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1 Introduction and Key Results  

1.1 Introduction 

Oracle Utilities (formerly Opower) and PG&E have worked together since 2011 to launch nine 

experimental waves of home energy reports (HERs), affecting 2.15 million households in total. 

The reports provide the recipient with neighbor comparisons, energy efficiency tips, and 

information about energy efficiency programs offered by PG&E. In 2015, the total energy 

savings of PG&E’s HER program was 145 GWh and over 4.6 million therms. While these 

savings are substantial, program cost-effectiveness is paramount.1 Therefore, PG&E is 

investigating approaches to more effective customer targeting and delivery. The research 

reported herein is part of that effort.   

Since residential customers can be quite different from one another2, it seems likely that the 

effect of receiving a home energy report also varies from customer to customer. The cost 

effectiveness of the program could be improved if reports were sent to customers who are likely 

to provide larger savings and not sent to customers who would provide smaller or even negative 

savings. Negative savings refers to the case when energy consumption of a participant 

increases after enrollment in the HER program. A recent PG&E study3 showed that 

approximately 30% of current HER participants have greater energy consumption after 

participating in the program. Unfortunately, at present, one cannot predict the effect of sending a 

report to any particular customer because energy consumption practices vary over time as a 

result of a large number of drivers. 

Efforts to understand the factors that influence responses to HERs have estimated the average 

energy savings for subgroups of customers – for example by decile of annual consumption in 

the prior year. In general, these analyses show that most of the energy savings obtained from 

HERs is concentrated in the top half of the distribution of energy consumption. An argument can 

be made for restricting the delivery of HERs to the upper half of the consumption distribution 

based on program cost-effectiveness; and some utilities do so. However, other utilities are 

reluctant to restrict delivery based on consumption because it deprives a substantial fraction of 

the residential population from the benefits that arise from exposure to the HERs. 

Understandably, PG&E and other utilities could benefit from developing a more refined 

approach to program targeting. 

Like most utilities, PG&E collects a large amount of data on its customers related to load 

features (e.g., baseload, seasonal, peak, off-peak consumption) or customer attributes (e.g., 

data from third-party vendors such as Axciom or Experian). One or a combination of these 

variables may provide a basis to substantially improve the accuracy of HER impact predictions. 

The purpose of this research is to discover whether this is the case and focuses on electric 

savings prediction. 

                                                
1 As illustrated by the CPUC’s Proposed Decision on Energy Efficiency Business Plans in April 2018. 

2 This category indeed includes small studio apartments and expansive estates from San Francisco and San Jose to Fresno 

and Sonoma. 

3 Opinion Dynamics, “PG&E Home Energy Report (HER) Energy Savings Distribution Analysis and Trends Study”, August 

2018 
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In this effort, two new machine learning algorithms developed over the last three years were 

used to identify which customers are more likely to respond strongly to the HER stimulus based 

on observed customers responses to HERs obtained in a very large scale randomized 

controlled trial: 

 Causal tree algorithm: this approach iteratively splits the exposed customer population 

(i.e. treatment group) into smaller and smaller subgroups, searching for partitions that 

separate customers who are predicted to produce larger energy savings from those who 

do not. 

 Causal forest (a generalization of the causal tree algorithm): this method produces many 

causal trees using randomly selected variables and randomly selected customers. It 

then averages those trees together to provide a prediction for the expected energy 

savings for every individual customer.  

1.2 Key Findings 

Using the causal forest algorithm and all of the available information about customer 

characteristics to predict individual customer energy savings results in an interesting statistical 

distribution of likely HER program impacts. Figure 1-1 presents the distribution of predicted 

savings (‘Estimated Treatment Effects’) for the 5th to 95th percentile of customers. The median 

estimated savings (0.19 kWh per day) is highlighted in red and the mean estimated savings 

(0.22 kWh per day) is highlighted in green. Using the causal forest algorithm, household daily 

electric savings ranges from 0.04 kWh per day at the 5th percentile to 0.54 kWh per day at the 

95th percentile. About 58% of the customers are predicted to produce less than the average of 

0.22 kWh per day.  
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Figure 1-1: Distribution of Predicted Treatment Effects from Causal Forest Algorithm 

 

Only a small percentage of customers (approximately 2%) are predicted to have negative 

savings. This indicates that identifying negative savers a priori is unlikely and excluding this 

group of customers from future participation would not have significant impact on program 

performance. 

Another key insight of this distribution is its pronounced right skew, which means that most 

customers are predicted to have lower treatment effects than the average. This illustrates both 

the challenge of targeting for HER programs and the potential opportunities for improving 

program performance by restricting delivery to customers who are predicted to achieve 

significantly greater energy savings.  

A substantial percentage of HER participants may not provide sufficient savings to justify the 

cost of delivering the reports to them. Using high-level assumptions about the avoided cost of 

energy and the cost of delivering the HERs, customers must save over 0.27 kWh per day to 

justify the cost of delivering the reports to them. Our research shows that 70% of customers are 

below that threshold. This analysis is yet not precise enough to inform PG&E to stop sending 

reports to these customers to increase cost-effectiveness. 

The potential economic benefits from targeting HERs based on the models described herein are 

large. Based on this consideration, Nexant recommends PG&E develop a formal experiment 

designed to test the impact of discontinuing the delivery of HERs to customers who are 

predicted not to have energy savings sufficient to cost justify their continued delivery. This 

experiment would be similar to PG&E’s experiments testing the persistence of energy savings. 

Treatment discontinuation would yet be based on customers’ model scores, instead of random 

selection. 
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2 Causal Tree  

2.1 Methodology 

The ideal way to target customers for HERs would be to make an accurate prediction of the 

expected energy consumption reduction for each customer in response to the reports and only 

enroll customers with the highest predicted reduction. If we believe that a new customer for 

whom we want to predict energy savings is similar to a set of customers on whom we already 

ran an HER experiment, we might think of the prediction problem as a number of subgroup 

analyses. We could gather all of the information we have about these customers (where they 

live, how much energy they were consuming before the experiment started, how large their 

home is, etc.), group them with other customers with the exact same characteristics, and 

subtract the energy consumption of those who received HERs from the consumption of those 

who did not. 

However a problem arises when several variables are used. When the impact of ‘n’ continuous 

pre-treatment variables is tested for each decile of the population, 10n different estimates are 

produced, splitting up the randomized controlled trial into far too many pieces for the estimates 

to be accurate in any given cell (i.e. subgroup). This problem is thus difficult to solve when 

several variables are considered. A simpler option is to use algorithms that can search over 

possible subgroups and find the ones that are important for making good predictions. The logic 

of regression tree algorithms is very relevant for such analyses. 

Regression trees are a class of algorithms that make predictions for unobserved or future 

characteristics based on observed or historical data. These predictions are made by splitting all 

of the units (customers in our case) into two groups that look very different with respect to the 

predicted variable (e.g., energy consumption). This creates two nodes, one for each group (for 

example, a CARE node and a non-CARE node). This process is then repeated on each node 

separately until encountering a stopping rule. For example, if the tree reaches a partition that 

would result in a node containing less than 1% of the total data, we can stop splitting the data 

into smaller groups. At that point, each final node is called a leaf. Each leaf represents a group 

of customers that meet a series of binary criteria. The average of the predicted variable within 

each leaf is estimated, and these average values4 are treated as our predictions for some new 

set of units (i.e. customers).  

The most common regression tree algorithm, known as CART (Classification and Regression 

Tree), is a standard machine learning technique for prediction. CART has two basic steps: 

partitioning and pruning. Partitioning proceeds as follows: 

Until a partition reaches a certain minimum size: 

1. Search every binary split of the customers along every predictor. Calculate and 
store the average difference between the true value of the outcome variable and the 
predicted value, known as mean squared error (MSE). 

2. Split the data into two new datasets using the splitting rule that minimizes the MSE 
based on step 1. 

                                                
4 Some versions of regression trees use something other than an average with leaves, but averages are the most common. 



Causal Tree 

 
 6 
 

Start over at step 1 with each of the two new datasets, separately. 
 

The partitioning algorithm sometimes makes poor predictions by putting observations with 

spurious extreme values together in a leaf as the number of customers in a leaf gets smaller. 

The next step, pruning, addresses this by using cross-validation to determine whether trees with 

a larger number of leaves (“deep trees”) or a smaller number of leaves (“shallow trees”) have a 

smaller MSE out of sample. Once the best penalty term on depth is selected via cross-

validation, some leaves are removed because they improve the predictions by less than they 

receive in penalty due to their size. 

As an example, imagine we are trying to predict average annual energy consumption for 100 

new residential customers but all we know about them is whether they live in a house or 

apartment and how many people will be living in the home. If we have the same data on all of 

our existing customers, we could build a regression tree using this data and use the final leaves 

to make predictions. To do this, we would first look at splitting the data into a ‘house-only’ node 

and an ‘apartment-only’ node versus splitting it into a ‘one resident’ node and ‘more than one 

resident’ node versus a ‘one or two resident’ node and a ‘more than two resident’ node, etc. We 

would choose the splitting rule that minimized the MSE. Imagine that the algorithm chose the 

apartment versus house split as the biggest difference. In this case, the exercise of finding the 

best split would then be repeated among customers living in houses and apartments separately. 

The algorithm might find that the big increase in consumption for apartment dwellers is between 

apartments with one or two residents and those with more than two residents while houses with 

fewer than four residents and four or more is the best way to split house-dwellers. If we were to 

stop the algorithm, we would have four leaves: apartments with one or two residents, 

apartments with more than two residents, houses with one, two, or three residents, and houses 

with more than three residents. We would then use the average annual energy consumption 

within each leaf as the prediction for each of the 100 new customers who had the characteristics 

defined by that leaf. 

The causal tree (CT) method adapts the basic logic of CART to pursue the goal of estimating a 

causal treatment effect, like the energy savings from a home energy report, within each leaf 

rather than predicting the value of an outcome variable. To do this, CT diverges from CART in 

two ways. First, CT changes the partitioning rule to include two components. The rule selects 

the partition that most effectively separates customers with larger energy savings from those 

with smaller energy savings. But, the rule also takes into account the fact that smaller partitions 

have noisier estimates of energy savings than larger ones. For example, imagine there are two 

possible ways to partition the data. The first splits the data so that 30% of customers are in one 

leaf and 70% of the customers are in another. The estimate of energy savings in the first leaf is 

1 kWh and in the second leaf the estimate is 10 kWh. The second way to partition the data has 

50% of the data in one leaf and 50% in another. The estimate of energy savings is now 2 kWh 

and 9 kWh. Because the second partition found a similar difference in energy savings between 

its two leaves, but did so with a closer to equal split, the algorithm would tend to select the 

second partition. This means that the algorithm avoids selection splits with spurious extreme 

energy savings. 
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Additionally, CT prunes the tree differently from the CART algorithm. Because CT already 

accounts for the depth of the tree in its splitting rule (by incorporating the size of the leaves 

produced by each candidate split), it does not require as much pruning. CT, nevertheless, uses 

cross-validation to remove some remaining bias that favors deep trees over shallow trees. 

We implement CT as described above using the 59 features detailed in Appendix A. We used a 

20% random sample5 of the Waves 1, 2, and 3 for building the tree both to reduce computation 

time and because we view the causal tree more as an exploratory tool than a final output. 

2.2 Results and Output 

The most compelling feature of CT is that its output can be visually represented as a tree that 

details decision rules that, if followed, provide an estimate of energy savings for the customers 

that meet the criteria up to that node. Instead of presenting every partition, we focused on the 

first few sections of the CT. Figure 2-1 shows the first few partitions and nodes of the tree 

displayed in a simplified format.6 A negative output number represents a load reduction. The 

first node contains 100% of the customers and the average treatment effect for all of the 

customers is -0.25 kWh per day. The first partition rule is daily winter usage less or greater than 

576 kWh. This value is selected by the algorithm because it minimizes the mean squared error 

(as described in section 2.1). The first partition is effectively the rule that separates customers 

with larger energy savings from those with smaller energy savings while limiting the noise of an 

estimate for a small group. 99% of the population has a daily winter usage value less than 576 

kWh and would go to the left node. Only 1% of the population has a daily winter usage value 

that is greater than 576 kWh.   

For the 99% of the population that had a daily winter usage value less than 576 kWh, the 

average treatment effect is -0.26 kWh per day. The next partition for customers who had a daily 

winter usage value less than 576 kWh is off-peak daily summer weekend usage being greater 

than 85 kWh. The next two nodes stemming from this partition split the 99% into two groups. 

About 33% of the population has an off-peak daily summer weekend usage greater than or 

equal to 85 kWh while 66% of the population has an off-peak daily summer weekend usage less 

than 85 kWh.  

The customers who had a daily winter usage value greater than 576 kWh had an average 

treatment effect of -0.14 kWh per day. All nodes and partitions stemming from this node contain 

less than one percent of the overall population used to create the CT.  

This explains how causal trees are built, seeking out large differences in the estimated 

treatment effect by partitioning the customers into groups.  However, Causal Trees are not the 

most efficient and reliable approach to predicting future energy savings from customer 

characteristics. Despite the intuitive and visual appeal of the causal tree algorithm, individual 

regression trees are known to be highly sample-dependent. In other words, two trees built with 

the exact same algorithm on two random samples from the exact same population can produce 

                                                
5 The random sample was comprised of approximately 262,473 customers. 

6 A continuation of the causal tree is included in Appendix A. The full tree has over 300 nodes and is too large to include in 

this report. 
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quite different predictions for any given individual. The most common way to overcome this 

problem is with a random forest algorithm. 

Figure 2-1: CT First Nodes  

 

3 Causal Forest 

3.1 Methodology 

As the name implies, a random forest is a collection of regression trees. Each tree is built using 

a bootstrap random sample7 of the training data, and each split is built using a random sample 

of the features. The resulting trees are then averaged together, and each observation is 

provided a predicted treatment effect. The causal forest (CF) method is a simple extension of 

random forests where each tree is a causal tree rather than a standard regression tree.  

3.2 Calibration  

In order to test how well the CF is calibrated, we compare the predicted treatment effects from 

the CF to the average treatment effects within each of the 5 quintiles of the usage variables 

used in the model. A similar verification is executed within other categorical variables including 

CARE, climate zone, local capacity area (LCA), and weather station. Such comparisons test 

how well predicted and average treatment effects align using a different random sample. Figure 

3-1 presents the relationship between the average and the predicted treatment effects for the 

                                                
7 A bootstrap random sample is a random sample from a dataset with replacement to match the size of the original 

dataset. This means that a bootstrap random sample may have multiple copies of the same observation, while other 

observations are absent.  
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variables described. A couple examples are highlighted in green and orange. The relationship 

between the two values is linear, with the average and the predicted treatment effects being 

very similar in value for most variables. A few outliers (climate zone and the weather station 

representing the Humboldt and Eureka areas) have large treatment effects while their predicted 

treatment effects are small.  

Figure 3-1: Comparison of Average Treatment Effects 
and Predicted Treatment Effects8 

 

 
 
The distribution of the difference between the average treatment effect and predicted treatment 

effect divided by the standard error across all usage and demographic variables is another way 

to check how well the CF is calibrated. This value is called the “distance.” This tells us whether 

the predicted treatment effect is a plausible prediction of the true treatment effect in these 

subgroups (LCA = Greater Bay Area, for example). Figure 3-2 shows that the distribution of the 

difference across the subgroups is centered around zero and approximately normal. This 

demonstrates that average predictions from the CF are unbiased when we test them out of 

sample.  

                                                
8 Each point is associated with one specific model variable 
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Figure 3-2: Distance Between Treatment Effect 
and Predicted Treatment Effect 

 

3.3 Results and Output 

The causal forest algorithm finds meaningful heterogeneity in average daily energy savings 

across customers. Figure 3-3 presents the distribution of treatment effects for the 5th to 95th 

percentile of customers. The individual treatment effects estimated using the causal forest 

algorithm range from 0.04 kWh per day at the 5th percentile to 0.54 kWh per day at the 95th 

percentile. Only approximately 2% of customers are predicted to have negative savings. This 

suggests that, despite the large dataset, there is very little evidence that a particular mix of 

characteristics is associated with negative savings.  
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Figure 3-3: Distribution of Treatment Effects from Causal Forest Algorithm 

 

Excluding participants with low future savings would increase program cost-effectiveness. It is 

thus important to identify participants who are providing savings that justify the per-customer 

cost. The distribution of expected treatment effects has a pronounced right skew, with a median 

of 0.19 kWh per day (the red line) and a mean of 0.22 kWh per day (the green line). 58% of 

customers are predicted to produce savings less than the mean of 0.22 kWh per day. This 

illustrates both the challenge of targeting for HER programs and the potential opportunities for 

improving program performance. There may be HER participants that do not provide enough 

savings to justify the per-participant program cost. The estimates from the causal forest 

algorithm would allow PG&E to stop sending reports to customers based on their estimated 

return. 

If we assume that the avoided cost of energy is $0.08 per kWh9 and the marginal cost of HERs 

is $8 per customer per year10, a participant must save over 0.27 kWh per day, on average, to 

offset the cost of their reports. This idea is illustrated in Figure 3-4, where the red line represents 

an annual cost of $8 per treated customer per year, and the blue line represents the marginal 

benefit of a treated customer. Customers whose benefits do not outweigh their costs fall below 

the red line (approximately 70% of customers, in this example). 

The green line represents the value of the HER program, which peaks at the intersection of the 

marginal annual benefits and costs per customer, (i.e., when customers in the top 30% of CF-

                                                
9 This value is found in the Avoided Cost Calculator distributed by the CPUC. 

(http://www.cpuc.ca.gov/General.aspx?id=5267). This is not a cost provided to Nexant by PG&E. 

10 Based on our experience with similar delivery programs, it is reasonable to assume the marginal cost of a HER program 

is approximately $8 per customer per year. This is not a cost provided to Nexant by PG&E. 

http://www.cpuc.ca.gov/General.aspx?id=5267
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predicted energy savings are treated). The value of the program decreases as customers with 

smaller expected energy savings are included in the program. 

Figure 3-4: Example of Marginal Annual Benefits and Costs of HER Program 

 

Based on these simple calculations, approximately 70% of customers are predicted to provide a 

treatment effect less than 0.27 kWh per day and are therefore not cost-effective to include in the 

program. A more sophisticated analysis may take into consideration other factors such as 

PG&E’s compensation tied to claimed energy savings (Efficiency Savings and Performance 

Incentive [ESPI] awards) and other financial inputs. Although this is a simplified cost-

effectiveness analysis, it highlights the benefits for PG&E to target customers who are expected 

to provide more energy savings. 

There are three ways to understand what is driving the causal forest output: (1) variable 

importance, (2) best predicting variables, and (3) simple decision rules. 

Variable Importance 

The first is to assess which variables are consistently used to split the data across the forest of 

trees and those that are used earlier in the splitting. This is called variable importance.11 Figure 

3-5 plots variable importance for the top 25 variables used by a causal forest fit on this data.12 

Usage variables are the most commonly used variables in part because they can be split many 

                                                
11 The reported number for variable importance is not important here. We are commenting on the relative values. 

12 Variable importance was calculated using a separate causal forest since this was added after the initial causal forest 

was trained. Since random forests may vary slightly from one to the next due to different starting values for random number 

generators, this figure may be slightly different if constructed using the original causal forest that we trained. 
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times—a binary variable such as a flag for whether a customer is in a particular local capacity 

area can indeed only be split once. Nevertheless, this suggests that pre-treatment demand 

measures are more important for predicting energy savings than other demographic 

characteristics despite the richness of the set of characteristics available. 

Figure 3-5: Variable Importance for the Top 25 Variables Used in the Causal Forest 

 

Best Predicting Variables 

A second way to understand the results is to determine which variables are best at predicting 

the treatment effect. This is another way of telling us whether those variables are responsible for 

most of the predicted treatment effect from the causal forest algorithm.13 Table 3-1 reports the 

top ten variables. The single best variables at predicting the causal forest output are all 

consumption variables, for example “offpeak_summer” which measures average demand during 

off-peak summer hours.  

Two things are highly notable about the variables that appear to be predictive of energy savings 

from HERs. The first 18 of the top 25 predictive variables are variations on consumption 

measurements. The conventional demographic factors such as age, home value, length of 

residence and household income appear to be less important predictors. This finding is 

consistent with historical findings that the only real predictor of future energy savings from HERs 

is historical energy consumption.   

However a more subtle and interesting finding from the analysis is that a number of the best 

predictors measure latent consumption (e.g., off-peak summer or off-peak winter consumption) 

rather than peak consumption. This suggests that consumption patterns at times when energy 

in the household is not being intensively used (i.e., off peak periods) are better predictors of how 

                                                
13 The R2 values come from 3rd-order polynomial regression for the continuous variables and a fully saturated model for the 

discrete variables. 
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much a household will provide in savings, rather than measures that incorporate peak summer 

consumption. 

Table 3-1: Best Variables for Approximating the Causal Forest Output 

Variable R2 

Off-Peak Summer Usage 0.565 

Off-Peak Summer Usage, Weekdays 0.557 

Off-Peak Winter Usage 0.555 

Winter Usage, Weekdays 0.553 

Off-Peak Summer Usage, Weekends 0.552 

Off-Peak Winter Usage, Weekdays 0.546 

Off-Peak Winter Usage, Weekends 0.541 

Winter Usage 0.540 

Summer Usage 0.537 

Summer Usage, Weekdays 0.532 

 

Nevertheless, each of these variables leaves a large percentage of the causal forest output 

unexplained.14 Since the causal forest output is perfectly determined by the pre-treatment 

variables, this analysis suggests that the causal forest algorithm is likely outperforming simple 

polynomial regression (for continuous variables) or category-by-category prediction (for 

categorical variables) based on a single variable. 

Simple Decision Rules 

Lastly, we can evaluate the performance of a simple decision rule for HER participation based 

on one or two variables versus the causal forest predictions. If the performance is high enough, 

the simple, more interpretable rule could be used by PG&E. To do this, we divide categorical 

variables into their given categories and continuous variables into deciles. We then construct 

every possible decision rule for these variables that uses one or two categories. Table 3-2 

reports the results for the top ten, best-performing decision rules. We find that no decision rule 

explains even half of the variance in the causal forest output. In other words, a simple rule does 

not perform as well as the causal forest. 

                                                
14 The R2 values reported in Table 3-1 represent the output from linear regressions regression of the causal forest output 

on a third-order polynomial of the variable named in the table. Categorical predictors, such as CARE status or weather 

station, were included discretely so that the R2 represents how well taking the mean causal forest prediction within each 

category captures the causal forest prediction. 
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Table 3-2: Best Decision Rules for Approximating the Causal Forest Output 

Category 1 Category 2 R2 
Winter > 80th percentile Off-Peak Summer > 50th percentile 0.400 

Winter > 80th percentile Off-Peak Summer, Weekend > 50th percentile 0.397 

Off-Peak Summer > 50th percentile Off-Peak Winter > 80th percentile 0.397 

Off-Peak Summer > 80th percentile Off-Peak Winter > 50th percentile 0.397 

Off-Peak Summer > 80th percentile Off-Peak Winter > 40th percentile 0.396 

Winter, Weekday > 80th percentile Off-Peak Summer > 50th percentile 0.395 

Off-Peak Summer, Weekend > 50th percentile Off-Peak Winter > 80th percentile 0.394 

Winter, Weekend > 80th percentile Off-Peak Summer > 50th percentile 0.394 

Summer > 50th percentile Winter > 80th percentile 0.394 

Winter > 80th percentile Off-Peak Summer, Weekday > 50th percentile 0.394 

 

4 Recommendations  

Given the observed performance of the causal forest algorithm relative to simple rules and its 

expected performance given prior research, we recommend that PG&E use the predicted 

treatment effects from the causal forest directly for making decisions about which customers to 

treat. This output can be pared with a simple decision rule, such as “customers with negative 

expected energy savings will no longer receive home energy reports” or “customers with 

expected energy savings worth less than the marginal participant cost will no longer receive 

home energy reports” to improve upon energy savings forecasts. 

Depending on the accurate benefit per kWh and cost per report, a substantial percentage of 

current HER participants may not be providing sufficient savings to justify the cost of delivering 

the reports to them. Based on the results from the causal forest algorithm and our assumptions, 

PG&E could stop sending reports to these customers based on their predicted savings (i.e., 

likely return on investment). In Section 3.3, an illustrative analysis using assumptions about 

costs per report and benefits per kWh indicates that 70% of customers provide a treatment 

effect that is too small to be cost effective. In other words, this analysis reveals that HERs cost 

more than the benefits they provide for more than 70% of the sampled participants. In this 

example, delivering HERs only to customers with savings predicted to be in excess of the cost 

of delivery (over 0.27 kWh per day) could reduce PG&E’s program costs significantly while 

achieving cost effective energy savings. Excluding customers with trivial or negative energy 

savings would not have a significant impact on aggregate program impacts (in other words, 

removing individual customers with zero savings would have zero impact on aggregate 

savings).  

Nexant recommends PG&E develop a formal experiment designed to test the impact of 

discontinuing the delivery of HERs to customers who are predicted not to have energy savings 

sufficient to cost justify their continued delivery. This experiment would be similar to PG&E’s 

experiments testing the persistence of energy savings. Treatment discontinuation would be 

based on customers’ predicted future savings, instead of random selection. If customers with 

small expected savings are removed from the program, it is possible that we may not see a 

difference in energy savings after terminating their reports.  



Recommendations 

 
 16 
 

Appendix A  

This appendix contains a continuation of the causal tree output (Figure 2-1) in addition to a list 

of all the variables included in the causal forest.  

A.1 Causal Tree Output (continued)  

Adobe Acrobat 

Document
 

A.2 Causal Forest Variable List 

Table A- 1 provides the list of variables used in the causal forest. For each variable, a brief 

description and the source of the variable are provided. The variables used came from PG&E, 

Experian, and Axciom. These variables include electricity usage variables created from hourly 

advanced meter data, demographic variables from PG&E, demographic variables from Axciom, 

and demographic variables from Experian.  

‘Summer’ lasts from May to October and ‘Winter’ from November to April. ‘Peak hours’ is the 

period from 5 p.m. to 10 p.m. 

Table A- 1: Causal Forest Variable List  

Variable Name Description Source 

CARE 
California Alternate Rates for 
Energy (CARE) Program 
Participation Indicator 

PG&E 

Res_Class Residential Dwelling Type PG&E 

Baseline Territories Breakdown of PG&E’s territory PG&E 

C_Sched 

Compressed Rate Schedule 
Indicator 

PG&E 

BPP Balance Pay Plan Indicator PG&E 

LCA Local capacity area PG&E 

Sublap Sub-load aggregation point PG&E 

Wthrstn Weather Station PG&E 

Cecclmzn CEC Climate Zone PG&E 

Swimming Pool Indicator 
Flag indicating if there is a 
swimming pool at the premise  Experian 

Presence of Children 0-18 
Flag indicating if there are 
children present Experian 

Dwelling Type Residential Dwelling Type Experian 

Language Language Preference Indicator Experian 

Age  Age of the customer Axciom 

Community Involvement Flag 

Flag indicating if the customer is 
involved with the community by 
financially supporting causes Axciom 
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Education Input 

Code indicating the education 
level of the customer Axciom 

Environment or Wildlife  

Flag indicating if the customer 
financially supports environment 
or wildlife causes Axciom 

Environmental Issues  

Flag indicating if someone in the 
household has an interest in 
environmental issues Axciom 

Estimated Household Income Ranges 

Code indicating the estimated 
household income range of the 
customer Axciom 

Green_Living 

Flag indicating if the customer 
participates in green living  Axciom 

High_Tech_Living 

Flag indicating if the customer 
participates in high tech living Axciom 

Home_Heating_Cooling 

Code indicating the presence of 
heating and/or cooling in the 
residence Axciom 

Home_Improvement_Diyers 

Flag indicating if the customer 
participates in do it yourself 
home improvement  Axciom 

Home_Market_Value 

Code indicating the home market 
value range Axciom 

Home_Owner_Renter 
Code indicating if the customer is 
a home owner or renter Axciom 

Home_Pool_Present 

Flag indicating if there is a 
swimming pool at the premise Axciom 

Home_Property Type 

Code indicating the home 
property type Axciom 

Home_Square_Footage_Actual 

The actual square footage of the 
home Axciom 

Home_Year_Built_Actual Year the home was built Axciom 

Household_Size 

The number of people in the 
household Axciom 

Hybrid_Score 

Indicates the likelihood that a 
customer will purchase a hybrid 
vehicle Axciom 

Intend_To_Purchase_Home_Improve 

Flag indicating if the customer 
intends to purchase home 
improvement Axciom 

Language_Preference_Code 

Code indicating the customer's 
language of preference Axciom 



Recommendations 

 
 18 
 

Length_Of_Residence 

Code indicating the years of 
residence at the premise Axciom 

Number_Of_Adults 

Number of adults in the 
household Axciom 

Political 

Flag indicating if the customer 
financially supports political 
causes Axciom 

Political Conservative 

Flag indicating if the customer 
financially supports conservative 
political causes Axciom 

Political Liberal 

Flag indicating if the customer 
financially supports liberal 
political causes Axciom 

Presence Of Children 

Flag indicating if there are 
children present Axciom 

Primary Address 

Code indicating if customer 
premise is the primary address Axciom 

Suppression_Mail_Dma 

Flag indicating do not mail to this 
individual Axciom 

Daily0_Summer 
Total daily summer weekday 
usage  

PG&E Collapsed 
Interval Data 

Daily1_Summer 
Total daily summer weekend 
usage  

PG&E Collapsed 
Interval Data 

Daily_Summer 
Total daily summer  usage  

PG&E Collapsed 
Interval Data 

Daily0_Winter 
Total daily winter  weekday usage  

PG&E Collapsed 
Interval Data 

Daily1_Winter 
Total daily winter weekend usage  

PG&E Collapsed 
Interval Data 

Daily_Winter 
Total daily winter usage  

PG&E Collapsed 
Interval Data 

Peak0_Summer 
Peak daily summer weekday 
usage  

PG&E Collapsed 
Interval Data 

Peak1_Summer 
Peak daily summer weekend 
usage  

PG&E Collapsed 
Interval Data 

Peak_Summer 
Peak daily summer usage  

PG&E Collapsed 
Interval Data 

Peak0_Winter 
Peak daily winter weekday usage  

PG&E Collapsed 
Interval Data 

Peak1_Winter 
Peak daily winter weekend usage  

PG&E Collapsed 
Interval Data 

Peak_Winter 
Peak daily winter usage  

PG&E Collapsed 
Interval Data 

Offpeak0_Summer 
Offpeak daily summer weekday 
usage  

PG&E Collapsed 
Interval Data 
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Offpeak1_Summer 
Offpeak daily summer weekend 
usage  

PG&E Collapsed 
Interval Data 

Offpeak_Summer Offpeak daily summer usage  
PG&E Collapsed 
Interval Data 

Offpeak0_Winter 
Offpeak daily winter  weekday 
usage  

PG&E Collapsed 
Interval Data 

Offpeak1_Winter 
Offpeak daily winter weekend 
usage  

PG&E Collapsed 
Interval Data 

Offpeak_Winter Offpeak daily winter usage  
PG&E Collapsed 
Interval Data 

 


