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Executive Summary 
California has adopted a new approach to capturing the savings potential in existing buildings.   
Known as Normalized Metered Energy Consumption (NMEC), this approach requires that an 
accurate regression-based or other data-driven model be developed based on a year of a 
customer’s energy usage and independent variable data. The independent variable data typically 
includes the ambient temperature and often other influential parameters, such as time of use and 
building operation modes.  

To participate in a site-level NMEC program, the customer’s data-driven model’s goodness of fit 
metrics must meet certain “criteria” as specified in the California Public Utilities Commission’s 
(CPUC) NMEC Rulebook (CPUC 2020).1  A key metric is the coefficient of variation of the root 
mean squared error CV(RMSE), which is one measure of the random error between a model and 
the energy data it is developed from. Good models have small values of CV(RMSE). According to 
the CPUC Rulebook acceptable models must have values lower than 25%. 

By definition, CV(RMSE) is normalized by average energy use over the period. Because of this 
normalization, many commercial building’s natural gas energy models often fail to meet the 
CV(RMSE) criterion due to low energy usage in warmer months. Figure 1 shows examples of low 
natural gas use during these months. For such buildings the annual average energy use is low and 
because it is in the denominator, the CV(RMSE) is high, often above the 25% threshold. Visually, 
the model may track very well with the usage data, be a good predictor of energy use and enable 
reliable savings estimations. However, the project does not qualify for a gas NMEC program 
because it does not meet the CV(RMSE) criterion. Because of this, many building types including 
commercial offices, government, educational, and similar buildings are unable to access natural 
gas NMEC programs. 

 
Figure 1. Examples of low use periods in commercial building natural gas consumption. The charts 
show the daily gas consumption over a typical year. 

This research work was designed to address the problem of natural gas NMEC projects often 
failing the model acceptance criteria through a review of the literature for additional insight, 
employing and testing different modeling algorithms and modeling strategies, and developing and 

 
1 The Rulebook provides acceptable levels of goodness-of-fit metrics, but the industry takes these as criteria. 
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testing alternate model acceptance criteria. It was designed to answer the following research 
questions: 

1. What are appropriate modeling algorithms or strategies that accurately model gas use 
in commercial buildings? 

2. What alternate or more generalized acceptance criteria may be used to overcome 
participation barriers faced by natural gas commercial building NMEC projects due to 
failure to meet the goodness of fit criteria described in the CPUC's NMEC Rulebook 
2.0? Should the acceptance criteria focus on model goodness of fit metric values, 
predictive accuracy, or on savings uncertainty?  

3. Are there more generalized model acceptance procedures and criteria that should be 
followed for cases when natural gas usage is low in commercial buildings during some 
portions of the year? 

4. What changes to the modeling acceptance criteria as described in the CPUC NMEC 
Rulebook 2.0 should be proposed as a result of this research? 

A literature review was conducted to inform the selection of different modeling methods and 
strategies, as well as to identify different acceptance methods – whether they be based on 
alternate model goodness of fit metrics or savings uncertainty. A data set was requested of 
California natural gas utilities to assure an adequately large representation of commercial 
buildings throughout California’s different climate zones and utility service areas.  

The modeling algorithms, modeling strategies, and proposed acceptance criteria were tested 
using the data set. Distributions of results were tabulated and then analyzed to identify potential 
improvements in modeling and acceptance criteria that may help more buildings and customers 
participate in natural gas NMEC efficiency programs. 

The findings from this work may also benefit cases in which any building energy use commodity 
(e.g. steam, chilled or hot water, electricity) has seasonally low usage. The work also provides more 
general insight on energy modeling useful to enable more buildings to participate in California’s 
NMEC programs. 

Recommendations and Conclusions 
In this work, we examined alternate goodness of fit criteria to overcome the cause of many natural 
gas models failing the established goodness of fit criterion of CV(RMSE) < 25%. After assembling a 
dataset consisting of Affected and Unaffected buildings (buildings with gas use models not 
meeting and meeting the criterion, respectively), we ran two different modeling algorithms, 
calculated several alternate goodness of fit criteria, and compiled summary tables for additional 
evaluation of the alternate metrics.  

Before proceeding, it is important to note that we did not examine individual building gas datasets 
to determine the presence of poor data or unidentified non-routine events as would be done on a 
case-by-case basis in preparation of participation in a site-level NMEC program. This would 
require additional information from each building to be collected, regimes of operations to be 
identified, and additional analysis to be performed. This work instead proceeded by modeling the 
data as is without additional insight into each building that otherwise may have improved 
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individual building gas models. For every site-level NMEC project, we recommend this preliminary 
analysis of the data be pursued. 

Gas usage data typically have more data quality issues than electricity use data. Gas usage is 
usually measured in units of volume, which requires flow measurements. Flow measurement is 
typically less accurate than electric measurement. Gas data is typically more ‘noisy’ in that it has 
more day-to-day random fluctuations, often has large periods of missing data, and may reflect the 
manual operation of gas-consuming equipment in commercial buildings. It is acknowledged that 
there are more data quality issues to address with natural gas data.  

The goodness of fit metric CV(RMSE) quantifies the amount of random error between a model and 
the data the model is developed from. For commercial buildings that generally use natural gas for 
space and water heating only, it is a common reason natural gas models fail to become NMEC 
projects. A literature search suggested several alternate goodness of fit metrics: a weighted mean 
absolute percent error (wMAPE), a range-normalized root mean squared error (nRMSE), and a root 
mean squared error normalized by total energy use (tRMSE). The fractional savings uncertainty 
(FSU) developed by Claridge and Reddy (2000) and used in ASHRAE Guideline 14-2014 combined 
the CV(RMSE) and savings in a new metric that directly addresses the important question of how 
accurate will the resulting savings estimate be given the proposed model? ASHRAE’s FSU was 
tested as an alternate qualifying metric. Another metric was to separate the low use and high use 
periods and model them separately, weighting the CV(RMSE) by that period’s total gas 
consumption.  

We tested two different modeling algorithms, the time-of week and temperature (TOWT) model 
(Mathieu, et.al. 2011) and ASHRAE’s three-parameter change-point model (3PH) (Kissock et. al, 
2004), and performed a manual modeling strategy by separating the low use from high use period 
data and modeling separately with the TOWT model. 

After testing 635 building data sets with the TOWT algorithm, we found 50% of the buildings did 
not pass the current CV(RMSE) criterion. When using the FSU as a metric on these failed 
buildings, we found that 13% of them passed when assuming the project would yield 10% savings 
or more. When the same buildings were modeled with the 3PH model, 45% initially failed the 
CV(RMSE) criterion, but 10% of the failed buildings passed when using the FSU. 

The binary classification analysis was used to evaluate the CV(RMSE), FSU, wMAPE, nRMSE, 
tRMSE, and 3PH model wCV(RMSE). This analysis confirmed that the CV(RMSE), FSU, and 
wCV(RMSE) metrics were superior to the wMAPE, nRMSE, and tRMSE metrics, as they showed 
high true positive rates along with reasonably low false positive rates. False positive rates were too 
high for wMAPE and nRMSE. The results were consistent whether using the TOWT or 3PH 
modeling algorithms (the wCV(RMSE) with was tested only for the 3PH model). 

Manual separation of the low gas use and high gas periods, development of separate models for 
each period, then calculating the energy-weighted CV(RMSE) of the two models showed that when 
the CV(RMSE) of a model built on the full dataset did not excessively exceed the 25% criterion, 
this strategy could be used to qualify more gas NMEC projects.  

Based on this work, it follows that alternate metrics and modeling strategies may be used to 
qualify natural gas site-level NMEC projects. Our recommendations are summarized below: 
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1. Examine the gas use data for data quality issues. Assure a full dataset is obtained for each 
building. Identify and resolve data quality issues such as outliers and extensive gaps in gas 
use throughout the baseline year. Determine whether a different modeling approach or 
whether different regimes of operation or non-routine events are present. Obtain 
information from building operators to substantiate modeling assumptions and strategies. 

2. Use the current CV(RMSE) criterion of 25% to determine whether a natural gas NMEC 
project is acceptable (models based on daily or monthly time interval data only). Should 
the model fail the CV(RMSE) test, calculate the FSU assuming 10% savings. If there is a 
savings estimate available, use it in the FSU equation instead. If the FSU is < 50% at a 90% 
confidence level, accept the building as an NMEC project. FSU may be used as a criterion as 
long as the model is an ordinary lease squares regression-based algorithm. 

3. If the current gas model fails the CV(RMSE) criterion by a small amount such as 5%, 
consider separating the low gas use from the high gas use period and modeling each 
period separately. Calculate the energy-weighted average CV(RMSE) from the two models 
individual CV(RMSE). If the weighted average CV(RMSE) passes the criterion, accept the 
building as an NMEC project. 
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Abbreviations 
ASHRAE – American Society of Heating Refrigeration and Air-conditioning Engineers 

ARIMA – Autoregressive Integrated Moving Average 

CDD – Cooling Degree Day 

CPUC – California Public Utilities Commission 

FSU – Fractional Savings Uncertainty 

FNR – False Negative Rate 

FPR – False Positive Rate 

GLM – Generalized Linear Model 

GOF – Goodness of Fit (refers to regression model fitness or accuracy metric) 

HDD – Heating Degree Day 

HVAC – Heating Ventilating and Air-Conditioning 

IPMVP - International Performance Measurement and Verification Protocol 

ISD – Integrated Surface Database 

LBNL – Lawrence Berkeley National Laboratory 

MAPE – Mean Absolute Percent Error 

MSE – Mean Squared Error 

NAICS – North American Industry Classification System 

NMBE – Normalized Mean Bias Error 

NMEC – Normalized Metered Energy Consumption 

NOAA – National Oceanic and Atmospheric Administration 

OAT – Outside Air Temperature 

OLS – Ordinary Least Squares 

RMSE – Root Mean Squared Error 

CV(RMSE) – Coefficient of Variation of the Root Mean Squared Error 

wCV(RMSE) – weighted Coefficient of Variation of the Root Mean Squared Error 

n(RMSE) – range normalized Root Mean Squared Error 

t(RMSE) – total energy use normalized Root Mean Squared Error 

TOWT – Time-of-Week and Temperature (refers to a modeling algorithm) 

TPR – True Positive Rate 

TNR – True Negative Rate 

wMAPE – weighted Mean Absolute Percent Error 

3PH – Three Parameter Heating (refers to a modeling algorithm) 
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Introduction 
California has adopted a new approach to capturing the savings potential in existing buildings. 
Leveraging the short time interval data made available from the widespread installation of 
advanced meters throughout the state, utilities and third parties are offering meter-based 
program approaches to customers. In these programs the savings are quantified based on the 
difference between baseline and post-installation period energy use, each normalized to a 
common set of conditions. Known as Normalized Metered Energy Consumption (NMEC), this 
approach requires that an accurate regression-based or other data-driven model be developed 
based on a year of a customer’s energy usage and independent variable data. The independent 
variable data typically includes the ambient temperature and often other influential parameters, 
such as time of use and building operation modes. 

To participate in a site-level NMEC program, the customer’s data-driven model’s goodness of fit 
metrics must meet certain “criteria” as specified in the California Public Utilities Commission’s 
(CPUC) NMEC Rulebook (CPUC 2020).2  A key metric is the coefficient of variation of the root 
mean squared error CV(RMSE), which is one measure of the random error between a model and 
the energy data it is developed from. Good models have small values of CV(RMSE). According to 
the CPUC Rulebook acceptable models must have values lower than 25%. 

By definition, CV(RMSE) is normalized by average energy use over the period. Because of this 
normalization, many commercial building’s natural gas energy models often fail to meet the 
CV(RMSE) criterion due to low energy usage in warmer months. Figure 2 shows examples of low 
natural gas use during these months. For such buildings the annual average energy use is low and 
because it is in the denominator, the CV(RMSE) is high, often above the 25% threshold. Visually, 
the model may track very well with the usage data, be a good predictor of energy use and enable 
reliable savings estimations. However, the project does not qualify for a gas NMEC program 
because it does not meet the CV(RMSE) criterion. Because of this, many building types including 
commercial offices, government, educational, and similar buildings are unable to access natural 
gas NMEC programs.  

While not unique to natural gas use in buildings, this problem is far more prevalent than electric 
or other energy uses in buildings.  

CV(RMSE) is only one metric used to evaluate the appropriateness of a model. Other goodness of 
fit metrics, such as those discussed in this report and others, can be used and may be more 
appropriate, depending on the researchers needs.  

This research project evaluated alternate modeling methods and model acceptance criteria to 
determine how more natural gas projects could participate in site-level NMEC energy efficiency 
programs. 

 

 
2 The Rulebook provides acceptable levels of goodness-of-fit metrics, but the industry takes these as criteria. 
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Figure 2. Examples of low use periods in commercial building natural gas consumption. The charts 
show the daily gas consumption over a typical year. 

Background 
Quantifying savings based on the reduction in a building’s normalized metered energy 
consumption is the same approach as the International Performance Measurement and 
Verification Protocol’s Option C: Whole Facility approach (IPMVP, 2016). Using data monitored 
over time savings are determined from empirical energy models that accurately describe baseline 
and reporting period energy use behavior. The energy models are typically based on regression 
methods developed from available energy use and independent variable data, which generally 
include ambient temperature, but may also include time of use, building occupancy, or other 
parameters.  

For NMEC savings analysis we are concerned with how accurately a model can predict energy use 
under the expected conditions. Model accuracy may be achieved through use of different modeling 
algorithms or modeling strategies. How we quantify modeling accuracy through use of modeling 
metrics plays a key role as well. 

Modeling algorithms have improved from ordinary least squares regression methods, which were 
sufficient for use with monthly billing data, but inadequate with shorter time interval data. An 
example includes ASHRAE’s piecewise linear change-point modeling algorithms (Kissock, et. al. 
2004) that capture energy use behavior with ambient temperature. Another example is Lawrence 
Berkeley National Laboratory’s time-of-week and temperature (TOWT) model (Mathieu, 2011), 
which captures energy use dependance on both temperature and weekly building operation 
schedules. Use of more advanced machine learning algorithms is emerging in some projects. The 
algorithms may be augmented with additional independent variables, which may be indicator 
variables that identify different building operation modes, including low-gas use periods. More 
information on ASHRAE’s change-point and LBNL TOWT modeling algorithms are provided below. 

Energy engineers have used modeling strategies such as separating data from different periods of 
unique building operations and creating separate models for them. The different building 
operation periods may be identified from occupied and unoccupied periods, operation periods of 
equipment, as well as high and low use periods. After models have been developed for the 
different operation periods, they may be combined using binary variables representing each 
operation period so that predictions are made correctly.  
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In California, practitioners implementing NMEC projects assess their models based on model 
goodness of fit (GOF) guidance provided by the CPUC (described in the Literature Review section 
below). Three GOF metrics are used with suggested thresholds for acceptance (LBNL, 2019): the 
coefficient of variation of the root mean squared error, CV(RMSE); the normalized mean bias error, 
NMBE; and the coefficient of determination, R2. Each of these GOF metrics are quantified based on 
energy data and model predictions for the baseline period. 

The CV(RMSE) is a measure of random error or how closely any individual data point may be 
predicted by the model. While smaller values of CV(RMSE) are desired, it is not possible to 
eliminate the CV(RMSE) so the goal is to minimize it. CPUC’s guidance requires CV(RMSE) to be 
less than 25% for acceptable models.  

The NMBE is a measure of bias error, or how accurately the total energy consumption predicted by 
the model matches that of the measured data. Regression methods are based on minimizing bias 
error. CPUC’s guidance requires the NMBE to be between 0.5% and -0.5%. 

R2 describes how well the independent variables explain the energy use behavior. R2 values above 
0.7 indicate a strong relationship between the independent and dependent variables. 
Unfortunately, when there is small or no variation in the dependent variable, R2 values will be low 
despite how accurate the model may be. R2 is not an accuracy metric, rather it is useful when 
comparing one model to another.  

Meeting these GOF requirements represent one way for practitioners to determine a project’s 
appropriateness for an NMEC approach. However, they may present artificial barriers for 
participation of more natural gas projects due to the failure to meet the CV(RMSE) criterion. 

Objectives and Work Plan 
This research work was designed to address the problem of natural gas NMEC projects failing the 
model acceptance criteria through a review of the literature for additional insight, employing and 
testing different modeling algorithms and modeling strategies, and developing and testing 
alternate model acceptance criteria. It was designed to answer the following research questions: 

1. What are appropriate modeling algorithms or strategies that accurately model gas use 
in commercial buildings? 

2. What alternate or more generalized acceptance criteria may be used to overcome 
participation barriers faced by natural gas commercial building NMEC projects due to a 
failure of meeting the goodness of fit criteria described in the CPUC's NMEC Rulebook 
2.0? Should the acceptance criteria focus on model goodness of fit metric values, 
predictive accuracy, or on savings uncertainty?  

3. Are there more generalized model acceptance procedures and criteria that should be 
followed for cases when natural gas usage is low in commercial buildings during some 
portions of the year? 

4. What changes to the modeling acceptance criteria as described in the CPUC NMEC 
Rulebook 2.0 should be proposed as a result of this research? 

A literature review was conducted to inform the selection of different modeling methods and 
strategies, as well as to identify different acceptance methods – whether they be based on 
alternate model goodness of fit metrics or savings uncertainty. A data set was requested of 
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California natural gas utilities to assure an adequately large representation of commercial 
buildings throughout California’s different climate zones and utility service areas.  

The modeling algorithms, modeling strategies, and proposed acceptance criteria were tested 
using the data set. Distributions of results were tabulated and then analyzed to identify potential 
improvements in modeling and acceptance criteria that may help more buildings and customers 
participate in natural gas NMEC efficiency programs. 

The findings from this work may also benefit cases in which any building energy use commodity 
(e.g. steam, chilled or hot water, electricity) has seasonally low usage. The work also provides more 
general insight on energy modeling useful to enable more buildings to participate in California’s 
NMEC programs. 

Literature Review  
A literature review was conducted to identify alternate model goodness of fit and accuracy 
metrics, modeling algorithms, and modeling strategies. Sources of the literature included 
statistical texts, industry literature, discussions with experienced modelers and statisticians, and a 
review of available natural gas NMEC data and modeling approaches.  

Goodness-of-Fit Metrics 
ASHRAE Guideline 14 and the California NMEC Rulebook prescribe the following three metrics to 
evaluate the predictive performance of energy models: CV(RMSE), NMBE, and R2. 

As described above, R2 is an indicator of how well the independent variable explains the variation 
in the energy use. 

Eqn. 1:  𝑹𝑹𝟐𝟐 = 𝟏𝟏 − ∑ �𝑬𝑬𝒊𝒊−𝑬𝑬�𝒊𝒊�𝒏𝒏
𝒊𝒊=𝟏𝟏
∑ (𝑬𝑬𝒊𝒊−𝑬𝑬�)𝒏𝒏
𝒊𝒊=𝟏𝟏

, where 𝑬𝑬𝒊𝒊 and 𝑬𝑬�𝒊𝒊 are the model’s measured and predicted energy 

use at each time interval i respectively, 𝑬𝑬� is the mean energy use 
over the baseline period, and n is the number of baseline model 
points. 

The NMBE describes the bias error of a model’s predictions versus the data. 

Eqn. 2:  𝑵𝑵𝑵𝑵𝑵𝑵𝑬𝑬 =  ∑ �𝑬𝑬𝒊𝒊−𝑬𝑬�𝒊𝒊�𝒏𝒏
𝒊𝒊=𝟏𝟏
𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕

, where 𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 is the total baseline energy use. 

CV(RMSE) is calculated as the random error of the model (RMSE) normalized by the average 
energy use over the period. Note that the random error indicates how well a model follows the 
load profile. 

Eqn. 3: 𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬 = �∑ �𝑬𝑬�𝒊𝒊−𝑬𝑬𝒊𝒊�
𝟐𝟐

𝒏𝒏−𝒑𝒑
𝒏𝒏
𝒊𝒊=𝟏𝟏 , where 𝒑𝒑 are the number of model parameters. 

Eqn. 4: 𝑪𝑪𝑪𝑪(𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬) =  𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬 𝑬𝑬�⁄ , where 𝑬𝑬� is the mean energy use. 

Reddy and Claridge (2000) describe that there are fundamental differences between the R2 and 
CV(RMSE) metrics. They each are normalized indices, but their normalizations are different, 
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therefore their interpretations are different. While their numerators are similar, their 
denominators differ. R2 represents the variation of the dependent variable explained by the model 
compared to the variation in data about the mean value. CV(RMSE) is the mean variation in the 
data not explained by the model normalized by the mean energy use. If the accuracy of the savings 
estimate is the quantity to use when selecting baseline models, the CV(RMSE) is the criteria to 
use over R2.  

However, as described above for natural gas models, the mean energy use as a normalizing term 
often unduly influences the CV(RMSE) of the model.  

An alternative normalizing term is the range of the energy use data, which is the difference 
between the maximum and minimum values of energy use in the model training period. This is 
the range normalized RMSE, or nRMSE: 

Eqn. 5: 𝒏𝒏𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬 = 𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬 (𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎 − 𝑬𝑬𝒎𝒎𝒊𝒊𝒏𝒏)⁄  

The range normalized RMSE scales the random variation of the model predictions about the data 
to the actual range of data without overly compensating for repeated high or low values. The 
normalized RMSE has been tested in energy models and found to be a meaningful and accurate 
representation (Chakraborty and Elzarka, 2017).  

Similarly, the total energy use may be used as an alternate normalizing term. The total normalized 
RMSE is: 

Eqn. 6: 𝒕𝒕𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬 = 𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬 ∑ 𝑬𝑬𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏⁄  

Similarly to the range normalized RMSE, the total normalized RMSE scales the random variation of 
the model predictions about the data to the total amount of energy use of the model training 
period. Various sources report on the differences in normalizing the RMSE.3 

An alternate way to calculate a measure of the random error is to weight the contribution to 
model variation by the amount of energy represented. The weighted CV(RMSE) may be used: 

Eqn. 7: 𝒘𝒘𝑪𝑪𝑪𝑪(𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬) =  𝑬𝑬𝒍𝒍𝒕𝒕𝒘𝒘−𝒖𝒖𝒖𝒖𝒖𝒖∙𝑪𝑪𝑪𝑪
(𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬)𝒍𝒍𝒕𝒕𝒘𝒘−𝒖𝒖𝒖𝒖𝒖𝒖+𝑬𝑬𝒉𝒉𝒊𝒊𝒉𝒉𝒉𝒉−𝒖𝒖𝒖𝒖𝒖𝒖∙𝑪𝑪𝑪𝑪(𝑹𝑹𝑵𝑵𝑹𝑹𝑬𝑬)𝒉𝒉𝒊𝒊𝒉𝒉𝒉𝒉_𝒖𝒖𝒖𝒖𝒖𝒖

𝑬𝑬𝒍𝒍𝒕𝒕𝒘𝒘_𝒖𝒖𝒖𝒖𝒖𝒖+𝑬𝑬𝒉𝒉𝒊𝒊𝒉𝒉𝒉𝒉_𝒖𝒖𝒖𝒖𝒖𝒖
  

In this case the model is broken up into two distinct use regimes, where 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙_𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐸𝐸ℎ𝑖𝑖𝑖𝑖ℎ_𝑢𝑢𝑢𝑢𝑢𝑢 
are the totals used during those periods, with 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙_𝑢𝑢𝑢𝑢𝑢𝑢 + 𝐸𝐸ℎ𝑖𝑖𝑖𝑖ℎ_𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝐸𝐸𝑖𝑖𝑛𝑛

𝑖𝑖=1 . The 
wCV(RMSE) reduces the contribution of the model variation that occurs from low energy use 
periods of time during the training period. Reddy and Claridge (2000) discuss the use of weighted 
CV(RMSE) with change-point models. 

Other random error metrics do not use the square root of squared residuals �𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑖𝑖�, which tend 
to over-emphasize the contribution of large errors between predictions and measured values. 
Instead, an absolute value of the error is used since we are interested in the magnitude of the 
random error and not in its direction (positive or negative). One such metric is the mean absolute 
percentage error, MAPE. 

 
3 One such source is: https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/# 
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Eqn. 8: 𝑵𝑵𝑴𝑴𝑴𝑴𝑬𝑬 =  𝟏𝟏
𝒏𝒏
∑ �𝑬𝑬𝒊𝒊−𝑬𝑬

�𝒊𝒊
𝑬𝑬𝒊𝒊

�× 𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏
𝒊𝒊=𝟏𝟏  

However, this definition suffers when actual values of energy use are zero or near zero. To account 
for low values, a modified version is used, called the weighted MAPE, wMAPE. 

Eqn. 9: 𝒘𝒘𝑵𝑵𝑴𝑴𝑴𝑴𝑬𝑬 = ∑ �𝑬𝑬𝒊𝒊−𝑬𝑬�𝒊𝒊�𝒏𝒏
𝒊𝒊=𝟏𝟏
∑ |𝑬𝑬𝒊𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏

× 𝟏𝟏𝟏𝟏𝟏𝟏 

Uncertainty 
Savings can never be directly measured, it can only be estimated from the difference between the 
baseline model predictions and measured energy values. We determine how well we know the 
savings by estimating the uncertainty of our calculations. The uncertainty is a probabilistic 
statement of the confidence we have that the actual amount of savings lies within a specified 
interval. Proper statements of uncertainty require a precision and confidence level.  

ASHRAE Guideline 14-2014 provides a relatively simple formula for estimating savings uncertainty 
that relates the CV(RMSE) and the amount of savings expected for the project, referred to as the 
Fractional Savings Uncertainty (FSU). For a selected confidence level, this formula states how 
accurately the savings can be calculated for a given model based on the expected amount of 
savings. CPUC uses a 90% confidence level by convention, while ASHRAE Guideline 14-2014 
requires a 68% confidence level for compliance. The uncertainty must be less than 50%, as savings 
is stated as the value ‘plus or minus’ the uncertainty (since plus or minus 50% leads to a 100% 
band). ASHRAE provides different versions of the FSU formula based on whether the model 
residuals have autocorrelation. Models based on shorter time periods such as daily or hourly have 
higher degrees of autocorrelation. For cases with autocorrelation, the ASHRAE formula is provided 
below. 

Eqn. 10: 𝑭𝑭𝑹𝑹𝑭𝑭 =  ∆𝑬𝑬𝒖𝒖𝒎𝒎𝒔𝒔𝒖𝒖
𝑬𝑬𝒖𝒖𝒎𝒎𝒔𝒔𝒖𝒖

= �𝒎𝒎𝑵𝑵𝟐𝟐+𝒃𝒃𝑵𝑵+𝑪𝑪�𝒕𝒕
𝒎𝒎𝑬𝑬�𝒃𝒃𝒎𝒎𝒖𝒖𝒖𝒖,𝒏𝒏𝑭𝑭

�𝑵𝑵𝑹𝑹𝑬𝑬′ �𝟏𝟏 + 𝟐𝟐
𝒏𝒏′
�𝒎𝒎�

𝟏𝟏.𝟓𝟓
, where 𝑬𝑬�𝒃𝒃𝒎𝒎𝒖𝒖𝒖𝒖,𝒏𝒏 is the mean baseline 

use, 𝑭𝑭 is the fraction of savings from baseline use, M is the number of months in the 
post period, and a = -0.00024, b = 0.03535, and c = 1.00286 for daily models. 

Eqn. 11: 𝑵𝑵𝑹𝑹𝑬𝑬′ = 𝟏𝟏
𝒏𝒏′−𝒑𝒑

∑ �𝑬𝑬𝒊𝒊 − 𝑬𝑬�𝒊𝒊�
𝟐𝟐𝒏𝒏

𝒊𝒊=𝟏𝟏  

Note that CV(RMSE) in this equation has been modified to use the apparent number of 
independent data points n’, which is less than the total number of baseline period points n. 

Eqn. 12: 𝒏𝒏′ = 𝒏𝒏 (𝟏𝟏−𝝆𝝆)
(𝟏𝟏+𝝆𝝆), where 𝝆𝝆 is the correlation coefficient between residuals offset by one time step 

(referred to as lag 1 autocorrelation). 

The inclusion of the polynomial (𝑎𝑎𝑀𝑀2 + 𝑏𝑏𝑀𝑀 + 𝑐𝑐) was an improvement by Sun and Balthazar 
(2013) to the original ASHRAE Guideline 14-2014 version provided by Claridge and Reddy (2000). 

Accounting for autocorrelation in energy use data is a complicated issue. For example, the data 
could be related to other data points besides its immediate successor or predecessor in time. In 
daily models, energy use on Mondays may be related to energy use on previous or following 
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Mondays in buildings, as Monday natural gas use may be higher than other weekdays due to 
building warm up after a weekend shutdown. Autocorrelation complicates methods to estimate 
savings uncertainty. Not accounting for autocorrelation can greatly underestimate the savings 
uncertainty. 

A study was performed by LBNL to test the reliability of different uncertainty methods to estimate 
prediction uncertainties (Touzani, et. al. 2019). While not 100% reliable in all cases, ASHRAE’s FSU 
for daily linear models was found to provide reliable uncertainty estimations in over 75% of cases, 
using TOWT models the number dropped to approximately 60%.  

Koran (2017) examined four methods for estimating uncertainty using four different data sets. 
The methods included ASHRAE’s FSU, the improvement to the FSU equation described above, an 
algebraic solution for aggregated uncertainty from OLS methods, and bootstrap resampling 
methods. Three of the data sets consisted of synthetic data with increasing levels of 
autocorrelation; the fourth data set was data from a real building. He tested the synthetic data 
sets with linear relationships and the real data set with a four-parameter change point model 
(Kissock, 2004). Several interesting findings were made: 

a) The improved FSU, aggregated OLS uncertainty, and bootstrapping methods produced 
almost identical results for datasets without autocorrelation, 

b) The improved FSU method significantly overstated its impact on uncertainty in 
comparison with bootstrap methods, 

c) The aggregated OLS and improved FSU methods overestimated the uncertainty, and 
d) All of the approaches provided reasonable results, with no approaches differing by orders 

of magnitude or even a factor of two. 

Shonder and Im (Shonder and Im, 2012) find that assessment of savings accuracy are infrequently 
considered, in part because classical statistical methods are difficult to apply. Bayesian inference 
provides an alternate method to quantify savings and savings uncertainty in efficiency projects, by 
applying probability distributions to parameters used in the analysis and estimating the results 
with numerical techniques. A natural gas boiler replacement project is used to compare results 
using classical statistical methods with the Bayesian inference approach and shown to be the 
same. A second example is used to show the power of the Bayesian inference method when the 
data exhibit nonlinearity and serial autocorrelation, a situation in which there are no analytical 
solutions. 

It would be interesting to carry out such a comparison of different uncertainty methods on a 
larger number of data sets, however this was beyond the scope of the current effort. 

Modeling Algorithms 
Energy-use prediction is traditionally carried out using a variety of linear models, including change 
point (or piecewise linear), time-of-week and temperature, and degree-day models. These models 
are based on ordinary least squares (OLS) regression, allowing the use of the ASHRAE uncertainty 
calculations described above. 

In modeling building energy consumption, the most common independent variable is the outdoor 
air temperature. Ambient weather conditions affect a building’s HVAC systems, which are 
approximately 40% of a typical non-residential building’s energy use. Change-point models are a 
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class of models that capture the trends of energy consumption over the range of ambient 
temperatures. These models range from two parameter heating or cooling to five-parameter 
heating and cooling models. The number of parameters refer to the number of coefficients that 
represent the model. Two parameter models capture a single linear relationship between outside 
air temperature (OAT) and whole-building energy consumption and are used for either heating or 
cooling scenarios. Three parameter models capture the linear relationship between energy use and 
OAT above or below a change point, and a constant relationship between OAT and energy use (i.e., 
energy-use is assumed constant) at other times. The change-point is said to have physical 
significance for the building, as it delineates the temperature below which heating is required and 
above which the required heating, if any, is insensitive to temperature. 

Four parameter models are similar to three parameter models, but with two different linear 
relationships (slopes) on either side of the change-point. Five parameter models are for electric 
heated and cooled buildings (Kissock, 2004). 

Time-of-week and temperature (TOWT) models (Mathieu, et. al. 2011) use time-of-week indicator 
variables and piecewise linear temperature dependence to capture energy dependence on both 
weekly operations and ambient temperature. As with change-point models, the temperature 
dependences are piecewise linear, however multiple segments may be used and their change-
points may not always be physically significant. There are seven time of week indicator variables 
for models developed from daily data, as is common for natural gas. 

Other strategies to consider are autoregressive integrated moving average (ARIMA) models and 
generalized linear models (GLM). While ARIMA models assume an underlying stationary process 
(constant mean and variance), processes with a cyclical component (such as seasonal variations) 
can be decomposed into multiple ARIMA process. ARIMA models have shown promise in 
predicting natural gas demand (Erdogdu, 2010) based on previous demand and prices. GLM are 
similar to classical linear regression models (Dunn & Smyth, 2018), but do not assume a linear 
relationship between the predictors and the response variable. Leading to greater flexibility in the 
processes modeled. Furthermore, GLMs do not require the errors of the response variable to be 
normally distributed. While the scope of this project did not allow investigation into these 
strategies, further research may be done on the ability of these types of models to compensate for 
seasonally low natural gas usage. 

Modeling Strategies 
Modeling strategies involve breaking up a building dataset and creating separate models for each 
portion of the data. Modeling strategies are often used when distinctly different operation modes 
are present, such as a school’s in-session and vacation and summer periods. Low gas use periods 
of non-residential buildings may be separated and modeled separately, often using simple 
averages of the low use period. An appropriate modeling algorithm may be applied to the 
remaining high-use data. A key to making predictions using a baseline model that is made up of 
two or more sub-models is knowing when to apply each sub-model. An indicator variable that 
takes on a value of one or zero depending on the time of year or the temperature exceeding a 
certain value may be used to apply a sub-model in a grand equation that includes each sub-model. 
Such modeling strategies may be complicated to program and are often implemented manually in 
spreadsheets. 
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The overall model pieced together with sub-models must pass the goodness of fit criteria to 
participate in a site-level NMEC program, but how should the metrics be calculated? Two options 
may be used: 1) determine the goodness of fit metrics based on the final pieced-together model 
estimates and training period data, and 2) determine the goodness of fit metrics for each sub-
model and combine them using an energy-weighted average (Eqn. 7). As described above, 
weighting the contribution to the overall model goodness of fit by the energy use it represents is 
the logical approach. 

Predictive Accuracy 
Evaluating a model over only the training period provides an incomplete picture about its 
predictive ability. A common approach to evaluating a model is to test its predictions on a similar 
but new dataset. In scenarios where at least 18 months of data is available, this approach might be 
useful in evaluating good models for sites with gas-use NMEC projects. Eighteen months of data 
generally includes a full range of gas use and temperature conditions. Due to the issue with the 
normalizing term in CV(RMSE) described above, the models may present with summary statistics 
that show poor model accuracy. However, if the predictive accuracy of these models can be 
evaluated and quantified, this approach might provide a pathway for allowing gas-use projects to 
participate in NMEC programs. The prediction intervals on the out-of-sample predictions may be 
used to quantify the uncertainty in savings calculated over the post-period data.4  

Methodology 
The literature review provided several alternate goodness of fit metrics, modeling methods, and 
modeling strategies worthy of investigating. To investigate them, a large number of individual 
building natural gas data sets were required. To assure the results were fairly representative of all 
potential natural gas site-level NMEC projects, several considerations were made in selecting the 
data. The main considerations were: 

• The dataset should have a high percentage of buildings known to fail the current goodness 
of fit requirement, CV(RMSE) < 25%. The study seeks alternate methods to improve the 
rate of acceptance for these buildings. 

• The dataset should also have a large number of buildings that pass the current goodness of 
fit requirement. Any recommendations for alternate methods must not reduce the rate of 
acceptance of projects that meet the current criteria. 

• The dataset should include buildings from both warm and cool climate zones. Weather 
conditions heavily influence natural gas consumption in commercial buildings. The 
alternate methods should be generally applicable regardless of the climate zone where the 
building is located. 

• The dataset should include many types of buildings in the commercial and public sectors 
from all over the state.  

• Buildings should have a minimum 10,000 therms of annual natural gas use to assure the 
dataset includes buildings with a significant potential for savings in an NMEC program. 

• Individual premise natural gas data was collected at daily time intervals over two years 
prior to the shutdown order in March 2020 due to the COVID-19 pandemic.  

 
4 See discussion in https://online.stat.psu.edu/stat508/lesson/2/2.   

https://online.stat.psu.edu/stat508/lesson/2/2
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o Accuracy of NMEC savings analysis is improved through use of advanced modeling 
algorithms with shorter (than monthly) time interval data.  

o Two years of data enable quantification of model prediction errors which are useful 
in the evaluation. 

o The dataset should not be complicated by the known low gas use impacts that 
occurred due to the COVID-19 pandemic. 

A deeper discussion is provided here to address the first few items in the above list. 

Building types that typically fail the existing model goodness of fit criteria are those that have low 
and no gas usage over significant portions of the year. This is the case in buildings where there are 
few natural gas end uses, such as only for space and domestic water heating. These cases include 
most commercial building types such as commercial office, educational (K-12, college and 
university classroom or administrative), and public sector buildings (state and local government 
office, city halls, and community centers). These are referred to as ‘Affected’ building types. Other 
building types including laboratories, hospitals, and medical offices have additional end-uses for 
natural gas, and do not exhibit long periods of low use during the year. We refer to these as 
‘Unaffected’ building types. Residential buildings were excluded from the study since these 
buildings typically consume gas for other end-uses, such as cooking and gas dryers, which do not 
exhibit seasonal dependance, and are not good candidates for site-level NMEC projects. 

Because of the above considerations, it was assumed that Affected buildings could be represented 
by a few distinct building types. The IOUs record North American Industry Classification System 
(NAICS) code5 in their customer databases. Several NAICS codes were identified for the Affected 
building types, including: 

• 551114: Corporate Offices 
• 921190: Personnel Offices, Government 
• 92XXXX: Public Administration 
• 61111X: Elementary and Secondary Schools (elementary, charter, high school, etc.) 
• 6112XX: Junior Colleges 
• 6113XX: Colleges, Universities, Professional Schools 
• 6114XX: Business Schools 
• 624120: Community Centers 

NAICS codes for Unaffected building types included: 

• 622110: Hospitals 
• 621512: Medical radiological laboratories 
• 621511: Laboratories, medical 
• 621511: Forensic laboratories 
• 62151X: Medical and diagnostic laboratories 

Thirty Affected and Unaffected natural gas building data sets were requested from each utilities’ 
climate zone. The request was made based on the Affected and Unaffected categories, not based 
on particular NAICS codes. To maintain confidentiality, customer ID numbers were randomized 

 
5 NAICS codes may be found at https://www.census.gov/naics/.  

https://www.census.gov/naics/
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but unique so that each building data set could be identified but not have any relationship with 
the actual customer. In some cases, the utilities reported back that thirty buildings were not 
available for every climate zone, particularly in the less populated inland areas of California.  

A data collection plan was developed, and individual data requests were provided to each 
participating utility as guidance for collecting and providing data. All data was provided under 
non-disclosure agreements.  

Once data was received from each utility, it was reviewed and prepared for analysis. A majority of 
the data sets were of high quality, included the requested two years, and were in daily time 
intervals. Some data quality issues were encountered. The issues and their resolutions included:  

• Issue: Data with irregularly spaced timestamps, not uniform daily intervals. Irregular time 
intervals that spanned multiple days. These were from meters with low communication 
rates over multiple days. Resolution: This data was not used. 

• Issue: Data sets with two or more identifying numbers. Resolution: These were identified 
and resolved with the source utility. 

• Issue: Dropped data resulting from meter reading issues. Resolution: If the dropped data 
was a significant portion of the data, the entire dataset was discarded. This resulted in less 
than 2% of the data sets being discarded. 

After data preparation, a total of 635 building data sets were available for analysis, where a 
building data set consists of two years of data from a single building 

Using the zip codes, the climate zone was identified for each building. Ambient temperature data 
in hourly time intervals was downloaded from NOAA Integrated Surface Database (ISD) for each 
climate zone for the two year duration of the study. kW Engineering’s open-source R package, 
nmecr (kW Engineering, 2019), was used to develop models based on the first year (training 
period) of each building. 

The nmecr R code was developed for site-level NMEC projects. Among other features, it allows the 
user to select a modeling algorithm and an analysis time interval (hourly or daily) when 
developing energy models. Multiple modeling algorithms are included in the nmecr package: a 
version of LBNL’s time-of-week and temperature (TOWT) model, the family of ASHRAE’s piecewise 
linear change-point models, and heating- and cooling-degree day models. All modeling algorithms 
are based on ordinary least squares regression. The nmecr code calculates each of the required 
goodness of fit metrics CV(RMSE), NMBE, and R2. It also calculates ASHRAEs FSU based on a user-
input amount of savings, or a default 10% value. 

An analysis platform was set up to intake individual natural gas and ambient temperature data 
sets, run the selected modeling algorithm, and output the goodness of fit metrics. TOWT was 
chosen to model each data set, because it accounts for both ambient temperature and weekly 
operation effects on energy use. Using the training period energy use and the model estimates, 
the alternate goodness of fit metrics were calculated in the platform. To test how accurately each 
model predicted energy use, second year temperatures were used in the training period models to 
predict second year energy use. We refer to the second year as the test period. The same metrics 
evaluated for the training period were also calculated for the test period. In addition, we calculated 
the percent difference between test period predictions with test period actual values. 
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The training and test period goodness of fit metrics, alternate metrics, FSU, and test period 
percent accuracy for each building data set were output to a summary spreadsheet. Included were 
each building’s meta data, including building identifier, source utility, zip code, climate zone, and 
Affected or Unaffected status based on NAICS code and based on meeting the CV(RMSE) < 25% 
criterion, so that results could be filtered and analyzed under different conditions. 

To test the relevance of different modeling algorithms, we re-ran the analysis on the same data 
using a three parameter heating (3PH) model. This created a new summary spreadsheet of results. 
To evaluate the relevance of a weighted CV(RMSE), the 3PH modeling platform was modified to 
determine the CV(RMSE) for the low and high use periods separately, then determine their 
weighted average. 

Exploration of alternative modeling strategies were performed manually. For ten sites that had not 
passed the CV(RMSE) criterion, the low use portion of the year was separated from the high use 
portion of the training period and separate models were created for each portion. The sites were 
selected from the data sets to include only those with explicit low use periods in the training 
period. 

The summary spreadsheets were used to quantify the percentage of buildings that passed the 
current goodness of fit CV(RMSE) criterion as well as the FSU criterion from ASHRAE (< 50% at a 
90% confidence level). Currently no references provide suggested acceptance levels for the other 
metrics calculated for each model: nRMSE, tRMSE, and wMAPE. In addition, examination of each 
metric’s summary statistics and distributions provides no real insight for an appropriate 
acceptance criterion. 

To develop further insight, a binary classification method was used.6 Binary classification may be 
used to understand the outcome of a particular test in the context of a whether a given condition 
holds true or not. For example, a new diagnostic test for whether a patient has a disease or not 
may be evaluated using binary classification. The condition is whether a patient has the disease, 
and the new diagnostic test outcome can be compared against it. Four possibilities exist:  

• True Positive (TP): the patient is diseased and the test predicts as diseased 
• False Positive (FP): the patient is healthy but the test predicts as diseased 
• True Negative (TN): the patient is healthy and the test predicts as healthy 
• False Negative (FN): the patient is diseased but the test predicts as healthy 

where TP, TN, FP, and FN are the number of true positive, true negative, false positive, and false 
negative cases for a set of results, respectively. Binary classification is useful for focusing on 
individual rates, such as true positive rate (TPR), which is a measure of how good a test is at 
identifying positive cases, and true negative rate (TNR), which describes how good the test is at 
identifying negative cases. The complements of these rates are false negative rate (FNR) and false 
positive rate (FPR), respectively. Because they are complements, one only needs to look at two of 
these four metrics to get a complete picture of how good a test is at classification. 

 

 
6 A good description of binary classification may be found here: 
https://en.wikipedia.org/wiki/Binary_classification  

https://en.wikipedia.org/wiki/Binary_classification
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Eqn. 13: 𝑻𝑻𝑴𝑴𝑹𝑹 = 𝑻𝑻𝑴𝑴
𝑻𝑻𝑴𝑴+𝑭𝑭𝑵𝑵

 Eqn. 14:   𝑭𝑭𝑵𝑵𝑹𝑹 = 𝑻𝑻𝑵𝑵
𝑻𝑻𝑴𝑴+𝑭𝑭𝑵𝑵

= 𝟏𝟏 − 𝑻𝑻𝑴𝑴𝑹𝑹 

Eqn. 15: 𝑭𝑭𝑴𝑴𝑹𝑹 = 𝑭𝑭𝑴𝑴
𝑻𝑻𝑵𝑵+𝑭𝑭𝑴𝑴

= 𝟏𝟏 − 𝑻𝑻𝑵𝑵𝑹𝑹 Eqn. 16:  𝑻𝑻𝑵𝑵𝑹𝑹 = 𝑻𝑻𝑵𝑵
𝑻𝑻𝑵𝑵+𝑭𝑭𝑴𝑴

 

The alternate goodness of fit metrics were evaluated using this binary classification methodology. 
For our purposes we focused on classification performance with respect to TPR, and FPR. The 
given condition was whether the building data set was ‘modelable.’ We defined ‘modelable’ as 
cases when the model’s prediction error was low – that is, the model accurately predicted the total 
energy use of the test period. This condition was set when the absolute prediction error was lower 
than a selected value, such as 2%. Modelable cases are those cases that we believe are a good fit 
for an NMEC project regardless of their CV(RMSE) 

To investigate the alternate goodness of fit metrics, we varied their acceptance criteria over a wide 
range of values. Using plots that show how the true positive rates and false positive rates change 
as the metric’s acceptance criterion was varied provided insight on the worthiness of each metric 
as well as an indication of an appropriate value of its acceptance criterion. This also enabled 
insightful comparisons of the binary classification outcomes between different modeling 
algorithms. The results of a binary classification experiment as applied to this use-case can be 
represented with the contingency table shown in Table 1.  

Table 1. Binary Classification Contingency Table 

  Classification when using a particular criterion 

  Test Outcome Positive Test Outcome Negative 

Ground truth 
classification, 

based on NMBE 

Condition Positive 
(NMBE ≤ 0.02) True Positive False Negative 

Condition Negative 
(NMBE > 0.02) 

False Positive True Negative 

 

Results and Discussion 

NAICs Code as Indicator of Affected Buildings 
The NAICs codes used to select buildings for this study turned out to be a fairly good indicator of 
buildings that have low natural gas use during the warm summer months. Categorizing by NAICs 
codes, about 55% of the building data set collected were considered Affected buildings (had low 
energy use in warm months). These NAICs codes were: 

• 551114: Corporate Offices 
• 921190: Personnel Offices, Government 
• 92XXXX: Public Administration 
• 61111X: Elementary and Secondary Schools (elementary, charter, high school, etc.) 
• 6112XX: Junior Colleges 
• 6113XX: Colleges, Universities, Professional Schools 
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• 6114XX: Business Schools 
• 624120: Community Centers 

After modeling the first year of natural gas use and checking the CV(RMSE), we found that 50% of 
the data sets did not pass the CV(RMSE) criterion. The percentage of Affected NAICs code cases 
that actually did not pass the CV(RMSE) criterion was 91%. Further, 85% of the total data set had 
agreement between the building status as determined by the NAICs code and the status as 
determined by modeling the building (with the TOWT algorithm). This showed that the NAICs 
code provided a good indication of a building that may not pass the Rulebook goodness of fit 
criterion. Additional considerations as outlined here should be considered in order to accept the 
building as a natural gas NMEC project. 

Data Quality 
The observed quality of the natural gas data was poor in comparison with electricity use data sets. 
Gas data tends to show more erratic usage patterns than electricity. Figure 3 shows two examples 
of issues with gas use in commercial buildings. As demonstrated by the left chart in Figure 3, 
there can be excessive periods of zero values in the data set. This may indicate data recording or 
collection errors. As the chart on the right of Figure 3 shows, step-wise shifts in gas use are often 
present, which may be caused by non-routine events in the building, or reflect manual operations 
of gas equipment. The chart also shows periods where repeated values are present, which may be 
the result of poor resolution of the gas meter or problems with gas data telemetry. Utility natural 
gas meters generally measure gas flow, and the meters used are not as accurate as their electric 
meter counterparts. This work did not address treatment of individual building non-routine 
events, however it should be recognized that non-routine events can often be accounted for with 
different modeling approaches and strategies and qualify as a site-level NMEC project in most 
programs. This report does not address methods for treating individual project non-routine 
events. 

 
Figure 3. Examples of Poor Quality Gas Data Sets.  

Binary Classification 
To use the binary classification strategy outlined above, buildings were considered part of the 
positive class if they were a good candidate for nmec (modelable), and negative class if they were 
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not a good candidate (unmodelable). Ground truth of the class was determined by the test period 
absolute value of NMBE (Eqn. 2), with a 2% limit between the model’s prediction and actual total 
year two gas use. Thus, buildings that had a test period absolute value of NMBE less than or equal 
to 0.02 were considered part of the positive class. Of the 635 buildings considered, 95 (15%) 
qualified as modelable using this criterion. A true positive case was when the selection criterion 
agreed with a modelable building case. A false postive case was when the selection criterion 
indicated an acceptable model however the building was not considered modelable. Figure 4 
provides an example of a true positive case and Figure 5 provides an example of a false positive 
case.  

 
Figure 4. True positive case: |Test NMBE| = 0.4%, CV(RMSE) = 11%. 

 
Figure 5. False positive case: |Test NMBE| = 33%, CV(RMSE) = 12.5%. 

Following are the results of the evaluation of the existing and alternate goodness of fit metrics for 
two modeling algorithm cases: TOWT and a three-parameter change-point model (3PH). 

Modeling with TOWT 
We developed TOWT models for the first year of gas data for 635 building data sets, then compiled 
the various metrics into a summary spreadsheet. As described above, 50% of those buildings did 
not pass the CV(RMSE) criterion (must be lower than 25%). Of these Affected buildings, we 
calculated the FSU assuming 10% savings and found that 13% of these Affected buildings passed 
the FSU < 50% criterion. This result supports the FSU metric as superior to CV(RMSE) for selecting 
models. FSU considers model variation in context with the amount of savings. Because FSU varies 
inversely with the amount of savings, higher estimated savings will yield lower values of FSU. 
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Considering that natural gas has relatively fewer end uses in buildings as compared to electricity, 
it is mainly used for space and water heating, efficiency applications in natural gas end uses can 
often yield savings over 10% of annual use.  

When using the binary classification method to evaluate all datasets (Affected and Unaffected), 
Using CV(RMSE) as the selection criteria for NMEC led to a TPR of 74%, a FPR of 47% at the 
current cut-off threshold of 25% (shown in Figure 6, with the 25% cut-off threshold marked by a 
vertical line). This chart shows how the TPR and FPR change as the cut-off threshold (shown on 
the x-axis) is increased. Note that the TPR increases faster than the FPR initially, then maintains a 
relatively constant 28% separation between the 15% and 25% cut-off threshold, then shows how 
increasing the cut-off threshold beyond 25% leads to relatively smaller increases in the TPR, while 
the FPR increases faster. This supports the selection of the 25% CV(RMSE) criterion currently 
required for site-level NMEC projects.  

The number of false positive cases (unmodelable buildings that pass the goodness of fit criterion) 
seems high at 47%. A metric that significantly reduces the number of false positive cases while 
maintaining high numbers of true positive cases would be preferred. 

 
Figure 6. True positive and false positive rates for a TOWT model when using CV(RMSE) as a criterion 
to qualify a data set for use in an NMEC project. 

Using FSU instead of CV(RMSE) led to a TPR of 70%, a FPR of 43% at the ASHRAE Guideline 14 
50% criterion. (See Figure 7, with the 50% cut-off threshold marked). As with the trends with the 
cut-off threshold in the CV(RMSE) chart above, this chart shows that the FSU TPR increases faster 
than the FPR initially as the cut-off threshold increases, but slows considerably at higher 
thresholds. At the 50% threshold, the TPR and FPR rates are similar but slightly lower than those 
for CV(RMSE).  
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Figure 7: True and false positive rates on a TOWT model when using FSU as a criterion. 

 
Figure 8: TPR and FPR for alternate metrics wMAPE and nRMSE as compared to CV(RMSE). 

The binary classification results for the alternate metrics are shown in Figure 8. The nRMSE TPR 
and FPR have similar behavior over the entire range of cut-off thresholds, with little separation 
between them, showing little effectiveness in this metric’s ability to identify modelable and 
unmodelable buildings. The results for wMAPE show higher TPR than that for CV(RMSE), but also 
significantly higher FPR from the 20% threshold and above, which is too high. The binary 
classification analysis for tRMSE yielded threshold values two orders of magnitude smaller than 
shown for CV(RMSE). Further analysis was discontinued for tRMSE as it was not considered to be 
informative. 
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Modeling with 3PH 
The TOWT model is generally more accurate than simpler model forms for commercial building 
gas use because the model uses the time of week as an additional regressor along with ambient 
temperature. To understand whether the model algorithm choice had any significant differences 
from those described above, we re-ran the analyses using a three-parameter change-point (3PH) 
model (Kissock, et. al., 2004). This is a piecewise linear model with only ambient temperature (or 
other weather variable) as the independent variable. This model form was selected as it was 
considered appropriate for buildings with low gas use in warm months. As shown on the left side 
of Figure 9, energy use decreases as temperatures increase from low values until heating is no 
longer necessary, at which time natural gas use flattens. The 3PH model has a change-point 
between the sloped and flat portions of the linear segments. The charts also show how a TOWT 
model predicts this building’s gas use. It shows that it can predict negative values of gas use 
during these low use periods. 

 
Figure 9: Comparison of 3PH and TOWT models, left: scatter plot with temperature, right: time series 
plot. 

The 3PH models were analyzed in the same way as the TOWT models and the binary classification 
scheme was used to compare the results. In this case, CV(RMSE) led to a TPR of 65% and a FPR of 
41% at the 25% threshold, which was a poorer outcome for the TPR and a somewhat better 
outcome for the FPR in comparison with the TOWT results.  
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Figure 10: True and false positive rates for a 3PH model when using CV(RMSE) as a criterion. 

Similarly to the TOWT results, the FSU analysis led to comparable though slightly poorer 
outcomes when compared to the CV(RMSE) results, with a TPR of 62%, and an FPR of 40% at the 
50% threshold.  

In a similar analysis on Affected buildings (not using the binary classification method), 45% of the 
buildings failed the CV(RMSE) criterion when the buildings were modeled with the 3PH model. 
Using FSU on the 3PH models that failed the CV(RMSE) criterion, 10% of the Affected buildings 
then passed.  

 
Figure 11: True and false positive rates for a 3PH model when using FSU as a criterion. 
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Weighted CV(RMSE) 
Using the 3PH model we developed a weighted CV(RMSE) by developing CV(RMSE) for the high 
and low gas use period separately, then combining them using each periods gas usage as a 
weighting factor. This strategy reduced the contribution of the CV(RMSE) from the low use period 
in the final weighted CV(RMSE). Using the binary classification analysis, the results are shown in 
Figure 12. In comparison with the unweighted CV(RMSE), the TPR and FPR were practically the 
same at 65% and 41% respectively. A summary of the binary classification results is shown in 
Table 2. 

 
Figure 12. True and false positive rates for a 3PH model when using wCV(RMSE) as a criterion. 

 

Table 2: Summary of Binary Analysis Results with Two Models 

 TOWT Model 3PH Model 

 CV(RMSE) at 
25% Threshold 

FSU at 50% 
Threshold 

CV(RMSE) at 
25% Threshold 

FSU at 50% 
Threshold 

wCV(RMSE) at 
25% Threshold 

True Positive 
Rate (TPR) 

74% 70% 65% 62% 65% 

False Positive 
Rate (FPR) 

46% 42% 41% 40% 41% 

 

Climate Zone Effects 
We analyzed the data to understand whether there were any weather-related effects. Natural gas 
use in commercial buildings is mainly for heating, and California has sixteen defined climate zones 
throughout the state. Colder climate zones will have longer periods of gas use throughout the year 
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while milder climate zones will have longer periods on little or no gas use. We analyzed the data by 
cold and mild climate to determine if there were any weather effects. 
 
To sort the data into cold and mild climate zones, we collected heating and cooling degree day 
(HDD and CDD) data for each climate zone from a published source (PG&E, 2006). This report 
provided the HDD and CDD data for four locations in each of California’s 16 climate zones. The 
mean HDD and CDD were recorded for each zone and plotted in a bar chart, Figure 13. Based on 
the chart, cold climate zones were identified as those having over 2,000 HDD annually, while mild 
climate zones were those with under 2,000 HDD. Table 3 identified the cold and mild climate 
zones and Figure 14 shows their general location in California. 
 

 
Figure 13. Average heating and cooling degree days for California’s 16 climate zones. 

 

Table 3. Climate zones classification. 

Classification Climate Zones 

Cold (> 2,000 HDD) 6, 7, 8, 9, 10, 15 

Mild (< 2,000 HDD) 1, 2, 3, 4, 5, 11, 12, 13, 14, 16 
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Figure 14. California climate zone map.7 

 
Of the 635 data sets, 70% of them were in cold climates. We separated the cold and mild building 
data sets into separate spreadsheet tabs to complete similar analysis comparing CV(RMSE) and 
FSU as described above. The results are compiled in Table 4. 

Table 4. Results by climate zone type. 

Climate 
Zone Type 

# Buildings % Affected 
Buildings 

% Additional 
Buildings 

Cold 445 52.4% 13.4% 

Mild 189 45.2% 12.7% 

 

 
7 Image taken from CEC Title 24 Residential Compliance Manual, https://www.title24express.com/what-is-
title-24/title-24-california-climate-zones/.  

https://www.title24express.com/what-is-title-24/title-24-california-climate-zones/
https://www.title24express.com/what-is-title-24/title-24-california-climate-zones/
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Table 4 shows that there are more buildings that do not pass the CV(RMSE) criterion in colder 
California climates, but not by a dramatic amount over that in milder climates. When FSU is 
calculated for these Affected buildings, the rate of improvement is consistent between the two 
climate classifications at approximately 13%. This shows that there isn’t a bias introduced by 
using FSU for cases when the building initially fails the CV(RMSE) criterion. 

Modeling Strategy 
A modeling strategy of manually separating the low use period gas data and developing separate 
models on each was performed on then randomly selected Affected sites, each that failed to pass 
the CV(RMSE) criterion. Separate TOWT models were developed for the high use and the low use 
periods, the CV(RMSE) for each model was determined and an energy-weighted CV(RMSE) was 
developed for the entire year. Results are shown in Table 5. 

Table 5. Weighted CV(RMSE) Results for Separating Low Use Period Modeling Strategy 

No. 
Original 
Model 

CV(RMSE) 

Overall 
Use 

(Therms) 

High Use 
Period 

(Therms) 

Low Use 
Period 

(Therms) 

High Use 
CV(RMSE) 

Low Use 
CV(RMSE) wCV(RMSE) 

1 31% 22,002 21,619 383 21% 83% 22% 

2 26% 27,561 24,642 2,919 18% 49% 21% 

3 48% 31,062 30,895 167 28% 177% 29% 

4 30% 16,338 16,047 291 21% 67% 21% 

5 79% 34,574 34,093 481 50% 91% 51% 

6 27% 26,445 25,984 461 20% 61% 21% 

7 49% 51,288 49,374 1,914 30% 42% 30% 

8 48% 21,912 21,331 581 33% 59% 34% 

9 26% 31,980 29,227 2,753 18% 18% 18% 

10 45% 14,244 13,361 883 32% 63% 34% 

 

The weighting strategy did reduce the CV(RMSE) in five cases (highlighted in green). Note that in 
these cases, the original model CV(RMSE) were not excessively higher than the threshold criteria 
of 25%. Also, none of the cases in which the high use period CV(RMSE) exceeded the threshold 
could be reduced low enough to pass. Of those that did pass, the low use period CV(RMSE)’s were 
often very high. Based on this limited sample, the weighted CV(RMSE) is an appropriate alternate 
method to use when low gas use periods are present. 

Recommendations and Conclusions  
In this work, we examined alternate goodness of fit criteria to overcome the cause of many natural 
gas models failing the established goodness of fit criterion of CV(RMSE) < 25%. After assembling a 
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dataset consisting of Affected and Unaffected buildings (buildings with gas use models not 
meeting and meeting the criterion, respectively), we ran two different modeling algorithms, 
calculated several alternate goodness of fit criteria, and compiled summary tables for additional 
evaluation of the alternate metrics.  

Before proceeding, it is important to note that we did not examine individual building gas datasets 
to determine the presence of poor data or unidentified non-routine events as would be done on a 
case-by-case basis in preparation of participation in a site-level NMEC program. This would 
require additional information from each building to be collected, regimes of operations to be 
identified, and additional analysis to be performed. This work instead proceeded by modeling the 
data as is without additional insight into each building that otherwise may have improved 
individual building gas models. For every site-level NMEC project, we recommend this preliminary 
analysis of the data be pursued. 

Gas usage data typically have more data quality issues than electricity use data. Gas usage is 
usually measured in units of volume, which requires flow measurements. Flow measurement is 
typically less accurate than electric measurement. Communicating the gas consumption data to a 
central repository may also have problems not evident with electric meters. Gas data is typically 
more ‘noisy’ in that it has more day-to-day random fluctuations, often has large periods of missing 
data, and may reflect the manual operation of gas-consuming equipment in commercial buildings. 
It is acknowledged that there are more data quality issues with natural gas to address. However in 
preparation for an NMEC project, these issues may yet be overcome to qualify for a natural gas 
NMEC program. 

The goodness of fit metric CV(RMSE) quantifies the amount of random error between a model and 
the data the model is developed from. For commercial buildings that generally use natural gas for 
space and water heating only, it is a common reason natural gas models fail to become NMEC 
projects. A literature search suggested several alternate goodness of fit metrics, a weighted mean 
absolute percent error (wMAPE), a range-normalized root mean squared error (nRMSE), and a root 
mean squared error normalized by total energy use (tRMSE). The fractional savings uncertainty 
(FSU) developed by Claridge and Reddy (2000) and used in ASHRAE Guideline 14-2014 combined 
the CV(RMSE) and savings in a new metric that directly addresses the important question of how 
accurate will the resulting savings estimate be given the proposed model? ASHRAE’s FSU was 
tested as an alternate qualifying metric. Another metric was to separate the low use and high use 
periods and model them separately, weighting the CV(RMSE) by that period’s total gas 
consumption.  

We tested two different modeling algorithms, the time-of week and temperature (TOWT) model 
(Mathieu, et.al. 2011) and ASHRAE’s three-parameter change-point model (3PH) (Kissock et. al, 
2004), and performed a manual modeling strategy by separating the low use from high use period 
data and modeling separately with the TOWT model. 

After testing 635 building data sets with the TOWT algorithm, we found 50% of the buildings did 
not pass the current CV(RMSE) criterion. When using the FSU as a metric on these failed 
buildings, we found that 13% of them passed when assuming the project would yield 10% savings 
or more. When the same buildings were modeled with the 3PH model, 45% initially failed the 
CV(RMSE) criterion, but 10% of the failed buildings passed when using the FSU. 



Natural Gas Model Acceptance Criteria Research and Development kW Engineering 

25 

The binary classification analysis was used to evaluate the CV(RMSE), FSU, wMAPE, nRMSE, 
tRMSE, and 3PH model wCV(RMSE). This analysis confirmed that the CV(RMSE), FSU, and 
wCV(RMSE) metrics were superior to the wMAPE, nRMSE, and tRMSE metrics, as they showed 
high true positive rates along with reasonably low false positive rates. False positive rates were too 
high for wMAPE and nRMSE. The results were consistent whether using the TOWT or 3PH 
modeling algorithms (the wCV(RMSE) with was tested only for the 3PH model). 

Manual separation of the low gas use and high gas periods, development of separate models for 
each period, then calculating the energy-weighted CV(RMSE) of the two models showed that when 
the CV(RMSE) of a model built on the full dataset did not excessively exceed the 25% criterion, 
this strategy could be used to qualify more gas NMEC projects.  

Based on this work, it follows that alternate metrics and modeling strategies may be used to 
qualify natural gas site-level NME projects. Our recommendations are summarized below: 

1. Examine the gas use data for data quality issues. Assure a full dataset is obtained for each 
building. Identify and resolve data quality issues such as outliers and extensive gaps in gas 
use throughout the baseline year. Determine whether a different modeling approach or 
whether different regimes of operation or non-routine events are present. Obtain 
information from building operators to substantiate modeling assumptions and strategies. 

2. Use the current CV(RMSE) criterion of 25% to determine whether a natural gas NMEC 
project is acceptable. Should the model fail the CV(RMSE) test, calculate the FSU assuming 
10% savings. If there is a savings estimate available, use it in the FSU equation instead. If 
the FSU is < 50% at a 90% confidence level, accept the building as an NMEC project. FSU 
may be used as a criterion as long as the model is an ordinary lease squares regression-
based algorithm. 

3. If the current gas model fails the CV(RMSE) criterion by a small amount such as 5%, 
consider separating the low gas use from the high gas use period and modeling each 
period separately. Calculate the energy-weighted average CV(RMSE) from the two models 
individual CV(RMSE). If the weighted average CV(RMSE) passes the criterion, accept the 
building as an NMEC project. 
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Appendix: Comments and Responses from Concerned Parties 
Following are comments and responses received from CPUC Energy Division 

Comment 1: Am I reading the study correctly, that the alternate method proposed only results in 
a 13% pass rate among projects that fail the CV(RMSE) criteria?  

Response 1: Yes, 13% of the projects that failed the CV(RMSE) criterion passed when estimating 
the uncertainty (ASHRAE’s FSU) and assuming 10% savings. This seems very incremental, however 
it reinforces that projects with higher savings are more likely to pass if FSU (or other uncertainty 
method) are used instead of considering only model goodness-of-fit metrics such as CV(RMSE). 
Higher savings = better NMEC projects. 

Comment 2: Do you have suggestions for other possible approaches that may necessitate further 
research/development but could be used for even more projects without increasing risk?  

Response 2: Yes, some suggestions are in the recommendations section: prepare the data – gas 
use data is messier so eliminate gaps and outliers without exceeding a 25% data removal limit, try 
different modeling algorithms (see comment received from PDA below), use FSU for daily models 
when CV(RMSE) fails, use a modeling strategy of separating the data into low and high use periods 
and modeling each period separately, then use a weighted average CV(RMSE) from each period.  

On the research front, the LBNL study was cited that showed that FSU determinations of 
uncertainty for hourly models was unacceptable, and better but not fully acceptable for daily 
models. This is because the energy use data is serially correlated or has autocorrelation. FSU 
makes an first-order attempt to account for autocorrelation (considers lag 1 autocorrelation only), 
however the uncertainty methods in general should be improved to better account for it. A diverse 
group of experts and practitioners on an EVO/IPMVP technical subcommittee (Statistics and 
Uncertainty Application Guide) are providing more general methodologies for estimating 
uncertainty in Option C Whole building M&V calculations. These include: improved FSU methods, 
exact matrix solutions (FSU is a subset of these), and a bayesian approach. These are higher-order 
statistical solutions that are not a common practice in our industry, but there are tools and 
software that make their use easier.  

Comment 3: Would the results meaningfully change/improve if the % savings was increased 
beyond the 10% threshold? What about possibilities for fuel substitution (when possible)? 

Response 3: Yes. Higher savings always reduces uncertainty as a general rule. Natural gas NMEC 
projects should not necessarily be required to achieve more than 10% savings, but it should be 
stressed that higher savings projects are preferred for NMEC. This applies to electric savings as 
well. 

Fuel substitution NMEC projects, if allowed, would include the ‘apparent’ gas savings as an adder 
to any other gas EE savings and help qualify gas NMEC projects using the FSU criterion. The 
downside would be quantifying the amount of gas substituted separately from other gas EE 
measures if incentives are allowed for EE savings only.  
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Following is the comment received during the public review period from the Public Documents 
Area on the CPUC’s Evaluation Studies Public Documents website:  
(https://pda.energydataweb.com/#!/documents/2657/view).  

 

Comment: This analysis is handicapped by sticking to the existing “published” methods. Current 
methods are inadequate and more modeling research is needed. Granderson et al note that most 
building models only work for "well behaved' buildings. Many buildings are not well-behaved, so 
existing models don't work well. Hence the high CV(RMSE) values. HEA has analyzed over 25,000 
homes over the course of 10 years and have seen significant improvements in gas and electric 
regression results through algorithmic advances in many different areas, including: * Balance 
point temperature selection, for degree day calculations, through slope analysis of average energy 
use vs outdoor temp, utilizing a LOESS interpolation. * Improved handling of building thermal 
inertia using rolling 5 day averages. * Use of degree hours to calculate degree days (see description 
here - https://github.com/energy-market-methods/caltrack/issues/120) * Removal of 
vacation/unoccupied days using K-means cluster analysis. * Identification of different heating 
modes (e.g. pool heating vs home heating). * Interpolation of integral therms, esp for improved 
accuracy during periods of low gas use. Each of these improvements have resulted in more 
accurate models for actual homes. We are happy to share any of these methods. 

Response: This comment makes good points about improved modeling methods (which we call 
algorithms). In this report we did compare two modeling algorithms: TOWT and a 3PH algorithm. 
We acknowledge that other modeling algorithms are worthwhile pursuits, however it’s unclear 
whether there is an algorithm that addresses the low gas use periods barrier that this report 
addresses. Many of the examples cited are for houses or homes, not commercial buildings where 
the thermal characteristics are different. The comment mentions HDD models with balance point 
temperatures, which are analogous to the 3PH model we used. We agree with the point that more 
rigorous modeling algorithms would be useful, the TOWT and 3PH algorithms used in this report 
have significant differences in their accuracy as the TOWT algorithm better captures the weekly 
energy use whereas the 3PH only considers temperature effects. The report was updated to 
suggest that alternate modeling algorithms should be attempted should initial modeling attempts 
fail. 

https://pda.energydataweb.com/#!/documents/2657/view
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