Evaluation, Measurement, and Verification Report for the Small Nonresidential Energy Fitness Program #1409-04

Study ID: RHA0002.01

FINAL REPORT

Prepared for California Public Utilities Commission San Francisco, California RHA, Inc. Chico, California

Prepared by Principal Investigators: Robert Mowris, Ean Jones, Anne Jones Robert Mowris & Associates Olympic Valley, California

Draft January 8, 2007 Final April 20, 2007

Funded with Public Goods Charge Funds

TABLE OF CONTENTS

1. Executive Summary	1
2. Required CPUC Objectives and Components	5
2.1 Baseline Information	5
2.2 Energy Efficiency Measure Information	6
2.2.1 Measure Assumptions and Intended Results	7
2.2.2 Description of Installed Energy Efficiency Measures	9
2.2.3 Description of Energy Fitness Audit Measures	. 12
2.3 Measurement and Verification Approach	18
2.3.1 M&V Approach for Load Impact Evaluation	. 18
2.3.2 Sampling Plan	. 20
2.3.2 M&V Approach for Process Evaluation	. 21
2.4 Evaluation Approach	22
2.4.1 List of Questions Answered by the Study	. 22
2.4.2 List of Tasks Undertaken by the Study	. 24
2.4.3 How Study met CPUC EEPM Objectives	. 25
3. EM&V Findings	26
3.1 Load Impact Results	26
3.1.1 Verification Inspection Findings	. 31
3.1.2 Load Impacts for CFLs	. 31
3.1.3 Load Impacts for Delamping Fluorescent Fixtures	. 34
3.1.4 Load Impacts for T8 Fluorescent Fixtures	. 35
3.1.5 Load Impacts for LED Exit Signs	. 37
3.1.6 Load Impacts for Programmable Thermostats	. 37
3.1.7 Load Impacts for Vending Misers	. 40
3.1.8 Load Impacts for HVAC Tune-ups	. 40
3.1.9 Load Impacts for Energy Fitness Audit Measures	. 41
3.2 Process Evaluation Results	43
3.2.1 Participant Survey Results	. 43
3.2.2 Non-Participant Survey Results	. 45
3.2.3 Process Evaluation Recommendations	. 46
Appendix A: Process Survey Instrument	51
Participant Survey	. 52
Non-Participant Survey	. 54

1. Executive Summary

This report provides the Evaluation, Measurement, and Verification (EM&V) findings for the Richard Heath and Associates (RHA) Energy Fitness Program (EFP) #1409-04. This study was conducted by Robert Mowris & Associates (RMA) with public goods charge (PGC) funds under the auspices of the California Public Utilities Commission and is available for download at www.calmac.org. The program implementation plan (PIP) ex ante goals were to reach 1,399 hard-to-reach nonresidential business customers in the Pacific Gas and Electric (PG&E) service area, perform an audit of energy-using equipment, directly install 39,627 energy efficiency measures, and conduct follow-up activities to achieve energy savings of 7,381,944 first-year kWh, 1,592 kW, and 66,264,696 lifecycle kWh. The program exceeded all of its goals except the first-year savings goals which fell short by 9.1% not including spillover (as shown in Table 1.1). The program installed 44,877 energy efficiency measures at 1,539 hard-to-reach businesses. Ex post accomplishments were verified by checking the tracking database, randomly inspecting 2,842 measures at 73 sites, installing light loggers on 1,842 fixtures at 68 sites, evaluating billing data for 59 sites, and conducting surveys of participants, non-participants, and non-contacts. The EM&V study net ex post savings are based on pre and post-retrofit utility billing data, light logger data, previous evaluation studies, and building energy simulations calibrated to normalized billing data.

	Program	
	Implementation Plan	Ex Post
Description	Ex Ante Goal	Accomplishment
Total Direct Install Measures	39,627	44,877
Compact Fluorescent Lamps (CFL)	14,165	22,271
Delamp Fluorescent Fixtures	14,270	6,240
T8 Fluorescent Lamps and Ballasts	10,634	15,596
LED Exit Signs	91	488
Programmable Thermostats	175	151
Vender Misers	17	28
HVAC Tune-up	100	103
Nonresidential Hard-to-Reach Energy Fitness Audits	1,399	1,539
Net Annual Electricity Savings (kWh/yr)	7,381,944	6,712,686
Net Demand Savings (kW)	1,592	2,385
Net Annual Therm Savings (therms/yr)	0	0
Net Lifecycle Electricity Savings (kWh)	66,264,696	66,827,070
Net Lifecycle Gas Savings (therms)	0	0
Total Resource Cost (TRC) Test	1.8	1.2
TRC Test Costs	\$1,874,339	\$2,136,608
TRC Test Benefits	\$3,406,078	\$2,513,382
TRC Test Net Benefits	\$1,531,739	\$376,773
Participant Test	10.3	5.9
Participant Test Costs	\$1,214,347	\$1,335,975
Participant Test Benefits	\$12,515,915	\$7,815,193
Participant Test Net Benefits	\$11,301,568	\$6,479,218

				-	
Table 1.1 Ex Ante	Goals and Ex I	Post Accompli	shments for th	e Energy	Fitness Program

The ex ante first-year savings are summarized in **Table 1.2**, and the ex post first-year savings are summarized in **Table 1.3**. The net-to-gross ratio (NTGR) is 0.96 based on the Express Efficiency

Program and reflects what customers would have done in the absence of the program (i.e., 4 percent free riders).¹ The ex ante savings goals are 7,381,944 first-year kWh, 1,592 kW, and 66,264,696 lifecycle kWh.² The EM&V study found first-year net ex post program savings of 6,712,686 \pm 402,325 kWh per year and 2,385 \pm 309 kW per year at the 90 percent confidence level. The net realization rate for kWh savings is 0.91 \pm 0.05 and the net realization rate for kW savings is 1.50 \pm 0.19.

		Gross Ex-Ante Unit Savings	Gross Ex- Ante Unit	Net-to-Gross	Net Ex Ante Program Savings	Net Ex Ante Program
Installed Measure	Units	(kWh/y)	Savings (kW)	Ratio	(kWh/y)	Savings (kW)
HVAC Tune-up Pilot Program	100	360	0.320	0.80	28,800	25.6
Energy Conservation Package	1,399	6570	1.400	0.80	7,353,144	1,566.9
Total	1,499				7,381,944	1,592

Table	1.2 Ex	Ante	First-vea	r Electr	icity S	Savings	for th	e Energy	Fitness	Program
Lanc		1 MILL	I II St-yee	n Enecu	icity i	Javings	IOI UI	c Enci sy	I IIIC55	I I USI am

Tabla 1 3 Fv D	Post First-voor	Sovings for the	Enorgy Fitness	Drogrom
	USU I'II SU-yCal	Savings for the	Luci gy runcss	I I Ugi am

Measure	Units	Gross Ex- Post Unit Savings (kWh/y)	Gross Ex- Post Unit Savings (kW)	Net-to- Gross Ratio	Net Ex- Post Program Savings (kWh/y)	Net Ex- Post Program Savings (kW)	Net Realization Rate kWh	Net Realization Rate kW
CFL	22,271	156.6	0.056	0.96	3,348,133	1197.3	0.68	0.98
Delamp Fluor. Fixtures	6240	264.8	0.092	0.96	1,586,258	551.1	0.84	0.94
T8 Fluor. Fixtures	15596	93.5	0.032	0.96	1,399,897	479.1	0.64	0.70
LED Exit Signs	488	315.4	0.036	0.96	147,759	16.9	1.07	0.64
Programmable Tstats	151	802	0.55	0.96	116,258	79.7	0.84	n/a
Vender Misers	28	1590	0	0.96	42,739	0.0	1.20	n/a
HVAC Tune-up	103	709	0.61	0.96	70,106	60.3	2.36	n/a
Audit Measures	2	800	0.485	0.96	1,536	0.9	undefined	undefined
Total	44,879				6,712,686	2,385	0.72	0.95

The EM&V study lifecycle kWh savings are summarized in **Table 1.4**. The required energy impact reporting for 2004-05 programs is provided in **Table 1.5**. The net ex-ante lifecycle savings are 66,264,696 lifecycle kWh. The EM&V study net ex-post lifecycle savings are $66,827,070 \pm 4,222,343$ kWh. The lifecycle ex-post net lifecycle kWh realization rate is 1.01 ± 0.06 and the net lifecycle therm realization rate is undefined.

¹ Energy Efficiency Policy Manual, Chapter 4, Table 4.2, page 23, prepared by the California Public Utilities Commission, 2001.

² The reported net ex ante program savings in the final report are 9,328,191 kWh per year and 2,521 kW. See *Small Nonresidential Energy Fitness Program Final Report*, Table 12, page 17 of 33, submitted to Pacific Gas & Electric Company, Lisa Cosby, Third Party Contracts Group, 245 Market Street, Room 756D, Mail Code N7K, San Francisco, CA 94105, submitted by Richard Heath and Associates, Inc. (RHA), Teresa Enos, Senior Manager, 1026 Mangrove Avenue, Suite 20, Chico, California 95926, May 1, 2006.

			Net Ex-Ante			Net Ex-Post	
	Net Ex-Ante	Ex Ante	Lifecycle	Net Ex-Post	Ex Post	Lifecycle	
	Program	Effective	Program	Program	Effective	Program	Net Lifecycle
	Savings	Useful Life	Savings	Savings	Useful Life	Savings	Realization
Measure	(kWh)	(EUL)	(kWh)	(kWh)	(EUL)	(kWh)	Rate
CFL	3,893,207	9.0	35,038,864	3,348,133	3.6	12,053,279	0.34
Delamp Fluor. Fixtures	1,486,268	9.0	13,376,408	1,586,258	17.0	26,966,385	2.02
T8 Fluorescent Fixtures	1,726,616	9.0	15,539,542	1,399,897	17.0	23,798,248	1.53
LED Exit Signs	109,597	9.0	986,369	147,759	16.0	2,364,137	2.40
Programmable Tstats	109,292	9.0	983,631	116,258	11.0	1,278,837	1.30
Vender Misers	28,165	9.0	253,482	42,739	3.0	128,218	0.51
HVAC Tune-up	28,800	3.0	86,400	70,106	3.0	210,318	2.43
Audit Measures	0	18.0	0	1,536	18.0	27,648	undefined
Total	7,381,944		66,264,696	6,712,686		66,827,070	1.01

Table 1.4 Lifecycle Electricity Savings for the Energy Fitness Program

Table 1.5 Required Energy Impact Reporting for 2004-2005 Programs

Pr	ogram ID:	1409-04								
Progra	am Name:	Energy Fitness Program (EFP)								
Year	Year	Ex-ante Gross Program- Projected Program MWh Savings (1)	Ex-Post Net Evaluation Confirmed Program MWh Savings (2)	Ex-Ante Gross Program- Projected Peak Program MW Savings (1**)	Ex-Post Evaluation Projected Peak MW Savings (2**)	Ex-Ante Gross Program- Projected Program Therm Savings (1)	Ex-Post Net Evaluation Confirmed Program Therm Savings (2)			
1	2004	7,382	6,713	1.592	2.385		• • •			
2	2005	7,382	6,713	1.592	2.385					
3	2006	7,382	6,713	1.592	2.385					
4	2007	7,353	5,261	1.567	1.846					
5	2008	7,353	3,252	1.567	1.128					
6	2009	7,353	3,252	1.567	1.128					
7	2010	7,353	3,252	1.567	1.128					
8	2011	7,353	3,252	1.567	1.128					
9	2012	7,353	3,252	1.567	1.128					
10	2013	0	3,252	0	1.128					
11	2014	0	3,252	0	1.128					
12	2015	0	3,135	0	1.048					
13	2016	0	3,135	0	1.048					
14	2017	0	3,135	0	1.048					
15	2018	0	3,135	0	1.048					
16	2019	0	3,135	0	1.048					
17	2020	0	2,988	0	1.031					
18	2021	0	2	0	0.001					
19	2022	0	0	0	0.000					
20	2023	0	0	0	0.000					
ΤΟΤΑΙ		66 265	66 827				1			

** <u>Peak MW</u> savings are defined in this evaluation as the weekday peak period Monday through Friday from 2PM to 6PM during the months of May through September.

1. Gross Program-Projected savings are those savings projected by the program before NTG adjustments.

2. Net Evaluation Confirmed savings are those documented via the evaluation and include the evaluation contractor's NTG adjustments.

Differences between the ex ante estimates and ex post accomplishments are due to the 9-year EUL assumed for all direct-install measures and greater hours of operation assumed for all lighting measures. The weighted average ex post EUL for CFL measures is 3.6 years based on annual hours of operation from logger data and 10,000 hour lifetime from manufacturer data. If the 9-year EUL for CFL measures is used, then the ex post TRC would be closer to the PIP/ex ante value. The ex ante lighting measure savings assumed 4,000 annual hours of operation. The average ex post operating hours are $2,822 \pm 292$ hours/yr based on light logger data for 1,842 fixtures at 68 sites. This is 30% less than the 4,000 hours/yr assumed in the PIP goals and ex ante estimates. If the higher hours of operation and longer EUL values are used, then the ex post

kWh savings, realization rates and TRC would be closer to the ex ante values. The net ex post first-year savings are 6,712,686 kWh/yr and this is 9.1% less than the PIP goal.³ The difference is largely due to lower operating hours for lighting measures.

Participant and non-participant process surveys were used to obtain general feedback and suggestions. Survey results indicate 90 percent of participants were satisfied with the program based on survey responses to 852 questions from 68 randomly selected participants. Most participants expressed appreciation for measures installed by courteous RHA technicians. Process survey responses indicated significant demand for the program with an overall satisfaction rating of 9.0 ± 0.1 out of 10 points. Participants indicated that they would like to see the program continue to serve businesses in the Chico, Orland, and Yuba City area and expand to other communities in California. Non-participant survey results within the program area (i.e., Chico, Orland, and Yuba City) and non-participant survey results outside the program area (i.e., Colusa, Grass Valley, Nevada City, Red Bluff, Willows, and Cottonwood) indicate 39 percent would have participated if they had known about the program or the program was available in their area. Most indicated better advertising would have helped. Process survey results, on-site verification inspections, and field measurements were used to guide the overall process evaluation in terms of investigating operational characteristics of the program and developing specific recommendations to help make the program more cost effective, efficient, and operationally effective. The most important process recommendations are as follows.

- Compare pre- and post-retrofit billing data to verify customers are saving energy. Sites with billing data indicating low or negative savings should be checked for proper installation and operation of measures (i.e., programmable thermostats).
- Use light loggers and average light logger data for hours of operation for lighting fixtures.
- Make sure technicians take time to properly explain programmable thermostats to participants and provide user-friendly instructions in various languages.
- Install night-time security lighting measures for customers to reduce the tendency to have all lights on at the businesses during unoccupied night-time hours.
- Provide HVAC diagnostic tune-up measures including checking and correcting refrigerant charge and airflow to increase savings, cost effectiveness, and reduce lost opportunities.
- Based on findings from this and other studies, hard-to-reach small commercial tenants are not generally motivated to invest in improving rental space. Due to this problem, program efforts spent on the *Energy Fitness* report might not yield significant savings creditable to the program. Therefore, RHA should install as many cost effective measures as possible, provide generic recommendations, and reduce efforts spent on providing custom audit measure recommendations in the *Energy Fitness* report.

A discussion of actionable recommendations for program changes that can be expected to improve the cost effectiveness of the program, improve overall or specific operations, or improve satisfaction or, of course, all three are provided in the process evaluation section (see section **3.2.3 Process Evaluation Recommendations**).

Section 2 describes how the EM&V study addresses the required CPUC Energy Efficiency Policy Manual objectives, including baseline information, energy efficiency measure

³ The ex ante savings assume actual unit accomplishments, ex ante savings, and ex ante EUL values. The PIP savings assume ex ante unit goals, ex ante savings, and ex ante EUL values.

information, measurement and verification approach, and the evaluation approach. Section 2 also includes equations used to develop energy and peak demand savings, sample design, methods used to verify proper installation of measures, and methods used to perform field measurements.

Section 3 provides EM&V study findings including load impact results and process evaluation results regarding what works, what doesn't work, and recommendations to improve the program's services and procedures. **Section 3** also includes measure recommendations to increase savings, achieve greater persistence, and improve customer satisfaction.

Appendix A provides the participant and non-participant survey instruments. **Appendix B** provides the audit data collection form.

2. Required CPUC Objectives and Components

This section discusses how the EM&V study meets the required CPUC objectives and components including baseline information, energy efficiency measure information, measurement and verification approach, and the evaluation approach.

2.1 Baseline Information

Existing studies were used to evaluate baseline and measure-specific energy savings data. Existing baseline data was obtained from prior EM&V studies, the <u>CALIFORNIA MEASUREMENT</u> <u>ADVISORY COMMITTEE (CALMAC, www.calmac.org</u>), and the California Energy Commission (CEC, <u>www.energy.ca.gov</u>). Existing baseline studies for small commercial customers are provided in **Table 2.1**.

Table 2.1 E	xisting Base	eline Studies	for Small	Commercial	Customers
				Commer ciai	Castonitors

	0
1	Filing of Pacific Gas and Electric Company Requesting Approval of Proposed Energy Efficiency Programs and Budgets as Part of the 2004-05 Energy Efficiency Program Selection Process Required by Rulemaking 01-08-028, December 2003.
2	2004-05 Energy Efficiency Program Selection R.01-08-028, Energy Efficiency Proposal, Statewide Nonresidential Retrofit Express Efficiency, Appendix C, References/Workpapers/Data Assumptions, prepared by PG&E, December 2003.
3	<i>California Energy Demand: 1995-2015,</i> P300-95-008, California Energy Commission, 1516 Ninth Street, Sacramento, CA 95814, 1995
4	Southern California Edison Energy Efficiency Potential Study, prepared for Southern California Edison Company, prepared by XENERGY, 1992.
5	2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, page 7-40, prepared for Southern California Edison, prepared by Itron, Inc., Vancouver, Washington 2005.
6	<i>California Commercial End-Use Survey, p</i> repared for: California Energy Commission, prepared by: Itron, Inc., CALMAC Study ID: CEC0023.02. 2006.

Ex ante baseline cooling and heating Energy Use Intensity (EUI) data for small commercial customers are provided in **Table 2.2**. These values are from the studies listed in **Table 2.1**.

Building	CEC Climate Zone	CEUS Study 6 Cooling EUI (kWh/ft2)*	SCE Study 4 Cooling EUI (kWh/ft2)	CEUS Study 6 Heating EUI (kBtu/ft2)
Retail	All	3.03	5.65	3.02
Small Office	All	2.90	3.95	8.62
Restaurant	All	8.22	6.92	7.70
Average		4.71	5.51	6.45

Table 2.2 Existing	Baseline	Cooling 1	EUI Data	for Small	Commercial	Customers
	Dascinic	COUMA			Commercial	Castonicis

The baseline EUI values for the study are shown in **Table 2.3**. These values are based on participant utility billing data for 59 sites, eQuest (i.e., DOE-2.2) simulations, detailed site audits, and pre-retrofit thermostat schedules.

Table 2.3 Existing Baseline EUI Data for Small Commercial Customers

End Use	EUI W/ft ²	EUI kWh/vr-ft ²	EUI therm/yr- ft ²	Source
Cooling	3.9	3.23	-	EM&V Study (2.05 PG&E Study 2, Table 2.1)
Space Heating			0.526	PG&E Study 2, Table 2.1
Lighting	2.1	8.1		PG&E Study 2, Table 2.1

2.2 Energy Efficiency Measure Information

This section provides energy efficiency measure information including assumptions about important variables and unknowns, especially those affecting energy savings. Ex ante deemed energy savings for installed measures are provided in **Table 2.4** and are based on RHA estimates and the Statewide Nonresidential Express Efficiency Program (see PG&E Studies 1 and 2 **Table 2.1**). Ex ante deemed savings for audit recommended measures are provided in **Table 2.5** and are based on the Statewide Nonresidential Express Efficiency Program. Savings and effective useful lifetime (EUL) for these measures are from RHA or other sources.⁴

#	Direct Install Measures	Units	Demand Savings per unit kW	Annual Hours of Operation per unit	Savings per unit kWh	Savings per unit therm	EUL	Ex Ante NTGR	Qty.
1	Screw-in CFL (27-watt)	Unit	0.046	n/a	246	n/a	8	0.80	12,000
2	T8 Fluorescent w/ Elec. Ballasts	Unit	0.043	n/a	121	n/a	16	0.80	10,000
3	Delamp Fixtures (3 to 2 lamp)	Unit	0.094	n/a	256	n/a	16	0.80	2,000
4	LED Exit Signs	Unit	0.038	n/a	352	n/a	16	0.80	2,000
5	Programmable Thermostats	Unit	0.563	n/a	819	n/a	11	0.80	n/a
6	Vendor Miser	Unit	0	n/a	1,590	n/a	3	0.80	n/a

 Table 2.4 Ex Ante Savings for Installed Measures

⁴ The Energy Fitness Report is based on the facility energy analysis that provides no-cost energy savings modifications, installs cost-effective energy savings measures, and provides on-site energy education including recommendations of audit measures.

			Demand Savings per unit	Annual Hours of Operation	Savings per unit	Savings		Ex Ante	
#	Audit Measures	Units	kW	per unit	kWh	therm	EUL	NTGR	Qty.
1	Seasonal HVAC Maintenance	Site	0.45	n/a	487	26	1	0.80	n/a
2	HVAC Tune-up	Site	0.19	n/a	340	18	10	0.80	n/a
3	Duct Test & Seal and Insulation	Site	0.07	n/a	1,126	65	15	0.80	n/a
4	Programmable Thermostat	Site		n/a	819	55	11	0.80	n/a
5	Efficient HVAC Equipment	Unit	0.20	n/a	921	76	15	0.80	n/a
6	Reflective Window Film	Site	0.634	n/a	555	n/a	15	0.80	n/a
7	Advanced Evaporative cooler	Site	0.54	n/a	502	n/a	15	0.80	n/a
8	Ceiling Fan	Site	0.023	n/a	238	11	15	0.80	n/a
9	Delamp (3 to 2 lamp T12ES/Mag)	Unit	0.043	n/a	201	n/a	16	0.80	n/a
10	Delamp Other	Unit	0.038	n/a	179	n/a	16	0.80	n/a
11	Occupancy Sensors	Site	0.089	n/a	417	n/a	15	0.80	n/a
12	Lower Water Heater Temp.	Unit		n/a	475	11	3	0.80	n/a
13	Time Clock for Elec. Water Heater	Unit		n/a	273	n/a	3	0.80	n/a
14	Insulate Tank & Pipes	Unit		n/a	371	31	11	0.80	n/a
15	Infiltration Reduction	Site		n/a	467	22	20	0.80	n/a
16	R-30 Ceiling Insulation	Site		n/a	1022	102	25	0.80	n/a
17	R-11 to R-19 Wall Insulation	Site		n/a	671	60	25	0.80	n/a
18	High Performance Windows	Site		n/a	820	66	25	0.80	n/a
19	Auto-Closers on Exit Doors	Unit		n/a	85	n/a	8	0.80	n/a
20	Insulated Ice Machine Dispenser	Unit		n/a	2,190	n/a	8	0.80	n/a
21	Auto-Closers for Cooler Boxes	Unit		n/a	929	n/a	8	0.80	n/a
22	Strip Curtain for Walk-in Boxes	sf		n/a	85	n/a	4	0.80	n/a
23	Vending Miser	Unit		n/a	1,590	n/a	3	0.80	n/a
24	Glass Cooler Door Gaskets	lf		n/a	10	n/a	4	0.80	n/a
25	Energy Star Computers, Copiers	Site		n/a	294	n/a	4	0.80	n/a

 Table 2.5 Ex Ante Savings for Recommended Audit Measures

2.2.1 Measure Assumptions and Intended Results

Measure assumptions were provided by RHA in their PIP as shown in **Table 2.6**. Unless otherwise noted, assumptions for "Energy Fitness Audit Measures" were taken from the Statewide Nonresidential Express Efficiency Program. The EM&V study evaluated the ex ante assumptions.

				Annual	
		Baseline	Measure	Hours of	
#	Direct Install Measures	Assumption	Assumption	Operation	Minimum Savings Target
1	Screw-in CFL (27-watt)	100W	27W	5,703	73% savings
2	T8 Fluorescent Fixtures with	143W	90W	3,267	37% savings
	Electronic Ballasts				
3	Delamp 3-lamp to 2-lamp fixture	143W	96W	3,279	33% savings
4	LED Exit Signs	40W	1W	8,760	97% savings
5	Programmable Thermostat	None	Setup cooling, setback	n/a	10% cooling and heating
	-		heating		savings
6	Vendor Miser	No control	Control	n/a	49% savings
7	HVAC Tune-up	Dirty Condenser	Clean Condenser Coil	n/a	12.4% savings
	·	Coil and Air Filter	and Air Filter		
	Energy Fitness Audit Measures				
1	Seasonal Maintenance	Dirty Filters/Coil	Clean Filters/Coils		7%
2	HVAC Tune-up	Incorrect RCA	Correct RCA		13%
3	Duct Test and Seal and Insulation	Leaks No Insul.	Seal/Insul. Ducts		Seal 14%/Insul. 3%
4	Programmable Thermostat	None	Setback/setup		20%
5	Energy Efficient HVAC Equipment	7.4 SEER/7.7 EER	11 SEER/10.3 EER		25-33%
6	Reflective Window Film	Clear: 0.83 SHGC	Film: 0.47 SHGC		14%
7	Advanced Evaporative cooler	DX Air Cond.	Evap. Cooler		49%
8	Ceiling Fan	None	Ceiling Fan		10%
9	Delamp. (3 to 2 lamp T12ES/Mag)	143W	90W		37%
10	Delamp Other				33%
11	Occupancy Sensors	3,200 hours	1,500 hours		53%
12	Lower Water Heater Temperature	130F	120F		8%
13	Time Clock for Elec. Water Heater	8,760 hrs/y	4,380 hrs/y		4%
14	Insulate Tank & Pipes	No Insulation	R8 Tank, R4 Pipe		10%
15	Infiltration Reduction	0.5 ACH	0.4 ACH		2%
16	R-30 Ceiling Insulation	None	R-30		10-20%
17	R-11 to R-19 Wall Insulation	R-11	R-19		-
18	High Performance Windows	Single Pane	Low-E		30%
19	Auto-Closers on Exit Doors	None	Auto Closer		1%
20	Insulated Ice Machine Dispenser	Uninsulated Box	Insulated Box		20%
21	Auto-Closers for Cooler Boxes	None	Auto Closer		2%
22	Strip Curtain for Walk-in Boxes	None	Strip Curtain		3%
23	Vending Miser	No Control	Vending Miser		30-55%
24	Glass Cooler Door Gaskets	Leaky Gasket	Tight Gasket		2%
25	Energy Star Computers & Copiers	None	Power Manage		10%

 Table 2.6 Baseline and Energy Efficiency Measure Assumptions

The program ex ante and ex post energy and demand savings are shown in **Table 2.7**. The lifecycle ex-post net lifecycle kWh realization rate is 0.80 ± 0.05 . The program implementation plan (PIP) cost effectiveness is 1.8 for the TRC test and 10.3 for the participant test. The ex ante TRC is 2.2 and the participant test is 11.7. The EM&V ex-post TRC is 1.2 and the participant test is 5.9. Ex post cost effectiveness is less than PIP/ex ante due to assuming greater hours of operation for lighting measures and greater effective useful lifetimes. The PIP/ex ante net savings were reduced by using lower net to gross ratios (i.e., ex ante used a net to gross ratio of 0.80 instead of 0.96 for Express Efficiency type measures).

Program	Utility	Net kWh/yr	Net kW	Net therm/yr	Net Lifecycle kWh	Net Lifecycle therm
RHA #1409-04 PIP goal	PG&E	7,381,944	1,592		66,264,696	
RHA #1409-04 ex ante	PG&E	9,328,191	2,521		83,775,737	
RHA #1409-04 ex post	PG&E	6,712,686	2,385		66,827,070	

Table 2.7 Ex Ante and Ex Tost Load Impacts
--

2.2.2 Description of Installed Energy Efficiency Measures

This section provides a full description of each energy efficiency measure including assumptions about important variables and unknowns, especially those affecting energy savings. The study evaluated the ex ante measure savings and assumptions and developed ex post savings values for each measure.

1. Screw-in Compact Fluorescent Lamps (CFLs) – Direct Install Measure

Compact fluorescent lamps are designed to replace standard incandescent lamps. They are approximately four times more efficacious than incandescent light sources. Screw-in modular lamps have reusable ballasts that typically last four lamp lives. Commercial applications for compact fluorescent lamps include general lighting, accent and specialty lighting, decorative and portable lighting, utility lighting, and exterior illumination. As with all fluorescent lamps, CFLs emit light when low-pressure mercury vapor is energized inside the lamp, which produces ultraviolet (UV) radiation. The UV radiation is absorbed by a phosphor coating on the inner surface of the lamp, which converts the radiation into light. Ballasts provide initial voltage for starting lamps and regulate lamp current during operation. CFL ballasts are electronic. Incandescent lamps typically use 15 to 100W and can be replaced with CFLs using 4 to 27W. The ex ante savings for CFLs were 0.046 kW and 246 kWh/yr (based on replacing 100W incandescent lamps with 27W CFLs). Energy Fitness ex ante deemed savings for other CFL measures are shown in **Table 2.8**.

			Demand Savings per unit	Annual Hours of Operation	Savings per unit	Savings per unit		Ex Ante	
#	Description	Units	kW	per unit	kWh	therm	EUL	NTGR	Qty.
1a	150W Incandescent to 42W CFL	Unit	0.108	4,000	432	n/a	2.5	0.80	
1b	100W Incand. to 29W CFL	Unit	0.071	4,000	284	n/a	2.5	0.80	
1c	100W Incand. to 26W CFL	Unit	0.074	4,000	296	n/a	2.5	0.80	
1d	75W Incand. to 22W CFL	Unit	0.053	4,000	212	n/a	2.5	0.80	
1e	60W Incand. to 16W CFL	Unit	0.044	4,000	176	n/a	2.5	0.80	
1f	60W Incand. to 13W CFL	Unit	0.047	4,000	188	n/a	2.5	0.80	
1g	40W Incand. to 9W CFL	Unit	0.031	4,000	124	n/a	2.5	0.80	
1h	R-30 65W Incand. to 16W CFL	Unit	0.049	4,000	196	n/a	2.5	0.80	
1i	R-30 65W Incand. to 14W CFL	Unit	0.051	4,000	204	n/a	2.5	0.80	
1j	R-40 75W Incand. to 19W CFL	Unit	0.056	4,000	224	n/a	2.5	0.80	
1k	PAR-38 69W Incan. to 19W CFL	Unit	0.050	4,000	200	n/a	2.5	0.80	
11	R-20 50W Incand. to 9W CFL	Unit	0.041	4,000	164	n/a	2.5	0.80	
1m	R-20 30W Incand. to 5W CFL	Unit	0.025	4,000	100	n/a	2.5	0.80	
1n	60W Candella to 14W CFL	Unit	0.046	4,000	184	n/a	2.5	0.80	
10	15W Candella to 4W CFL	Unit	0.011	4,000	44	n/a	2.5	0.80	
1р	60W Globe G-25 to 16W CFL	Unit	0.044	4,000	176	n/a	2.5	0.80	

Table 2.8 Ex Ante Savings for CFLs

2. LED Exit Signs from Incandescent – Direct Install Measure

LED exit signs are used to replace incandescent or fluorescent exit signs. LED exit signs last up to 16 years, making the technology suitable to all situations, particularly where maintenance is a concern or where relamping is performed. LED exit signs require no maintenance. They are used until they burn out and then the exit sign is replaced. LED exit signs contain light emitting diodes (LED). The LED produces light when low-voltage direct current crosses a suitable semiconductor junction. The color of the light that is produced is determined by the composition of the semiconductor junction. Exit signs typically contain red or green LED lamps. Some exit signs use a diffuser to spread the light emitted by the LED. Typically, LED exit signs consume one to four Watts compared to incandescent exit signs which typically consume 40 Watts. The Energy Fitness direct-install measure LED exit sign involves replacing 40W incandescent or 14W fluorescent exit signs are 0.039 kW and 355 kWh/yr. The Energy Fitness ex ante deemed savings for LED exit signs are shown in **Table 2.9**.

			Demand Savings per unit	Annual Hours of Operation	Savings per unit	Savings per unit		Ex Ante	
#	Description	Units	kW	per unit	kWh	therm	EUL	NTGR	Qty.
2a	Incand. to LED Exit – 1 socket	Unit	0.039	8,760	342	n/a	16	0.80	
2b	Incand. to LED Exit – 2 socket	Unit	0.038	8,760	333	n/a	16	0.80	
2c	Fluorescent to LED Exit	Unit	0.013	8,760	114	n/a	16	0.80	

Table 2.9 Ex Ante Savings for LED Exit Signs

3. Replace 100W Incandescent with Fluorescent – Direct Install Measure

High efficiency fluorescent fixtures are four times more efficient than conventional incandescent fixtures. The Energy Fitness direct-install measure fluorescent measure involves replacing incandescent fixtures with fluorescent fixtures. The program implementation plan savings for replacing 100W incandescent with fluorescent fixtures are 0.074 kW and 346 kWh/yr.

4. Delamp Three-Lamp Fixtures to Two-Lamp Fixtures – Direct Install Measure

Delamping three-lamp to two-lamp fixtures saves 37 percent on lighting and often provides adequate illumination. The program implementation plan savings for delamping are 0.043 kW and 201 kWh/yr. The Energy Fitness deemed savings for delamping are shown in **Table 2.10**.

			Demand Savings	Annual Hours of	Savings	Savings		Ex	
#	Description	Units	kW	per unit	kWh	therm	EUL	NTGR	Qty.
4a	Delamp 150W Incandescent	Unit	0.150	4,000	600	n/a	16	0.80	
4b	Delamp 100W Incandescent	Unit	0.100	4,000	400	n/a	16	0.80	
4c	Delamp 75W Incandescent	Unit	0.075	4,000	300	n/a	16	0.80	
4d	Delamp 60W Incandescent	Unit	0.060	4,000	240	n/a	16	0.80	
4e	Delamp 40W Incandescent	Unit	0.040	4,000	160	n/a	16	0.80	
4f	Delamp 25W Incandescent	Unit	0.025	4,000	100	n/a	16	0.80	
4g	Delamp T12 F40/Mag Ballast – 1 Lamp Fixture	Unit	0.044	4,000	176	n/a	16	0.80	
4h	Delamp T12 F40/Mag Ballast – 2 Lamp Fixture	Unit	0.082	4,000	328	n/a	16	0.80	
4i	Delamp T12 F96/Mag Ballast – 1 Lamp Fixture	Unit	0.064	4,000	256	n/a	16	0.80	
4j	Delamp T12 F96/Mag Ballast – 2 Lamp Fixture	Unit	0.128	4,000	512	n/a	16	0.80	

Table 2.10. Ex Ante Savings for Delamping

5. Change T-12 Fluorescent to T-8 with Electronic Ballasts – Direct Install Measure

Change T-12 fluorescent to T-8 with electronic ballasts involves replacing 1¹/₂-inch diameter T-12 fluorescent lamps and standard magnetic ballasts. High efficiency components use triphosphor 1-inch diameter T-8 lamps (32 W), and electronic ballasts. The Energy Fitness deemed savings for changing T-12 magnetic to T-8 electronic ballasts are shown in **Table 2.11**.

#	Description	Units	Demand Savings per unit kW	Annual Hours of Operation per unit	Savings per unit kWh	Savings per unit therm	EUL	Ex Ante NTGR	Qty.
5a	Change T12 F40/Mag to T-8 Elec. Ballast – 1 Lamp Fixture	Unit	0.020	4,000	80	n/a	16	0.80	
5b	Change T12 F40/Mag to T-8/Elec. Ballast – 2 Lamp Fixture	Unit	0.024	4,000	96	n/a	16	0.80	
5c	Change T12 F40/Mag to T-8/Elec. Ballast – 3 Lamp Fixture	Unit	0.044	4,000	176	n/a	16	0.80	
5d	Change T12 F40/Mag to T-8/Elec. Ballast – 4 Lamp Fixture	Unit	0.052	4,000	208	n/a	16	0.80	
5e	Change T12 F96/Mag F96 to T- 8/Elec. Ballast – 1 Lamp Fixture	Unit	0.017	4,000	68	n/a	16	0.80	
5f	Change T12 F96/Mag to T-8/Elec. Ballast – 1 Lamp Fixture	Unit	0.019	4,000	76	n/a	16	0.80	

Table 2.11 Ex Ante Savings for Changing T-12 Magnetic to T-8 Electronic Ballasts

6. Programmable Thermostat –Direct Install/Audit Measure

Programmable thermostats are used to turn-off or setup HVAC equipment during periods when the building is unoccupied. Setup thermostats are typically used for areas where it is undesirable to shut off equipment due to such concerns as freeze protection or the need to provide some conditioning for equipment. The Statewide Express Efficiency deemed savings for programmable thermostats are 4,093 kWh/yr and 1,095 therm/yr based on PG&E calculations for a programmable thermostat on a small package AC system serving 5,000 ft² of an office facility with estimated energy savings of 40 percent for cooling and heating (and zero kW savings).⁵ The Energy Fitness savings for programmable thermostats are 819 kWh/yr and no kW or therm savings are indicated.

7. Vending Miser – Direct Install/Audit Measure

Vending Misers reduce energy use in vending machines by using a passive infrared sensor to power down a vending machine when the area surrounding it is unoccupied and automatically repowers the vending machine when the area is reoccupied. The Vending Miser controller uses fuzzy logic to learn from the habits of the building occupants, and modifies the time-out period accordingly. An optional Sensor Repeater allows the control of a bank of vending machines with a single sensor, minimizing installation time and visual impact. Additionally, Vending Misers monitor the ambient temperature while the vending machine is powered down. Using this information, Vending Misers automatically power up the vending machine at appropriate intervals, independent of occupancy, to ensure that the vended product stays cold. Vending Misers will never power down a vending machine while the compressor is running, so a high head pressure start never occurs. In addition, the current sensor also ensures that every time the vending machine is powered up, the cooling cycle is run to completion before again powering down the vending machine. The effective useful lifetime is 3 years.

8. HVAC Tune-up

The HVAC tune-up measure included installation of clean air filters and chemical condenser coil cleaning. According to the 2004-05 DEER Update Study, cleaning condenser coils saves 12.4%.⁶ Chemical cleaning of condenser coils with an alkaline cleaner emulsifies baked-on dirt and grime so it can be rinsed away with water to restore the design heat transfer. Condensing coils are similar to a vacuum cleaner sucking in greasy dirt and dust that collects on the coils that gets baked on over time. When finned coils get dirty, heat transfer is reduced. In turn, compressors have to work much harder, operating costs go up, and valuable equipment can break down when it is needed most. For every 2°F rise in condensing temperature caused by dirty coils, efficiency is reduced by 1% and power consumption is increased by 1%. Cleaning coils protects equipment and helps maintain peak operating efficiency.

2.2.3 Description of Energy Fitness Audit Measures

This section provides a full description of the Energy Fitness audit measures including assumptions about important variables and unknowns, especially those affecting energy savings.

1. Seasonal Maintenance (i.e., Clean Air Filters)

Seasonal maintenance involves cleaning air filters to save cooling and heating energy by improving airflow across the evaporator heat transfer and this increases cooling capacity.

⁵ The PG&E baseline cooling for a 5,000 ft² office building is 10,353 kWh/yr (EUI is 2.05 kWh/yr-ft²) and baseline heating is 2,631 therm/yr (EUI is 0.5262 therm/yr-ft²). See PG&E Study 2, Appendix C.

⁶ Itron, Inc. 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study Final Report. 2005. page 7-40, Prepared for Southern California Edison Company. Prepared by Itron, Inc., Vancouver, WA. Available online: http://eega.cpuc.ca.gov/deer/.

2. HVAC Tune-up

HVAC tune-ups involve installation of clean air filters, chemical condenser coil cleaning, and refrigerant charge and airflow diagnostics.

3. Duct Test and Seal and Insulation

Duct leakage in forced-air distribution systems represents a large efficiency loss in small commercial buildings adding 20-30 percent to heating and cooling energy use. California field studies have shown that duct leakage in small commercial buildings is 35 percent of fan flow, with a larger fraction on the supply side. These studies have also shown duct leaks in small commercial buildings are outside conditioned space more than 50 percent of the time, and that contractors have no difficulty finding duct leaks in systems located outside the building insulation. The impacts of duct leakage increase rapidly at high outdoor temperatures (peak demand periods), which means fixing leaks has a greater impact on energy use during peak periods as compared to milder weather conditions. The full peak electricity demand reduction associated with duct sealing can be realized in small commercial buildings since these buildings are cooled throughout the day. Duct sealing requires use of duct pressurization equipment to detect the leaks. Leaks are sealed using hand or Aeroseal applied mastic, or UL-rated metal or butyl tape. Savings are based on measured data. Duct testing and sealing savings are based on sealing both supply and return ducts to a maximum leakage of 15 percent of measured system flow at 25 Pascal pressure (supply and return).

4. Programmable Thermostat

Programmable thermostats are discussed above.

5. Efficient HVAC Equipment

The 1990 national appliance efficiency standards for packaged and split-system central air conditioners with cooling capacities less than 65,000 Btu/hr (i.e., < 5.4 tons) require a minimum Seasonal Energy Efficiency Rating of 10. Approximately 50 percent of small commercial air conditioners are packaged units with air handler, evaporator, compressor, and condenser mounted in a metal box and typically roof-mounted to save interior space. The rest are split systems with an outdoor section housing the compressor and condenser and an indoor section housing the evaporator.

6. Reflective Window Film

Reflective window film reduces solar energy gains, thus reducing mechanical cooling energy consumption. Addition of film is often cost effective on all clear glass except north-facing exposures. Typical film thickness is 0.001 to 0.004 inches. Films are made with a variety of adhesives and are applied on-site to the interior surface (i.e., facing the room) of single- or double-pane windows. Historical problems of fading, installation difficulties, and poor adhesive performance have been solved through advancements in film and adhesive technologies and better application processes. "Second generation" window films often have low-emissivity coatings that provide good visible transmittance (VT), solar heat gain coefficients (SHGC), and shading coefficients (SC). Besides reducing cooling loads, adding reflective films improves shatter resistance and blocks up to 99 percent of ultraviolet radiation. Summer comfort near windows is improved as well. However, winter space heating energy use will typically increase from 10 to 25 percent due to the loss of winter-time solar gains. **Shading Coefficient** (SC) is the

historical performance metric for rating solar gain. SC is the ratio of total solar transmission to the transmission through 1/8-inch clear glass. Solar Heat Gain Coefficient (SHGC) is similar to shading coefficient and is becoming the standard for window solar performance. SHGC is the fraction of incident solar energy transmitted through the window. SHGC is expressed as a number between 0 and 1, and a lower SHGC means less heat gain. SHGC is particularly important in southern climates. Shading coefficient times 0.87 equals SHGC. Visible **Transmittance** (VT) is the percentage of visible light that makes it through a window. VT is expressed as a number between 0 and 1. Heavily tinted products with low shading coefficients typically have low VT. Luminous Efficacy (Ke) is the ratio of daylight transmittance to shading coefficient (VT/SC). This dimensionless ratio is also called the lighting-and-cooling selectivity index (LCS). Film must have a minimum five-year manufacturer's warranty. Statewide rebates are not available for windows with northern exposure. Additionally, film must have either a solar heat gain coefficient (SHGC) ≤ 0.39 and be applied to single-pane glass, or film can have an SHGC ≤ 0.47 and Luminous Efficacy, i.e., visible transmittance to shading coefficient ratio (VT/SHGC) ratio > 1.3. The Statewide Express Energy program savings for reflective window film are as follows: 13 kWh/yr-ft² for coastal areas; 16 kWh/yr-ft² for inland areas; and 24 kWh/yr-ft² for desert areas. No kW savings are given. Statewide savings appear to be unrealistic.

Average commercial building loads for a typical office building are shown on **Figure 2.1**. Solar heat gains represent the largest building load at 27 percent.

Figure 2.1. Air Conditioning Loads in Commercial Buildings

7. Advanced Evaporative Cooler

Advanced direct evaporative coolers contain evaporative pads (usually of aspen wood fibers), a pump, sump, and fan. A pump lifts sump water to the distributing system and it flows down through the pads back to the sump. A fan within the cooler pulls the hot, dry outdoor air through the evaporative pad. As the air passes through the wetted pad, water evaporates, and the air becomes both cooler and more humid. Cooler and more humid air is then delivered to the

conditioned space. As air passes through a direct evaporative cooler, its dry-bulb temperature approaches the wet-bulb temperature. Energy is neither gained nor lost from the air, but is exchanged within the air such that the air becomes both cooler and more humid. Sensible heat in the air is converted to latent heat through evaporation, creating an energy-equivalent rise in the air's humidity as the dry-bulb temperature is lowered. This is an "adiabatic" process. The effectiveness of the evaporative cooler is defined as the dry-bulb temperature drop of the air divided by the maximum potential temperature drop. This is also known as the wet-bulb temperature. Direct evaporative cooling effectiveness depends upon the outdoor wet bulb temperatures and humidity levels. Most commercial evaporative coolers have an effectiveness of 85 percent, which means that the dry-bulb temperature of the incoming air is reduced by 85 percent of the difference between the dry-bulb and the wet-bulb temperature of the air.

Direct evaporative coolers are manufactured in sizes ranging from 2,000 to 20,000 cfm using current technology and available equipment. Evaporative coolers are not applicable to sites where high indoor humidity is a concern. If an evaporative cooler is used in an inappropriate climate, it may not have the ability to cool but instead raise the humidity level in the room. Evaporative coolers must replace an existing, vapor-compression air conditioning system, or the existing system must be made inoperable. Energy and demand savings assume vapor-compression air conditioners (typically package units) are replaced with direct evaporative cooling. Peak demand savings (kW) and annual energy savings (kWh/yr) are the difference in use between operating an air conditioning unit and a direct evaporative cooler. This is applicable to small commercial and industrial customers with a moderate to low concern about humidity.

8. Ceiling Fan

Ceiling fans save energy by reducing the mean average temperature experienced by occupants in the space by circulating cooling or heating air more effectively.

9. Delamping Three-Lamp Fixtures to Two-Lamp Fixtures

Delamping three-lamp to two-lamp fixtures saves 37 percent on lighting and often provides adequate illumination (see direct install measure 4, above).

10. Delamping Other

Delamping other assumes other combinations of lamps, i.e., 4 to 3 lamps or 2 to 1 lamp, saving 33 percent on average.

11. Occupancy Sensors in Areas with Intermittent Occupancy

Occupancy sensors are used to automatically turn on and off lights when people enter or leave rooms. They can be wall or ceiling mounted, passive infrared (PIR) or ultrasonic. Occupancy sensors are reliable, market tested products, but require proper installation and calibration. Understanding the difference in operation between PIR and ultrasonic products is the key to proper installation. Occupancy sensors are applicable in most market sectors except retail and should only be connected to lighting loads that have instant start characteristics (incandescent or fluorescent).

12. Lower Hot Water Set Point Temperature

Lowering hot water set point temperature saves gas energy by reducing the hot temperature difference from inlet to tank and standby losses.

13. Time Clock for Electric Water Heater

The time clock for electric water heaters saves energy by setting back or turning off the tank when not in use.

14. Insulate Tank and Hot Water Pipes

Hot water tank and pipe insulation saves energy by reducing standby and distribution pipe losses.

15. Infiltration Reduction

Infiltration reduction saves cooling and heating energy by reducing building envelope leakage.

16. R-30 Ceiling Insulation

R-30 ceiling insulation saves 10 to 20 percent on cooling and heating from reduced heat gain or loss through the ceiling.

17. R-11 to R-19 Wall Insulation

Wall insulation saves cooling and heating energy from reduced heat gain or loss through the walls.

18. High Performance Windows

High performance windows save cooling and heating energy by reducing heat gain or heat loss through windows. Standard windows are single pane. High performance windows are low-e with a solar heat gain coefficient of 0.4 or less and u-value of 0.23 Btu/ft²-hr-°F.

19. Auto-Closers on Exit Doors.

Automatic, hydraulic-type door closers on exit doors will reduce air infiltration and save energy.

20. Insulated Ice Machine Dispenser Box

The insulated dispenser box maintains ice longer and reduces heat gain to the ice maker. When RHA performs an energy audit, they determine the connected load (kW) for the ice dispenser box from the name plate information. Ice boxes are typically on all the time. RHA assumes 4,380 hours of operation per year (8,760 hrs/yr with 50 percent cycling) to estimate the total annual usage in kWh. A savings of 20 percent is assumed for the insulated boxes. For example, if the total connected load is 2.5 kW, then annual usage is assumed to be 10,950 kWh/yr (i.e., 2.5 kW x 4380 hrs/yr. = 10,950 kWh). Annual savings are assumed to be 20 percent or 2,190 kWh/yr.

21. Auto-Closers for Cooler Boxes

Automatic, hydraulic-type door closers on cooler box doors to walk-in coolers or freezers will reduce air infiltration and save energy. The door size on a walk-in cooler or freezer must have a minimum perimeter of 16 ft. The auto-closer must use hydraulic action to firmly close a door which is within 1" of full closure.

22. Strip Curtain for Walk-in Boxes

Strip curtains installed on doorways to walk-in boxes and refrigerated warehouses save energy by decreasing infiltration of outside air into the refrigerated space. Although refrigerated spaces have doors, which if kept closed would make strip curtains obsolete, they are often left open. Strip curtains are a simple application and have been supported in the technical field for years. Though the consumer market has been receptive to their use, there is still potential for additional market penetration.

23. Vending Miser

Vending Misers reduce energy use in vending machines by using a passive infrared sensor to power down a vending machine when the area surrounding it is unoccupied and automatically repowers the vending machine when the area is reoccupied (see direct install measure 7, above).

24. Glass Cooler Door Gaskets (Reach-in or Walk-in)

Glass cooler door gaskets replace weak and worn-out glass-door gaskets. New better-fitting gaskets reduce air infiltration into the refrigerated display case and save energy. Statewide rebates require minimum perimeter of 16 feet. Replacement gaskets must be framed to meet the manufacturer's specifications, specifically regarding dimensions, materials, attachment method, style, compression, and magnetism.

25. Energy Star Computers and Copiers

Energy Star computers and copiers include power management software to turn off the products when not in use. Savings are 10 percent.

2.3 Measurement and Verification Approach

The measurement and verification approach for the study is based on the *International Performance Measurement & Verification Protocols* (IPMVP) defined **Table 2.12**.⁷

Table 2.12 IPMVP M&V Options	Table 2.12	IPMVP	M&V (Options
------------------------------	-------------------	-------	-------	---------

M&V Option	How Savings Are Calculated	Typical Applications
Option A. Partially Measured Retrofit Isolation	Engineering calculations using	Showerhead/aerator pre- and post-
Savings are determined by partial field measurement of	short term or continuous post-	retrofit flow rates are measured and
energy use of system(s) to which a measure was applied,	retroll measurements or	operating nours are based on interviews
separate from a continuous. Partial masurement means	supulations.	with occupants of stipulated values.
that some but not all parameters may be stipulated if total		
impact of possible stipulation errors is not significant to		
resultant savings. Careful review of measure design and		
installation will ensure that stipulated values fairly represent		
the probable actual value.		
Option B. Retrofit Isolation	Engineering calculations using	Variable speed controls used on a
Savings are determined by field measurement of the energy	short term or continuous	constant speed pump Electricity use is
use of the systems to which the measure was applied,	measurements	measured with a kWh meter on pump
separate from the energy use of the rest of the facility. Short-		motor. Metering is performed to verify
term or continuous measurements are taken throughout the		pre-retrofit constant speed operation and
Post-retroit period.	Analysis of whole facility utility	post-retroit variable speed operation.
Option C. Whole Facility Savings are determined by measuring operaty use (and	Analysis of whole facility utility	Energy management program affecting
production) at the whole facility level. Short-term or	techniques from simple	many systems in a building. Utility meters
continuous measurements are taken throughout the post-	comparison to regression	vear and throughout post-retrofit period
retrofit period. Continuous measurements are based on	analysis or conditional	Joan and throughout post retroit portou.
whole-facility billing data.	demand analysis.	
Option D. Calibrated Simulation	Energy use simulation,	Project affecting many systems in a
Savings are determined through simulation of the energy	calibrated with hourly or	building but where base year data are
use of components or the whole facility.	monthly utility billing data	unavailable. Utility meters measure post-
Simulation routines must be demonstrated to adequately	and/or end-use metering.	retrofit energy use. Base year energy use
model actual energy performance measured in the facility.		is determined by simulation using a
This option usually requires considerable skill in calibrated		model calibrated with post-retrofit utility
simulation.		data.

2.3.1 M&V Approach for Load Impact Evaluation

The M&V approach for the load impact evaluation involved performing on-site measurement and verification activities for a statistically significant random sample of participating customers. Ex post energy savings for each measure were determined using the following IPMVP Options.

- The Energy Fitness lighting measures were evaluated using IPMVP Option B (i.e., retrofit isolation), and programmable thermostats and vendor misers were evaluated using Option A (i.e., stipulated or deemed values). Field measurements of lighting fixture power usage and hours of operation were evaluated using lighting loggers or participant reported hours of operation.
- Energy Fitness audit measures were evaluated using IPMVP Option A (i.e., stipulated values or deemed savings). RHA provided the number of audit checklist measures installed and telephone survey results from participating customers were used to develop

⁷ See International Performance Measurement & Verification Protocols, DOE/GO-102000-1132, October 2000.

an estimate of the adoption of audit measures.⁸ The study verified whether customers participated in both the RHA Program and one or more other CPUC-funded programs (e.g., Express Efficiency Rebates, etc.) to ensure that no "double dipping" occurred for the same measures. Data collected from the Energy Fitness database and telephone surveys were analyzed to measure the energy and peak demand savings achieved by the program.

Gross ex post savings for each measure was calculated based on information or measurements collected in the statistical random sample of on-site inspections, telephone surveys, engineering analyses, and simulations or stipulated values. **Sample mean savings estimates** were calculated using **Equation 1**.

Eq. 1
$$\overline{y}_i = \text{Mean Savings} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_j$$

Where,

 \overline{y}_i = Mean savings for measure "i" in the sample (i.e., therm/yr).

 $n_i =$ Number of measures "i" in the sample.

Savings were adjusted based on the proportion of measures, \hat{p}_i , found properly installed during verification inspections.

Eq. 2 Adjusted savings = $\hat{p}_i \overline{y}_i$ Where,

$$\hat{\mathbf{p}}_{i} = \text{Proportion} = \frac{\mathbf{n}_{verified}}{\mathbf{n}_{i}}$$

 $n_{verified} =$ Number of verified measures in the sample.

The standard error, se_i, of the measure sample mean was calculated using Equation 3, Equation 4 or both depending on the measure.⁹

Eq. 3 se_{i_p} = Standard Error of the Proportion =
$$\sqrt{\frac{\hat{p}_i(1-\hat{p}_i)}{n_i}}$$

The standard error of mean savings was calculated using **Equation 4**.

⁸ The RHA tracking database contained customer name, address, telephone, contact, square feet, direct install measures, recommended measures, and estimated savings for measures.

⁹ The standard error for all measures was calculated based on the proportion of measures found properly installed from the on-site surveys. In addition, for measures where weighted average savings were for each climate zone were available, the standard error of the mean savings was also calculated. These two standard errors were then combined to characterize the statistical precision of the sample mean as an estimator of the population mean. The population total was estimated by multiplying both the sample mean and the corresponding combined error bound by the number of units in the population as per sampling procedures from *The California Evaluation Framework*, prepared for the CPUC and Project Advisory Committee, prepared by TecMarktWorks Framework Team, Chapter 13: Sampling, February 2004.

Eq. 4 se_{i_s} = Standard Error of Mean Savings =
$$\sqrt{\frac{\sum_{j=1}^{n} (y_j - \overline{y})^2}{n(n-1)}}$$

The measure error bound at the 90 percent confidence level was calculated using Equation 5 combining the applicable standard errors from Equations 3 and 4.

Eq. 5 Measure Error Bound = $\hat{p}_i \overline{y}_i (1 \pm (t) \sqrt{se_{i_p}^2 + se_{i_s}^2})$

Where,

t = The value of the normal deviate corresponding to the desired confidence probability of 1.645 at the 90 percent confidence level per CADMAC Protocols.

Savings for all measures "m" in the program was calculated using Equation 6.

Eq. 6
$$\hat{\mathbf{Y}} = \text{Program Savings} = \sum_{i=1}^{m} \left(\mathbf{N}_{p_i} \times \hat{\mathbf{p}}_i \overline{\mathbf{y}}_i \right)$$

Where,

 N_{p_i} = Number of "i" measures in the entire program population.

The program error bound for all measures was calculated using Equation 7.

Eq. 7 Program Error Bound =
$$\sum_{i=1}^{m} N_{p_i} \left\{ \hat{p}_i \overline{y}_i \left(1 \pm (t) \sqrt{se_{i_p}^2 + se_{i_s}^2} \right) \right\}$$

Net savings were calculated as gross savings times the CPUC-accepted 0.96 net-to-gross ratio.

2.3.2 Sampling Plan

The sampling plan was used to verify measure installation as well as for estimate ex post energy savings. The statistical sample design involved selecting a random sample of customers from the program participant population. Samples were selected to obtain a reasonable level of precision and accuracy at the 90 percent confidence level per CPUC Energy Efficiency Policy Manual (EEPM). The sample design was based on statistical survey sampling methods to select a sample of participants to meet the CADMAC Protocols.¹⁰ Sampling methods were used to analyze the data and extrapolate mean savings estimates from the sample measurements to the population of all program participants and to evaluate the statistical precision of the results.¹¹

¹⁰ See Table 5c, Protocols for the General Approach to Load Impact Measurement, page 14, Evaluation design decisions related to sample design will be determined by the following protocols: if the number of program participants is greater than 200 for residential programs, a sample must be randomly drawn and be sufficiently large to achieve a minimum precision of plus/minus 10 percent at the 90 percent confidence level, based on total annual energy use. A minimum of 200 for residential programs must be included in the analysis dataset for each applicable end-use. *Protocols and Procedures for Verification of Costs, Benefits, and Shareholder Earnings from Demand-Side Management Programs*, as adopted by the California Public Utilities Commission Decision 93-05-063, Revised March 1998.

¹¹ Cochran, William G. *Sampling Techniques*. New York: John Wiley & Sons, 1977, Kish, Leslie. *Survey Sampling*. New York: John Wiley & Sons, 1965. Thompson, Steven K. *Sampling*. New York: John Wiley & Sons, 1992.

The sample size necessary to obtain the desired 10 percent relative precision for program mean savings estimates was calculated using **Equation 8**.

Eq. 8 Sample Size = $n_i = \frac{t^2 C_{v_i}^2}{r^2}$

Where,

- n_i = Required sample size for measure "i",
- t = The value of the normal deviate corresponding to the desired confidence probability of 1.645 at the 90 percent confidence level per CADMAC Protocols,
- r = Desired relative precision, 10 percent per CADMAC Protocols,

$$C_{vi}$$
 = Coefficient of variation, $\frac{S_i}{\overline{y}_i}$, for measure "i."

For small populations, the sample size was corrected using the finite population correction (FPC) equation as follows.¹²

Eq. 9 FPC Sample Size =
$$n_{\text{FPC}_i} = \frac{n_i}{1 + (n_i - 1)/N}$$

Where,

 n_{FPCi} = Sample size for measure "i" with finite population correction.

The preliminary and actual statistical sample sizes for the EM&V study are shown in Table 2.13.

	Ex Ante	Proposed	Preliminary	Ex Post	Actual	Actual	Relative
Measure Description	Units	Sample	Cv	Units	Sample	Cv	Precision
Screw-in CFL (4-65-watt)	14,165	68	0.5	22,271	705	0.68	0.042
T8 Fluorescent Fixtures with Electronic Ballasts	14,270	68	0.5	6,240	668	0.40	0.026
Delamp Fluorescent or Incandescent Fixtures	10,634	68	0.5	15,596	1446	0.53	0.023
LED Exit Signs	91	68	0.5	488	17	0.00	0.000
Programmable Thermostats	175	10	0.5	151	4	0.12	0.100
Vendor Misers	17	2	0.5	28	0	n/a	n/a
HVAC Tune-up	100	10	0.5	103	2	0.09	0.100

Table 2.13 Statistical Sample Size for the EM&V Study

2.3.2 M&V Approach for Process Evaluation

The M&V approach for the process evaluation involved designing and implementing pre-process participant and non-participant surveys to evaluate participant satisfaction, and to obtain suggestions to improve the program's services and procedures. Interview questions assessed how the program influenced awareness of linkages between efficiency improvements, bill savings, and increased comfort for customers. A sample of 68 small commercial participants, 68 non-participants, and 20 non-contacted businesses were asked process questions. The 68 participants were asked questions to evaluate the adoption rate of audit measures. The participant, non-participant, and non-contacted surveys are provided in the **Appendices**. Participants were asked

¹² Cochran, William G. *Sampling Techniques*. New York: John Wiley & Sons, 1977, Kish, Leslie. *Survey Sampling*. New York: John Wiley & Sons, 1965. Thompson, Steven K. *Sampling*. New York: John Wiley & Sons, 1992.

why and how they decided to participate in the program. Non-participants were asked why they chose not to participate in order to identify reasons why program marketing efforts were not successful with some customers as well as to identify additional hard-to-reach market barriers. Non-contacted businesses were asked if they would have participated in the program if they had been made aware of the program to identify reasons why program marketing efforts were not successful reaching some customers as well as to identify additional hard-to-reach market barriers. Analysis of process evaluation survey data includes a summary of what works, what doesn't work, and the level of need for the program.

2.4 Evaluation Approach

The evaluation approach included:

- A list of questions to be answered by the study;
- A list of evaluation tasks to be undertaken by the study; and
- A description of how the study will be used to meet all of the Commission objectives described in the CPUC EEPM (page 31).

2.4.1 List of Questions Answered by the Study

The study answered the following list of questions.

1. Are the ex ante measure assumptions appropriate and relevant with respect to actual measures being installed in the program?

The study answered this question by evaluating the baseline UEC values and ex ante energy savings estimates using on-site measurements and inspections, engineering analysis, building energy simulations, and billing data (i.e., IPMVP Options A, C, and D). Existing baseline UEC values were evaluated and refined, and ex post savings estimates are provided for each measure based on research performed for this study. The study performed an analysis of the quantity and type of measures that were installed or adopted by program participants by conducting on-site inspections and audits at 68 participant sites to determine if the ex ante measure assumptions are appropriate and relevant.

- 2. Is the ex ante net-to-gross ratio of 0.80 appropriate and relevant to this program? The ex ante 0.80 net-to-gross ratio (NTGR) is not correct. Instead the study uses a 0.96 NTGR since the RHA Energy Fitness Program is similar to the Statewide Express Efficiency Program (for small and medium commercial customers). This is based on Table 4.2 Net-to-Gross Ratios, page 23, CPUC *Energy Efficiency Policy Manual*, November 29, 2001.
- **3.** Are the total program savings estimates accurate? The study answered this question by developing ex post energy savings for the program at
 - the 90 percent confidence level as per CADMAC Protocols.
- 4. Are customers satisfied with the program implementation and are customers satisfied with the measures that were offered and installed in the program? The study answered this question by summarizing customer satisfaction responses to process survey questions. Participant satisfaction was found to be generally very high (see Section 3.2 for more information).
- 5. Have some small commercial customers decided not to participate in the program?

The study answered this question by conducting in-person and telephone interviews with 20 non-participants. The following questions were included:

- 1. What reasons are there for not participating and how might conditions be revised to motivate participation?
- 2. Why have non-participants decided not to install similar measures (i.e., compact fluorescent lamps, T8 fluorescent fixtures with electronic ballasts, delamping, LED exit signs, programmable thermostats, and vendor misers)?
- 3. What barriers tend to reduce or restrict participation?
- 4. What percent of the small commercial market are affected by each of these barriers?
- 5. How can marketing, design, implementation, delivery, and follow-up efforts be changed to address these barriers?

6. Is there a continuing need for the program?

The study answered this question by evaluating ex post savings and responses from the inperson and telephone process surveys of participants and non-participants. The RHA Energy Fitness Program provided energy efficiency services to 1,539 small commercial businesses and overall participant satisfaction with the program was 90 percent. Ex post measure savings and implementation costs were used to develop ex post Total Resource Cost (TRC) test values for the program using the CPUC cost effectiveness worksheets. Approximately 38 percent of non-participants would have participated if they knew the program installed nocost/low-cost energy efficiency improvements in businesses like theirs, indicating a continuing need for the program.

7. Are there measurable program multiplier effects?

Program multiplier effects questions are used to measure program participants sharing information learned from the program with non-participants, and if sharing of information is acted upon in a way that results in the installation of similar measures within a nonparticipant population. For example, the program installs efficient lighting, programmable thermostats and vendor misers and performs audits to educate small commercial customers on the value of these and other measures. Based on process survey responses, 100 percent of interviewed customers shared program information with 10.3 times as many peers (68 participants shared information with 698 businesses). Approximately 51 percent of these businesses (i.e., 358) decided to install similar measures or participate in the Energy Fitness program. The program helped expand impacts beyond the participant group to a larger group through direct installation of measures and the Energy Fitness audit measure recommendations. The multiplier effect for the program is estimated at 88 percent.¹³ Programs that link technologies with educational measures can have multiplier effects as high as 25-30 percent including the sharing of program information to a population that is several times larger than the participant population. The following questions were included in the participant process surveys.

- 1. Have you shared program information with any of your business associates about the benefits of screw-in CFLs, LED exit signs, hardwired T8 fixtures with electronic ballasts, or other measures offered in the program or from the Energy Fitness Report?
- 2. With how many other businesses have you shared this information in the last 12 months?

¹³ Spillover of 88 percent is calculated based on 358 businesses adopting at least one spillover measure based on information shared by a group of 68 participants who adopted six measures (i.e., $358 \times (1 \div 6) \div 68 = 0.88$).

3. About how many people have installed any of these measures?

8. Are measures being installed properly?

The study answered this question by performing 2,842 inspections at a random sample of 68 participant sites. Light loggers were installed at 73 sites to measure hours of operation. These were left at the sites for a period of up to four weeks and then rotated to other sites. Sixty-eight (68) were successfully downloaded to monitor hours of operation on 1,842 fixtures. Two (2) were lost at customer sites and three (3) did not collect data due to customer interference. In addition, billing analysis for 68 sites provided additional verification that measures were installed properly. These efforts provided useful information in developing best practices recommendations to ensure measures are installed properly (see **Section 3.2.3**).

2.4.2 List of Tasks Undertaken by the Study

Four tasks were undertaken by the study. These tasks are briefly summarized as follows.

Task 1. Project Initiation Meeting

The project initiation meeting refined the research objectives and methods, clarified pertinent issues, data requirements, and the detailed work plan and schedule for the project.

Task 2. Prepare EM&V Plan

The EM&V Plan contained a detailed description of all activities required to complete the study.

Task 3. Perform EM&V Work

EM&V work for the Energy Fitness Program assessed baseline UEC values and ex ante energy savings estimates using on-site measurements and inspections, engineering analysis, building energy simulations, and billing data (i.e., IPMVP Options A, C, and D). Existing baseline UEC values for space cooling and heating and programmable thermostats were evaluated and refined. Ex post savings estimates are provided for each measure based on research performed for this study. The study performed an analysis of the quantity and type of measures that were installed or adopted by program participants by conducting on-site inspections and audits at 68 participant sites (while doing 68 participant surveys, 68 non-participant refuser surveys, and 20 non-contact surveys) to determine if the ex ante measure assumptions are appropriate and relevant. RHA provided the number of direct install measures installed and survey results from participating customers were used to develop an estimate of the adoption of audit measures. Data collected from the RHA database and telephone surveys were analyzed to measure the energy and peak demand savings achieved by the program. Installation quality and measure retention were verified by performing 68 on-site inspections. The process evaluation identified what works, what doesn't work, the level of need for the program, and recommendations to improve the program. The process evaluation included in-person surveys of 68 participants, 68 non-participants, and 20 non-contacts to evaluate the adoption rate of audit measures.

Task 4. Progress, Draft, and Final EM&V Reports

Progress, draft, and final EM&V reports included a description of the study methodology and all deliverables as per the CPUC EEPM. The reports provided results

of the impact evaluation including gross and net energy savings for each measure and the program as well as results.

2.4.3 How Study met CPUC EEPM Objectives

The study met the following Commission objectives described in the CPUC EEPM (pg. 31).

Measure the level of energy savings achieved.

The study met this objective by performing detailed on-site visits for a statistically significant sample of 68 participants to gather pre- and post-installation measurements for energy efficiency measures installed under the program. Sites in the statistical sample included verification of proper installation of program measures and operation of equipment the measures were installed on (i.e., HVAC equipment). EM&V efforts included gathering enough information and measurements to develop savings estimates for each measure and number of small commercial businesses served by the program. Statistical analyses were used to extrapolate energy savings at the sample level to the program level. This step included an assessment of the relative precision of program-level savings, mean savings estimates, standard deviations, and confidence intervals. This analysis included an assessment of all major assumptions used to calculate program ex ante savings.

Measure the cost-effectiveness.

The study met this objective by developing ex post average energy savings for all measures. Ex post measure savings and implementation costs were used to develop ex post Total Resource Cost (TRC) test values for the program using the CPUC cost effectiveness worksheets. The ex post TRC is 1.2 and the ex post participant test is 5.9.

Provide up-front market assessments and baseline analysis.

The study met this objective by performing a simple market assessment and baseline analyses including an evaluation of the baseline unit energy consumption values for space cooling, space heating, water heating, lighting, and refrigeration. Process survey interviews included questions about market barriers to energy efficiency and the success of the program in meeting the needs of hard-to-reach customers.¹⁴

 Provide ongoing feedback and corrective or constructive guidance regarding the implementation of programs.

The study met this objective by performing on-site inspections to verify that measures were installed properly. Results of on-site inspections were used to provide ongoing feedback and corrective or constructive guidance regarding installation best practices and implementation of the program. This included recommended improvements to the installation efforts and procedures. Inspections also documented that all activities were completed as per the contract requirements.

¹⁴ The CPUC definition of small commercial hard-to-reach customers are those who do not have easy access to program information or generally do not participate in energy efficiency programs due to language (i.e., primary language non-English), business size (less than ten employees); geographic (i.e., outside San Francisco Bay Area, Sacramento), or lease (i.e., split incentives barrier).

- Measure indicators of the effectiveness of the programs, including testing of the assumptions that underlie the program theory and approach.
 The study met this objective by performing a process evaluation of the program including surveys of participants and non-participants.
 - Assess the overall levels of performance and success of the program. The study provided ex post energy savings at the 90 percent confidence level as per the CADMAC Protocols. The study determined participant satisfaction and ways to improve the program. Non-participating customers were interviewed to evaluate why they chose not to participate.

Help to assess whether there is a continuing need for the program.

The study met this objective by assessing overall cost effectiveness, the number of small commercial businesses treated by the program, and survey responses from participants and non-participants. Ex post measure savings and implementation costs were used to develop ex post Total Resource Cost (TRC) test values for the program using the CPUC cost effectiveness worksheets. The overall ex post TRC is 1.2 and this was 33 percent lower than the PIP TRC of 1.8. The program treated 1,539 small commercial customers with 22,271 compact fluorescent lamps, 488 LED exit signs, 151 set-back thermostats, 28 vending misers, 31,430 T8 fluorescent lamps, 15,331 ballasts, delamped 6,240 incandescent and fluorescent lamps (and ballasts), and 103 HVAC tune-ups. In-person interviews were conducted with 68 participants. Telephone surveys were conducted with 68 non-participants and 20 noncontacts to evaluate audit measure adoption rates. Interviews assessed how the program influenced awareness of linkages between efficiency improvements, bill savings, and increased comfort for customers. The study also identified what works, what doesn't work, and the level of need for the program. Approximately 39 percent of non-participants who were interviewed said they would have participated if they knew the program installed nocost energy efficiency improvements.

3. EM&V Findings

This section provides load impact results for the program and for each measure. This section also provides the process evaluation results based on participant and non-participant surveys and recommendations regarding what works, what doesn't work, and the continuing need of the program. Also provided are recommendations for each measure to increase savings, achieve greater persistence of savings, and improve customer satisfaction.

3.1 Load Impact Results

The program implementation plan ex ante goals were to directly install 39,627 energy efficiency measures at 1,399 hard-to-reach small business customer sites in the PG&E service area (as shown in **Table 3.1**). The program exceeded these goals and installed 44,877 energy efficiency measures at 1,539 sites. Ex post accomplishments were verified by reviewing the tracking database, randomly inspecting 2,842 measures at 73 sites, installing light loggers on 1,842 fixtures at 68 sites, evaluating billing data for 59 sites, and conducting surveys of participants, non-participants, and non-contacts. The EM&V study net ex post savings are based on pre and

post-retrofit utility billing data, light logger data, previous evaluation studies, and building energy simulations calibrated to normalized billing data.

	Program	
	Implementation Plan	Ex Post
Description	Ex Ante Goal	Accomplishment
Total Direct Install Measures	39,627	44,877
Compact Fluorescent Lamps (CFL)	14,165	22,271
Delamp Fluorescent Fixtures	14,270	6,240
T8 Fluorescent Lamps and Ballasts	10,634	15,596
LED Exit Signs	91	488
Programmable Thermostats	175	151
Vender Misers	17	28
HVAC Tune-up	100	103
Nonresidential Hard-to-Reach Energy Fitness Audits	1,399	1,539
Net Annual Electricity Savings (kWh/yr)	7,381,944	6,712,686
Net Demand Savings (kW)	1,592	2,385
Net Annual Therm Savings (therms/yr)	0	0
Net Lifecycle Electricity Savings (kWh)	66,264,696	66,827,070
Net Lifecycle Gas Savings (therms)	0	0
Total Resource Cost (TRC) Test	1.8	1.2
TRC Test Costs	\$1,874,339	\$2,136,608
TRC Test Benefits	\$3,406,078	\$2,513,382
TRC Test Net Benefits	\$1,531,739	\$376,773
Participant Test	10.3	5.9
Participant Test Costs	\$1,214,347	\$1,335,975
Participant Test Benefits	\$12,515,915	\$7,815,193
Participant Test Net Benefits	\$11,301,568	\$6,479,218

Table 3.1 Ex Ante	Goals and Ex Post	Accomplishments	for the Energ	v Fitness Program
Tuble SH LA Mile	oouis and LA I ost	recompnishments	for the Lifers	y 1 1011055 1 1 051 and

The program succeeded in providing energy efficiency incentives at 1,539 hard-to-reach businesses and directly installed 22,271 compact fluorescent lamps, 488 LED exit signs, 151 setback thermostats, 28 vending misers, 31,430 T8 fluorescent lamps, 15,331 ballasts, delamped 6,240 incandescent and fluorescent lamps (and ballasts), and 103 HVAC tune-ups. Ex post accomplishments were verified by randomly inspecting 2,842 measures at 73 sites. Light loggers were installed at 73 sites to measure operating hours on 1,842 lighting fixtures, AC tune-ups inspections were conducted for 1 unit, three-years of pre-post billing data were analyzed for 59 sites, and in-person and telephone follow-up surveys were conducted for 68 customers.

Non-normalized pre- and post-retrofit utility bill data and savings are provided in **Table 3.2**. The average non-normalized gross ex post bill savings are 2,003 kWh/yr-site. The average gross ex ante savings are 6,709 kWh/yr-site, and the average gross ex post EM&V savings are 3,899 kWh/yr-site. The gross ex post realization rate based on non-normalized billing savings is 0.30 ± 0.14 . The ex post bill savings realization rate is low due to not normalizing the billing data, and many sites having relatively low pre-post utility bill savings, and 13 percent of sites having negative pre-post bill savings (i.e., 9 out of 68 with pre/post data). The non-normalized EM&V realization rate is low due to lower hours of operation found in the light logger data. Customers with negative savings indicated that post-retrofit hours of operation increased due to new equipment or expanded business schedules.

Further analysis was performed to evaluate the normalized ex post savings using pre/post fixture wattage measurements, light logger data, and calibrated building energy simulations (see **Sections 3.1.2** through **3.1.22**).

#	Pre-Retrofit Bill kWh	Post-Retrofit Bill kWh	Pre-Post Bill Savings kWh	Ex Ante Savings kWh	Ex Post EM&V Savings kWh	Notes
1	57,200	55,040	2,160	17,336	11,252	
2	4,110	3.875	235	4,000	1,189	Longer hours of operation
3	30,852	22,302	8,550	21,640	15,469	
4	9 4 20	8 232	1 188	1 560	1 043	
5	n/a	n/a	n/a	2 852	715	
6	18 711	15 / 52	3 250	6 916	7 300	
7	25 714	34 140	1 574	13 / 190	7,377	
0	127 440	141 240	2 000	13,400	2,417	Installed new equipment with longer hours of operation
0	137,440	74 200	-3,000	2,239	2,032	Installed new equipment with longer hours of operation
9	39,700	/4,200	-14,320	3,403	1,971	installed flew equipment with longer hours of operation
10	7,305	0,851	454	4,260	3,621	
11	43,620	37,642	5,978	4,780	8,652	
12	21,209	18,960	2,249	2,208	1,6/3	
13	9,932	9,967	-35	2,928	643	
14	155,249	140,180	15,069	22,803	17,407	
15	197,160	183,480	13,680	31,131	2,259	
16	142,796	143,057	-262	10,288	5,782	Installed new equipment with longer hours of operation
17	95,197	95,372	-175	8,512	4,554	
18	21,531	14,799	6,732	5,256	1,965	
19	9,600	11,680	-2,080	8,536	1,619	Installed new equipment with longer hours of operation
20	89,247	89,411	-164	7,460	5,352	AC runs more now
21	36,896	29,451	7,445	5,183	938	
22	19,172	15,618	3,554	3,443	1,152	
23	19,190	18,875	315	7,239	1,865	
24	n/a	n/a	n/a	740	529	
25	n/a	n/a	n/a	2.220	2.382	
26	232,834	231,760	1,074	4,020	9,102	
27	n/a	n/a	n/a	2,220	1,642	
28	5,346	5,124	222	3,008	637	
29	11,255	10,362	893	576	633	
30	29,479	29.032	446	6.676	5,165	
31	62.326	60.809	1.517	4,597	3,900	
32	65.336	53,471	11,865	2,928	1,933	
33	9.036	7,399	1.637	5,183	2,494	
34	11.110	10.226	884	9,896	7,790	
35	13,102	9.337	3,765	3,746	2.347	
36	n/a	n/a	n/a	4,226	2.274	
37	7,454	4,794	2.660	6,280	1.570	
38	n/a	n/a	n/a	6,510	2,999	
39	n/a	n/a	n/a	9,181	4.348	
40	n/a	n/a	n/a	5,516	3.612	
41	15 578	11 151	4 427	10 039	5 187	AC runs more now
42	16618	15256	1 362	6 384	3 374	
43	12 869	12 654	215	1 764	860	
43	12,007	10,880	1 749	13 807	6 405	
45	3 036	3 287	6/19	2 960	803	
46	2 736	2 134	602	3 963	1 340	
40	2,750	2,134	1 674	6,703	2 78/	
47	15 277	1/ 895	382	1,000	1 010	
10	55 573	5/ 011	662	12 736	1/ 320	
50	1/ 0/7	1/ 720	170	1 8 2 8	14,JZU 62	
51	QA 222	۹,727 גד,727 גד,727	2 720	2 011	1 // 05	
52	27 / 22	22 27 21	<u>ک</u> ,730 5,771	1/ 012	1,421	
52	21,400	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	J,271 100	2 740	12,210 2 201	Installed new equipment with longer hours of operation
51	3,403 1 / 701	3,223 12 850	1 02	5,700	2,291	installed new equipment with longer hours of operation
55	Q 21Q	7 202	020	2 282	2,303	
55	0,210	1,290 5 541	920 2 174	J,200 11 010	1,307	<i>y</i>
00	ŏ,U4U	3,364	2,4/0	11,912	3,837	

	Pre-Retrofit	Post-Retrofit	Pre-Post Bill	Ex Ante	Ex Post EM&V	
#	Bill kWh	Bill kWh	Savings kWh	Savings kWh	Savings kWh	Notes
57	21,471	11,431	10,040	8,344	2,083	
58	42,770	47,345	-4,575	7,596	5,812	Installed new equipment or longer hours of operation
59	n/a	n/a	n/a	7,484	8,004	
60	11,030	9,618	1,412	4,092	2,518	
61	21,384	20,522	862	1,544	1,186	Schedule change open more hours
62	80,242	77,833	2,409	6,972	5,092	
63	5,633	4,874	759	5,024	2,000	
64	15,530	17,232	-1,703	6,108	3,755	Installed new equipment with longer hours of operation
65	2,307	2,171	137	3,680	1,283	
66	18,435	12,366	6,069	8,868	6,658	
67	11,758	10,768	990	3,976	1,544	
68	4,985	4,963	22	8,403	5,460	Schedule change open more hours
Ave.	37,684	35,681	2,003	6,709	3,899	

The ex ante first-year savings are summarized in **Table 3.3**, and the ex post first-year savings are summarized in **Table 3.4**. The net-to-gross ratio (NTGR) is 0.96 based on the Express Efficiency Program and reflects what customers would have done in the absence of the program (i.e., 4 percent free riders).¹⁵ The ex ante savings goals are 7,381,944 first-year kWh, 1,592 kW, and 66,264,696 lifecycle kWh.¹⁶ The EM&V study found first-year net ex post program savings of 6,712,686 \pm 402,325 kWh per year and 2,385 \pm 309 kW per year at the 90 percent confidence level. The net realization rate for kWh savings is 0.91 \pm 0.05 and the net realization rate for kW savings is 1.50 \pm 0.19.

Table 3.3 Ex Ante First-year Electricity Savings for the Energy Fitness Program

Installed Measure	Units	Gross Ex-Ante Unit Savings (kWh/y)	Gross Ex- Ante Unit Savings (kW)	Net-to-Gross Ratio	Net Ex Ante Program Savings (kWh/y)	Net Ex Ante Program Savings (kW)
HVAC Tune-up Pilot Program	100	360	0.320	0.80	28,800	25.6
Energy Conservation Package	1,399	6570	1.400	0.80	7,353,144	1,566.9
Total	1,499				7,381,944	1,592

Moosuro	Unite	Gross Ex-Post Unit Savings	Gross Ex-Post Unit Savings	Net-to-Gross	Net Ex-Post Program Savings (kWb/v)	Net Ex-Post Program
weasure	UTIILS	(KVVII/y)	(KVV)	Kaliu	Savings (KWII/y)	Saviliys (KW)
CFL	22,271	156.6	0.056	0.96	3,348,133	1197.3
Delamp Fluor. Fixtures	6240	264.8	0.092	0.96	1,586,258	551.1
T8 Fluor. Fixtures	15596	93.5	0.032	0.96	1,399,897	479.1
LED Exit Signs	488	315.4	0.036	0.96	147,759	16.9
Programmable Tstats	151	802	0.55	0.96	116,258	79.7
Vender Misers	28	1590	0	0.96	42,739	0.0
HVAC Tune-up	103	709	0.61	0.96	70,106	60.3
Audit Measures	2	800	0.485	0.96	1,536	0.9
Total	44,879				6,712,686	2,385

Table 3.4 Ex Post First-year Savings for the Energy Fitness Program

¹⁵ *Energy Efficiency Policy Manual*, Chapter 4, Table 4.2, page 23, prepared by the California Public Utilities Commission, 2001.

¹⁶ The reported net program savings in the final report are 9,328,191 kWh per year and 2,521 kW. See *Small Nonresidential Energy Fitness Program Final Report*, Table 12, page 17 of 33, submitted to Pacific Gas & Electric Company, Lisa Cosby, Third Party Contracts Group, 245 Market Street, Room 756D, Mail Code N7K, San Francisco, CA 94105, submitted by Richard Heath and Associates, Inc. (RHA), Teresa Enos, Senior Manager, 1026 Mangrove Avenue, Suite 20, Chico, California 95926, May 1, 2006.

Lifecycle kWh savings are summarized in **Table 3.5**. The required energy impact reporting for 2004-05 programs is provided in **Table 3.6**. The net ex-ante lifecycle savings are 66,264,696 lifecycle kWh. The EM&V study net ex-post lifecycle savings are $66,827,070 \pm 4,222,343$ kWh. The lifecycle ex-post net lifecycle kWh realization rate is 1.01 ± 0.06 and the net lifecycle therm realization rate is undefined.

Measure	Net Ex-Ante Program Savings (kWh)	Ex Ante Effective Useful Life (EUL)	Net Ex-Ante Lifecycle Program Savings (kWh)	Net Ex-Post Program Savings (kWh)	Ex Post Effective Useful Life (EUL)	Net Ex-Post Lifecycle Program Savings (kWh)	Net Lifecycle Realization Rate
CFL	3,893,207	9.0	35,038,864	3,348,133	3.6	12,053,279	0.34
Delamp Fluor. Fixtures	1,486,268	9.0	13,376,408	1,586,258	17.0	26,966,385	2.02
T8 Fluorescent Fixtures	1,726,616	9.0	15,539,542	1,399,897	17.0	23,798,248	1.53
LED Exit Signs	109,597	9.0	986,369	147,759	16.0	2,364,137	2.40
Programmable Tstats	109,292	9.0	983,631	116,258	11.0	1,278,837	1.30
Vender Misers	28,165	9.0	253,482	42,739	3.0	128,218	0.51
HVAC Tune-up	28,800	3.0	86,400	70,106	3.0	210,318	2.43
Audit Measures	0	18.0	0	1,536	18.0	27,648	undefined
Total	7,381,944		66,264,696	6,712,686		66,827,070	1.01

Table 3.5 Lifecycle Electricity Savings for the Energy Fitness Program

 Table 3.6 Required Energy Impact Reporting for 2004-2005 Programs

Pro	ogram ID:	D: 1409-04							
Progra	am Name:	Energy Fitness Pro	gram (EFP)						
		Ex-ante Gross Program- Projected Program MWh Savings	Ex-Post Net Evaluation Confirmed Program MWh	Ex-Ante Gross Program- Projected Peak Program MW Savings	Ex-Post Evaluation Projected Peak MW Savings	Ex-Ante Gross Program- Projected Program Therm Savings	Ex-Post Net Evaluation Confirmed Program		
Year	Year	(1)	Savings (2)	(1**)	(2**)	(1)	Therm Savings (2)		
1	2004	7,382	6,713	1.592	2.385				
2	2005	7,382	6,713	1.592	2.385				
3	2006	7,382	6,713	1.592	2.385				
4	2007	7,353	5,261	1.567	1.846				
5	2008	7,353	3,252	1.567	1.128				
6	2009	7,353	3,252	1.567	1.128				
7	2010	7,353	3,252	1.567	1.128				
8	2011	7,353	3,252	1.567	1.128				
9	2012	7,353	3,252	1.567	1.128				
10	2013	0	3,252	0	1.128				
11	2014	0	3,252	0	1.128				
12	2015	0	3,135	0	1.048				
13	2016	0	3,135	0	1.048				
14	2017	0	3,135	0	1.048				
15	2018	0	3,135	0	1.048				
16	2019	0	3,135	0	1.048				
17	2020	0	2,988	0	1.031				
18	2021	0	2	0	0.001				
19	2022	0	0	0	0.000				
20	2023	0	0	0	0.000				
TOTAL		66,265	66,827						

** Peak MW savings are defined in this evaluation as the weekday peak period Monday through Friday from 2PM to 6PM during the months of May through September.

1. Gross Program-Projected savings are those savings projected by the program before NTG adjustments.

2. Net Evaluation Confirmed savings are those documented via the evaluation and include the evaluation contractor's NTG adjustments.

The EM&V ex-post cost effectiveness is 1.2 for the total resource cost (TRC) test and 5.8 for the participant test. The program implementation plan TRC is 1.8 and the participant test is 10.3. Differences between the PIP ex ante estimates and ex post accomplishments are due to the 9-year

EUL assumed for all direct-install measures and greater hours of operation assumed for all lighting measures. The weighted average ex post EUL for CFL measures is 3.6 years based on annual hours of operation from logger data and 10,000 hour lifetime from manufacturer data. If the 9-year EUL for CFL measures is used instead, then the ex post TRC would be closer to the PIP/ex ante value. The ex ante lighting measure savings assumed 4,000 hours of operation. The weighted average ex post operating hours are $2,822 \pm 292$ hours/yr based on light logger data. This is 30% less than the 4,000 hours/yr assumed in the PIP ex ante estimates. If the higher hours of operation and longer EUL values are used, then the ex post kWh savings, realization rates, and TRC would be closer to the ex ante values. The verification inspection findings and detailed load impact results are provided in the following sections.

3.1.1 Verification Inspection Findings

Verification inspections were conducted for the study from December 2004 through August 2005. All measures were verified as properly installed consistent with the RHA database. Results of the on-site verification inspections were used in the impact evaluation to estimate the overall energy savings. Electric power measurements were made on a number of fixtures at different sites as shown in **Table 3.7**. On-site inspections and survey responses were used to evaluate preand post-retrofit lighting fixture wattages. A total of 2,842 measures were inspected. Light loggers were installed at 73 sites to measure hours of operation. These were left at the sites for a period of up to four weeks and then rotated to other sites. Sixty-eight (68) were successfully downloaded to monitor hours of operation on 1,842 fixtures. Two (2) were lost at customer sites and three (3) did not collect data due to customer interference. Survey responses were used to evaluate thermostat settings before and after RHA installed programmable thermostats. Responses were used to evaluate ex ante assumptions and determine an appropriate ex post savings estimate for programmable thermostats. On-site verification of the remaining measures along with engineering analysis and existing studies were used to determine appropriate ex post savings estimates for the other measures.

Description	1 lamp W	2 lamp W	3 lamp W	4 lamp W
T12 F40 (4 ft) with magnetic ballast	57	96	143	189
T8 F32 (4 ft) with 4 lamp electronic ballast	41	64	90	108
T8 F32 (4 ft) with 2 lamp electronic ballast	39	61		
T12 F34 (4 ft) with magnetic ballast	43	78	116	154
T8 F32 (4 ft) with 4 lamp electronic ballast	41	64	90	108
T8 F32 (4 ft) with 2 lamp electronic ballast	39	61		
T12 F96 (8 ft) with magnetic ballast	75	128		
T8 F96 (8 ft) with electronic ballast	61	111		
LED Exit Sign	1.5			
LED Exit Sign	0.8			
Incandescent Exit Sign	40			

Table 3.7 Field Measurements of Lighting Fixture Average Power

3.1.2 Load Impacts for CFLs

Load impacts for CFLs are based on field inspections of 705 fixtures at 68 participant sites, and lighting logger measurements of 701 fixtures consistent with IPMVP Option B. Pre- and post-retrofit fixture quantities, hours of operation and savings are shown in **Table 3.8**. RHA assumed

ex ante savings are 246 kWh/yr and 0.05 kW. The gross ex post savings per measure are 156.6 ± 15.1 kWh/yr and 0.056 ± 0.003 kW at the 90 percent confidence level. The difference between ex ante and ex post savings for CFLs is primarily due to EM&V findings of lower ex post annual hours of operation. The RHA database reported installing 22,271 CFLs, and the total gross ex post savings are $3,487,639 \pm 335,645$ kWh/year and $1,252.5 \pm 56.72$ kW at the 90 percent confidence level. The inspections verified proper installation at 100 percent of sites. The CFL effective useful lifetime (EUL) for this study is assumed to be 3.6 years. The 3.6 year EUL is based on average annual hours of operation of $2,744 \pm 195$ hours per year assuming 10,000 lifecycle operational hours.

		Pre-	Pre-	Pre	Pre	Pre	Post-	Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Savings	Savings
60	40W Incand.	1	2,829	40	0.04	113	9W A-Lamp	1	2,829	9	0.009	25	0.031	87.7
60	65W Incand.	6	2,829	65	0.39	1103	16W R30	6	2,829	16	0.096	272	0.294	831.9
60	100W Incan.	2	2,829	100	0.2	566	14W Spiral	2	2,829	14	0.028	79	0.172	486.7
34	60W Incand.	3	3,294	60	0.18	593	14W A-Lamp	3	3,294	14	0.042	138	0.138	454.5
62	60W Incand.	1	3,679	60	0.06	221	14W A-Lamp	1	3,679	14	0.014	52	0.046	169.2
62	65W Incand.	11	3,679	65	0.715	2631	14W R30	11	3,679	14	0.154	567	0.561	2,064.0
61	60W Incand.	1	3,224	60	0.06	193	14W A-Lamp	1	3,224	14	0.014	45	0.046	148.3
61	100W Incan.	1	3,224	100	0.1	322	14W Spiral	1	3,224	14	0.014	45	0.086	277.2
2	PAR38 69W	5	1,410	69	0.345	487	19W PAR38	5	1,410	19	0.095	134	0.25	352.6
2	PAR40 75W	2	1,410	75	0.15	212	19W R40	2	1,410	19	0.038	54	0.112	158.0
59	60W Incand.	2	4,459	60	0.12	535	14W A-Lamp	2	4,459	14	0.028	125	0.092	410.2
68	60W Incand.	1	3,048	60	0.06	183	19W A-Lamp	1	3,048	19	0.019	58	0.041	125.0
68	40W Incand.	2	3,048	40	0.08	244	14W A-Lamp	2	3,048	14	0.028	85	0.052	158.5
68	PAR38 69W	1	3,048	69	0.069	210	19W PAR38	1	3,048	19	0.019	58	0.05	152.4
68	100W Incan.	2	3,048	100	0.2	610	14W Spiral	2	3,048	14	0.028	85	0.172	524.3
1	65W Incand.	6	3,688	65	0.39	1438	16W PAR30	6	3,688	16	0.096	354	0.294	1,084.3
1	69W Incand.	5	3,688	69	0.345	1272	19W PAR38	5	3,688	19	0.095	350	0.25	922.0
1	65W Incand.	30	3,688	65	1.95	7192	14W R30	30	3,688	14	0.42	1549	1.53	5,642.6
1	100W Incan.	3	3,688	100	0.3	1106	26W Spiral	3	3,688	26	0.078	288	0.222	818.7
1	100W Incan.	4	3,688	100	0.4	1475	14W Spiral	4	3,688	14	0.056	207	0.344	1,268.7
66	60W Incand.	2	3,048	60	0.12	366	14W A-Lamp	2	3,048	14	0.028	85	0.092	280.5
66	100W Incan.	3	3,048	100	0.3	915	14W Spiral	3	3,048	14	0.042	128	0.258	786.5
64	69W Incand.	2	2,435	69	0.138	336	19W PAR38	2	2,435	19	0.038	93	0.1	243.5
64	100W Incan.	7	2,435	100	0.7	1705	14W Spiral	7	2,435	14	0.098	239	0.602	1,466.0
63	69W Incand.	2	1,691	69	0.138	233	19W PAR38	2	1,691	19	0.038	64	0.1	169.1
63	100W Incan.	1	1,691	100	0.1	169	14W Spiral	1	1,691	14	0.014	24	0.086	145.4
65	60W Incand.	4	1,673	60	0.24	402	14W A-Lamp	4	1,673	14	0.056	94	0.184	307.9
65	40W Incand.	1	1,673	40	0.04	67	CFL 9W	1	1,673	9	0.009	15	0.031	51.9
65	PAR38 69W	2	1,673	69	0.138	231	PAR38 19W	2	1,673	19	0.038	64	0.1	167.3
65	100W Incan.	2	1,673	100	0.2	335	14W Spiral	2	1,673	14	0.028	47	0.172	287.8
44	65W Incand.	12	2,111	65	0.78	1647	14W R30	12	2,111	14	0.168	355	0.612	1,292.0
44	100W Incan.	5	2,111	100	0.5	1056	14W Spiral	5	2,111	14	0.07	148	0.43	907.8
14	60W Incand.	2	4,459	60	0.12	535	14W A-Lamp	2	4,459	14	0.028	125	0.092	410.2
14	40W Incand.	14	4,459	40	0.56	2497	4W Candella	14	4,459	4	0.056	250	0.504	2,247.3
14	60W Incand.	7	4,459	60	0.42	1873	14W G30	7	4,459	14	0.098	437	0.322	1,435.7
14	65W Incand.	25	4,459	65	1.625	7246	16W PAR30	25	4,459	16	0.4	1784	1.225	5,462.1
14	65W Incand.	25	4,459	65	1.625	7246	14W R30	25	4,459	14	0.35	1561	1.275	5,685.0
14	100W Incan.	4	4,459	100	0.4	1784	26W Spiral	4	4,459	26	0.104	464	0.296	1,319.8
12	100W Incan.	1	3,092	100	0.1	309	14W Spiral	1	3,092	14	0.014	43	0.086	265.9
7	40W Incand.	1	2,365	40	0.04	95	4W LED	1	2,365	4	0.004	9	0.036	85.1
7	50W Incand.	15	2,365	50	0.75	1774	9W R20	15	2,365	9	0.135	319	0.615	1,454.6
7	100W Incan.	3	2,365	100	0.3	710	14W Spiral	3	2,365	14	0.042	99	0.258	610.2
18	60W Incand.	6	1,761	60	0.36	634	14W A-Lamp	6	1,761	14	0.084	148	0.276	486.0
16	60W Incand.	4	2,497	60	0.24	599	19W A-Lamp	4	2,497	19	0.076	190	0.164	409.4
16	60W Incand.	24	2,497	60	1.44	3595	14W G30	24	2,497	14	0.336	839	1.104	2,756.2
20	60W Incand.	2	3,022	60	0.12	363	19W A-Lamp	2	3,022	19	0.038	115	0.082	247.8
20	40W Incand.	1	3,022	40	0.04	121	9W A-Lamp	1	3,022	9	0.009	27	0.031	93.7

Table 3.8	8 Load	Impacts	for	CFLs

		Pre-	Pre-	Pre	Pre	Pre	Post-	Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Qty	Hours	W/Fix.	KW	kWh/y	Retrofit	Qty	Hours	W/Fix.	KW	kWh/y	Savings	Savings
20	100W Incan.		3,022	100	0.1	302	14W Spirai		3,022	14	0.014	42	0.086	259.9
15		0	3//	100	0.30	130	14W A-Lamp	0	3//	14	0.084	32	0.270	104.0
10	100W Incari.	34	311	100	3.4	1281	29W DIIIIII 14W C20	34	3//	29	0.980	3/1	2.414	909.3
10	50W Incand	44	277	50	2.04	994 57	14W GSU	44	277	0	0.010	232	2.024	/02.4
10	50W Incand	<u>ງ</u>	277		0.10	57	9W KZU	<u>ງ</u>	3//	9	0.027	10	0.123	40.3
10	100W Incan	5	377	100	1.43	204	14W KSU 14W Spiral	5	3//	14	0.300	55	0.42	422.0
22	40W/Incand	0	2 776	100	0.0	1200	14W Spiral	0	2 776	14	0.07	101	0.43	1 007 /
32	60W Incand	0 3	3,776	40	0.32	680	1/W G25	2	3,776	1/	0.032	121	0.200	521.0
32	100W Incan	1	3,776	100	0.10	378	14W Spiral	1	3,776	14	0.042	53	0.130	321.0
11	60W Incand	13	8 383	60	0.1	6539	14W A-Lamn	13	8 383	14	0.014	1526	0.000	5 013 2
11	100W Incan	2	8 383	100	0.70	1677	14W Spiral	2	8 383	14	0.102	235	0.370	1 441 9
33	60W Incand	5	2 637	60	0.2	791	19W A-Lamp	5	2 637	19	0.020	250	0.172	540.5
33	100W Incan	1	2,007	100	0.0	264	14W Spiral	1	2,637	14	0.014	37	0.086	226.8
23	100W Incan	2	1,156	100	0.1	231	14W Spiral	2	1,156	14	0.028	32	0.000	198.9
39	60W Incand.	6	2.321	60	0.36	836	14W A-Lamp	6	2,321	14	0.084	195	0.276	640.7
39	40W Incand.	1	2.321	40	0.04	93	9W A-Lamp	1	2,321	9	0.009	21	0.031	72.0
39	65W Incand.	4	2.321	65	0.26	604	16W PAR30	4	2,321	16	0.064	149	0.196	455.0
39	65W Incand.	3	2,321	65	0.195	453	14W R30	3	2,321	14	0.042	97	0.153	355.2
39	100W Incan.	5	2,321	100	0.5	1161	14W Spiral	5	2,321	14	0.07	162	0.43	998.2
37	60W Incand.	6	1,612	60	0.36	580	14W G25	6	1,612	14	0.084	135	0.276	444.9
37	65W Incand.	2	1,612	65	0.13	210	16W PAR30	2	1,612	16	0.032	52	0.098	158.0
37	65W Incand.	1	1,612	65	0.065	105	14W R30	1	1,612	14	0.014	23	0.051	82.2
37	100W Incan.	4	1,612	100	0.4	645	14W Spiral	4	1,612	14	0.056	90	0.344	554.5
35	40W Incand.	1	3,040	40	0.04	122	9W A-Lamp	1	3,040	9	0.009	27	0.031	94.2
36	60W Incand.	1	2,462	60	0.06	148	14W A-Lamp	1	2,462	14	0.014	34	0.046	113.2
36	100W Incan.	2	2,462	100	0.2	492	14W Spiral	2	2,462	14	0.028	69	0.172	423.4
40	100W Incan.	1	2,637	100	0.1	264	14W Spiral	1	2,637	14	0.014	37	0.086	226.8
26	100W Incan.	4	8,760	100	0.4	3504	14W Spiral	4	8,760	14	0.056	491	0.344	3,013.4
43	60W Incand.	1	2,199	60	0.06	132	19W A-Lamp	1	2,199	19	0.019	42	0.041	90.1
45	100W Incan.	1	1,542	100	0.1	154	14W Spiral	1	1,542	14	0.014	22	0.086	132.6
41	120W Flood	1	2,558	120	0.12	307	65W PAR30	1	2,558	65	0.065	166	0.055	140.7
41	60W Incand.	3	2,558	60	0.18	460	14W A-Lamp	3	2,558	14	0.042	107	0.138	353.0
41	40W Incand.	2	2,558	40	0.08	205	9W A-Lamp	2	2,558	9	0.018	46	0.062	158.6
46	60W Incand.	2	1,892	60	0.12	227	14W A-Lamp	2	1,892	14	0.028	53	0.092	174.1
46	60W Incand.	2	1,892	60	0.12	227	14W Spiral	2	1,892	14	0.028	53	0.092	174.1
57	60W Incand.	5	1,577	60	0.3	473	19W A-Lamp	5	1,577	19	0.095	150	0.205	323.2
57	50W Incand.	1	1,577	50	0.05	79	9W R20	1	1,577	9	0.009	14	0.041	64.6
57	65W Incand.	11	1,577	65	0.715	1127	14W R30	11	1,577	14	0.154	243	0.561	884.6
57	100W Incan.	4	1,577	100	0.4	631	14W Spiral	4	1,577	14	0.056	88	0.344	542.4
22	60W Incand.	1	2,076	60	0.06	125	14W A-Lamp	1	2,076	14	0.014	29	0.046	95.5
22	40W Incand.	3	2,076	40	0.12	249	4W LED	3	2,076	4	0.012	25	0.108	224.2
22	100W/lncon	2	2,076	05 100	0.13	2/0	10W K3U	2	2,076	10	0.032	60 E0	0.098	203.5
<u> </u>	60W Incond	<u>ک</u>	2,070	100	0.2	415	14W Spiral	<u>ک</u>	2,070	14	0.028	58 225	0.172	357.1
40 E 4	60W Incond) 1	J,∠13 1 010	0U 40	0.3	904 115	14W A-Lamp	5 1	J,∠ID 1 010	14	0.07	220	0.23	/ 39.4 70 0
54	40W Incand	0	1,910	10	0.00	697	9W/ A-Lamn	0	1,710	19	0.019	30 155	0.041	70.3 527 Q
54	65W Incand	7	1,710	40	0.30	1720	14W/ R20	7	1,710	7 1/	0.001	27/	0.279	1 262 5
5/	100W Incan	14 2	1,710	100	0.71	282	14W/Sniral	14 2	1 010	14	0.170	574	0.714	378 5
54	100W Incan	<u>∠</u> Л	2 610	100	0.2	10//	26W Sniral	<u>∠</u> Л	2 610	26	0.020	271	0.172	770.7
49	69W Incand	4	4 748	60	0 414	1966	19W PAR38	4	4 748	10	0 114	541	0.270 N 3	1 424 4
49	100W Incan	2	4 748	100	0.7	950	26W Sniral	2	4 748	26	0.052	247	0.5	702 7
51	60W Incand	1	2,917	60	0.06	175	19W A-Lamn	1	2,917	19	0.019	.55	0.041	119.6
51	60W Incand	4	2,917	60	0.24	700	14W G30	4	2,917	14	0.056	163	0 184	536.7
51	75W Incand	4	2,917	75	0.3	875	19W R40	4	2,917	19	0.076	222	0.224	653.4
28	60W Incand	1	2,146	60	0.06	129	14W A-Lamp	1	2,146	14	0.014	30	0.046	98.7
28	100W Incan.	1	2,146	100	0.1	215	19W Spiral	1	2,146	19	0.019	41	0.081	173.8
9	69W Incand.	3	5,133	69	0.207	1063	19W PAR38	3	5,133	19	0.057	293	0.15	770.0
9	75W Incand.	2	5,133	75	0.15	770	19W R40	2	5,133	19	0.038	195	0.112	574.9
9	100W Incan.	1	5,133	100	0.1	513	14W Spiral	1	5,133	14	0.014	72	0.086	441.5
52	60W Incand.	4	3,618	60	0.24	868	14W A-lamp	4	3,618	14	0.056	203	0.184	665.7

 Table 3.8 Load Impacts for CFLs

		Pre-	Pre-	Pre	Pre	Pre	Post-	Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Savings	Savings
52	65W Incand.	2	3,618	65	0.13	470	16W PAR30	2	3,618	16	0.032	116	0.098	354.6
52	100W Incan.	4	3,618	100	0.4	1447	14W Spiral	4	3,618	14	0.056	203	0.344	1,244.6
53	100W Incan.	2	2,391	100	0.2	478	14W Spiral	2	2,391	14	0.028	67	0.172	411.3
30	60W Incand.	8	3,136	60	0.48	1505	14W G30	8	3,136	14	0.112	351	0.368	1,154.1
30	69W Incand.	2	3,136	69	0.138	433	19W PAR38	2	3,136	19	0.038	119	0.1	313.6
30	65W Incand.	9	3,136	65	0.585	1835	14W PAR30	9	3,136	14	0.126	395	0.459	1,439.5
5	60W Incand.	2	2,032	60	0.12	244	14W A-lamp	2	2,032	14	0.028	57	0.092	187.0
5	50W Incand.	3	2,032	50	0.15	305	9W R30	3	2,032	9	0.027	55	0.123	250.0
10	60W Incand.	3	4,389	60	0.18	790	14W A-lamp	3	4,389	14	0.042	184	0.138	605.6
10	65W Incand.	2	4,389	65	0.13	571	16W PAR30	2	4,389	16	0.032	140	0.098	430.1
10	65W Incand.	5	4,389	65	0.325	1426	14W PAR30	5	4,389	14	0.07	307	0.255	1,119.1
10	75W Incand.	2	4,389	75	0.15	658	19W R40	2	4,389	19	0.038	167	0.112	491.5
10	100W Incan.	3	4,389	100	0.3	1317	26W Spiral	3	4,389	26	0.078	342	0.222	974.3
8	60W Incand.	8	2,348	60	0.48	1127	14W A-lamp	8	2,348	14	0.112	263	0.368	863.9
8	69W Incand.	5	2,348	69	0.345	810	19W PAR38	5	2,348	19	0.095	223	0.25	586.9
8	100W Incan.	1	2,348	100	0.1	235	19W Spiral	1	2,348	19	0.019	45	0.081	190.2
21	60W Incand.	7	1,051	60	0.42	442	14W G30	7	1,051	14	0.098	103	0.322	338.5
21	65W Incand.	4	1,051	65	0.26	273	16W PAR30	4	1,051	16	0.064	67	0.196	206.0
21	75W Incand.	6	1,051	75	0.45	473	19W R40	6	1,051	19	0.114	120	0.336	353.2
3	60W Incand.	6	2,970	60	0.36	1069	14W G30	6	2,970	14	0.084	249	0.276	819.6
47	60W Incand.	8	2,085	60	0.48	1001	14W A-lamp	8	2,085	14	0.112	234	0.368	767.2
47	69W Incand.	3	2,085	69	0.207	432	19W PAR38	3	2,085	19	0.057	119	0.15	312.7
47	100W Incan.	7	2,085	100	0.7	1459	26W Spiral	7	2,085	26	0.182	379	0.518	1,080.0
50	69W Incand.	3	289	69	0.207	60	19W PAR38	3	289	19	0.057	16	0.15	43.4
56	60W Incand.	1	1,936	60	0.06	116	16W A-lamp	1	1,936	16	0.016	31	0.044	85.2
56	40W Incand.	18	1,936	40	0.72	1394	9W A-Lamp	18	1,936	9	0.162	314	0.558	1,080.3
56	100W Incan.	1	1,936	100	0.1	194	26W Spiral	1	1,936	26	0.026	50	0.074	143.3
67	60W Incand.	4	2,225	60	0.24	534	14W A-Lamp	4	2,225	14	0.056	125	0.184	409.4
Total		701						701					37.1	96,326
Ave													0.056	156.6

 Table 3.8 Load Impacts for CFLs

3.1.3 Load Impacts for Delamping Fluorescent Fixtures

Load impacts for delamping fluorescent fixtures are based on field inspections of 668 fixtures at 37 participant sites, electric power measurements, and lighting logger measurements of 352 fixtures consistent with IPMVP Option B. Pre- and post-retrofit fixture quantities, hours of operation and savings are shown in **Table 3.9**. RHA assumed ex ante savings are 256 kWh/yr and 0.09 kW. The gross ex post savings per measure are 264.8 ± 28.9 kWh/yr and 0.092 ± 0.005 kW at the 90 percent confidence level. The difference between ex ante and ex post savings is primarily due to EM&V findings of lower ex post annual hours of operation. The RHA database reported delamping 6,240 fixtures, and the total gross ex post savings are 1,652,607 \pm 180,174 kWh/year and 577 \pm 30.3 kW at the 90 percent confidence level. The inspections verified proper installation at 100 percent of sites. The ex ante effective useful lifetime (EUL) was assumed to be 18 years. The ex post EUL is 17 years based on average annual hours of operation of 2,995 \pm 221 hours per year and 50,000 lifecycle operational hours before failure.

Site	Pre-retrofit	Pre- Otv	Pre- Hours	Pre W/Fix	Pre kW	Pre kWh/v	Post- Retrofit	Post- Otv	Post- Hours	Post W/Fix	Post kW	Post kWh/v	KW Savings	kWh Savings
60	2-F40T12 Mag.	3	2,829	96	0.288	815	Delamp	3	2,829	0	0	0	0.288	814.9
34	2-F40T12 Mag.	17	3,294	96	1.632	5375	Delamp	17	3,294	0	0	0	1.632	5,375.4
62	2-F40T12 Mag.	3	3,679	96	0.288	1060	Delamp	3	3,679	0	0	0	0.288	1,059.6
61	2-F40T12 Mag.	1	3,224	96	0.096	309	Delamp	1	3,224	0	0	0	0.096	309.5
2	2-F40T12 Mag.	1	1,410	96	0.096	135	Delamp	1	1,410	0	0	0	0.096	135.4

 Table 3.9 Load Impacts for Delamping Fixtures with Electronic Ballasts

		Pre-	Pre-	Pre	Pre	Pre	Post-	Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Savings	Savings
59	2-F40T12 Mag.	13	4,459	96	1.248	5565	Delamp	13	4,459	0	0	Ő	1.248	5,564.6
68	2-F40T12 Mag.	11	3,048	96	1.056	3219	Delamp	11	3,048	0	0	0	1.056	3,219.2
1	2-F40T12 Mag.	1	3,688	96	0.096	354	Delamp	1	3,688	0	0	0	0.096	354.0
66	2-F40T12 Mag.	14	3,048	96	1.344	4097	Delamp	14	3,048	0	0	0	1.344	4,097.2
63	2-F40T12 Mag.	2	1,691	96	0.192	325	Delamp	2	1,691	0	0	0	0.192	324.6
44	2-F40T12 Mag.	12	2,111	96	1.152	2432	Delamp	12	2,111	0	0	0	1.152	2,432.1
58	2-F40T12 Mag.	14	3,110	96	1.344	4180	Delamp	14	3,110	0	0	0	1.344	4,179.6
7	2-F40T12 Mag.	17	2,365	96	1.632	3860	Delamp	17	2,365	0	0	0	1.632	3,860.0
16	2-F40T12 Mag.	8	2,497	96	0.768	1917	Delamp	8	2,497	0	0	0	0.768	1,917.4
17	2-F40T12 Mag.	16	2,172	96	1.536	3337	Delamp	16	2,172	0	0	0	1.536	3,336.9
20	2-F40T12 Mag.	12	3,022	96	1.152	3482	Delamp	12	3,022	0	0	0	1.152	3,481.6
19	2-F40T12 Mag.	12	788	96	1.152	908	Delamp	12	788	0	0	0	1.152	908.2
11	2-F40T12 Mag.	2	8,383	56	0.112	939	Delamp	2	8,383	0	0	0	0.112	938.9
6	2-F40T12 Mag.	13	4,345	96	1.248	5423	Delamp	13	4,345	0	0	0	1.248	5,422.5
33	2-F40T12 Mag.	5	2,637	96	0.48	1266	Delamp	5	2,637	0	0	0	0.48	1,265.6
23	2-F40T12 Mag.	11	1,156	96	1.056	1221	Delamp	11	1,156	0	0	0	1.056	1,221.1
39	2-F40T12 Mag.	3	2,321	96	0.288	669	Delamp	3	2,321	0	0	0	0.288	668.6
38	2-F40T12 Mag.	14	1,463	56	0.784	1147	Delamp	14	1,463	0	0	0	0.784	1,146.9
40	2-F40T12 Mag.	9	2,637	96	0.864	2278	Delamp	9	2,637	0	0	0	0.864	2,278.2
26	60W Incand.	4	8,760	60	0.24	2102	Delamp	4	8,760	0	0	0	0.24	2,102.4
45	2-F96T12 Mag.	3	1,542	162	0.486	749	Delamp	3	1,542	0	0	0	0.486	749.3
41	2-F40T12 Mag.	13	2,558	96	1.248	3192	Delamp	13	2,558	0	0	0	1.248	3,192.3
46	2-F40T12 Mag.	4	1,892	96	0.384	727	Delamp	4	1,892	0	0	0	0.384	726.6
22	2-F40T12 Mag.	1	2,076	96	0.096	199	Delamp	1	2,076	0	0	0	0.096	199.3
42	2-F40T12 Mag.	12	2,146	96	1.152	2472	Delamp	12	2,146	0	0	0	1.152	2,472.4
49	2-F40T12 Mag.	18	4,748	96	1.728	8204	Delamp	18	4,748	0	0	0	1.728	8,204.4
52	2-F40T12 Mag.	21	3,618	96	2.016	7294	Delamp	21	3,618	0	0	0	2.016	7,293.6
53	2-F40T12 Mag.	6	2,391	96	0.576	1377	Delamp	6	2,391	0	0	0	0.576	1,377.5
8	2-F40T12 Mag	1	2,348	96	0.096	225	Delamp	1	2,348	0	0	0	0.096	225.4
3	1-F40T12 Mag.	13	2,970	56	0.728	2162	Delamp	13	2,970	0	0	0	0.728	2,161.9
3	2-F40T12 Mag.	32	2,970	96	3.072	9123	Delamp	32	2,970	0	0	0	3.072	9,122.7
56	1-F40T12 Mag.	10	1,936	56	0.56	1084	Delamp	10	1,936	0	0	0	0.56	1,084.1
Total		352						352					32.3	93,224.0
Ave													0.092	264.8

Table 3.0	I heo I	mnacts for	Dolom	ning F	livturos	with	Flectronic	Rollocte
Table 3.9	Loau I	impacts for	Delain	ршg г	ixtures	with	Electronic	Danasis

3.1.4 Load Impacts for T8 Fluorescent Fixtures

Load impacts for T8 fluorescent fixtures with electronic ballasts are based on field inspections of 1,446 fixtures at 67 participant sites, electric power measurements, and lighting logger measurements of 772 fixtures consistent with IPMVP Option B. Pre- and post-retrofit fixture quantities, hours of operation and savings are shown in **Table 3.10**. RHA assumed ex ante savings are 121 kWh/yr and 0.04 kW. The gross ex post savings per measure are 93.5 ± 10.9 kWh/yr and 0.032 ± 0.02 kW at the 90 percent confidence level. The difference between ex ante and ex post savings is primarily due to EM&V findings of lower ex post annual hours of operation. The RHA database reported installing 15,331 T8 fixtures with ballasts, and the total gross ex post savings are 1,433,651 ± 167,656 kWh/year and 490.8 ± 30.3 kW at the 90 percent confidence level. The inspections verified proper installation at 100 percent of sites. The ex ante effective useful lifetime (EUL) was assumed to be 18 years. The ex post EUL is 17 years based on average annual hours of operation of 2,774 ± 284 hours per year and 50,000 lifecycle operational hours before failure.

Iun			ipacto		J I Iu	rescer	it I IAtul Co	WICH	Liccu	onic i	Junust	0		
		Pre-	Pre-	Pre	Pre	Pre		Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Otv	Hours	W/Fix.	kW	kWh/v	Post-Retrofit	Otv	Hours	W/Fix.	kW	kWh/v	Savings	Savings
60	2 E40T12 Mag	2.5	2 020	06	0.200	015	2 E22T0 Eloc	2.9	2 020	61	0.102	Б10	0.105	207.1
00	Z-F4UTTZ May	3	2,029	90	0.200	010	Z-F3ZIO EIEU	3	2,029	01	0.103	010	0.103	297.1
34	2-E40112 Mag	17	3,294	96	1.632	5375	2-F3218 Elec	17	3,294	61	1.037	3416	0.595	1,959.8
62	2-F40T12 Mag	13	3,679	96	1.248	4592	2-F32T8 Elec	13	3,679	61	0.793	2918	0.455	1,674.0
62	2-E96T12 Mag	2	3 679	128	0 256	942	2-E96T8 Elec	2	3 679	111	0 222	817	0.034	125.1
(1	2 F /0T12 Mag	2	2,077	04	0.200	1000	2 F20T0 Elec	2	2,077	(1	0.222	707	0.034	451.0
01	Z-F4011Z May	4	3,224	90	0.384	1238	2-F3218 EIEC	4	3,224	01	0.244	/8/	0.14	431.3
2	2-F40T12 Mag	11	1,410	96	1.056	1489	2-F32T8 Elec	11	1,410	61	0.671	946	0.385	543.0
59	2-F40T12 Mag	13	4,459	96	1.248	5565	2-F32T8 Elec	13	4,459	61	0.793	3536	0.455	2,028.8
68	2-E/0T12 Mag	12	3 0/18	96	1 152	3512	2-E32T8 Elec	12	3 0/18	61	0 732	2221	0.42	1 280 /
00	2-1 40112 May	12	3,040	70	1.1JZ	JJ1Z	2-1 J210 LIEC	12	3,040	01	0.732	2231	0.42	1,200.4
	2-F40112 Mag	9	3,088	90	0.864	3180	2-F3218 Elec	9	3,088	01	0.549	2025	0.315	1,101.7
66	2-F40T12 Mag	14	3,048	96	1.344	4097	2-F32T8 Elec	14	3,048	61	0.854	2603	0.49	1,493.8
64	2-F40T12 Mag	24	2,435	96	2.304	5611	2-F32T8 Elec	24	2.435	61	1.464	3565	0.84	2.045.6
63	2 E/0T12 Mag	22	1 601	06	2 208	2722	2 E32T8 Elec	22	1 601	61	1 /03	2272	0.805	1 361 0
05	2-1 40112 May	23	1,071	70	2.200	1005	2-1 J2 T0 LIEC	23	1,071	01	1.403	2372	0.000	1,301.0
65	2-F96112 Mag	8	1,6/3	96	0.768	1285	2-F3218 EIEC	8	1,673	61	0.488	817	0.28	468.5
44	2-F40T12 Mag	24	2,111	96	2.304	4864	2-F32T8 Elec	24	2,111	61	1.464	3091	0.84	1,773.4
4	4-F40T12 Mag	5	2.575	189	0.945	2434	4-F32T8 Elec	5	2.575	108	0.54	1391	0.405	1.043.1
58	2-E/0T12 Mag	15	3 110	96	1 //	1178	2-E32T8 Elec	15	3 110	61	0.015	28/15	0.525	1 632 6
10	2-1 40112 Mag	10	3,110	70	1.040	2050	2-1 3210 Elec	10	3,110	(1	0.713	20450	0.325	1,032.0
12	2-F40112 Mag	13	3,092	96	1.248	3859	2-F3218 EIEC	13	3,092	61	0.793	2452	0.455	1,407.0
13	2-F96T12 Mag	12	3,154	128	1.536	4844	2-F32T8 Elec	12	3,154	111	1.332	4201	0.204	643.3
7	2-F40T12 Mag	17	2,365	96	1.632	3860	2-F32T8 Elec	17	2.365	61	1.037	2453	0.595	1,407.3
18	2-E/0T12 Mag	24	1 761	96	2 30/	/057	2-E32T8 Elec	24	1 761	61	1 /6/	2578	0.84	1 /79 0
10	2-1 40112 Mag	24	2,407	70	2.304	1017	2-1 3210 Elec	24	1,701	(1	0.400	2010	0.04	1,477.0
16	2-F40112 Mag	8	2,497	96	0.768	1917	2-F3218 EIEC	8	2,497	61	0.488	1218	0.28	699.0
17	2-F40T12 Mag	16	2,172	96	1.536	3337	2-F32T8 Elec	16	2,172	61	0.976	2120	0.56	1,216.6
20	2-F40T12 Mag	12	3.022	96	1.152	3482	2-F32T8 Elec	12	3.022	61	0.732	2212	0.42	1.269.3
10	2-E/0T12 Mag	12	788	96	1 152	908	2-E32T8 Elec	12	788	61	0.732	577	0.42	331.1
10	2-1 +0112 Mag	12	700	100	0.004	202	2-1 J210 Elec	12	700	111	0.732	3/1	0.42	331.1
19	2-F96112 Mag	3	/88	128	0.384	303	2-F9618 Elec	3	/88	111	0.333	263	0.051	40.2
11	2-F40T12 Mag	2	8,383	96	0.192	1610	2-F32T8 Elec	2	8,383	61	0.122	1023	0.07	586.8
6	2-F40T12 Mag	13	4.345	96	1.248	5423	2-F32T8 Elec	13	4.345	61	0.793	3446	0.455	1.977.0
22	2 E/0T12 Mag	5	2 6 2 7	06	0.48	1266	2 E32T8 Elec	5	2 6 3 7	61	0.305	804	0.175	161.1
33	2-1 401 12 May	J	2,037	70	0.40	1200		J	2,037	01	0.303	004	0.175	401.4
23	2-F40112 Mag	11	1,156	96	1.056	1221	2-F3218 EIEC	11	1,156	61	0.671	116	0.385	445.2
39	2-F40T12 Mag	11	2,321	96	1.056	2451	2-F32T8 Elec	11	2,321	61	0.671	1558	0.385	893.7
37	2-F40T12 Mag	1	1.612	96	0.096	155	2-F32T8 Elec	1	1.612	61	0.061	98	0.035	56.4
37	2-E96T12 Mag	10	1 612	128	1 28	2063	2-E96T8 Elec	10	1 612	111	1 1 1	1780	0.17	274.0
25	2-1 /0112 Mag	10	2.040	120	1.20	2003	2-17010 LICC	10	2.040	(1	1 1 1 1 0	1707	0.17	274.0
35	2-F40112 Mag	19	3,040	96	1.824	5544	2-F3218 EIEC	19	3,040	61	1.159	3523	0.665	2,021.4
36	2-F40T12 Mag	18	2,462	96	1.728	4254	2-F32T8 Elec	18	2,462	61	1.098	2703	0.63	1,550.8
38	2-F40T12 Mag	18	1.463	96	1.728	2528	2-F32T8 Elec	18	1.463	61	1.098	1606	0.63	921.6
40	2-E/0T12 Mag	12	2 637	96	1 152	3038	2-E32T8 Elec	12	2 637	61	0.732	1030	0.42	1 107 /
0	2-1 40112 Mag	12	2,037	70	1.132	10000	2-1 3210 Elec	12	2,037	(1	0.732	1750	0.42	2,005,0
26	2-F40112 Mag	13	8,760	96	1.248	10932	2-F3218 Elec	13	8,760	61	0.793	6947	0.455	3,985.8
24	2-F40T12 Mag	5	3,022	96	0.48	1451	2-F32T8 Elec	5	3,022	61	0.305	922	0.175	528.9
27	2-F40T12 Mag	15	3,127	96	1.44	4503	2-F32T8 Elec	15	3,127	61	0.915	2861	0.525	1.641.8
25	2-F40T12 Mag	15	4 538	96	1 44	6534	2-E32T8 Elec	15	4 538	61	0.915	4152	0 525	2 382 3
40	2 E 10T 12 May	10	2 100	04	0.04	000 1		10	2 100	21 21	0.713	10/1	0.020	740 4
43	2-F40TTZ Mag	10	2,199	90	0.90	2111	2-F3218 Elec	10	2,199	01	0.01	1341	0.35	/09.0
45	2-E96112 Mag	3	1,542	128	0.384	592	2-F9618 Elec	3	1,542	111	0.333	513	0.051	78.6
41	2-F40T12 Mag	15	2,558	96	1.44	3683	2-F32T8 Elec	15	2,558	61	0.915	2340	0.525	1,342.9
46	2-F40T12 Mag	4	1.892	96	0.384	727	2-F32T8 Flec	4	1.892	61	0 244	462	0 14	264.9
57	2 E06T12 Mag	10	1 577	100	1 20	2010	2 E06T0 Eloc	10	1 577	111	1 1 1	1750	0.17	261.7
57	2-1 701 12 IVIAY	10	1,077	120	1.20	2010		10	1,077	111	1.11	1/00	0.17	200.1
22	2-E40112 Mag	1	2,076	96	0.096	199	2-F3218 Elec	1	2,076	61	0.061	127	0.035	/2.7
48	2-F40T12 Mag	2	3,215	96	0.192	617	2-F32T8 Elec	2	3,215	61	0.122	392	0.07	225.0
48	2-F96T12 Mag	1	3.215	128	0.128	412	2-F96T8 Flec	1	3.215	111	0.111	357	0.017	54.7
55	2_E/0T12 Mag	2	2 610	06	0.288	750	2-E32T8 Elec	2	2,210	61	0 1 9 2	/70	0 105	27/1
55	2-1 401 12 IVIAY	-	2,010	70	0.200	102		J -	2,010	01	0.103	4/0	0.100	2/4.1
55	2-196112 Mag	/	2,610	128	0.896	2339	2-F3218 Elec	/	2,610	111	0.///	2028	0.119	310.6
42	2-F40T12 Mag	12	2,146	96	1.152	2472	2-F32T8 Elec	12	2,146	61	0.732	1571	0.42	901.4
49	2-F40T12 Mag	24	4,748	96	2.304	10939	2-F32T8 Elec	24	4,748	61	1.464	6951	0.84	3,988.3
28	2-E96T12 Mag	10	2 1/16	128	1 28	27/7	2-E96T8 Elec	10	2 1/16	111	1 1 1	2282	0.17	36/ 0
20	1 FAOT12 May	10	£,140	120	0.114	2/4/		10	£,140		0.070	2002	0.17	104.0
9	1-F40112 Mag	2	5,133	57	0.114	585	1-F3218 Elec	2	5,133	39	0.078	400	0.036	184.8
52	2-F40T12 Mag	21	3,618	96	2.016	7294	2-F32T8 Elec	21	3,618	61	1.281	4635	0.735	2,659.1
53	2-F40T12 Mag	6	2,391	96	0.576	1377	2-F32T8 Elec	6	2,391	61	0.366	875	0.21	502.2
20	1-F40T12 Mag	18	1 952	57	1 026	2004	1-F32T8 Flor	10	1 952	20	0 702	1371	0 3 2 1	632.0
27	1 E 40T 12 IVIAY	10	1,700	57	1.020	2004		10	1,7JJ	J7	1.702	10/1	0.324	0.02.7
30	I-F4UTT2 Mag	40	3,136	57	2.28	/150	1-F3218 Elec	40	3,136	39	1.56	4892	0.72	2,258.0
5	2-F40T12 Mag	1	2,032	96	0.096	195	2-F32T8 Elec	1	2,032	61	0.061	124	0.035	71.1
5	2-F96T12 Mag	6	2,032	128	0.768	1561	2-F96T8 Elec	6	2,032	111	0.666	1354	0.102	207.3
8	2-F40T12 Mag	12	2 348	96	1 152	2705	2-F32T8 Flec	12	2 348	61	0 732	1710	0.42	986.0
0	2 1 TO 1 12 May	14	2,540	70	1.152	2100	E I JE I U LIUU	14	2,540	01	0.752	1/1/	0.72	700.0

Table 3.10 Load Impacts for T8 Fluorescent Fixtures with Electronic Ballasts

			-											
		Pre-	Pre-	Pre	Pre	Pre		Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Post-Retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Savings	Savings
31	2-F40T12 Mag	20	5,571	96	1.92	10697	2-F32T8 Elec	20	5,571	61	1.22	6797	0.7	3,900.0
3	2-F40T12 Mag	32	2,970	96	3.072	9123	2-F32T8 Elec	32	2,970	61	1.952	5797	1.12	3,326.0
47	2-F40T12 Mag	6	2,085	96	0.576	1201	2-F32T8 Elec	6	2,085	61	0.366	763	0.21	437.8
50	2-F96T12 Mag	4	289	128	0.512	148	2-F96T8 Elec	4	289	111	0.444	128	0.068	19.7
56	2-F40T12 Mag	2	1,936	96	0.192	372	2-F32T8 Elec	2	1,936	61	0.122	236	0.07	135.5
56	2-F96T12 Mag	8	1,936	128	1.024	1982	2-F96T8 Elec	8	1,936	111	0.888	1719	0.136	263.3
56	3-F40T12 Mag	10	1,936	143	1.43	2768	3-F32T8 Elec	10	1,936	90	0.9	1742	0.53	1,026.1
Total		772											25.0	72,192
Ave													0.032	93.5

 Table 3.10 Load Impacts for T8 Fluorescent Fixtures with Electronic Ballasts

3.1.5 Load Impacts for LED Exit Signs

Load impacts for LED exit signs are based on field inspections of 17 fixtures at 8 participant sites, electric power measurements, and lighting logger measurements of 17 fixtures consistent with IPMVP Option B. Pre- and post-retrofit fixture quantities, hours of operation and savings are shown in **Table 3.11**. RHA assumed ex ante savings are 352 kWh/yr and 0.04 kW. The gross ex post savings per measure are 315.4 ± 32 kWh/yr and 0.036 ± 0.004 kW at the 90 percent confidence level. The difference between ex ante and ex post savings is primarily due to EM&V findings of lower ex post annual hours of operation. The RHA database reported 488 LED exit signs, and the total gross ex post savings are $153,896 \pm 15,390$ kWh/year and 17.6 ± 1.8 kW at the 90 percent of sites. The effective useful lifetime (EUL) is assumed to be 16 years. The 16 year EUL is based on average annual hours of operation of 8,760 hours per year assuming 140,000 lifecycle operational hours.

		Pre-	Pre-	Pre	Pre	Pre	Post-	Post-	Post-	Post	Post	Post	KW	kWh
Site	Pre-retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Retrofit	Qty	Hours	W/Fix.	kW	kWh/y	Savings	Savings
14	40W Incand.	5	8,760	38	0.19	1664	2W LED	5	8,760	2	0.01	88	0.18	1,576.8
15	40W Incand.	1	8,760	38	0.038	333	2W LED	1	8,760	2	0.002	18	0.036	315.4
39	40W Incand.	3	8,760	38	0.114	999	2W LED	3	8,760	2	0.006	53	0.108	946.1
35	40W Incand.	2	8,760	38	0.076	666	2W LED	2	8,760	2	0.004	35	0.072	630.7
36	40W Incand.	2	8,760	38	0.076	666	2W LED	2	8,760	2	0.004	35	0.072	630.7
38	40W Incand.	2	8,760	38	0.076	666	2W LED	2	8,760	2	0.004	35	0.072	630.7
51	40W Incand.	1	8,760	38	0.038	333	2W LED	1	8,760	2	0.002	18	0.036	315.4
21	40W Incand.	1	8,760	38	0.038	333	2W LED	1	8,760	2	0.002	18	0.036	315.4
Total		17				333		17	8,760		0.646		0.6	5,361.1
Ave									0				0.036	315.4

Table 3.11 Load Impacts for LED Exit Signs

3.1.6 Load Impacts for Programmable Thermostats

Load impacts for programmable thermostats were evaluated using historical billing data, the <u>PRI</u>nceton <u>S</u>corekeeping <u>M</u>ethod (PRISM), on-site audits, and calibrated eQuest building energy simulations consistent with IPMVP Options C and D. Two or three years of historical electric billing data were obtained for a sample of 59 participant sites located in Chico, Corning, Orland, and Yuba City, California. This data was then analyzed using the PRISM statistical regression model to develop normalized annual consumption (NAC) and cooling unit energy consumption (UEC) values. The average pre-NAC from PRISM is $30,779 \pm 7,897$ kWh per year and the average cooling UEC from PRISM is $8,347 \pm 2,681$ kWh per year. The average floor area is

2,586 \pm 926 ft² at the 90 percent confidence level and the average EUI is 3.23 ± 1.04 kWh/yr-ft². This EUI compares reasonably well with the average cooling EUI of 3.95 kWh/yr-ft² from SCE Study 4 in **Table 2.1**. For comparison, the 2005 DEER Update Study provides an average EUI of 7.04 kWh/yr-ft² and programmable thermostat savings of 1.31 kWh/yr-ft².

Only four of the EM&V sites had a programmable thermostat installed, and one site (a brewery) had one thermostat serving 10 percent of the conditioned space with significant equipment loads in the remaining space. Therefore, this site was removed from the PRISM sample. The PRISM results for three sites show savings of $1,391 \pm 1,847$ kWh/year. The small sample size and large confidence interval makes these results unreliable. Therefore, eQuest and DOE-2.2 simulation models were used to develop energy savings for programmable thermostats based on calibration to average EUI values from billing data for the audit sample sites located in Climate Zone 11.

The eQuest model for the prototypical small commercial building is shown in **Figure 3.1**. The model was calibrated using average baseline space cooling values from PRISM and Typical Meteorological Year (TMY) weather data for CEC climate zone 11.¹⁷ The pre- and post-retrofit thermostat schedules are shown in **Table 3.12**. The eQuest building characteristics are provided in **Table 3.13**.

RHA assumed gross cooling savings per programmable thermostat of 819 kWh/yr per thousand square feet (ft^2) of conditioned floor area. Zero savings are assumed for kW and therms. The ex ante savings are 1,638 kWh/yr per 2,000 ft² and 2,457 kWh/yr per 3,000 ft². The total gross ex ante savings for programmable thermostats are 172,759 kWh/yr.

Ex post gross savings per thermostat are 802 ± 218 kWh/yr and 0.55 ± 0.15 kW at the 90 percent confidence level with zero savings for therms. The RHA database reported 151 programmable thermostats. Therefore, the total gross ex post savings are $121,102 \pm 32,918$ kWh/year and 83.1 ± 22.7 kW at the 90 percent confidence level. The effective useful lifetime (EUL) is assumed to be 11 years per the 2005 DEER Update Study.¹⁸

 ¹⁷ California Thermal Climate Zones, California Energy Commission, 1516 9th St., Sacramento, CA 95814, 1992.
 ¹⁸ See the 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, prepared for Southern California Edison, prepared by Itron, Inc., Vancouver, Washington 2005, http://eega.cpuc.ca.gov/deer/

Figure 3.1 eQuest Small Commercial Building Model

Weekday Schedule	Midnight to 9 AM	9AM to 9PM	9PM to Midnight
Pre-Retrofit Cooling Schedule °F	off	76	Off
Post-Retrofit Cooling Schedule °F	off	79	Off
Pre-Retrofit Heating Schedule °F	off	66	Off
Post-Retrofit Heating Schedule °F	off	Same	Off
v v			
Weekend and Holiday Schedule	Midnight to 10 AM	10AM to 4PM	4PM to Midnight
Weekend and Holiday Schedule Pre-Retrofit Cooling Schedule °F	Midnight to 10 AM off	10AM to 4PM 79	4PM to Midnight Off
Weekend and Holiday Schedule Pre-Retrofit Cooling Schedule °F Post-Retrofit Cooling Schedule °F	Midnight to 10 AM off off	10AM to 4PM 79 Same	4PM to Midnight Off Off
Weekend and Holiday Schedule Pre-Retrofit Cooling Schedule °F Post-Retrofit Cooling Schedule °F Pre-Retrofit Heating Schedule °F	Midnight to 10 AM off off off	10AM to 4PM 79 Same 65	4PM to Midnight Off Off Off

Characteristic	Existing Vintage
Total Floor Area (sf)	2,598
Average Floor Height	10
Wall R-value [cavity only]	2.6 [1]
Wall Type	Concrete Block
Ceiling R-value [cavity]	17.2 [11]
Ceiling Area, total exterior (sf)	2,077
Floor R-value [cavity]	Concrete
Window-to-Floor Area Ratio	0.25
Window u-value	1.0
Number of Panes	1
Occupancy (people)	6
Lighting Intensity (W/sqft)	1.89
Electric Internal Loads (kW/sqft)	1.6
HVAC Zoning	Single zone
Heating System Type	Gas furnace
Heating Capacity (kBtu/hr-unit)	120
Heating System Efficiency	0.77
Cooling System Type	Split/Packaged
Cooling Capacity (kBtu/hr-unit)	60
Cooling System EER	7.4
Design Air (cfm/sqft)	0.9

Table 3.13 Small Commercial Building Characteristics

3.1.7 Load Impacts for Vending Misers

Load impacts for vending misers are based on the PG&E Statewide Express Efficiency Program showing average savings of 1,590 \pm 159 kWh/year , and a study from the University of Illinois at Urbana-Champaign showing average savings of 1,554 kWh/year for Vending Misers.¹⁹ RHA assumed ex ante savings of 1,590 kWh/year and 0 kW. The gross ex post savings per measure are assumed to be 1,590 \pm 159 kWh/yr and 0 kW. The RHA Energy Fitness database reported installing Vending Misers at 28 sites. The total gross ex post savings are 44,520 \pm 4,450kWh/year. The ex ante effective useful lifetime (EUL) was assumed to be 3 years consistent with the PG&E Express Efficiency EUL. An evaluation study by Foster-Miller, Inc., found an effective useful lifetime for the vending miser of 13 years or more.²⁰ Based on findings from Foster-Miller a 13 year EUL is used for this study.

3.1.8 Load Impacts for HVAC Tune-ups

Load impacts for HVAC tune-ups were evaluated using stipulated savings per IPMVP Option A. An effort was made to evaluate HVAC tune-up savings using historical billing data and the <u>PRI</u>nceton Scorekeeping Method (PRISM) consistent with IPMVP Option C. Only one EM&V site had an HVAC tune-up installed, and the PRISM results for this site show savings of -1,149 kWh/yr. The small sample size and large confidence interval makes these results unreliable.

¹⁹ Luo, J. 2003. Express Efficiency 2004-05 Workbook. 2-MeasureableEEActivities, Vending Machine Controller, San Francisco, Calif: Pacific Gas and Electric Company (PG&E). Taguchi, H., Jeong Lee, H., Pansare, P., Gentry, T. 2002. *The Vending Miser: A Pilot Study of Its Use at the University of Illinois at Urbana-Champaign*. Urbana-Champaign, Ill.: University of Illinois.

²⁰ Foster-Miller, Inc. 2000. *Vending Machine Engineering Evaluation and Test Report*. Waltham, MA.: Foster-Miller, Inc.

The HVAC tune-up measure involved filter replacement, chemical coil cleaning, check of refrigerant charge via temperature split, and replacement of Schrader caps where applicable. The measure is similar to DEER measure 061: clean condenser coils. The 2005 DEER Update Study provides savings for clean condenser coils of 142 ± 8 kWh/yr-ton and 0.123 ± 0.005 kW/ton or 709 ± 42 kWh/yr and 0.61 ± 0.25 kW per unit (assuming a 5-ton unit) and these savings are used for gross ex post savings. RHA assumed gross cooling savings per HVAC tune-up of 360 kWh/yr per unit.

The RHA database reported 103 HVAC tune-ups. Therefore, the total gross ex post savings are $73,027 \pm 4,326$ kWh/year at the 90 percent confidence level. The effective useful lifetime (EUL) is assumed to be 3 years per the 2005 DEER Update Study.²¹

3.1.9 Load Impacts for Energy Fitness Audit Measures

Load impacts for Energy Fitness audit measures are based on verification of customer adoption rates that were reported in the RHA tracking database and stipulated savings estimates according to IPMVP Option A. Participant surveys were completed from December 2004 through August 2005 to verify adoption of audit measures. These surveys were completed in-person with 68 participants.

The *Energy Fitness* audit included 25 energy efficiency measures. Gross ex post savings for each recommended audit measure are provided in **Table 3.14**. Ex post savings shown in **Table 3.14** are calculated using baseline EUI values from **Table 2.3** and average percentage savings from **Table 2.4**. For some measures, the savings are different than the ex ante savings in **Table 2.4**.

²¹ See the 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, prepared for Southern California Edison, prepared by Itron, Inc., Vancouver, Washington 2005, http://eega.cpuc.ca.gov/deer/

			Demand Savings	Annual Hours of	Savings	Savings		Ex	
			per unit	Operation	per unit	per unit		Post	
#	Audit Measures	Units	kW	per unit	kWh	therm	EUL	NTGR	Qty.
1	Seasonal HVAC Maintenance	Site	0.45	n/a	487	26	1	0.96	n/a
2	HVAC Tune-up	Site	0.51	n/a	793		10	0.96	n/a
3	Duct Test & Seal and Insulation	Site	0.07	n/a	1,126	65	15	0.96	n/a
4	Programmable Thermostat	Site		n/a	802	55	11	0.96	n/a
5	Efficient HVAC Equipment	Unit	0.63	n/a	921	76	15	0.96	n/a
6	Reflective Window Film	sf	0.0016	n/a	1.4	n/a	15	0.96	n/a
7	Advanced Evaporative cooler	Site	2.69	n/a	3,920	n/a	15	0.96	n/a
8	Ceiling Fan	Site	0.16	n/a	238	11	15	0.96	n/a
9	Delamp (3 to 2 lamp T12ES/Mag)	Unit	0.086	n/a	235	n/a	16	0.96	n/a
10	Delamp Other	Unit	0.038	n/a	179	n/a	16	0.96	n/a
11	Occupancy Sensors	Site	0.09	n/a	417	n/a	15	0.96	n/a
12	Lower Water Heater Temp.	Unit		n/a	71	11	3	0.96	n/a
13	Time Clock for Elec. Wtr Heater	Unit		n/a	36	n/a	3	0.96	n/a
14	Insulate Tank & Pipes	Unit		n/a	230	31	11	0.96	n/a
15	Infiltration Reduction	Site	0.11	n/a	160	22	20	0.96	n/a
16	R-30 Ceiling Insulation	sf	0.0002	n/a	0.38	102	25	0.96	n/a
17	R-11 to R-19 Wall Insulation	sf		n/a		60	25	0.96	n/a
18	High Performance Windows	sf	0.004	n/a	0.615	66	25	0.96	n/a
19	Auto-Closers on Exit Doors	Unit		n/a	85	n/a	8	0.96	n/a
20	Insulated Ice Machine Dispenser	Unit		n/a	600	n/a	8	0.96	n/a
21	Auto-Closers for Cooler Boxes	Unit		n/a	929	n/a	8	0.96	n/a
22	Strip Curtain for Walk-in Boxes	sf		n/a	85	n/a	4	0.96	n/a
23	Vending Miser	Unit		n/a	1,590	n/a	3	0.96	n/a
24	24 Glass Cooler Door Gaskets			n/a	10	n/a	4	0.96	n/a
25	Energy Star Computers, Copiers	Unit		n/a	294	n/a	4	0.96	n/a

Table 3.14 Ex Post Savings for Recommended Audit Measures

RHA technicians provided relevant recommendations to each participant in *Energy Fitness* report as part of the energy audit included during installation of no-cost measures. The in-person and telephone surveys asked the following questions to determine three findings.

- 1. Adoption rate. Did the participant adopt or install any of the energy efficiency improvements recommended by RHA in their *Energy Fitness* report?
- 2. Double-dipping. Did the participant receive a rebate (from a utility or other entity) for any of the adopted measures?
- 3. Influence of RHA. How influential were the *Energy Fitness* recommendations in terms of motivating the participant to implement the improvement on a scale of 1 to 10 (where 1 represented zero influence and 10 represented significant influence)?

Survey responses to these questions were filled into the survey questionnaire form. The 68 participant surveys found two measures adopted, no double-dipping, and the influence of RHA being 100 percent as shown in **Table 3.15**. The total gross ex post savings for audit measures are 1,600 kWh/year and 0.97 kW and lifecycle savings are 28,772 kWh. The average EUL for the audit measures is 18 years.

					Gross Ex	Gross	Gross Ex	Gross Ex		Lifecycle
		Adapted	Dobato	Influence	Ante	Ex Ante	Post	Post		Ex Post
		Auopteu	Repate	innuence	Savings	Savings	Savings	Savings		Saviriys
Site	Audit Measures	Measure	(0 or 1)	(0 to 10)	kWh	kW	kWh/yr	kW	EUL	kWh/yr
16	R-30 Ceiling Insulation	1	0	10	798	0.42	798	0.42	25	19,950
25	Prog. Thermostat	1	0	10	819	0	802	0.55	11	8,822
Total		2		10	1,617	0.42	1,600	0.97	18	28,772

Table 3.15 Gross Ex Post Savings for Adopted Audit Measures

3.2 Process Evaluation Results

Process evaluation recommendations are based on process surveys conducted in-person with 68 participants, 68 non-participants (i.e., refusers), and 20 non-contacted businesses. The process surveys were used to evaluate participant satisfaction and obtain suggestions to improve the program's services and procedures. Interview questions assessed how the program influenced awareness of linkages between efficiency improvements, bill savings, and increased comfort for customers. Participants were asked why and how they decided to participate in the program. Non-participants were asked why they chose not to participate. Non-contacted businesses were asked if they would have participated had they been made aware of the program. The surveys identified reasons why program marketing efforts were not successful with non-participants as well as to identify additional hard-to-reach market barriers. The process survey instruments are provided in Appendix A.

3.2.1 Participant Survey Results

Participant process survey results are summarized to answer the following questions from the CPUC-approved EM&V plan.

- **1.** Are participants satisfied with services or information provided by the program? Participant satisfaction is very high as indicated by the following survey responses.
 - Overall Satisfaction with Program 90 percent satisfaction rating (i.e., average score of 9.0 ± 0.1 out of 10 points).
 - Courteous and Professional Crew 93 percent satisfaction rating (i.e., 9.3 ± 0.2 out of 10 points).
 - Timeliness (i.e., work scheduled and completed on time) 100 percent satisfaction rating (average reported time per installation 108 ± 9 minutes).
 - Increased Understanding of Link between Energy Efficiency, Savings, and Comfort 79 ± 4 percent indicating *Energy Fitness* energy education efforts could be improved.
- 2. Are customers satisfied with measures offered or installed by the program?

Customers were satisfied with measures as indicated by the following ratings.

- 97 percent of customers are still using the measures installed by the program (i.e., 66 out of 68 surveyed customers were still using all installed measures).
- 92 percent of customers were satisfied with measures offered or installed by the program.

3. Are customers satisfied with services or information provided by the program?

Customer satisfaction with the services or information provided by the program is indicated by the following customer ratings.

• 84 ± 3 percent usefulness rating for *Energy Fitness* report.

- 87 ± 3 percent presentation rating for *Energy Fitness* report.
- 88 ± 3 percent accuracy rating for *Energy Fitness* report.
- 79 ± 4 percent rating of program increasing understanding of the linkage between energy efficiency, bill savings, and comfort.
- 100 percent of participants indicated that neighboring businesses would benefit from the program.

One participant didn't receive the *Energy Fitness* report and was unable to answer questions about this aspect of the program.

4. What are the participant hard-to-reach demographics?

Participant demographics have been verified as "hard-to-reach" as indicated by the following results.²²

- 100 percent of participants were outside major metropolitan areas (i.e., San Francisco, Sacramento).
- Average conditioned floor area is $2,586 \text{ ft}^2 \pm 926 \text{ ft}^2$.
- Average number of employees is 4.6 ± 0.6 .
- 100 percent spoke English well enough to understand and answer the questions.
- 16 percent spoke Spanish, 4 percent spoke Chinese, and 2 percent spoke Vietnamese as their primary language.

5. Do participants have any suggestions to improve the program?

84 percent of participants provided comments or suggestions to improve the program.

- 67 percent said "great program, great job, nice employees" and would like to see it continue to serve small businesses in the area or expand to other communities in California.
- 31 percent said they "really liked the brightness of the new T-8 fixtures and the CFLs" compared to their old lights.
- 16 percent said that their electric utility bill had gone down since RHA has performed their work. One customer reported that their bill had increased.
- 7 percent said the program would benefit from better advertising. Five customers found out about the program by word of mouth. Three customers suggested official handouts that told the customer about the purpose of the program, funded source, and that services would be free of charge.
- 4 percent said they would like to see additional measures installed at their businesses such as more lights or a programmable thermostat.
- 1 customer didn't like the lower wattage CFLs since they didn't put out enough light.
- 1 customer removed their programmable thermostat because it was too hard for them to use.

²² The CPUC definition of small commercial hard-to-reach customers are those who do not have easy access to program information or generally do not participate in energy efficiency programs due to language (i.e., primary language non-English), business size (less than ten employees); geographic (i.e., outside San Francisco Bay Area, Sacramento, Los Angeles Basin or San Diego), or lease (i.e., split incentives barrier). ADM further defines hard-to-reach as less than 50kW and 5,000 ft².

6. Did participants share information with business associates about the benefits of measures offered by the program (i.e., multiplier effects)?

Based on process survey responses, 100 percent of interviewed customers shared program information with 10.3 times as many peers (68 participants shared information with 698 businesses). Approximately 51 percent of these businesses (i.e., 358) decided to install similar measures or participate in the Energy Fitness program. The program helped expand impacts beyond the participant group to a larger group through direct installation of measures and the *Energy Fitness* audit measure recommendations. The multiplier effect for the program is estimated at 88 percent.²³ Programs that link technologies with educational measures can have multiplier effects as high as 25-30 percent including the sharing of program information to a population that is several times larger than the participant population.

3.2.2 Non-Participant Survey Results

Non-participant process survey results are summarized to in order to answer the following questions from the CPUC-approved EM&V plan.

1. Is there a continuing need for the program?

The following responses indicate a continuing need for the program.

- 71 percent of participants said they and would like to see the program continue to serve small businesses in the Chico, Orland, and Yuba City area or expand to other communities in California.
- 39 percent of non-participants would have participated if they knew the program installed no-cost energy efficiency improvements at small commercial businesses like theirs.
- 61 percent of non-participants would not have participated in the program.

2. Why have customers chosen not to participate (i.e., market barriers)?

- 79 percent indicated lack of interest in participating due to already having "efficient lighting," but didn't explain whether they knew what "efficient lighting" meant (i.e., information barrier).
- 64 percent were tenants and did not own the building (i.e., misplaced or split incentive).
- 15 percent didn't participate due to not understanding the benefits (i.e., performance uncertainty).
- 6 percent didn't participate due to lack of time or scheduling problems (i.e., hassle cost).
- 12 percent gave other reasons for not participating.

Most non-participants didn't participate due to not knowing about the program. Thirty-nine percent said they would have participated if they knew the program installed no-cost energy efficiency improvements. While better advertising would have helped, the RHA Energy Fitness Program was oversubscribed in 2004-05. The most often cited barriers to participation include information costs (79%), misplaced or split incentives (64%), performance uncertainty (15%), and hassle costs (6%). Although difficult to quantify, it appears that a large segment of the market is affected by each of these barriers. Most customers indicated that better marketing, delivery, or follow-up efforts would overcome

²³ Spillover of 88 percent is calculated based on 358 businesses adopting at least one spillover measure based on information shared by a group of 68 participants who adopted six measures (i.e., $358 \times (1 \div 6) \div 68 = 0.88$).

barriers to participation. A discussion of actionable recommendations for program changes that can be expected to improve the cost effectiveness of the program, improve overall or specific operations, or improve satisfaction or, of course, all three are provided in the executive summary and in the process evaluation section (see section 3.2.3 Process Evaluation Recommendations). Better marketing, delivery, or follow-up efforts will help overcome barriers to participation. Marketing materials should include an explanation of what "efficient lighting" means and how and why "better lighting" or other "measures" are of interest to small business owners. Marketing information should include an explanation of the "measures" (e.g., efficient lighting, HVAC tune-ups, programmable thermostats, etc.) with user-friendly instructions in various languages. The follow-up customer report should compare pre- and post-retrofit billing data to verify energy savings. Installing light loggers at each site and then showing the measured savings from lighting measures would be very helpful. Sites with billing data indicating low or negative savings should be checked for proper installation and operation of measures (i.e., programmable thermostats). This will also facilitate better EM&V analyses of program savings.

3. Do non-participants have any suggestions to improve participation?

22 percent of non-participants suggested offering discounts on the energy bill for already installing energy efficiency measures, or to offer on-bill financing to pay for measures not offered by the program. These suggestions make sense and could easily be adopted by the Energy Fitness program if the program is continued and coordinated with PG&E.

4. What are the non-participant hard-to-reach demographics?

Non-participants had the following hard-to-reach demographics.

- 56 percent of non-participants were tenants.
- 100 percent spoke English well enough to understand and answer the questions.
- 100 percent of non-participant businesses were outside major metropolitan areas such as San Francisco or Sacramento.
- Non-participants had an average of 5.4 ± 0.7 employees.

The following section provides process evaluation recommendations to improve the program.

3.2.3 Process Evaluation Recommendations

The following process evaluation recommendations are provided as per the CPUC-approved EM&V plan regarding what works, what doesn't work, and suggestions to improve the program's services and procedures.

3.2.3.1 General Program Recommendations

This program was exceptionally well managed and implemented. The following general program recommendations are provided to improve the program's services, procedures, and cost effectiveness.

- 1. Compare pre- and post-retrofit billing data to verify customers are saving energy.
- 2. Use light loggers and average light logger data for hours of operation for lighting fixtures.
- 3. Make sure technicians take time to properly explain programmable thermostats to participants and provide user-friendly instructions in various languages. Include a toll-free

number on thermostats for participants to call if they have questions. Programmable thermostats should include instructions for the technicians to follow when reprogramming the thermostat for both cooling and heating and all old and new settings should be documented in the tracking database.

- 4. Install night-time security lighting measures for customers to reduce the tendency to have all lights on at the businesses during unoccupied night-time hours.
- 5. Offer more comprehensive air conditioner tune-ups to save energy or a smaller efficient air conditioner to replace their big and old inefficient units. Provide comprehensive HVAC diagnostic tune-ups since most customers are tenants and air conditioner maintenance is the responsibility of the landlord who doesn't have a financial interest in maintenance (i.e., split incentive). Provide customers with extra air filters to increase HVAC diagnostic tune-up measure EUL.
- 6. Label all installed measures with a permanent sticker or mark to ensure measures can be properly verified by EM&V inspectors as having been installed.
- 7. Make sure all participants receive a generic *Energy Fitness* report.
- 8. Participants provided the following suggestions to improve the program.
 - Better advertising through landlord, telephone, email, mail, newspapers, or television will increase participation. Advertising should explain how small commercial businesses can take advantage of no-cost energy efficiency improvements offered by the program.
 - Offer services in the evening after business hours.
 - Marketing to corporate offices or landlord to gain approval for work.
- 9. Compare pre- and post-retrofit billing data to verify customers are saving energy. Sites with billing data indicating low or negative savings should be checked for proper installation and operation of measures (i.e., programmable thermostats). This will also facilitate better EM&V analyses of program savings.
- 10. Conduct follow-up calls and site-visits to verify proper installation and operation of measures (i.e., programmable thermostats). Review customer billing data to ensure the program is delivering measurable savings. Sites with billing data indicating low or negative savings can be checked for proper installation of measures. This will also facilitate better EM&V analysis of program savings.

3.2.3.2 Recommendations for Training

All technicians were courteous, well trained, and equipped to implement the program. Several RHA technicians indicated they were EPA certified and familiar with performing AC tune-ups. The following list of equipment is provided if adding refrigerant charge and airflow diagnostic tune-ups to the program.

- Bacharach sling psychrometer for calibrating digital temperature measurements.
- Fluke Model 52 II two-temperature probe digital thermometer (or equivalent).
- Fluke Model 80PK-8 Clamp-on Type K digital thermometer (or equivalent).
- Carrier Model 020-434 Superheat Calculator or Verified, Inc. PDA (<u>www.verify-rca.com</u>) to check proper refrigerant charge and airflow (RCA).
- Compound refrigerant pressure gauge.
- Digital scale for weighing refrigerant.
- Refrigerant leak detection equipment.
- Schrader core removal tool and core valves with locking Schrader caps.

Train technicians on proper installation procedures and materials for all measures. Provide each technician with installation specifications and quality control guidelines to ensure proper installation of all measures. Make sure technicians take time to properly explain programmable thermostats to participants and consider providing simple instructions in various languages and placing a toll-free number on the thermostats for participants to call if they have any questions. When the lighting retrofits are completed the buildings will have less air conditioning loads. Consider training auditors and HVAC technicians to perform air conditioning load calculations on the building so if the air conditioner fails, a smaller, properly sized unit can be installed to reduce peak air conditioning connected electric loads and demand.

3.2.3.3 Recommendations for Database

RHA has an excellent program tracking database. The EM&V study evaluated the database and found areas where it might be improved. Most important is capturing operational hours for lighting fixtures based on customer interviews (i.e., number of hours fixtures are on rather than hours business is open). Operational hours based on interviews with participants were compared to lighting logger data and findings indicated most customers had an accurate understanding of their operational hours. Capturing this information in the RHA program tracking database will help make measure savings more accurate. Also consider capturing the old and new thermostat schedules for programmable thermostats to document savings. It might be easier to manage and view data in Microsoft Access with functions to export data formatted in Microsoft Excel. This would allow for easier analysis and reporting for EM&V purposes.

3.2.3.4 Compact Fluorescent Lamps (CFLs)

Some customers complained that the installed CFLs were not bright enough. Check to make sure CFLs provide enough light for customers. If not, install higher Wattage CFLs.

3.2.3.5 T8 Fluorescent Lamps with Electronic Ballasts

No problems were found with T8 fluorescent lamps with electronic ballasts and no recommendations are provided.

3.2.3.6 LED Exit Signs

The inspection verification rate for LED exit signs was 100%. No recommendations are provided for LED exit signs.

3.2.3.7 Programmable Thermostats

Some participants removed the programmable thermostats due to not understanding how to operate them properly. Technicians should properly explain programmable thermostats to participants and provide user-friendly instructions in various languages. Include a toll-free number on thermostats for participants to call if they have questions. Programmable thermostats should include instructions for the technicians to follow when reprogramming the thermostat for both cooling and heating and all old and new settings should be documented in the tracking database. To improve persistence post thermostat schedules should be stored in ROM or backed up with an 11-year "leak-charge" NiCad battery.

3.2.3.8 Recommendations for HVAC Tune-ups

Participants suggested offering more comprehensive air conditioner tune-ups to save energy. Most customers are tenants and air conditioner maintenance is the responsibility of the landlord who doesn't have a financial interest in maintenance (i.e., split incentive). The RHA program included chemical condenser coil cleaning, but did not include refrigerant charge and airflow (RCA) diagnostic tune-ups.

3.2.3.9 Other Cost Effective Measures to Consider

RHA might consider other cost effective measures for the future as follows.

- Correcting refrigerant charge and airflow in the HVAC tune-up measure will increase savings. Many customer sites do not receive regular AC maintenance and don't know that their AC units aren't working properly. Studies show roughly 50 to 60 percent of small commercial air conditioners have improper refrigerant charge and airflow. This is a relatively low cost measure to implement and should yield cost effective savings (see the DEER Database for more information). The time required to perform this measure is typically 30-45 minutes including 15 minutes of time to ensure steady state conditions to make final measurements. The equipment and training for this measure is discussed above.
- 2. Combing condenser coil fins will improve airflow across the condenser.
- 3. Installing washable plastic mesh air filters or giving customers twelve free air filters at time of installation to allow annual replacement and persistence of the HVAC tune-up measure for eight years. Every dollar spent on free air filters will increase net benefits by roughly \$5 and provide a 5 percent improvement in the total resource cost effectiveness for air filter replacement measures.
- 4. Installing suction line insulation on bare refrigeration suction lines will save 1-2%. Insulating the suction line maintains lower suction temperatures and pressures and saves energy. Heat gain to un-insulated suction lines add cooling loads and cause the compressor to run hotter and less efficiently. The liquid line should only be insulated if it runs through a freezer or refrigerated space. Otherwise, it should be left un-insulated. Follow the California Energy Commission (CEC) requirements regarding installation of refrigerant line insulation and install minimum ¾" thick insulation according to manufacturers' installation instructions regarding seam and butt sealing joints as well as proper inside diameter of the insulation to match the outside diameter of the pipe (i.e., eliminate plastic ties). Consider using insulation with better UV protection and a guaranteed 10-year life for exterior applications or factory-or field-installed white UV coatings to protect insulation from solar radiation, reduce heat gain, and improve persistence and savings.
- 5. Lowering hot water temperatures is a low-cost measure with significant savings opportunities. If implemented make sure to capture pre/post hot water temperature readings in the RHA database for verification.
- 6. Insulating hot water supply and cold water return on water heaters is a low-cost measure with significant savings opportunities. If implemented this measure should include installation of 1" thick insulation (minimum) on the first 5 feet of the hot pipe coming out of the storage tank and the first 5 feet going into the storage tank or the first major bend as per CEC standards.

3.2.3.10 Audit Measures

Based on findings from this and other studies, hard-to-reach small commercial tenants are not motivated to invest in improving rental space. Due to this problem, program efforts spent on the *Energy Fitness* report might not yield significant savings creditable to the program. Therefore, it might be better for RHA to install as many cost effective measures as possible, provide generic recommendations, and reduce efforts spent on providing custom audit measure recommendations in the *Energy Fitness* report.

Appendix A: Process Survey Instrument RHA #1409-04 Energy Fitness Program

Interview Instructions for Process Survey

1. Purpose

The purpose of the Process Survey is to evaluate what works, what doesn't work, customer satisfaction, and suggestions for improvement in the program's services and procedures.

2. Selection of Respondent

- 1. **Participants** must be the person responsible for allowing program measures to be installed at the site. If this person is unavailable locate someone who is at least familiar with how that decision was made. Participant question #20 is used to verify that participant is a small-business with one or more of the following attributes: 1) Primary language non-English; 2) <10 employees; 3) Lease; 4) Use <100 kW or <10,000 therm/yr; or 5) Located outside Sacramento/San Francisco Bay Area.
- Non-participants must be a small-business in the local utility service area who was unaware of the program or decided not to allow program measures to be installed at their facility (see non-participant survey at end). Non-participant question 3 is used to verify one or more of the following attributes: 1) Primary language non-English; 2) <10 employees; 3) Lease; 4) Use <100 kW or <10,000 therms/yr; or 5) Located outside Sacramento/San Francisco Bay Area.

3. Two Types of Sites

This survey will be used for two types of sites:

- 1. On-Site EM&V Only. Sites that receive an EM&V on-site inspection or process survey.
- 2. Telephone Only. Sites that only receive a telephone survey (participants or non-participants).

4. How to Start a Survey

Complete the following steps to start one of these surveys:

- 1. Review RHA customer file information (for participants).
- 2. Make sure you understand what RHA installed prior to initiating the visit or call.
- 3. Participant Survey Introduction.

Say: "Hello! My name is [_____], and I am conducting a survey regarding the RHA, Inc. Small Nonresidential Energy Fitness Program. The program installed no-cost/low-cost energy efficiency improvements for your business. Funding for the program came from the California Public Utilities Commission. Would you mind spending 10 minutes to answer a few questions to help us evaluate and improve the program?

4. Non-participant Survey Introduction.

Say: "Hello! My name is [_____], and I am conducting a survey regarding the RHA, Inc. Small Nonresidential Energy Fitness Program that was funded by the California Public Utilities Commission in 2002 and 2003. You didn't participate in the program, but your feedback will help us evaluate and improve the program. The program installed a package of energy conservation measures including: 1) Ten to twelve screw-in, 27-watt CFLs; 2) Two LED Exit Signs; 3) One hardwired T-8/electronic ballasted fluorescent fixture replacement of incandescent fixtures; and 4) Removed or delamped unnecessary incandescent or fluorescent lamps. Would you mind spending 10 minutes to answer a few questions?

	RHA ENERGY FITNESS	PARTICIPA	NT SURVEY	#
Bus	siness	Name		Title
Ad	dress	City		ZIP
Pho	one Number Survey	Date	Surv	eyor Initials
Pa 1.	Do you remember an RHA crew installing no-compared to the second seco	st energy efficiency 98 Don't Know	7 improvements at your factors of the second s	cility?
2.	How would you rate the crew in terms of being c Response (1 is low and 10 is high)	ourteous and profe 98 Don't Know	ssional on a scale from 1 t 99 Refused to Answer	o 10?
3.	Was the work scheduled and completed within a 1 (Yes) 2 (No)	reasonable timefram 98 Don't Know	me? 99 Refused to Answer	
4.	How long was the technician at your facility? 1 hr2 hrs3 hrs4 hrs2	>4 hrs 98 Don't	Know 99 Refused to An	nswer
5.	Did you receive <i>Energy Fitness Reports</i> from RH If yes, how would you rate the <i>Energy Fitness Re</i> Response (1 is low and 10 is high)	IA? 1 (Yes) <i>eports</i> in terms of u 98 Don't Know	2 (No, <i>Skip to Q8</i>) 98 sefulness on a scale from 99 Refused to Answer	DK 99 Refused 1 to 10?
6.	How would you rate the <i>Energy Fitness Reports</i> Response (1 is low and 10 is high)	in terms of presenta 98 Don't Know	ation on a scale from 1 to 99 Refused to Answer	10?
7.	How would you rate the <i>Energy Fitness Reports</i> Response (1 is low and 10 is high)	in terms of accurac 98 Don't Know	y on a scale from 1 to 10? 99 Refused to Answer	
8.	Did you receive <i>Energy Fitness</i> advice to obtain If yes, how satisfied were you with the <i>Energy F</i> Financing Advice (1=low , 10=high)F	financing or rebates <i>Titness</i> advice on a second teacher and the second s	s? 1 (Yes) 2 (No) scale from 1 to 10? ow, 10=high) 98 DK 9) 98 DK 99 Refused 9 Refused
9.	How would you rate the overall service you receip Response (1 is low and 10 is high)	ived on a scale from 98 Don't Know	n 1 to 10? 99 Refused to Answer	
10.	How would you rate the program in terms of incr efficiency, bill savings, and comfort? Response (1 is low and 10 is high)	easing your unders 98 Don't Know	tanding of the linkage bet 99 Refused to Answer	ween energy
11.	To the best of your knowledge was everything in 1 (Yes) 2 (No)	stalled correctly? 98 Don't Know	99 Refused to Answer	
12.	Are you still using all the measures that were inst 1 (Yes) 2 (No)	talled? 98 Don't Know	99 Refused to Answer	
	Please list measures not used?			
13.	Were there any measures that were not installed (as screw-in CFLs, LED Exit Signs, hardwired T- 1 (Yes)2 (No)	(i.e., check RHA da 8/electronic ballast 98 Don't Know	tabase to verify measures ed fluorescent fixtures, etc 99 Refused to Answer	were installed such c.)?
	Please list measures not installed?			
14.	Have you shared information with any of your bu Signs, hardwired T-8/electronic ballasted fluorese 1 (Yes)2 (No)	usiness associates a cent fixtures, or oth 98 Don't Know	bout the benefits of screw her measures from the <i>Fith</i> 99 Refused to Answer	-in CFLs, LED Exit ness Report?
	With how many other businesses have you shared	d this information i	n the last 12 months?	
	About how many of these people have installed a	ny of these measur	es?	
15.	Do you know any other businesses that would be	nefit from this prog	gram (name/address)?	

RHA ENERGY FITNESS PARTICIPANT SURVEY (cont'd)

#

16. What make and model or size (i.e., ton) air conditioner do you have? (Deduce tons from model number.)

______Make ______Model ____tons 98 Don't Know 99 Refused to Answer

17.	How many	hours per day do	you use th	e CFLs or Li	ghting Fixtu	res that RHA insta	alled? 98 (1	DK) 99 (Re	efused)
	Location Old Type Old Qty. Old Hrs Old W/Fix New Type New Qty. Old Hr								New W/Fix
	1.			hrs	W			hrs	W
	2.			hrs	W			hrs	W
	3.			hrs	W			hrs	W
	4.			hrs	W			hrs	W
	5.			hrs	W			hrs	W
	6.			hrs	W			hrs	W
	7.			hrs	W			hrs	W
	8.			hrs	W			hrs	W
	9.			hrs	W			hrs	W
	10.			hrs	W			hrs	W

Type: 1 = CFL; 2 = LED Exit; 3 = Replace Incandescent with Fluorescent; 4 = Delamp T12-Mag with T8-EB; 5 = Replace T12-Mag with T-8-EB

18. Did you receive an Energy Fitness audit checklist of opportunities for saving energy at your facility?
 <u>1</u> (Yes) <u>2</u> (No) <u>98</u> Don't Know <u>99</u> Refused to Answer

Have you adopted any measures since the RHA Energy Fitness audit was performed? (Ask six months after audit.)

#	Energy Fitness Audit Measures	Baseline	Measure	Hrs/yr	Savings	Adopted	Cust.
1	Seasonal Maintenance (Clean Air Filters)	Dirty Filters/Coil	Clean Filters/Coils		7%		
2	HVAC Tune-up	Incorrect Ref. Charge	Correct Ref. Charge		13%		
3	Duct Testing and Sealing and Insulation	Leaky No Insulation	Seal/Insul. Ducts		Seal 14%/ 3%		
4	Programmable Thermostat	None	Setback/setup		20%		
5	Energy Efficient HVAC Equipment	7.4 SEER/7.7 EER	11 SEER/10.3 EER		25-33%		
6	Reflective Window Film	Clear: 0.83 SHGC	Film: 0.47 SHGC		14%		
7	Advanced Evaporative cooler	DX Air Cond.	Evap. Cooler		49%		
8	Ceiling Fan	None	Ceiling Fan		10%		
9	Delamp. (3-T12ES/Mag to 2-T12ES/Mag)	133W	82W		39%		
10	Delamp Other						
11	Occ. Sensors in Areas with Intermittent Use	3,200 hours	1,500 hours		53%		
12	Lower Water Heater Temperature	130F	120F		8%		
13	Time Clock for Electric Water Heater	8,760 hrs/y	4,380 hrs/y		4%		
14	Insulate Tank & Pipes	No Insulation	R8 Tank and R4 Pipe		10%		
15	Infiltration Reduction (leaks, weatherstripping)	0.5 ACH	0.4 ACH		2%		
16	R-30 Ceiling Insulation	None	R-30		10-20%		
17	R-11 to R-19 Wall Insulation	R-11	R-19		-		
18	High Performance Windows	Single Pane	Low-E		30%		
19	Auto-Closers on Exit Doors	None	Auto Closer		1%		
20	Insulated Ice Machine Dispenser Box	Uninsulated Box	Insulated Box		20%		
21	Auto-Closers for Cooler Boxes	None	Auto Closer		2%		
22	Strip Curtain for Walk-in Boxes	None	Strip Curtain		3%		
23	Vending Miser	No Control	Vending Miser Control		30-55%		
24	Glass Cooler Door Gaskets	Leaky Gasket	Tight Gasket		2%		
25	Energy Star Computers & Copiers (or controls)	None	Power Management		10%		

19. Please provide your thermostat settings before and after RHA performed their audit?

I	Weekday Cooling Schedule			ule	We	Weekend Cooling Schedule			Weekday Heating Schedule			Weekend Heating Schedule				
I	OLD	OLD	NEW	NEW	OLD	OLD	NEW	NEW	OLD	OLD	NEW	NEW	OLD	OLD	NEW	NEW
	lime	Temp	Time	Temp	Time	Temp	Lime	Temp	Lime	Temp	Lime	Temp	Time	Temp	Lime	Temp
		°F		۰F		°F		°F		°F		°F		°F		°F
		°F		۰F		°F		°F		°F		°F		°F		°F
		°F		۰F		°F		°F		°F		°F		°F		°F
		°F		۰F		°F		°F		°F		°F		°F		°F

20. Please provide the following demographic information (*obtain utility bill data from RHA*)?

21. Do you have any suggestions to improve the program?

 $\underline{\qquad} 1 \text{ (Yes)} \underline{\qquad} 2 \text{ (No)} \underline{\qquad} 98 \text{ Don't}$

98 Don't Know **99** Refused to Answer

If so, please provide the suggestion(s).

RHA ENERGY FITNESS NON-PARTICIPANT SURVEY #____

Business	Name	Title
Address	City	ZIP
Phone Number	Survey Date	Surveyor Initials

Non-Participant Survey

I am conducting a survey regarding a RHA, Inc. Energy Fitness Program that was funded by the California Public
Utilities Commission in 2002 and 2003. You didn't participate in the program, but your feedback will help us
evaluate and improve the program. The program installed a package of energy conservation measures including: 1)
Ten to twelve screw-in, 27-watt CFLs; 2) Two LED Exit Signs; 3) One hardwired T-8/electronic ballasted
fluorescent fixture replacement of incandescent fixtures; and 4) Removed or delamped unnecessary incandescent or
fluorescent lamps. Would you mind spending 5 minutes to answer a few questions?

1. Would you have participated if you knew the program installed no-cost/low-cost energy efficiency improvements measures in businesses like yours?

____1 (Yes) ____2 (No) 98 Don't Know 99 Refused to Answer

- 2. Please tell me why you choose not to participant in the program? (Read list Multiple answers are okay.)
 - 1 Didn't know about the program (i.e., information cost).
 - 2 Didn't understand energy savings benefits of the program (i.e., performance uncertainty).
 - 3 Don't own the building (i.e., renter–misplaced or split incentive).
 - 4 Unable to be available for crew to perform work (i.e., hassle cost).

Would you have participated if someone else you know (i.e., an employee) could have been present at your business while the RHA crew did their work?

1 (Yes)	2 (No)	98 Don't Know	99 Refused to Answer
---------	---------------	---------------	-----------------------------

- 5 Would you have participated if the program provided services at other times?
 - ____Evenings ____Saturdays ____Sundays 98 Don't Know 99 Refused to Answer
- 6 Other _____
- **98** Don't Know **99** Refused to Answer

3.	Please provide the following demographic information?							
	Language	_# Employees Own	Lease _	Floor Area	kW	kWh/yr	_therm/yr	99 Refused

4. Do you have any suggestions that might have helped you participate in the program?

1 (Yes)	2 (No)	98 Don't Know	99 Refused to Answer
---------	---------------	---------------	-----------------------------

If so, please provide the suggestion(s)._____