaks, and gas consumption across the
treatment and control groups over time. This way, the treatment and control groups are no longer
required to have the same level of each of the outcomes before the AMI analytics started to make
a reliable inference. Instead, the treatment and control groups are only assumed to have similar
trends in the outcomes before the AMI analytics started. This section describes how the outcome
variables were trimmed of outliers and examines the trends in each of the outcome variables over
time.

Result Summary: Some particularly large water and gas consumers within each water meter size
category had their observations trimmed from the data. Examination of trends in water and gas
consumption over time show that there were generally parallel trends over time. However, the
control group tended to have higher water consumption than the treatment group until 2016,
when the treatment group began exhibiting higher consumption than the treatment group. There
is also a general evidence for a downward trend in water consumption throughout the California
drought, with consumption rising again following the end of the drought. Gas consumption trends
were nearly the same between the treatment and control groups.

Result Detail: As part of Valor’s standard data ingestion process, consumption data for water and
gas was reviewed for meter reading and data entry errors. A secondary data review and trimming
was done for the purposes of advanced analysis to remove outliers that could bias the estimate
of the treatment effect among a representative sample of premises. The standard practice per
published literature on water and energy information treatment experiments of removing
observations with zero consumption was followed [7]. While most informational experiments of
this type also remove observations of particularly high consumption, this is often used to model
consumption reactions to information about overall consumption, and not leaks in particular. In
addition, most evaluations use only residential data, whereas this pilot includes other customer
classes. Since many leaks are characterized by abnormally high levels of consumption for a given
premise, water and gas consumption data for this evaluation should be trimmed more
conservatively, and any trimming should take into account the size of the premises. Finally,
observations were aggregated and assigned “billing periods”, such that all observations for a given
premise corresponding to meter readings during a given calendar month were assigned to that
month. Figure 9 presents the distribution of monthly water and gas consumption observations for
each meter size in the sample in pre- and post- periods. The rules for outlier detection and
removal were as follows:
e All consumption readings >8 times the interquartile range above the median for each
meter size
e Consumption readings >2 times the second-highest reading within a premise that were
also greater than 1.5 times the interquartile range above the median for the entire sample
within a given meter size.
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Water Consumption by Meter Size Gas Consumption by Water Meter Size
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Figure 9: Monthly water and gas consumption observations for each meter size in the sample in pre-
treatment and post-treatment periods

Figures 10-13 present the time trends in the nominal billing period monthly average values of
mean daily water consumption (Figure 10), gas consumption (Figure 11), water leak prevalence
as estimated by Valor’s monthly detection algorithm (Figure 12), and water leak prevalence as
estimated by both monthly and AMI detection algorithms together (Figure 13). In all figures, the
panel on the top include all premises, and the panels on the bottom include only residential
premises. The black vertical lines indicate the start of AMI-WEN analytics and proactive leak
detection in February 2017. Each panel shows three trend lines. The orange lines denote the
control group, green lines the treatment group that had access to CE online portal but did not
enroll, and blue lines the treatment group premises that enrolled in the CE online portal. In Figure
10, it is seen that treatment group premises that did not use the CE portal generally had lower
water consumption than the control group until about August 2016, which is about when AMR
meters began to be installed. This suggests that measured water consumption in the treatment
group increased relative to the control group once the new meters were installed, but not
necessarily after CE was launched and analytics began. In addition, residential treatment premises
that used the CE portal had higher consumption than the control group and the rest of the
treatment group in the pre-AMI period. This suggests a strong self-selection effect, whereby
relatively higher water users elected to use the CE portal to monitor consumption. This pattern is
preserved whether or not non-residential premises are included confirming that the self-selection
pattern is not being driven by a few large industrial or commercial customers.

Figure 11 presents the trends in gas consumption over time. The treatment group that did not
enroll for the CE portal had higher gas consumption than the control group throughout the study
period. However, the premises that enrolled in the CE portal for their water use had lower gas use
than the control group.

In Figure 12, there is no divergence in prevalence (defined as the number of leak flags divided by
the number of active premises in the study) of leak flags made by the monthly algorithm between
treatment and control group before and after the AMI program began. There were no monthly
leaks detected in the treatment group at all prior to the analytic period. Figure 13 plots similar
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information for the prevalence of leak flags made by combined AMI and monthly analytics. It is
seen that using AMI does in fact result in more water leak flags than using monthly leak flags
alone. Note that monthly and AMI leak flags do not necessarily correspond to all true positives of
leaks, but merely flags of anomalous consumption that customers are notified of, and which field
teams may validate. Since less than 40% of leak flags were investigated in the field, this
information was not included in the analysis.
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Monthly Water Leak Prevalence
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Figure 12: Monthly prevalence of Monthly water leak flags across control and treatment groups
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Table 11: Water Consumption, Gas Consumption, Monthly Water Leak Flags, and Monthly + AMI Water
Leak Flags by Service Area and Treatment Group, Pre- and Post-Treatment Summary Statistics

Pre-treatment

Post-treatment

Average Daily Water Use (Gallons)

All Premises

Residential Premises

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Average Daily Gas Use (Therms)

All Premises

Residential Premises

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Average Monthly Water Leak Prevalence

(Monthly Algorithm)

All Premises

Residential Premises

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Average Monthly Water Leak Prevalence
(Monthly and/or AMI Algorithm)

All Premises

Residential Premises

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

Treatment that did not enroll in CE
Treatment that enrolled in CE

Control

513
502
515

468
502
478

1.59
1.34
1.50

1.48
1.34
143

0.00%
0.00%
0.04%

0.00%
0.00%
0.04%

0.03%
0.00%
0.03%

0.03%
0.00%
0.03%

489
491
484

448
491
451

1.56
1.30
1.52

1.41
1.30
1.39

0.01%
0.00%
0.02%

0.00%
0.00%
0.02%

0.99%
0.96%
0.02%

0.02%
0.96%
0.02%
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Table 11 collapses the information contained in Figures 10-13 to the average values of the
outcomes of interest by Treatment Group, and Pre/Post-Treatment. Careful inspection of the
values in the table reveal the necessity for more advanced statistical analysis than post-treatment
comparison of averages across the treatment and control groups. For instance, when considering
residential premises post-treatment, the control group has an average water consumption of 451
gallons per day, while the treatment group that did not enroll in CE has an average of 448 gallons
per day. This would seem to indicate that AMI decreased water consumption by an average of 3
gallons per day. However, in the pre-treatment period, the treatment group that did not enroll in
CE consumed 468 gallons per day, and the control group 478 gallons per day. Thus, the treatment
and control groups had different water use patterns to begin with. On the other hand, the pre-
treatment average daily gas consumption is 1.59 therms in the treatment group that did not enroll
in CE, and only 1.50 therms in the control group. This difference is likely in part due to average
house size being larger in the treatment group. It is thus important, in order to make a precise
and causal inference, to control for confounding sources of variation in the outcome variables
than just the AMI analytics program. A variety of statistical models controlling for a number of
such confounders was used. These models are explained in the next section.

Treatment Effect of AMI
Results Summary: The null hypotheses that AMI analytics had no effect water consumption, gas
consumption, and water leak detection was tested with several statistical models that vary in
complexity, over several subsets of data. Table 12 summarizes what each model accounts for and
the estimated results.
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Table 12: Advanced Statistical Analysis Summary for Ventura Premises

Model

11

1.2

1.3

2.1

2.2

2.3

24

Confounding Variation Accounted For (Yes/No)

Temperature and
Precipitation

Observed Premises
Characteristics
Unobserved
Premises
Characteristics
Treatment Group
pre-treatment
Consumption/Leaks
Premises pre-
treatment
Consumption/
Leaks

Common events
over time (e.g.
State-level drought
policies, economic
shocks)

No

No

No

No

No

No

Yes

No

No

No

No

No

Yes

Yes

No

No

No

No

No

No

No

Yes

No

No

Yes

No

No

Yes

No

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

Yes

Hypothesis Accepted at 95%

Confidence
(Increase/Decrease/Null)

Water
Consumption

Gas Consumption

Water Leak Flags
(Monthly Algorithm
Only)

Water Leak Flags
(Monthly+ Hourly
AMI Algorithm)

Null

Null

Null

Increase

Null

Null

Null

Increase

Null

Null

Null

Increase

Null

Null

Null

Increase

Null

Null

Null

Increase

Null

Null

Null

Increase

Null

Null

Null

Increase

Null

Null

Null

Increase
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Models

The preferred model is Model 3, which includes fixed effects for each premise and each billing
period, accounting for unobserved factors for each premises and unmeasured external events
occurring over time that could affect each of the outcome variables. One known event to mention
is the 25% mandatory California-wide water restriction in effect from May 2015 to April 2017 due
drought conditions, and associated policies and media campaigns. None of the models should be
affected, since there is no particular reason the drought would have affected the treatment and
control groups differently. However, Model 3 directly accounts for this by including factors for
each billing month, differencing out common average demand trends between the experimental
groups from the estimated effect of AMI.

Model 3, along with all the simpler models, had the same result for the preferred data subset.
The null hypothesis could not be rejected for water consumption, gas consumption, or water leak
detection by monthly algorithm, indicating that there was no statistically significant impact on
these outcomes by AMI analytics during the study period. It should be noted that AMI treatment
did reduce measured water consumption by 2.1% when comparing the control group with the
treatment group that has access to but did not enroll in CE. While still statistically insignificant,
the negative consumption effect can be attributed to faster leak detection and resolution. The
overall effect averaged across premises was small in this case, as less than 10% of treatment
premises had a leak during the study period. A statistically insignificant increase of 2% in water
consumption was observed in the treatment group that enrolled in CE when compared with the
control group; it was not possible to determine the reasons for this. With only four of these
premises having leaks, it is not likely that the observed effect is due to increased leakage rates,
but rather some other factors that drive both increased measured consumption and CE portal
use. For example, it is possible that premises that adopted CE portal use tended to have higher
bills due to their normal consumption patterns and were therefore interested in using CE to track
consumption, even if they were unable to make any behavioral changes.

Similar signs of estimated effects were observed for gas consumption as well; while it was not
possible to reject the null hypothesis, estimated effects appeared negative for treatment accounts
that had access to, but did not enroll in the portal.

The null hypothesis could not be rejected for water leak detection by the monthly algorithm since
there were no monthly leak flags during either the pre- and post-treatment periods in the
treatment group. There were no leaks severe enough in the treatment group to be detected by
the monthly algorithm at all.

The null hypothesis was rejected for combined monthly and hourly AMI-based leak detection
algorithms, indicating that the total number of leak flags was increased by the program. Indeed,
in the treatment group, only AMI detection provided any information of leaks. The models and
detailed results are included in the sections below.

We estimate variations of three basic specifications for the treatment effect:
Model 1 is a “Posttest Only” model and is of the form shown in Equation 1.
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Vit = a + BAMI; + @Portal; + 6X' + €;;, VPost, = 1 (1)

¥t is the value of the dependent variable for premises i in billing period* t. a is the intercept. AMI;
is a variable indicating whether premises i is in the treatment group that had access to but did not
enroll in CE. Portal; is a variable indicating whether premises i enrolled in CE (and thus were also
in the treatment group). X’ is a vector of covariates. Post;is a variable indicating whether the
observation occurs after the AMI pilot program began or not, so that VPost; = 1 refers to using
only observations after the AMI pilot program began (in the treatment period). This specification
is basically comparing the average value of the dependent variable between the treatment and
control groups in the treatment period, controlling for X’, with 8 being the average treatment
effect on the treated (ATT). The three different specifications of this model that were run are
below:

e Model 1.1 does not use any covariates X’. This is the simplest model. If the AMI treatment
were randomized, theoretically this is all that is needed to make a valid inference about
the effect of AMI. However, given the concerns about selection bias and pre-treatment
balance as described in the previous sections, more complex models are needed to
improve the accuracy and precision of the estimates.

e Model 1.2 includes the weather variables Cooling Degree Days (CDD), Heating Degree
Days (HDD), and the proportion days with precipitation

e Model 1.3 includes the weather variables, as well as the premises characteristics including
customer class (Commercial, Multi-family, or Residential), meter size. When including
only residential premises, Model 1.3 also includes the characteristics of assessed tax
value, number of bedrooms, number of bathrooms, irrigable area in square feet, the
dwelling finished floor area in square feet, and the year the home was built.

Model 2 is a “difference-in-differences” (DID) model of the form shown in Equation 2.
Yie = a + BAMI;; + @Portal;; + 0X;, + TPost, + AT; + ATp; + €z (2)

This model includes all observations both before and after the AMI treatment began. AMI; is
now a variable indicating whether premises i had water AMI active (but did not enroll for the
CE portal) in water billing period t. Portali; is now a variable indicating whether premises i
ever enrolled in CE and had water AMI active in water billing period t. T; indicates whether or
not premises i was in the treatment group but did not enroll for the CE portal. Tp; indicates
whether or not premises i was in the treatment group and enrolled for the CE portal. This
corresponds to a “difference-in-differences” model that compares the difference in the
dependent variable before and after the treatment in the control group to the corresponding
difference in the treatment group. This “double difference” is measured by £, which is the
treatment effect. This should alleviate some of the balance issues in terms of the pre-

! Water customer premises have varying billing periods depending on their meter reading cycle. The billing period
was taken to be the month-year corresponding to the day their meter was read for that billing cycle. For a given
“billing period”, consumption, leak flag, and weather data was aggregated to from the days between the meter
reading of the previous billing period and the meter reading of the “current” one.
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treatment differences between treatment and control groups in water and gas consumption.
The four different specifications of this model that were run are below:

e Model 2.1 does not include any covariates in X’

e Model 2.2 includes the weather variables

e Model 2.3 includes the weather variables as well as the premises characteristics (and
residential house characteristics when including only residential data)

e Model 2.4 is the same as Model 2.3 but replaces the Post variable with a series of
indicators for each billing period, allowing the average value of the dependent
variable to vary every billing period. This controls for all billing-period specific effects
that affect all households in the study equally, such as state-level policies or regional
economic conditions.

Model 3 is a Fixed-Effects model of the form shown in equation 3.
Yie = a; + BAMI; + 60X + 10 + € (3)

This model is similar to Model 2.4 but includes a fixed effect (or average level of the dependent
variable) for each premise. This specification controls for all time-invariant premises
characteristics, and as such, other time-invariant variables like customer class, meter size, and
house characteristics are dropped from the regression. The only time-varying controls in X’ are
thus the weather variables. While sacrificing some additional descriptive power of the other
controls, this model is the preferred specification that has the potential to give the most accurate
estimates of the treatment effect.

In all models, standard errors are clustered by premises, in order to account for the non-
independence of repeated observations on the same premises. Failing to do so would result in
standard errors that are too small and overoptimistic characterizations of statistical significance
of the treatment effect.

Dependent Variables

All the models described above were run on several dependent variables. Inw;; is the natural
logarithm of average daily water consumption for premises i in billing period t. This is traditionally
used both to dampen the effect of extremely large consumers that might skew results without a
log transformation, and to interpret the treatment effect as a percentage change, since
differences in natural logarithms approximate percent differences of the raw quantities. However,
it is not ideal for this context, where the treatment effect should theoretically be dominated by
leakage reduction, which could involve quite large percent reductions in consumption. This is
because differences in logs underestimate the actual corresponding percentage change for large
changes (more than ~10%). As such we also use W;:, the % deviation of water consumption in
average daily gallons for premises j in billing period t from the average daily consumption of all
premises in the control group during the treatment period. This specification has been used in
studies to evaluate the impact of energy and water conservation messaging program [6,7]. This
alternative specification can also be interpreted as a percentage change, but does not
underestimate large changes. Similar dependent variables are used for gas: Ingi and Gi.
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In addition, dependent variables MLi;: and AL;: are used. These are both binary response variables
which are either 0 or take the value of 1 if premises i in billing period t has a leak flag by the
monthly leak (in the case of ML) or either one of the monthly or hourly AMI leak (in the case of
AL) detection algorithms. Since the treatment is binary, we keep a linear specification of the model
rather than a logit or probit in order to preserve the difference-in-differences interpretation of
the treatment effect. Due to only four leaks being detected in any period in the treatment group
that enrolled in the CE portal, the Portal variables are omitted from models with these dependent
variables.

Data Subsets
Each model was run for each dependent variable for each combination of the following study
premises subsets:
e All premises
e All residential premises

This allows the investigation of whether the treatment effect varies when excluding particularly
high water and gas users in the commercial and multifamily residential classes. There were few
non-residential premises; however, it was still important to characterize the results for a
representative sample of all customers, as well as to characterize results for residential customers
unaffected by changes in demand by particularly large users.

Model Results

The main quantity of interest for all of the models is B, the coefficient on the treatment variable
AMI. The secondary quantity of interest is ¢, the coefficient on the treatment variable Portal. The
treatment effects are summarized in the panels in Figure 14. The panels in the left column are for
models using all premises, and in the right column for residential premises only. In each panel,
the effects estimated by each of the eight model specifications are displayed with symbols
denoted by the legend. Each point is the value of the treatment effect (B or ¢), with the 95%
confidence interval represented by lines. If the colored lines cross the 0 line on the y-axis, this
implies that the null hypothesis cannot be rejected. Each model specification is represented by a
shape/ color that is consistent across dependent variables and data subsets. Within each panel,
the group of treatment effects on the left is for premises that never adopted the CE portal, and
on the right for premises did adopt the CE portal. All model specification estimates are presented
in order to demonstrate the sensitivity of the result to the model. However, the preferred model
which controls for unobserved premises characteristics as well as common events over time is
Model 3, represented by the pink stars in Figure 14 The results of this model are interpreted
below.

For water consumption as measured by Wi, among all premises Model 3 estimated a statistically
insignificant effect of -1.97% for AMI treatment customers that did not enroll for CE, and a
statistically insignificant effect of about +2.32% for AMI treatment customers that enrolled for CE.
For residential premises only, these estimates are -2.07% and +1.99%, respectively. Given the lack
of correlation between the CE portal and leak flags and lack of information on CE portal adoption
timing, it is possible that this discrepancy in effect directions is due to self-selection bias of higher
water users being more likely to adopt the CE portal for tracking purposes. However, the AMI
effect on water consumption was not statistically significant in either case.

42



For gas consumption as measured by Gi;, among all premises, the estimated effects of Model 3 are
-1.25% for AMI treatment customers that did not enroll for CE, and +0.96% for treatment
customers that enrolled for CE. For residential premises only, the estimated effects are -0.99%
and +1.13% respectively. The discrepancy between the effect directions of AMI with and without
the CE portal aligns for gas and water consumption, suggesting that reactions to water AMI could
have effects on gas consumption at about half of the magnitude. However, the effect was again
not statistically significant in either case.

The bottom panel shows treatment effects of the AMI program (with or without use of the CE
portal) for monthly algorithm leak flags in the left column and monthly + AMI algorithm leak flags
in the right column. The y-axis is the treatment effect in percentage points (divided by 100). In
terms of monthly water leak flags, the estimated effects for Model 3 were near zero with narrow
confidence intervals, indicating that the AMI program had no effect on having monthly leak flags.
There were no leaks severe enough in the treatment group to be detected by the monthly
algorithm at all.

For the monthly and AMI flags considered together, the estimated effect for all models and data
subsets was generally an increase of 1 percentage points, indicating that the AMI program flagged
leaks in a greater percentage of premises than monthly algorithms could. The null hypothesis that
water AMI is not associated with more overall leak flags was rejected in favor of the alternate
hypothesis that water AMI is associated with more frequent combined AMI and monthly leak
flags. This result is intuitive and verifies that leak detection algorithms based on water AMI data
do result in more leak flags than monthly leak detection algorithms alone.

Overall, during the 12-month period of the shared network AMI pilot, there are no statistically
significant effects on water and gas consumption through the AMI program’s combined leak
detection and customer engagement. AMI does lead to a roughly 1%-point increase in premises
being flagged with water leaks in general, although not hot water leak flags in particular. There is
weak, though statistically insignificant evidence that AMI analytics reduces water consumption,
through prompt leak detection and resolution.
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Water and Gas Trends Analysis
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Joint water and gas consumption information at the premises level was examined to determine if
there was a correlation between these two behaviors across premises within a given service area.
If such a correlation existed, then there would be potential for gas consumption data to be used
jointly in analytics with water consumption data, and policies or programs designed to affect
water demand could also drive changes in gas demand, or vice versa. In order to predict such
secondary effects, a measure of relationship between water and gas demand would be a useful
input for a predictive model.

The treatment group of the pilot with CalAm offers a unique sample of premises with a set of
recently installed AMI water meters in conjunction with AMI gas meters. This is an opportunity
for the comparison of joint water and gas consumption across premises with relatively low water
meter measurement error. The most basic way to do this would be to simply pool all of the data
together and compare water and gas consumption. Figure 15 shows a scatterplot, each point
representing an observation of a premises at the end of one water billing month, with the y-axis
showing the log of water consumption during that period, and the x-axis the log of gas
consumption for that period. There is no clear relationship between the two, and the regression
line has an accordingly flat slope.

Log{daily water consumption) vs. Log(daily gas consumption)

Log of Daily Gas Consumption (Therms)

Figure 15: Average daily water consumption vs. average daily gas consumption from December 2015 to
January 2018
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While it may appear that there is no systematic relationship between water and gas consumption,
this plot does not factor in the confounding effect of seasonality. Figure 16 plots the average daily
water and gas consumption of all of the treatment premises between December 2015 (when gas
consumption data are reasonably representative) and January 2018 (the end of the study period).
Water consumption in gallons is measured on the left axis, and gas consumption in therms on the
right axis. Water and gas consumption are countercyclical, with peak gas consumption occurring
December-March, and peak water consumption July-October. Thus, a failure to control for
seasonality would be expected to produce an underestimate of the average relationship between
water and gas consumption.
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Figure 16: Mean Daily Water Consumption and Mean Daily Gas Consumption over time, from December
2015 to January 2018

Figure 17 separates out Figure 15 by season in the study period, with the hot season
corresponding to July-October, the cold season to December-March, and the “normal” season all
other months. It is seen that by controlling for seasonality through the simple technique of
considering the data on a seasonal basis, a positive relationship between water and gas
consumption emerges. To estimate the magnitude of this relationship, a statistical model was
created similar to those used to evaluate the impact of AMI. The purpose of this was to estimate
the extent to which similar premises under the same conditions but with different gas
consumption levels exhibit systematically different water consumption levels.
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Figure 17: Average daily water consumption vs. average daily gas consumption by season. Cold Season is
December-March, Hot Season is July-October, Normal Season are all the other months in the year.

Equation A represents the statistical model developed. The log of water consumption for premise i in
water billing period t is In(w;). This is assumed to be a function of:

In(git) — the log of gas consumption

The Cold Season — Whether the billing period was during December-March

The Hot Season — Whether the billing period was during July-October

AMI — Whether the AMI program was active

HDD — Heating degree days for that premise during that water billing period

CDD - Cooling degree days as above

PRCP — The proportion of days in the water billing period that had precipitation

Bathrooms — the number of bathrooms at the premises

Bedrooms — the number of bedrooms in the premises

taxAssessment — The tax value (USD) of the premises assessed by the Ventura County Tax
Assessor in 2016

SgFt — The finished square footage of the premises

IrrigableArea- The lot size — the finished square footage, an approximation of lawn area

T — A vector of dummy variables, one for each year, controlling for events over time common
to all of the premises that are not covered by, temperature, precipitation, and season, such
as state-level economic conditions and policies.

(A) In(w;) = BIn(g;;) + {ColdSeason, + uHotSeason; + Y In(g;;) * ColdSeason; + wIn(g;;)

* HotSeason, + yAMI;; + 6:HDD;; + 6,CDD;; + 63PRCP;; + 6,bathrooms;
+ Ssbedrooms; + dgtaxAssessment; + §,irrigableArea; + 6gSqFt; + T + €

Since both water and gas consumption are measured on a natural logarithm scale, 5, the
coefficient on In(gi), can be interpreted as an elasticity. That is, § is the percent change in water
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consumption that is associated with a 1% increase in gas consumption during the normal (not Hot,
not Cold) season. This is controlling for the status of the AMI program, the temperature and
precipitation, premises characteristics, and non-weather common events accounted for by
considering each year separately. 1 is the interaction between gas consumption and the Cold
Season. It estimates the average difference between f and the relationship between gas and
water consumption in the Cold Season relative to the normal season. w is similar, but for the
interaction between gas consumption and the Hot Season. Since we are interested in between-
premises effects, this model differs from the preferred model in the AMI analysis in that fixed
effects are not included for each premises. Doing so would estimate the effect of gas on water
consumption on average within each premises, ignoring variation in water and gas consumption
between premises. We also estimate a model with premises fixed effects, in order to estimate
within-premises relationships between water and gas consumption.

We then compare these models with versions without gas consumption. This allows for an
evaluation of the extent to which accounting for gas consumption improves the prediction of
water consumption.
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Table 13: Regression results for water and gas consumption correlation analysis shows the
regression results. Columns 1 and 2 refer to the models without premises fixed effects, and so
include the premises-level characteristics. Column 1 refers to the model without gas
consumption, and Column 2 to the model with gas consumption. In both models, the coefficient
on AMI is significant and negative. However, this is because there is no control group, AMI
occurred in the latter part of the study period, and consumption in general fell over the study
period. The coefficients on the weather variables are as expected. Negative effects of the Cold
Season dummy, Heating Degree Days and precipitation, and positive effects of the Hot Season
dummy and Cooling Degree Days is consistent with higher water use during hotter, dryer weather,
and is probably associated mostly with outdoor water use. The coefficient on finished square
footage is significant, and indicates that on average, a difference in of 1,000 ft? is associated with
a difference in water consumption of about 1%. The coefficients on the other household
characteristics are small.

The coefficient on gas consumption in Column 2 is significant with a p-value less than 0.01. It
indicates that a difference between premises gas consumption of 10% is associated with a 3.3%
difference in water consumption over the study period, during the “normal” season. Since this
model does not include premises fixed effects, this effect should be interpreted as the differences
in water consumption observed between premises with different levels of gas consumption. The
interaction term between gas consumption and the Hot Season is positive, and the interaction
term with the Cold Season is negative, but both are statistically insignificant. Thus, between-
premises variation in the relationship between water and gas consumption does not appear to
vary seasonally. Comparing Column 1 to Column 2, the R?increases from 0.294 to 0.364 with the
inclusion of gas consumption, indicating that gas consumption explains an additional 7% of the
variance in water consumption between premises.

Columns 3 and 4 refer to the models with premises fixed effects, and thus do not include
premises-level characteristics. The estimated effects of AMI and the weather variables are similar
to those in Columns 1 and 2. In Column 4, the coefficient on gas consumption is again significant
with a p-value of less than 0.01. However, the effect is smaller, with a difference of gas
consumption of 10% associated with a 0.9% increase in water consumption. Since premises fixed
effects are included in this model, this effect should be interpreted as the increase in a given
premises’ water consumption between when it had relatively low gas consumption to when it had
relatively high gas consumption. Here, the interaction between gas consumption and the Cold
Season is statistically significant at the p<0.1 level, and positive, indicating a stronger relationship
between gas and water consumption within a given premises on average during the Cold Season
season. This could be because indoor heated water use is more energy

IM

than during the “norma
intensive during the cold season due to colder water being heated, or greater volumes of water
being heated relative to total water consumption with lower outdoor water use.

Gas consumption has a significant and positive correlation with water consumption both between
and within premises. This means that premises that use more water also tend to use more gas. In
addition, a given premise within a consistent weather period that increases its gas use will also
tend to increase its water use, with this relationship being stronger during the cold season. These
correlations potentially provide more information on water consumption patterns than
observable household characteristics such as square footage and number of bathrooms.
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Table 13: Regression results for water and gas consumption correlation analysis
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Correlation between Gas and Water Consumption, Single-Family Residential Treatment Premises

Dependent Variable: log {Ave. Daily Water Consumption))

Year Effects

Year Effects - With Gas Two-way Effects Two-way Effects - With Gas

(1 (2) (3) “)
In_g 0.326™"" 0.091***
(0.024) (0.014)
Ing.HotSeason 0.022 0.013
(0.017) (0.012)
Ing.ColdSeason -0.010 0.029"
(0.021) (0.017)
AMI -0.222% -0.180""" -0.209" -0.191™"
0.017) (0.017) {0.015) (0.016)
HotSeason 0.004 0.079"** 0.025™"" 0.044™""
0.010) (0.013) (0.009) (0.010)
ColdSeason -0.153""" -0.250""" -0.163""" -0.199"*"
(0.011) (0.013) (0.010) (0.012)
HDD.mean -0.043™"" -0.062"*" -0.039"™" -0.045™""
(0.002) (0.003) (0.002) (0.002)
CDD.80.mean 0.034"* 0.066""" 0.026" 0.037"""
0.015) (0.016) (0.014) (0.014)
prep_days.mean -0.854"" -0.971"" -0.896"" -0.951™"
(0.046) (0.047) (0.041) (0.042)
taxAssessment 0.00000™** 0.00000***
(0.00000) (0.00000)
finishedSqFt 0.0001"** 0.0001""
(0.00004) (0.00004)
bathrooms 0.033 0.026
(0.035) (0.030)
bedrooms 0.032 0.032
(0.023) (0.020)
irrigable -0.00000""* -0.00000™*
(0.00000) (0.00000)
Observations 23,025 23,025 25,739 25,739
R2 0.295 0.365 0.675 0.678
Adjusted R? 0.294 0.364 0.660 0.663

Residual Std. Error 0.666 (df = 23010)

0.632 (df = 23007)

0.458 (df = 24583)

0.456 (df = 24580)

Note:

*p<0.1; **p<0.05; ***p=<0.01
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Recommendations

Value of AMI and future AMI Benefit Quantification Studies

There are many AMI networks options in the marketplace, and shared network AMI has potential,
as demonstrated by the SoCalGas/CalAm WEN engagement.

While considering AMI’s impact on water and gas consumption, we recommend using the study
results with caution. The study used a quasi-experimental design to evaluate a potential program,
based on a previously established meter replacement schedule. However, the study was not able
to reject the null hypothesis that the AMI program has no effect on water or gas consumption,
despite the identification of 188 water leaks on 105 unique premises, and one hot water leak.

The learnings gained around study design can help with future AMI impact quantification
programs. Here are our recommendations:

e Given the variability seen in this data, similar non-randomized experiments will likely need
to be at least three times larger in sample size, to confidently determine plausible effects
of AMI leak notification on water and gas consumption.

e Any replacement of potentially inaccurate older water meters with new meters
introduces the possibility of increase in measured water consumption, that is not
reflective of true AMI impact. This will need to be explicitly included in study design to
ensure that the AMI treatment is independent of the outcome measure between
treatment and control groups. Possible methods include:

0 Replace all control group premises meters with new conventional meters at the
same time as treatment group premises have AMI meters installed

O Have 2 treatment groups — one with AMI technology retrofit meters and another
with new meters

0 Replace both control and treatment group meters with AMI meters, but only
enable AMI analytics and/or customer engagement for the treatment group for
the duration of the study period

e Consider separating the treatment impact of leak notification, and the treatment impact
of general customer response to hourly consumption information. It may be possible to
randomize these two levels of treatment, so to randomly select premises to have AMI
analytics, and then randomly select half of these premises to receive sustained
encouragement to use the customer engagement portal. Such complex treatment
combinations will again require greater sample size than simpler binary treatments, and
allowance will need to be made for variable customer engagement portal adoption rates.

e Collect information about the timing and frequency of customer engagement portal
usage to determine the effectiveness of self-monitoring on water consumption.
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Appendix 1: CalAm Data Exclusions Updated and shared with CalAM in

February 2017.

Double-click on embedded object to view full file

| PoF |

S
CalAm_DataExclusion
s and Sample Size Sig

Appendix 2: List of Treatment and Control Group Accounts

Double-click on embedded object to view full list

ValorID
T-Vent600 Residential
C-Vent600 Residential
T-Vent601 Residential
C-Vent601 Residential
T-Vent602 Residential
C-Vent602 Residential
T-Vent603 Residential
C-Vent603 Residential
T-Vent604 Residential

CustomerType

MeterSize

Municipality

0.625 Ventura
0.625 Ventura
0.625 Ventura
0.625 Ventura
0.625 Ventura
0.625 Ventura
0.625 Ventura
0.625 Ventura
0.625 Ventura

Appendix 3. List of AMI Water Leak Flags

Double-click on embedded object to view full list

Premises Valor ID Leak Start Leak End

T-Vent1011 2/2/2017 22:00 2/7/2017 18:00
T-Vent860 2/4/2017 13:00 2/9/2017 7:00
T-Vent1557 1/26/2017 0:00 2/12/2017 0:00
T-Vent820 2/9/2017 11:00 2/12/2017 11:00
T-Vent1623 2/18/2017 16:00 2/19/2017 8:00
T-Vent860 2/15/2017 20:00 2/24/2017 11:00
T-Vent870 2/8/2017 19:00 2/28/2017 17:00
T-Vent876 1/26/2017 0:00 3/2/2017 18:00
T-Ventl1214 1/26/2017 0:00 3/7/2017 10:00

UseSegment

O >» > @ wW@OO 0o
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