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1 EXECUTIVE SUMMARY  

1.1 Background and approach 
California program administrators (PAs)1 installed over 400,000 smart thermostats2 through various residential rebate and 
direct install3 energy efficiency (EE) programs from program year (PY) 2018 through PY2021. The programs targeted 
electric and gas residential customers in single-family, multifamily, and mobile homes.  

DNV evaluated the impact of smart thermostats offered in these program years.4 To estimate this impact, we applied best 
practice consumption data analysis using data from participants and matched non-participants who were chosen based on 
their pre-program consumption similarity to the participants.5 We found energy savings were significantly lower than claimed 
in all program years.  

Despite the similarity in pre-program energy consumption patterns between participants and their matched non-participants, 
we also found that the energy consumption trend diverged for the two groups after the program in a way that thermostat 
installation alone cannot explain. This divergence in energy consumption trend is an example of self-selection bias caused 
by the unique characteristics of the participants who self-select to participate.6 This was particularly the case for rebate 
program participants. In our rebate program evaluations, we made adjustments to account for the effect of the differential 
trends between the two groups on smart thermostat savings.   

In the current study, we address the problem of self-selection through a modeling approach that explicitly accounts for the 
differences between participants and matched non-participants that lead to self-selection bias.7 This approach provides a 
more informed adjustment than was applied in our earlier studies by leveraging analysis of baseload trends and shifts in 
reference temperatures (outdoor temperature at which cooling and heating start). For HVAC savings to occur, average smart 
thermostat setpoints must shift, and those shifts will be evident in reference temperature shifts. Our model estimates the 
reference temperature shifts to evaluate the impact of smart thermostats.8 

We used this approach to understand savings for different customer segments and over time based on the data from the 
large installed base of smart thermostats delivered in PY2018. We supplemented the analysis of the impact of smart 
thermostats using vendor data on the operation of smart thermostats. We also used data from smart thermostats installed 
through PA PY2018 to PY2021 programs to gain insights into program participation. Additionally, we assessed smart 
thermostats' peak load reduction potential in demand response (DR) programs to help fulfill recent California Public Utilities 

 
 
1 Pacific Gas & Electric (PG&E), Southern California Edison (SCE), Southern California Gas Company (SoCalGas or SCG), and San Diego Gas & Electric (SDG&E). 
2 A WI-FI-enabled thermostat allows users to create automatic and programmable temperature settings. 
3 Direct install programs provide energy-saving technologies or upgrades for no or low cost to participating customer homes through installation contractors. 
4 The following links include DNV’s residential smart thermostat program impact evaluations published on calmac.org: 

https://www.calmac.org/publications/CPUC_Group_A_PY2021_Residential_Install_Program_Impact_Evaluation_-_Final_Report_CALMACES.pdf 
https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf,  
https://www.calmac.org/publications/CPUC_Group_A_SCT_PY_2018_Report_Update_final_toCALMAC.pdf 
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf 
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf.  

5 The matching process identifies the non-participant mathematically the least distance from a participant. Pre-period consumption is essential for the matching process, so 
participants and matched non-participants have similar pre-program consumption by design. 

6 Self-selection bias is a systematic and non-random difference between participants and non-participants. The participation of customers systematically different from the 
non-participating utility customer base will result in effects that reflect their differences instead of that of the program. 

7 DNV's consistent single modeling framework used a panel data modeling approach. Panel data refers to observations over time and across all customers. The model 
based on panel data enables us to estimate the long-term effectiveness of program interventions.  

8 Like all models, the model we used in this study approximates complicated realities. It controls for trend differential and offers information on how this differential affects 
smart thermostat impacts. The model provides value by indicating how smart thermostats trigger heating or cooling to begin in response to the outdoor temperature 
(shift in the reference temperature). One potential limitation of the model is that while outdoor temperature changes affect thermostat setpoints, additional activities 
and changes in the home could also affect the setpoints. Hence, the estimated reference temperature shifts may capture the effect of factors other than outdoor 
temperature changes. 

https://www.calmac.org/publications/CPUC_Group_A_PY2021_Residential_Install_Program_Impact_Evaluation_-_Final_Report_CALMACES.pdf
https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_SCT_PY_2018_Report_Update_final_toCALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf
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Commission (CPUC) decisions to reduce peak load. Based on this assessment, we identified program opportunities to 
increase smart thermostat penetration in air-conditioned households in designated hot climate zones.9 

1.2 Key findings and recommendations 
The study enabled us to validate and strengthen our understanding of the approach used in the PY2018 study. It also 
helped to confirm that the magnitude of overall energy savings (to the extent they exist) is small. The aggregate thermostat 
data provided by Google on Nest thermostat installations, while not comprehensive or granular enough, provided some 
insights on the energy savings potential of smart thermostats.10 The key findings from this study and resulting 
recommendations and implications for programs that will include or employ smart thermostats are summarized below. 

1.2.1 Participant characteristics 
The California PAs facilitated the installation of smart thermostats through rebate and through direct install programs that 
provided them at no or low cost in participating customer homes. Fifty to seventy percent of smart thermostats delivered by 
the California PA programs from PY2018 to PY2021 were via direct install channels. While direct install programs had no 
income requirements for participation, they sought to reach low- to medium-income customers. Since programs not explicitly 
tailored for low-income customers tend to underserve such customers, our analysis aimed to gauge the effectiveness of 
smart thermostat programs in reaching these specific customer segments.11 We evaluated participation among hard-to-
reach (HTR),12 disadvantaged community (DAC),13 and multifamily customers as these segments likely encompass a higher 
proportion of individuals with lower to moderate incomes.  

Our analysis indicates that the proportion of vulnerable customers (DAC, HTR, and non-metro area customers) receiving 
smart thermostats via direct install programs has increased significantly from PY2018 through PY2021, even as the 
participation of customers from these segments in smart thermostat rebate programs has remained flat. Participation of 
multifamily customers in direct install programs has also been significantly high at 57% over this period.14 These findings 
indicate improved targeting of these populations. 

Continue targeting key underserved demographic customer segments in direct install programs. Direct install programs 
should continue serving the state’s vulnerable customers, given this customer segment’s limited resources to take 
advantage of rebate programs’ EE offerings. Direct install programs should also continue serving the multifamily sector, 
which makes up one-third of the state’s residential population since this is the primary channel for multifamily households 
to access IOU EE program offerings. 

We also examined participation by other customer segments, including energy consumption quartiles. We found that top-
quartile consumption rebate program participants achieved significantly higher electric and gas savings than customers in 
lower consumption quartiles, at 151 kWh versus 3 kWh per household and 12 therms versus -6 therms per household, 
respectively. 

 
 
9 This report refers to climate zones 9 to 15, which are inland regions in California, as hot climate zones. These climate zones experience relatively high summer 

temperatures associated with high cooling needs. 
10 DNV requested device data from two of the most commonly installed brands and received information only from Google on Nest thermostats. On average, approximately 

75% of program installations from PY2018 through PY2021 were Google’s Nest smart thermostats.  
11 https://www.aceee.org/files/proceedings/2016/data/papers/2_542.pdf.  
12 Hard to reach (HTR): The criteria for residential HTR customers is the combination of a geographic prerequisite plus at least one of the following criteria: primary 

language, income, or housing type. Commercial HTR customers are defined by a combination of a geographic requirement plus at least one of the following criteria: 
primary language, business size, or leased or rented facility. For specific details, please see the Statewide Deemed Workpaper Rulebook. 

13 CPUC, “Disadvantaged Communities,” cpuc.gov, 2021, https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/disadvantaged-communities.  
14 In contrast, rebate participation among multifamily customers is low at 4%, which reflects that property managers and not individual tenants are the decision-makers for 

program participation in this sector. 

https://www.aceee.org/files/proceedings/2016/data/papers/2_542.pdf
https://static1.squarespace.com/static/53c96e16e4b003bdba4f4fee/t/5dfd68a171e0665b4c4c5adf/1576888489519/SW+Deemed+Workpaper+Rulebook_Version+3.0.pdf
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/disadvantaged-communities
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Smart thermostat savings may be improved by factoring in household energy consumption levels in program targeting. 
Rebate programs should consider using the level of energy consumption as a key targeting variable. 

1.2.2 Energy savings 
The study used a single, consistent modeling approach to address self-selection bias and estimate annual and multi-year 
savings for PY2018 installations. The model estimated different energy consumption trends between participants and 
matched non-participants and captured shifts in reference temperature values among participants. This updated model 
structure is referred to as the “panel“ model in this report because, unlike the approaches used for the prior evaluations, the 
model stacks data over time and across customers into a single dataset to assess impact. 

Model results indicate that, as hypothesized in the previous evaluations, the energy consumption trends of participants and 
non-participants are statistically significantly different. These differences affect estimated electric rebate and direct install 
smart thermostat savings estimates but have limited effect on gas savings. Accounting for trend differences increases 
estimated rebate smart thermostat savings (rebate electric savings estimate goes from negative to positive) and decreases 
direct install smart thermostat savings (direct install electric savings estimate goes a positive to a small negative number).  

These results indicate the presence of differential trends between participants and non-participants that can bias results, 
particularly for rebate programs. When feasible, evaluations should identify and correct for these possible biases when 
estimating the effect of opt-in programs15 using consumption data analysis. 

The evidence suggests that energy savings from smart thermostats installed in PY2018, while small, increased over time 
despite the possibility that COVID-related increased occupancy eroded the saving potential for thermostats. DNV’s new 
model results, presented in Table 1-1, show that electric and gas savings, from both the rebate and direct install channels, 
are higher when estimated using data from all three years after installation compared to the pre-COVID first post-year. The 
higher savings over time could be due to thermostat optimization.16 

Table 1-1. Trend-adjusted panel model estimates of PY2018 rebate and PY2019 direct install savings per 
household17 

Fuel Delivery type First-year savings Three-year average 
savings 

Electric (kWh) 
Rebate 29 45 

Direct Install -13 4 

Gas (therm) 
Rebate -10 -2 

Direct Install 5 9 

 

Thermostat optimization could improve smart thermostat energy savings performance. Additional studies that track smart 
thermostat savings over time are needed to strengthen this finding. 

 
 
15 Opt-in programs are programs where participation is voluntary. The act of opting in can lead to self-selection bias. 
16 Thermostat optimization is a process designed to save additional energy through additional setpoint adjustments that balance each home's response to weather 

conditions and energy use habits. 
17 Negative values indicate dissavings.  
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Our findings also indicate that earlier studies may have overstated first-year smart thermostat savings. Figure 1-1 compares 
the current panel model results, with and without trend adjustment, to the previous evaluations’ difference-in-difference (DID) 
model results, with and without added adjustment.  

The “No Trend Adjustment” rebate program results indicate similar savings for both gas and electric when neither approach 
corrects for trend differences. However, for the trend-adjusted rebate results, the current panel model results reveal that the 
prior PY2018 ad hoc corrections somewhat overstated both electric and gas rebate savings. Previous evaluations did not 
adjust direct install results because the evidence of bias was more limited than for the rebate program. However, they also 
indicate that the unadjusted PY2019 electric direct install evaluation may have overstated savings.18  

Figure 1-1. Current panel and prior model estimates of first-year savings per household 

 

 

We recommend continued evaluation of new installations to confirm results identified in this study. 

Both rebate and direct install HTR and multifamily participants do not achieve electric savings with smart thermostats, while 
non-HTR and single-family participants do. HTR and multifamily participants likely reside in less efficient homes than non-
HTR and single-family participants and experience higher levels of energy deprivation. Customer responses from participant 
surveys conducted for our PY2019 to PY2020 impact evaluations indicate a significant increase in customer comfort post 

 
 
18 The no trend adjustment DID direct install gas results indicated 0 savings, thus are not visible on the chart. In contrast, the direct install, trend-adjusted DID bars are non-

existent for both gas and electric since the prior study did not apply adjustments to the DID results. 
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smart thermostat installation.19 Generally, thermostats produce savings by reducing consumption in ways that do not 
undermine comfort. The promise of smart thermostats to regulate and reduce energy use and cost could have led some of 
these participants to increase their comfort and use more energy inadvertently. It is not uncommon for customers to change 
behaviors in ways that increase consumption after a program installation, referred to as takeback. Since it is in the best 
interest of the PAs to prevent takebacks from occurring in the post-implementation period, more customer education on how 
smart thermostats and other energy-efficiency technologies function and save money in the home can help prevent such 
unwanted increases. 

There is higher energy consumption post-installation among some customer segments. Given this, we recommend 
improved customer education on how smart thermostats work and how they provide energy and cost savings. The PAs 
cannot require “eco” settings on these program-provided thermostats, but they need to find a way to encourage more 
participants to adopt those settings. 

The smart thermostat programs offered thermostats from multiple vendors. Unlike direct install programs that delivered 
largely the same smart thermostat technology type to participants, rebate program participants purchased different smart 
thermostat types. Using these data, DNV estimated the electric savings of one vendor’s device (Technology 1) to be 55 kWh 
per household and another vendor’s device (Technology 2) to be 17 kWh per household. Neither device type provided 
statistically significant gas savings. 

The savings potential of smart thermostats continues to change even after installation due to software updates. Programs 
should factor in variations in technology and evolving algorithms that result in notably different outcomes when considering 
this measure for programs. 

PAs should assess savings by specific technologies periodically to understand if there are differences and calibrate 
technology/measure package recommendations accordingly.  

1.2.3 Peak savings 
California Public Utilities Commission (CPUC) decision D. 21-12-015 (in Rulemaking R.20-11-003), adopted in December 
2021, is designed to reduce load in hot climate zones 9-15 and directs PAs to subsidize smart thermostats for customers in 
these climate zones. The absolute number of smart thermostats installed cumulatively in these climate zones through the 
PAs’ direct install programs from PY2018 through PY2021 is approximately 286,000. The total installed base of smart 
thermostats in these climate zones is more than 286,000 since it will also include those provided at low to no cost by other 
energy efficiency programs like the Energy Savings Assistance (ESA) program and non-program adoption of smart 
thermostats. 

Assuming a non-program smart thermostat adoption rate of 25%20 and a statewide average annual ESA program footprint of 
260,000,21 the smart thermostat installed base is likely much lower than the estimated 3.5 million of five million households 

 
 
19 DNV’s impact evaluations of the PAs  for PY2018, 2019, and 2020: 

https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf (Table 4-9), 
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf (Table 4-9), 
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf (Table 5-8) 

20 The prevalence of smart thermostats among non-participant households is estimated in the CPUC Group A PY2019 Smart Thermostat Evaluation. 
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf 

 The prevalence of smart thermostats among non-participant households is estimated in the CPUC Group A PY2019 Smart Thermostat Evaluation. 
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf 

21 The PY2015-2017 ESA Program Impact Evaluation indicated the statewide average annual footprint of the program. 2015-2017_ESA_Impact_Evaluation_-_FINAL_-
_CALMAC_Posting.pdf 

https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/2015-2017_ESA_Impact_Evaluation_-_FINAL_-_CALMAC_Posting.pdf
https://www.calmac.org/publications/2015-2017_ESA_Impact_Evaluation_-_FINAL_-_CALMAC_Posting.pdf
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that use air-conditioning22 in these specific climate zones. Households with air-conditioning contribute to grid stress from 
increased cooling demand during peak periods from May through October. These households represent ideal targets for 
energy efficiency and demand response programs that deploy smart thermostats.  

There are program opportunities to increase smart thermostat penetration in households with air-conditioning in hot 
climate zones. Programs should aim to expand the penetration of smart thermostats that can operate as part of a “fleet” 
and serve as virtual power plants (VPPs) to provide direct relief to the overloaded parts of the grid.23 

Smart thermostats' peak load reduction potential makes them suitable for use in DR programs. However, DR program 
enrollment among smart thermostat program participants has been modest at 7% for rebate program participants and no 
more than 6% for direct install participants.  

Programs delivering free or subsidized smart thermostats should consider automatically enrolling direct install program 
participants in DR programs with an opt-out option and providing information on DR programs for rebate program 
participants to maximize peak load savings.24  

 

 
 
22 The EIA’s RECS survey estimates that 70% of CA households have air-conditioning. Applying this penetration to the five million households in climate zones 9-15 results 

in an estimated 3.5 million households with air-conditioning. https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf 
 The EIA’s RECS survey estimates that 70% of CA households have air-conditioning. Applying this penetration to the five million households in climate zones 9-15 results in 

an estimated 3.5 million households with air-conditioning. https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf 
23 VPPs adjust the power use of a fleet of electric devices and appliances like smart thermostats, heat pumps, and induction stoves to reduce stress on the grid. 
24 Smart thermostat program participants could be enrolled in PA and other DR programs such as Power Saver Rewards, OhmConnect, SmartRate Plan, Summer Discount 

Plan, Smart Energy Program, AC Saver (Summer Saver) Program, and AC Saver Thermostat Program. SCE's PY2021 Residential Direct Install Program that 
leveraged SCE's smart thermostat DR program is an example of a successful application of such an integrated demand side management (IDSM) approach. The 
initiative has yielded success in its first year of operation. Survey results showed a higher proportion of participants became aware of and enrolled in the smart 
thermostat DR program due to the IDSM campaign. 

https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf
https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf
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2 INTRODUCTION 

2.1 Background 
Smart thermostats are Wi-Fi-enabled devices that help customers to maintain desired temperature levels by controlling 
HVAC system performance through automatic setpoint adjustments based on occupancy sensing capabilities.  

California program administrators (PAs) have installed over 400,000 smart thermostats through various residential energy 
efficiency (EE) rebate and direct install programs from 2018 through 2021. The programs, which were offered to both electric 
and gas customers, targeted residential customers in single-family, multifamily, and mobile homes.  

DNV evaluated the impact of smart thermostats offered in these program years. To estimate this impact, we applied best 
practice consumption data analysis using data from participants and matched non-participants who were chosen based on 
their pre-program consumption similarity to the participants. We found energy savings were significantly lower than claimed 
in all program years.  

Despite the similarity in pre-program energy consumption patterns between participants and their matched non-participants, 
we also found that the energy consumption trend diverged for the two groups after the program in a way that thermostat 
installation alone cannot explain. This divergence in energy consumption trend is an example of self-selection bias caused 
by the unique characteristics of the participants who self-select to participate. This was particularly the case for rebate 
program participants. In our PY2018 and PY2020 rebate program evaluations, we made adjustments to account for the 
effect of the differential trends between the two groups on smart thermostat savings.   

In the current study, we address the problem of self-selection through a modeling approach that explicitly accounts for the 
differences between participants and matched non-participants that lead to self-selection bias. This approach provides a 
more informed adjustment than was applied in our earlier studies by leveraging analysis of baseload trends and shifts in 
reference temperatures (outdoor temperature at which cooling and heating start). For HVAC savings to occur, average smart 
thermostat setpoints must shift, and those shifts will be evident in reference temperature shifts. Our model estimates the 
reference temperature shifts to evaluate the impact of smart thermostats. 

We used this approach to understand savings for different customer segments and over time based on the data from the 
large installed base of smart thermostats delivered in PY2018. We supplemented the analysis on the impact of smart 
thermostats using vendor data on the operation of smart thermostats. We also used data from smart thermostats installed 
through PA PY2018 to PY2021 programs to gain insights into program participation. Additionally, we assessed smart 
thermostats' peak load reduction potential in demand response (DR) programs to help fulfill recent California Public Utilities 
Commission (CPUC) decisions to reduce peak load. Based on this assessment, we identified program opportunities to 
increase smart thermostat penetration in air-conditioned households in designated hot climate zones. 

2.2 Study objectives 
Energy impact. Despite well-matched energy consumption between participants and matched non-participants before 
smart thermostat installations, DNV’s PY2018 study identified an energy consumption trend difference between the two 
groups. Thus, one of the main objectives of this study was to examine the energy (kWh and therm) savings of smart 
thermostats that account for this difference. We sought to:     

1. Use a single consistent modeling approach to address the trend difference identified in the previous evaluation – 
Because the difference understated savings, the PY2018 analysis had made an ad hoc adjustment to control for its 
effect. The present study used a consistent modeling approach, which incorporates the underlying assumptions of 
the PY2018 ad hoc adjustment, to test the reasonableness of the prior adjustment and results and to identify shifts 
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in reference temperature values that reflect changes in the effective thermostat setpoints (a key effect of smart 
thermostats) and the associated energy consumption changes.  

2. Examine savings over time – Smart thermostat savings can change over time due to occupant learning, increased 
or improved vendor-operated optimization, or COVID.25 We used the modeling approach to estimate savings by 
individual year since installation and across multiple years. We also used HVAC runtime data from devices to get 
additional insights into smart thermostat operating patterns and their impacts.  

3. Examine savings by different customer segments – We also used the modeling approach to understand variation in 
savings by different customer segments. 

Participant characterization. Another objective of the study was to examine how and to what extent the demographic 
profile of smart thermostat adopters has changed over time, with a focus on HTR/DAC participant groups. We used data 
from PY2018 through PY2021 participants for this analysis. Using this data, we sought to understand: 

1. Access - How access to this technology has changed over time by different customer segments. Since ratepayers 
funded the programs that delivered smart thermostats, our examination sought to understand the extent to which 
the programs gave access to the technology among different population segments, including those in DAC and 
HTR populations.   

2. Smart Deployment - What proportion of customers located in climate zones with high cooling needs and in DR 
programs the programs served. Since this technology has the potential to contribute to more efficient energy use 
both annually and during periods of high energy demand and grid stress, we sought to understand if programs 
deployed smart thermostats in areas and among customer segments where they were most effective.  

 

 
 
25 COVID primarily affected 2020 and 2021 savings.  
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3 METHODOLOGY 
This section details the approach DNV used in this evaluation. We provide the list of data sources used for these purposes 
first, followed by the impact and participant characterization approaches for smart thermostats delivered PA programs from 
PY2018 to PY2021.  

3.1 Data sources 
Table 3-1 provides the data sources used in the study and the purpose of their inclusion in the analysis. 

Table 3-1. Summary of data sources and applicable measure groups 

Data sources Description Purpose in analysis 

Program tracking data 
PA program data that includes number 
of records, savings per record, 
program type, name, measure groups, 
measure description, incentives etc. 

Identify program participants, installed 
measures, and claimed (ex-ante) 
savings 

Advanced Metering Infrastructure 
(AMI) Data 

Detailed, time-based energy 
consumption information Estimate energy savings 

Weather data Actual and typical meteorological year 
(TMY) temperature data26 

Weather normalized energy 
consumption  

Customer data Customer location (zip code), climate 
zones, and CARE/FERA27 status 

Understand savings by different 
segments and changes in participant 
characteristics over time 

CalEnviroScreen 
Data measuring economic, health, and 
environmental burdens at the census 
tract level 

Identify DAC and HTR customers 

American Community Survey (ACS) 
data 

Census block-level demographic 
information (primary language, 
household size and composition by 
age, home ownership status) 

Determine changes in participant 
characteristics over time 

Survey data 
Customer surveys that collect 
information on demographics and 
energy use behavior 

Understand engagement with smart 
thermostats over time 

Device data Information on the operation of smart 
thermostat 

Smart thermostat impact on energy 
use 

 
 
26 We sourced weather data from the National Oceanic and Atmospheric Administration (NOAA) and climate zone (CZ) 2022 reference temperature files (CZ2022) from 

CALMAC.org to include in regression models accounting for weather sensitivity. CZ2022 provides typical meteorological year (TMY) weather data for select California 
weather stations useful for long-term weather normalization. The study also used climate zone information available by zip code from the California Energy 
Commission (CEC). Data were at the hourly level for each station. 

27 California Alternate Rates for Energy (CARE) and Family Electric Rate Assistance Program (FERA) provide energy bill discounts for income qualified households in 
California. 
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3.2 Participant characterization 
We present the methodology used to examine if and how the smart thermostat program participant population has changed 
over PY2018 to PY2021. DNV compared such possible changes against the demographics of the general population in 
California.  

We assembled a premise-level dataset of PG&E, SCE, SCG, and SDG&E customers to support this analysis. Some of the 
analysis variables were available at the premise level from the PAs, while others were available at the census block, census 
tract, or county-level. The PAs provided the premise-level information, along with geospatial information which we used to 
geo-locate the premises and assign them the geography-based variables (census block, census tract, county, climate zone).  

With the location-level information, we determined if a premise was HTR based on the following two conditions defined by 
the California Public Utilities Commission (CPUC):28 

• First, geographically, a premise must either be in a DAC or a non-metro area community (outside selected core-based 
or metropolitan statistical areas).29 

• Second, a resident in the premise must either be a multi-family or manufactured home renter or face a language or an 
income barrier. A multi-family or manufactured home resident is classified as a renter if the premise is in the top quartile 
multi-family or mobile home rental block group. A resident faces a language barrier if the premise is in the top quartile 
limited English households block group. If a resident qualifies for California Alternate Rates for Energy (CARE) or 
Family Electric Rate Assistance Program (FERA), the resident faces an income barrier.  

Additional variables we used in the analysis are summarized in Table 3-2. 

Table 3-2. Participant characterization variables 
Variable Source Description 

Geography-based variables 

Top Quartile Limited 
English Census Block30  

U.S. Census: American 
Community Survey 

A census block-level variable used to determine whether a 
premise is located in a census block with a high share of 
households with limited English speakers. 

Top Quartile Multi-Family 
Rental / Mobile Home 
Rental Census Block31   

U.S. Census: American 
Community Survey 

A census block-level variable used to determine whether a 
premise is located in a block with a higher share of households 
with multi-family or mobile home rental homes. 

Metro / Non-Metro 
Designation U.S. OMB A county-level variable indicating that a premise is located in a 

metro or non-metro statistical area.  
Emergency Load 
Reduction Program 
(ELRP) Climate Zones 

California Public Utility 
Commission (CPUC) 

Climate zones designated as hot by California’s 2021 Summer 
Reliability Decision.32 

Disadvantaged 
Community (DAC)  CalEnviroScreen 

A census tract-level variable based on CalEnviroScreen that is 
used to determine whether a premise is located in a 
disadvantaged community.  

 
 
28 Specific details can be found here: Statewide Deemed Workpaper Rulebook, p. 22. 
29 Non-metro areas are regions outside the U.S. Office of Management and Budget (U.S. OMB)-defined core-based statistical areas (CBSAs). We used the CBSAs 

covering the San Francisco Bay area, the greater Los Angeles area, and the greater Sacramento. We also included the metropolitan statistical area of San Diego. 
30 This is built using the ACS variable household limited English proficiency, ACS Table ID: C16002 - the number of households where no one over the age of 14 in the 

home speaks English "very well" relative to total households in the block group. 
31 This is built from the ACS variable tenure, ACS Table ID: B25032 - the number of renter- and owner-occupied housing units by dwelling type including multifamily 

buildings with 2-4 units and mobile homes, each relative to total housing units within each dwelling type within the block group. 
32CPUC, “Phase 2 Decision Directing Pacific Gas And Electric Company, Southern California Edison Company, And San Diego Gas & Electric Company To Take Actions 

To Prepare For Potential Extreme Weather In The Summers Of 2022 And 2023,” docs.cpuc.ca.gov, 12/2/2021. 
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M427/K639/427639152.PDF.  

https://static1.squarespace.com/static/53c96e16e4b003bdba4f4fee/t/6100a9d65429cb3846a417a3/1627433432394/SW+Deemed+WP+Rulebook+Interim+v4.0+Final.pdf
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M427/K639/427639152.PDF
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Variable Source Description 
Premise-level Variables33 

Customer Information CEDARS34 / CIS data Key customer information such as premise ID, PA, and location. 

Energy Consumption Utility billing and AMI 
data Electric and gas energy usage data. 

Dwelling Type  CEDARS / CIS data A variable that indicates whether each premise is a single 
family (SF), multi-family (MF), or mobile home (MH) 

Solar/EV Adoption  Utility billing data A variable indicating that a customer has net metering or an 
electric vehicle.  

CARE Utility billing data A variable that indicates the premise is on the income-based 
CARE electric or gas rate. 

FERA Utility billing data A variable that indicates the premise is on the income-based 
FERA electric or gas rate. 

Program Participant 
Information CEDARS / CIS data Smart thermostat program participation information such as 

program name, year, and claimed savings – participants only. 

Program Delivery Type Utility billing data 
A variable that indicates whether a smart thermostat was 
acquired through a direct install or rebate program – 
participants only.   

Calculated Variables 

Hard To Reach (HTR) 
CalEnviroScreen, the 
U.S. OMB, U.S. Census 
ACS, utility CIS data 

The HTR variable is assigned to each premise based on 
multiple variables listed above. To be designated as HTR, a 
premise must meet one geographic category and one other 
category:  

1. Geographic category: DAC designation or rural 
2. Other category: CARE rate, FERA rate, top quartile 

limited English, or top quartile MF/MH rental   

3.3 Impact approach 
We discuss the data we used to estimate the impact of smart thermostats overall, by customer segments, and over time in 
the sections that follow. We also provide the approach we used for this purpose. 

3.3.1 Analysis data 
For the impact analysis, we used data from PY2018 installations, where 66% of the approximately 200,000 installations 
were in homes that received the measure through direct install programs. Among the direct installations, 68% were in single-
family, multifamily, and mobile homes that only received smart thermostats. We estimated approximately 8% to 9% of 
customers who received this measure through direct install channels were master-metered.35 We excluded these customers 
from the analysis because the energy consumption of only those who received the measure was unavailable. Since a subset 
of direct install participants with only smart thermostat installations, not master-metered, and with sufficient data was large 
enough, we restricted our analysis to homes where this was the only measure installed. Estimated whole-home savings for 
direct install smart thermostat installations thus reflect savings from smart thermostats installed alone.  

Smart thermostats delivered through the rebate channel were, in approximately 90% of cases, the only utility-incentivized 
measure installed by participants who primarily lived in single-family homes. We based our analysis on homes with only this 

 
 
33 Data available for all participants and non-participants, except where specified otherwise.  
34 California Energy Data and Reporting System (CEDARS), “Welcome to CEDARS,” cedars.sound-data.com, https://cedars.sound-data.com/ 
35 We used a threshold of more than three smart thermostat installations for any customer and premise ID combination to approximate the proportion of master-metered 

customers served by direct install programs.  

https://cedars.sound-data.com/
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measure for smart thermostats provided through rebate programs. Estimates of whole-home energy consumption reduction 
are thus for rebate smart thermostats installed alone. 

Table 3-3 provides the number of electric and gas customers that received direct install and rebate smart thermostats in 
2018, the number that only installed smart thermostats, and the final count of customers whose energy consumption data 
we used in the evaluation. The final count reflects customers that are not net-metered (electric-only) and have the required 
one year of pre- and at least one year of post-installation data.  

Table 3-3. Customer counts used in the evaluation by delivery channel and fuel 

Participant data attrition Direct install Rebate 
Electric Gas Electric Gas 

Customers with smart thermostat (SCT) installations 126,929 128,971 45,071 74,143 
Customers with SCT installations and not master-metered  76,222 61,564 40,439 65,719 
Customers with SCT-only installations and not master-metered  52,221 41,961 34,796 59,321 
Customers with SCT-only installations, sufficient data, not mater-metered 15,395 10,951 17,271 45,113 

DNV used energy consumption data provided by the PAs covering the years 2017 through 2021. These data were at 
multiple levels of granularity, including monthly, daily and hourly. Details of the data preparation are provided in the PY2020 
evaluation.36 

In addition to data from participants, we also used data from non-participants for the evaluation. We constructed a panel 
dataset based on daily electric and gas data from 2018 participants and their matches for all analyses. The data covers the 
period one year before program participation through the end of 2021 or the end of customers' tenure at their current 
premise, whichever is later. We attached demographic, consumption level, and smart thermostat technology information to 
this data to conduct our analysis using the sources identified in the data section. 

3.3.2 Analysis approach 
We used a panel data method to evaluate the impact of the PY2018 smart thermostat installations. In general, panel data 
methods use observations from participants and non-participants over time to estimate the effect of an intervention. In the 
current context, panel data methods take advantage of cross-sectional and time series variations in energy consumption to 
appraise the impact of thermostat installations. These methods make it possible to estimate impact across all and different 
segments of participants. Panel data approaches are consistent with best practices delineated in State and Local Energy 
Efficiency Action Network’s (SEE Action) Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based 
Energy Efficiency Programs: Issues and Recommendations.37 They are also widely used for program analysis.  

The panel data approach is different from the two-stage consumption data analysis we used to estimate annual energy 
savings in our PY2018 and PY2019 smart thermostat impact evaluations. However, it still allowed us to obtain energy 
impacts by comparing the energy consumption of participants and matched non-participants based on data from pre-and 
post-installation periods. Similar to the prior approach, this analysis used the same comparison groups to control for 
exogenous change. 

The two-stage approach, which split consumption into heating, cooling, and baseload, enabled us to observe an increase in 
baseload among rebate participants, suggesting an overall trend differential between participants and matched non-
participants. We made a proportional adjustment to savings to correct for the observed baseload difference, assuming it 
indicated a trend differential. The panel approach made it possible to quantify the adjustment necessary to account for 

 
 
36 DNV, “Impact Evaluation of Residential HVAC Measures Residential Sector-Program Year 2020,” calmac.org. June 3, 2022. 

[https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf] 
37 The State and Local Energy Efficiency Action Network, “Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs: 

Issues and Recommendations,” energy.gov, May 2012, https://www.energy.gov/sites/default/files/2021-08/emv_behaviorbased_eeprograms.pdf 

https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf
https://www.energy.gov/sites/default/files/2021-08/emv_behaviorbased_eeprograms.pdf
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possible trend differential more directly. Specifcally, the panel model included terms that captured shifts in reference 
temperature values to capture the impact of smart thermostats on energy consumption. 

3.3.3 Model specification 
The panel model we estimated, which included terms to account for the effect of weather, trend, and reference temperature 
changes, has the following general specification: 

𝑌𝑌𝑡𝑡𝑡𝑡 = 𝛼𝛼𝑔𝑔 �1 + 𝜆𝜆𝑔𝑔𝑡𝑡� +  

𝛽𝛽𝑔𝑔�1 + 𝜆𝜆𝑔𝑔𝑡𝑡��𝐻𝐻𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡�(1 − 𝑃𝑃𝑡𝑡) + 𝐻𝐻𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡 + 𝛿𝛿𝐻𝐻 +  𝛿𝛿𝑝𝑝𝐻𝐻 ∗ 𝑇𝑇𝑡𝑡�𝑃𝑃𝑡𝑡� + 

𝛾𝛾𝑔𝑔�1 + 𝜆𝜆𝑔𝑔𝑡𝑡��𝐶𝐶𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡�(1 − 𝑃𝑃𝑡𝑡) + 𝐶𝐶𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡 + 𝛿𝛿𝐶𝐶 + 𝛿𝛿𝑝𝑝𝐶𝐶 ∗ 𝑇𝑇𝑡𝑡�𝑃𝑃𝑡𝑡� + 

𝜀𝜀𝑡𝑡𝑡𝑡 

(Equation 1) 
In this model: 

𝑡𝑡 = time period index, starting at 𝑡𝑡 = 1 

𝑗𝑗 = customer index 

 𝑔𝑔 = group index, where 𝑔𝑔 =  𝑝𝑝 for participants and 𝑔𝑔 =  𝑛𝑛𝑝𝑝 for non-participants 

𝑌𝑌𝑡𝑡𝑡𝑡 = energy consumption for customer 𝑗𝑗 at time period 𝑡𝑡  

𝛼𝛼𝑔𝑔  = group-specific intercept term that captures baseload consumption of participants, where 𝑔𝑔 =  𝑝𝑝 for 

participants and 𝑔𝑔 =  𝑛𝑛𝑝𝑝 for non-participants  

λ = trend term that increments daily energy consumption, with 𝜆𝜆𝑛𝑛𝑝𝑝𝑡𝑡 capturing trend for non-participants and 𝜆𝜆𝑝𝑝𝑡𝑡 

capturing trend for participants 

𝑇𝑇𝑡𝑡 = 0/1 dummy for customer 𝑗𝑗, which equals 1 if a customer is in the participant group, 0 otherwise 

𝑃𝑃𝑡𝑡 = 0/1 dummy for time 𝑡𝑡, which changes from 0 to 1 at 𝑡𝑡 = participation date for participants and their matches 

𝛽𝛽 = heating use per heating degree-day (HDD) 

𝛾𝛾 = cooling use per cooling degree-day (CDD) 

𝐻𝐻𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡� = 𝐻𝐻𝐻𝐻𝐻𝐻 per day for customer 𝑗𝑗 at heating reference temperature 𝜏𝜏𝐻𝐻𝑡𝑡, at time period t 

𝐶𝐶𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡� = 𝐶𝐶𝐻𝐻𝐻𝐻 per day for customer 𝑗𝑗 at cooling reference temperature 𝜏𝜏𝐶𝐶𝑡𝑡, at time period t 

𝜏𝜏𝐻𝐻𝑡𝑡 = heating reference temperature for customer 𝑗𝑗 determined by site-level regression models 

𝜏𝜏𝐶𝐶𝑡𝑡  = cooling reference temperature for customer 𝑗𝑗 determined by site-level regression models 

𝛿𝛿𝐻𝐻 = average shift in heating reference temperature for all customers in the post period  

𝛿𝛿𝐶𝐶 = average shift in cooling reference temperature for all customers in the post period  

𝛿𝛿𝑝𝑝𝐻𝐻 = incremental shift in heating reference temperature for participants in the post period  

𝛿𝛿𝑝𝑝𝐶𝐶  = incremental shift in cooling reference temperature for participants in the post period  

The model includes terms that capture baseload consumption (alpha) for the participant and non-participant groups. These 
are interacted with trend terms (lambda) to capture possible differences in energy consumption trends between these two 
groups. The model also includes weather variables (CDD and HDD) to control for the effect of weather on energy 
consumption. The CDD and HDD variables were constructed using reference temperature estimates (𝜏𝜏𝐻𝐻𝑡𝑡 and 𝜏𝜏𝐶𝐶𝑡𝑡) derived 
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from pre-period site-level models.38 We also interacted these terms with the trend term interacted with baseload, which 
makes this the regression equivalent of the proportional adjustment we did in the two-stage analysis. The reference 
temperature shifts contend with a trend driver effectively driven by whatever trend difference exists in the baseload over 
time. 

While the beta and gamma terms associated with heating and cooling terms capture the effect of weather on energy 
consumption, the model includes terms to estimate reference temperature changes (delta) of participants and non-
participants. The delta terms for both groups capture reference temperature changes in the post-period. Additional reference 
temperature change terms for participants capture incremental changes following smart thermostat installations. The 
estimates of the incremental delta terms provide direct evidence of shifts in reference temperature that reflect the impact of 
smart thermostats on energy consumption.39      

3.3.4 Panel data model variations 
We ran a variety of panel models that do not constrain energy consumption response to weather or overall consumption 
trends to be the same for participants and non-participants. The models allow the two groups each to have their own 
baseload and heating and cooling load responses through separate alpha (α), beta (β), and gamma (γ) estimates. 

The overall year-over-year consumption trend (lambda (λ)) is a significant addition to this model. It allows us to control for 
possible differences in energy consumption trends between participants and matched non-participants so we can isolate the 
effect of smart thermostats on energy consumption. For rebate installations, the lambda terms in the models provide the 
same function that the post-regression adjustments we applied in the PY2018 and PY2020 evaluations to deal with 
differential trends in energy consumption between rebate participants and their matches. Rather than a somewhat ad hoc 
proportional adjustment applied outside the regression context, this model estimates the average trends (lambda terms) for 
the two groups within the model, conditional on other cross-group balancing and with associated standard errors.   

The model includes incremental reference temperature shift terms (delta (𝛿𝛿𝑝𝑝) terms associated with participants) that 
measure changes in reference temperature values due to smart thermostat installations among participants. We examined 
how savings estimates from these models compare to the results we obtained using the adjustments in the PY2018 and 
PY2020 rebate results. If estimated changes are lower from these models, then these indicate that our adjustments were 
generous.  

If the comparison group is perfectly matched to the participant group, all the coefficients would be the same between the two 
groups, except that the reference temperature value will move in the direction of lower usage for the participants. By 
allowing separate coefficients for each group, we allow for some underlying differences even with a good matching process 
while still identifying the extent of a participant reference temperature shift beyond the “prevailing” shift exhibited by the 
comparison group. The incremental participant heating and cooling reference temperature shifts 𝛿𝛿𝑝𝑝𝐻𝐻 and 𝛿𝛿𝑝𝑝𝐶𝐶, respectively, 
are the specific effects the smart thermostat is designed to induce. This modeling approach allows us to estimate them 
explicitly. 

All-post-years model – We ran models that use one year of pre- and up to four years of post-installation data. These 
models include all available post year data for each participant and allow us to estimate savings estimates that capture the 
effect of smart thermostats over time. 

 
 
38 Details of the weather normalization models are also provided in DNV's PY2020 impact evaluation report. 
39 Our analysis does not presume that 𝜏𝜏.𝑡𝑡  estimates setpoints. It assumes that shifts in setpoints result in shifts in 𝜏𝜏.𝑡𝑡  by the same amount, which is what basic PRISM 

theory states. 
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One post-year model – We ran models that use one year of pre- and only one-year of post-installation data. Estimates from 
these models allow us to compare smart thermostat impacts from our panel modeling approach with previous study results 
based on difference-in-difference (DID) models.  

Annual shift model - We ran models where the estimate in trend is the same across all years, as are the alpha, beta and 
gamma terms that capture baseload estimates and response to weather, but where there are different reference 
temperature shifts for each of the post years. Different reference temperature shift estimates provide the effect of smart 
thermostats on energy consumption by year and indicate if there is a pattern in this effect over time.  

No trend model - We also ran models that do not include trend terms to examine the extent of the distortions in smart 
thermostat savings estimates. We expect that when we do not control for differences in energy consumption trends, these 
will show up as smart thermostat savings or dissavings. We also used results from these models to compare to trend 
unadjusted savings estimates from our PY2018 rebate and PY2019 direct install smart thermostat studies.    

3.3.5 Savings estimates 
We calculated heating and cooling savings and total or combined savings from smart thermostats using panel model 
estimates. To illustrate how we accomplished this, we consider the impact of the installations using the following formulation. 

For customer 𝑗𝑗 in the participant or non-participant group, 𝑔𝑔 = 𝑝𝑝 or 𝑔𝑔 = 𝑛𝑛𝑝𝑝, energy consumption on day 𝑑𝑑 is: 

 
𝑌𝑌𝑑𝑑𝑡𝑡 =  �1 + 𝜆𝜆𝑔𝑔� �𝛼𝛼𝑔𝑔 + 𝛽𝛽𝑔𝑔�𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑗𝑗�𝜏𝜏𝐻𝐻𝑗𝑗� − 𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑗𝑗(𝜏𝜏𝐻𝐻𝑗𝑗 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ∗ (𝛿𝛿𝐻𝐻 + 𝑇𝑇 ∗  𝛿𝛿𝑝𝑝𝐻𝐻))�

+ 𝛾𝛾𝑔𝑔�𝐶𝐶𝐻𝐻𝐻𝐻𝑑𝑑𝑗𝑗�𝜏𝜏𝐶𝐶𝑗𝑗� − 𝐶𝐶𝐻𝐻𝐻𝐻𝑑𝑑𝑗𝑗(𝜏𝜏𝐶𝐶𝑗𝑗 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ∗ (𝛿𝛿𝐶𝐶 + 𝑇𝑇 ∗  𝛿𝛿𝑝𝑝𝐶𝐶))�� 

        (Equation 2) 

The 𝐻𝐻𝐻𝐻 terms are all daily 𝐻𝐻𝐻𝐻𝑃𝑃 and .𝐻𝐻𝐻𝐻𝑑𝑑𝑡𝑡(𝜏𝜏) is degree-days at the outside reference temperature 𝜏𝜏 on day 𝑑𝑑 for the 
climate zone customer 𝑗𝑗 is in, and 𝜏𝜏.𝑡𝑡 is the previously determined reference temperature for heating or cooling for customer 
𝑗𝑗. 

We calculated the heating and cooling savings using normal-year .𝐻𝐻𝐻𝐻 per day at the indicated reference temperature, for 
the climate zone of customer 𝑗𝑗, indicated by .𝐻𝐻𝐻𝐻𝑑𝑑0𝑡𝑡. For a participant customer 𝑗𝑗, where 𝑔𝑔 = 𝑝𝑝, the average heating and 

cooling savings per day due to the smart thermostat can be calculated by: 

         Δ𝑁𝑁𝑁𝑁𝐶𝐶 =  �
𝛽𝛽𝑝𝑝 ∗ �𝐻𝐻𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡 + 𝛿𝛿𝐻𝐻� −  𝐻𝐻𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡 + 𝛿𝛿𝐻𝐻 + 𝛿𝛿𝑝𝑝𝐻𝐻�� +

𝛾𝛾𝑝𝑝 ∗ �𝐶𝐶𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡 + 𝛿𝛿𝐶𝐶� −  𝐶𝐶𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡 + 𝛿𝛿𝐶𝐶 + 𝛿𝛿𝑝𝑝𝐶𝐶��
� ∗ �1 + 𝜆𝜆𝑝𝑝 ∗ 365/2� 

        (Equation 3) 
In Equation (3) 

• The degree-day differences in �𝐻𝐻𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡 + 𝛿𝛿𝐻𝐻� −  𝐻𝐻𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐻𝐻𝑡𝑡 + 𝛿𝛿𝐻𝐻 + 𝛿𝛿𝑝𝑝𝐻𝐻�� and �𝐶𝐶𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡 + 𝛿𝛿𝐶𝐶� −

 𝐶𝐶𝐻𝐻𝐻𝐻0𝑡𝑡�𝜏𝜏𝐶𝐶𝑡𝑡 + 𝛿𝛿𝐶𝐶 + 𝛿𝛿𝑝𝑝𝐶𝐶�� are the differences in the normal-year heating and cooling drivers with and without the 

participants’ incremental reference temperature shift 𝛿𝛿𝑝𝑝𝐻𝐻 and 𝛿𝛿𝑝𝑝𝐶𝐶 .  This incremental shift—over and above the 
prevailing reference temperature shift 𝛿𝛿𝐻𝐻 or 𝛿𝛿𝐶𝐶 that occurs without a smart thermostat—is the source of savings due 
to the smart thermostat installation. That is, the heating and cooling degree-day differences translate the heating 
and cooling reference temperature shifts accomplished by the smart thermostat into the differences in degree-days 
the heating and cooling systems need to serve. 

• Multiplying the differences in heating and cooling degree-days by the corresponding heating and cooling slopes βp 
and γp in turn produces the difference in heating and cooling energy use needed. 
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• By assumption in the model, all the primary coefficients αp, βp, and γp are inflated (or deflated) over time by the 
trend, at the rate of λp per day. The primary values multiplied by (1+365 λp/2) represent the average levels of the 
heating and cooling usage per degree-day over the first year of the analysis. This approach is a simplification, 
which avoids calculating the effects of the shifts on a daily basis and makes comparisons across different post-
installation periods more straightforward. 

3.4 Device data analysis 
DNV received hourly aggregated data for all NEST thermostats activated from June 1, 2019 through December 31, 2020 in 
California's 16 climate zones. The data extended from June 1, 2019 through December 31, 2021. The file excluded 2019 
data for climate zone one and most of June 2019 data for climate zone five due to insufficient numbers of thermostats to 
meet NEST’s aggregation policies. The information we received did not indicate the number of activated thermostats used to 
generate the aggregate values. As a result, the aggregate data we received represents a growing underlying population for 
the first 19 months and then an additional year of data for the population as of December 31, 2020. Any comparison of 
parameters over time is compromised by the possibility of drift in parameters as the population grew. 

The aggregated data we received included the following key smart thermostat operations for each hour and day over the 
mid-2019 to end-of-2021 period: 

• Average cooling and heating setpoints  
• Fraction of thermostats with cooling and heating setpoints 
• Average cooling and heating runtimes in seconds 
• Average number of fan-only runtimes 
• Average outdoor temperature reported by the thermostats 

Table 3-4 summarizes the average values of the key operation metrics by year for the summer (June through September) 
and winter (November through February) seasons. Since the data covers only two full winters (November 2019 through 
February 2020 and November 2020 through February 2021), we provide winter summaries for only 2019 and 2020.  

Table 3-4. Winter and summer average smart thermostat operations by year 

Metric 2019 2020 2021 

Winter average 

Heating runtime (minutes per hour) 4.90 4.93   
  
  
  

Heating setpoint (oF) 64.6 65.6 
Fraction with heating setpoint 0.72 0.71 
Temperature (oF) 52.0 51.8 

Summer average 

Cooling runtime (minutes per hour) 8.3 9.1 8.6 
Cooling setpoint (oF) 77.8 77.3 77.9 
Fraction with cooling setpoint 0.65 0.64 0.64 
Temperature (oF) 72.5 73.2 72.7 

Our analysis of the impact of smart thermostats on energy consumption in the current and past studies used participant and 
non-participant household energy consumption data from the utility, which allowed us to model changes in energy 
consumption relative to baseline (pre-installation) energy consumption. The aggregate smart thermostat data we received 
from NEST, by its nature, begins after thermostat installation. Hence, it does not make it possible to model changes in smart 
thermostat operations compared to baseline conditions.  
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Given that we do not have baseline operating conditions against which to compare smart thermostat operations, we 
examined changes in these operations over the three-year period for which we received data. We also focused on any 
changes in smart thermostat operations due to COVID.40  

To study these changes, it was necessary to control for different weather conditions over the three years. We modelled 
hourly cooling runtime (measured in minutes) as a function of temperature for this purpose. For each climate zone and year, 
we estimated the following model: 

𝐶𝐶𝐶𝐶𝑇𝑇𝑡𝑡,ℎ = 𝛼𝛼ℎ ∗ 𝐼𝐼 + 𝛽𝛽ℎ ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑡𝑡ℎ + 𝜀𝜀𝑡𝑡,ℎ 

(Equation 4) 
In this equation: 
• 𝐶𝐶𝐶𝐶𝑇𝑇𝑡𝑡,ℎ is cooling runtime for hour ℎ of day 𝑡𝑡  
• 𝐼𝐼 is an hourly indicator variable that takes the value of 1 during hour ℎ and 0 otherwise 
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑡𝑡ℎ is average outside temperature captured by smart thermostats during hour ℎ on day t 
• 𝛼𝛼ℎ and 𝛽𝛽ℎ capture average hourly cooling runtime and the effect of average daily temperature on cooling runtime during 

hour ℎ 
• 𝜀𝜀𝑡𝑡,ℎ is model error term for day t, hour h 

We used Tobit to estimate the relationship between runtime and temperature. The Tobit models censored data, which are 
constrained above and below. Observed runtime cannot be less than 0 nor greater than 60 minutes per hour. We consider 
these runtimes as censored observations on an underlying demand for heating or cooling that, in principle, could be 
negative (wanting anti-heating when it is hot or anti-cooling when it is cold) or exceed full operation (wanting more heating or 
cooling in an hour than the system can provide). The relationship between runtime and this unobservable underlying 
demand is linear in temperature. The Tobit structure models this linear relationship censored at 0 and 60 minutes per hour. 

We used the estimated model coefficients to generate hourly cooling runtimes for each year standardized to 2020 weather 
data. The predicted hourly runtimes in each year represent the same weather conditions allowing us to determine changes 
in smart thermostat operations that are independent of the effect of weather. We examined changes in average hourly 
runtime over the three years and investigated the impact of COVID on the same metric based on this approach. 

 
 
40 As noted above, it is possible changes over time represent drift in the population activating thermostats as well as changing behaviors of already included thermostats. 



 
 

DNV  –  www.dnv.com  Page 18 
 

4 RESULTS 
We examined the trend in program participation among different customer segments over the analysis period (PY2018 to 
PY2021). The details of these analyses are provided in the sections below. In Section 4.1, we discuss changes in participant 
characteristics over time and in Section 4.2, we present the the energy impact of the technology by different customer 
segements over time. 

4.1 Participant characterization 
In this section, we provide a high-level summary of the claims from the rebate and direct install programs that delivered 
smart thermostats. We also examine changes in participation rates overall and by different demographic segments. The 
participation analysis focuses on access to the technology and the effectiveness of the deployment of the technology over 
the four program years.  

4.1.1 Summary of participation over time 
Table 4-1 summarizes the number of installations and claimed electric (kWh) and gas (therms) savings by direct install and 
rebate programs over the analysis period. The numbers indicate that the footprint of the programs has shrunk progressively 
over the analysis period.  

Table 4-1. Smart thermostat claims from PY2018 to PY2021 by delivery channel 

  
Direct Install Rebate 

2018 2019 2020 2021 2018 2019 2020 2021 
Number Of Gas Claims 178,618 121,093 32,974 25,385 55,824 39,300 24,260 20,395 
Number Of Electric Claims 145,474 95,697 30,812 21,073 45,411 39,797 25,591 16,213 
Claimed Savings Therms 2,441,310 1,372,704 339,170 318,501 871,676 609,620 376,383 174,157 
Claimed Savings kWh 34,545,563 21,534,258 5,445,877 4,694,138 7,975,185 6,368,835 2,903,944 1,482,808 

Figure 4-1 shows the number of installations from PY2018 to PY2021. It indicates an overall decline in the number of 
installations and the proportion of direct install smart thermostats over the study period.  

Figure 4-1. Number and proportion of installations from PY2018 to PY2021 by delivery channel 

 

We also examined the trend in participation rates by delivery channel over the four program years. We defined participation 
rate as the proportion of households that received direct install or rebate smart thermostat relative to the total population. 
Figure 4-2 shows the participation rate in direct install and rebate programs broken out by CARE/FERA and non-
CARE/FERA households. Like the preceding discussion indicates, the figure shows a decline in participation rate for all 
customer groups over the program years due to shrinking program footprints. Comparing participation rates between 
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customers on the income-based CARE and FERA energy rates is instructive, even in the context of reduced program 
footprints, and provides some insight into whether there are disparities in participation across income groups.  

In PY2018 and PY2019, the direct install participation rates for CARE/FERA households and non-CARE/FERA households 
were nearly the same, while the CARE/FERA household participation rate fell less than the non-CARE/FERA households in 
PY2020 and PY2021. Participation rate trends for direct install programs underscore these programs’ focus on serving 
lower-income households. Despite a drop in participation in PY2020 and PY2021, the direct install programs maintain a 
greater focus on participation among CARE/FERA households.  

On the other hand, the rebate program participation rate was consistently lower for CARE/FERA households compared to 
non-CARE/FERA households. While the rebate programs defrayed the cost of the smart thermostats, customers still had to 
pay the remainder to obtain the technology. As a consequence, rebate programs consistently have lower participation 
among CARE/FERA households.  

Figure 4-2. CARE/FERA participation rates by year and delivery channel 

 

4.1.2 Access to program benefits 
We sought to understand how access to these technologies has changed over time by different customer segments. This 
analysis sheds light on the extent to which the publicly funded PA programs have provided access to this technology among 
population segments defined by income, dwelling type, energy consumption level, and location.  

Fifty to seventy percent of smart thermostats delivered by the California PA programs from PY2018 to PY2021 were via 
direct install channels. While direct install programs had no income requirements for participation, they sought to reach low- 
to medium-income customers. Additionally, since programs not explicitly tailored for low-income customers underserve such 
customers present in the population, our analysis aimed to gauge the effectiveness of smart thermostat programs in 
reaching these specific customer segments.41 Given the unavailability of income data, we evaluated participation among 
hard-to-reach (HTR),42 disadvantaged community (DAC),43 and multifamily customers as these segments likely encompass 
a higher proportion of individuals with lower to moderate incomes, facilitating this assessment. The data show the following: 

Direct install programs serve communities that face energy and income burdens in greater proportions. Table 4-2 
provides the proportion of participants in DAC, HTR, and non-metro areas by delivery channel and contrast these with the 
corresponding population proportions in California. The direct install program participation rates underscore that programs 

 
 
41 https://www.aceee.org/files/proceedings/2016/data/papers/2_542.pdf.  
42 Hard to reach (HTR): The criteria for residential HTR customers is the combination of a geographic prerequisite plus at least one of the following criteria: primary 

language, income, or housing type. Commercial HTR customers are defined by a combination of a geographic requirement plus at least one of the following criteria: 
primary language, business size, or leased or rented facility. Specific details can be found here: Statewide Deemed Workpaper Rulebook. 

43 CPUC, “Disadvantaged Communities,” cpuc.gov, 2021, https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/disadvantaged-communities.  

https://www.aceee.org/files/proceedings/2016/data/papers/2_542.pdf
https://static1.squarespace.com/static/53c96e16e4b003bdba4f4fee/t/5dfd68a171e0665b4c4c5adf/1576888489519/SW+Deemed+Workpaper+Rulebook_Version+3.0.pdf
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/disadvantaged-communities
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that seek to serve DAC/HTR/non-metro customers must be intentional in their targeting and outreach to reach such 
customers. 

Table 4-2. Statewide IOU population and program participants in DAC, HTR, and non-metro areas  

Participant segment Total CA population All DI participants  All rebate participants  

DAC 22% 29% 10% 
HTR 34% 43% 18% 
Non-Metro 56% 57% 51% 

Table 4-3 provides analogous results for CARE participants. As noted previously, while CARE/FERA status is determined 
strictly on the basis of income, DAC/HTR/non-metro designations are based on different factors including language, 
geography, and pollution burden. We observed similar results with direct install programs, which reached these vulnerable 
customer segments. 

Table 4-3. Statewide IOU CARE population and program participants in DAC, HTR, and non-metro areas  

Participant segment Total CARE population DI CARE participants Rebate CARE 
participants 

DAC 32% 40% 22% 
HTR 73% 80% 67% 
Non-Metro 63% 71% 59% 

Direct install programs have improved DAC, HTR, and non-metro participation over time. Figure 4-3 shows the 
proportion of direct install participants in DACs, HTR, and non-metro areas has increased over the four-year period from 
2018 to 2021, whereas the proportion of rebate participation for three segments has remained the same.  

Figure 4-3. Proportion of CA IOU population and participants in DAC, HTR, and non-metro areas by program year 

 

 

22%
34%

56%

30%
41%

55%

25%
41%

50%

28%
39%

64%

35%

68%

88%

0%

20%

40%

60%

80%

100%

120%

DAC HTR Non-Metro

Direct Install

CA Population (n=10,651,613) 2018 DI Participants (n = 137,613) 2019 DI Participants (n = 98,786)

2020 DI Participants (n = 28,022) 2021 DI Participants (n= 22,465)

22%
34%

56%

10% 17%

49%

11%
19%

52%

10%
19%

52%

11% 18%

49%

0%

20%

40%

60%

80%

100%

120%

DAC HTR Non-Metro

Rebate

CA Population (n=10,651,613) 2018 Rebate Participants (n = 58,046) 2019 Rebate Participants (n = 39,616)

2020 Rebate Participants (n = 25,290) 2021 Rebate Participants (n = 19,459)



 
 

DNV  –  www.dnv.com  Page 21 
 

Opportunities exist for targeting desirable customer segments. As Table 4-4 indicates, the proportion of multifamily 
direct install program participants is twice that of the statewide multifamily population. This reflects direct install programs’ 
focus on serving the multifamily sector to overcome the split incentive barrier to EE by providing EE measures at no cost to 
multifamily homes. By contrast, the small proportion of multifamily households that participated in rebate programs indicates 
that property managers and not individual tenants are the decision-makers for program participation. This highlights the 
necessity of direct install programs to continue serving the multifamily sector effectively. 

As seen in other EE programs, like the Home Energy Reports Programs, customers in the top consumption quartile are a 
desirable target for EE programs. We analyzed the distribution of smart thermostats from PY2018 to PY2021 by 
consumption level. We observed that participation among households in the top consumption quartile is on par with 
statewide top consumption quartile for rebate participants and lower than statewide top consumption quartile for direct install 
participants.  

Households with solar or EV are more likely to adopt time-sensitive energy usage behaviors that correspond to periods of 
high solar energy production during the day or lower EV rates that encourage off-peak charging. Such households hence 
represent a desirable target for the deployment of smart thermostats and participation in demand response (DR) and virtual 
power plant programs.  

Table 4-4. Statewide IOU population and program participants by dwelling type, consumption, and technology 
adoption 

Participant segment Total CA Population All DI Participants  All Rebate Participants  

Multifamily 27% 54% 4% 
Top quartile BTU 25% 19% 25% 
Solar/EV 10% 2% 16% 

Positive trend in smart thermostat program participation among solar/EV adopters. Figure 4-4 indicates a steady 
decline in the proportion of multifamily direct install participants from 2018 to 2021. Implementer and PA interviews for 
PY2021 indicated that the declines in PY2020 and PY2021 were partly due to the impact of the COVID-19 pandemic, which 
had greatly restricted access to multifamily buildings. This is reflected in the higher proportion of participants in the top 
consumption quartile in PY2021. While the proportion of participants that have adopted solar/EV is higher among rebate 
compared to direct install participants, the proportion has grown over time for both program types. This increase reflects the 
growing adoption of solar and EV in tandem with participation in energy efficiency programs. As noted above, this is a 
positive trend for EE programs that deliver smart thermostats. 

Figure 4-4. Statewide IOU population and program participants by dwelling type, consumption, and technology 
adoption by program year 

 

27% 25%

10%

64%

16%

1%

56%

18%

2%

43%

23%

5%1%

36%

4%
0%

10%
20%
30%
40%
50%
60%
70%

MF Top quartile BTU Solar/EV

Direct Install

CA Population (n=10,651,613) 2018 DI Participants (n = 137,613) 2019 DI Participants (n = 98,786)

2020 DI Participants (n = 28,022) 2021 DI Participants (n= 22,465)



 
 

DNV  –  www.dnv.com  Page 22 
 

 

4.1.3 Effective deployment 
In the face of potential extreme summer weather, the CPUC has sought to ensure adequate energy resources by 
authorizing the use of additional supply- and demand-side resources, particularly in the hot climate zones of 9 through 15. 
For example, the CPUC ordered that all residential customers not currently enrolled in existing supply-side DR programs be 
considered eligible to participate and automatically enroll in the residential Emergency Load Reduction Program (ELRP) in 
the summers of 2022 and 2023.44 It also authorized a thermostat incentive program to improve demand side management in 
these hot climate zones.45  

Given the importance of load management in these hot climate zones during resource constraints, DNV examined the 
deployment of smart thermostats in these regions by PA programs from PY2018 to PY2021. Table 4-5 shows that the 
proportion of both direct install and rebate participants is higher in this region than in the statewide population. The percent 
of direct install customers in this region is much higher than the percent of rebate customers indicating PA programs have 
actively distributed smart thermostats at no-cost to customers in these critical climate zones where this technology can be 
most effective.  

Table 4-5. Statewide IOU population and program participants in ELRP hot climate zones 

Participant segment Total CA Population 
(n=10,651,613) 

All DI Participants  
(n = 71,722) 

All Rebate Participants   
(n = 35,603) 

ELRP CZs (9-15) 45% 77% 50% 

Given that low-income customers in the CARE program receive a 20%-35% discount on their electricity and gas rates, 
managing energy consumption for CARE customers in ELRP climate zones is essential. Smart thermostats enable 
customers to manage energy consumption. Table 4-6 summarizes the proportion of CARE direct install and rebate 
participants in ELRP hot climate zones and compares these values to the proportion of the CARE population in these 
climate zones. Both the direct install and rebate programs have delivered smart thermostats to this customer segment in the 
ELRP climate zones effectively.  

Table 4-6. Statewide IOU CARE population and program participants in ELRP hot climate zones 

Participant segment Total CARE Population  
(n = 2,695,832) 

DI CARE Participants  
(n = 18,687) 

Rebate CARE 
Participants  
(n = 4,201) 

ELRP CZs (9-15) 51% 88% 64% 
 

 
44 CPUC, “Phase 2 Decision Directing Pacific Gas and Electric Company, Southern California Edison Company, and San Diego Gas & Electric Company to take actions to 

prepare for potential extreme weather in the summers of 2022 and 2023,” 
cpuc.ca.gov.https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M428/K821/428821475.PDF 

45 Ibid, p. 79. 
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Figure 4-5 shows that direct install programs have progressively increased smart thermostat deployment in ELRP climate 
zones. Program installations in later years are almost all (94%) in ELRP climate zones. The absolute number of smart 
thermostats installed cumulatively in ELRP climate zones through the PAs’ direct install programs from PY2018 through 
PY2021 are 220,330. This represents 4.6% of the approximately five million households in ELRP climate zones. 

Figure 4-5. Statewide IOU population and program participants in ELRP climate zones by program type and year 
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A similar trend is evident for demand response program participation in ELRP climate zones. As Table 4-8 indicates, 
participation in demand response programs among customers with direct install smart thermostats in ELRP climate zones is 
lower than participation in demand response programs among customers with rebate program smart thermostats in these 
hot climate zones. 
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Table 4-8. Proportion of ELRP climate zone customers in demand response programs 

Customer segment Total Population  
 (n = 4,798,926) 

DI Participants  
(n = 54,988) 

Rebate Participants  
 (n = 17,310) 

ELRP CZ customers in DR programs 5% 3% 5% 

As Figure 4-6 indicates, direct install customer participation in demand response programs has increased over program 
years PY2018 to PY2021. Such an increase has also occurred among direct install customers in ELRP climate zones. 
Decision 21-12-015 required enrollment in demand response programs for customers in ELRP climate zones, including 
those in the CARE or ESA programs, receiving subsidized smart thermostats through new incentive programs.46 The 
increasing trend in participation in demand response programs among ELRP direct install participants is a positive 
development and will aid the effort, reflected in the CPUC decision, to reduce load and grid stress during extreme weather 
events. 

Figure 4-6. Proportion of all and ELRP climate zone customers in demand response programs by year 

 

 

4.2 Impact Results 
This section provides results from the impact evaluation based on the model and savings estimation approaches presented 
in sections 3.3.3 and 3.3.5 We include a high-level summary of the data used, including a discussion of energy consumption 
trend over time. We also provide the estimated energy consumption changes based on model estimates. Additionally, we 
include results for different customer segments that installed smart thermostats in this section. Results from model estimates 
we used to analyze energy consumptions changes are featured in Appendix 6.1. 

 
 
46 https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M428/K821/428821475.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M428/K821/428821475.PDF
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4.2.1 Data summary 
We provide a summary of the energy consumption data used in the analysis in this section. We start by examining pre-
period daily average consumption values for participants and non-participants by delivery channel. As the values in Table 
4-9 indicate, the two groups have well-matched pre-period average daily use and rebate participants have higher energy 
consumption than direct install participants. 

Table 4-9. Average pre-period daily use by group and delivery channel 

Delivery channel Group Electric (kWh) Gas (therms) 

Direct install Participant 13.19 0.73 
Non-participant 13.20 0.72 

Rebate Participant 18.75 1.02 
Non-participant 18.72 1.02 

To examine balance between participants and non-participants, we look at plots that show the distribution of pre-period daily 
consumption. Figure 4-7 provides violin plots that combine box and density plots of pre-period electric daily consumption 
annually and by season for participants and non-participants.47 The figures indicate that both the density and spread of the 
values for the two groups are identical indicating groups that are well-balanced. 

Figure 4-7. Distribution of pre-period electric daily use by year and season for participants and non-participants 

 

Figure 4-8 provides violin plots for pre-period gas consumption of participants and non-participants by year and by season. 
This figure also indicates gas data used in the analysis is well balanced. The gas daily density plots have spikes at certain 
points in the distribution because PG&E’s gas meter reads are integers and not continuous. The figures indicate spikes at 
similar values in the distribution for both participant and non-participants.  

 
 
47 A violin plot is a hybrid of a box plot and a density plot that describes the distribution of a variable by depicting its summary statistics such as 25th, 50th, and 75th 

percentiles and the probability that it takes on a value within a certain range. 



 
 

DNV  –  www.dnv.com  Page 26 
 

Figure 4-8. Distribution of pre-period gas daily use by year and season for participants and non-participants 

 

We also provide the timing of the installation used in the study. As Figure 4-9 indicates, most of the installations used in the 
study occurred in the summer, June through September, and winter, December, and January. The number of gas rebate 
installations is higher than other installations reflecting the large number of rebate smart thermostats provided by SCG. SCG 
and SCE jointly funded these installations, but SCG ran the program. As a result, the electric identifiers of the participants 
were not available. We included in the analysis the SCE customers for whom we could identify electric IDs through address 
matching.  

Figure 4-9. Installation timing by fuel and delivery channel, PY2018 

 
Since we use post period data that ends at the end of 2021, we provide a summary of the percent of customers with data in 
each of the four post years in Table 4-10. The analysis requires that each customer has at least one year of post period 
data. Thus, all customers included in the analysis have complete first post year data. Over 95% of customers also have 
complete second post year data. More rebate than direct install customers have complete third post year data, at about 90-
95% for rebate customers compared to about 80-85% for direct install customers. This reflects the lower moveout rate 
(attrition) among single family participants that mostly make up the rebate customer base. The percent of customers with 
complete year four post period data reflects installations that occurred early in PY2018 rather than attrition. By definition, 
customers that installed smart thermostats in the middle or the end of 2018 will not have year 4 post data since our analysis 
data ends in December 2021. The percent of customers with complete post year 4 data is about 10% for direct install and 
about 25% for rebate customers. 
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Table 4-10. Summary of the length of the post-period of PY2018 data used in the analysis 
Delivery 
channel Fuel Percent of customers with post days 

1 Year Post 2 Years Post 3 Years Post 4 Years Post 

Direct install Electric  100% 97% 80% 10% 
Gas 100% 97% 86% 11% 

Rebate Electric  100% 96% 89% 22% 
Gas 100% 97% 95% 26% 

4.2.2 Energy consumption trend 
Figure 4-10 displays the average daily electric and gas consumption of PY2018 rebate program participants and matched 
non-participants over the analysis period of January 2017 to December 2021. The two panels in the figure demonstrate that 
the energy consumption of the two groups is well-matched before the installation of smart thermostats. The panels also 
indicate that electricity and gas consumption of participants grew faster than that of non-participants in the post-period. 
DNV's PY2018 evaluation demonstrated that the baseload energy consumption of participants was higher than that of non-
participants in the post-installation period. Since smart thermostats target the operation of the HVAC system, this difference 
in baseload energy consumption trend indicates the difference in the energy consumption trend between the two groups. As 
a result, in a difference-in-difference (DID) analysis, the difference in energy consumption trend between participants and 
non-participants could suppress savings due to smart thermostat installations. The DNV PY2018 study involved an 
adjustment to control for the effect of this difference. The current study controls for this effect through a consistent and 
systematic modeling approach.  

Figure 4-10. Average daily electric and consumption for PY2018 rebate customers over time 

  

Figure 4-11 provides the same summary as the above figure for direct install participants. The two panels in the figure also 
indicated well-matched participant and non-participant energy consumption before smart thermostat installation. Further, the 
electricity consumption of participants appears to grow slower than that of matched non-participants, while there is no 
evidence of a decrease in participant gas consumption in the post-period.  



 
 

DNV  –  www.dnv.com  Page 28 
 

Figure 4-11. Average daily electric and gas consumption for PY2018 direct install customers over time 

 

4.2.3 Comparison with past impact estimates 
As noted earlier, smart thermostats have been delivered through both direct install and rebate channels. In our prior 
evaluations on the impact of smart thermostat installations, we used a difference-in-difference (DID) framework with a 
matched comparison group to estimate the effect of smart thermostats delivered through both channels. This is a widely 
used and accepted methodology to evaluate EE programs. It is the correct methodology to estimate the household-level 
impact of a program if it is reasonable to assume that the comparison group change is a representation of the participant 
group change over time, absent the measure or program.  

Participant populations all reflect external- and self-selection processes that lead to differences from the general population 
in observable and unobservable characteristics. The matching process is designed to select a comparison group that best 
matches the participant group but, in practice, this is challenging. Some observable characteristics are difficult to represent 
with available data. Unobservable characteristics can only be represented through other correlated variables, and only if 
those other variables can be identified and are available. As a result, matching algorithms tend to be heavily weighted 
toward consumption data parameters that provide good pre-period balance on consumption but incorporate limited 
information on other possible characteristics. Of particular importance is the impact of characteristics on trends in 
consumption over time. Consumption data matching on a single pre-period year of data is unable to meaningfully capture 
trends over time. Yet a fully representative comparison group should have consumption that tracks with what the participant 
group’s consumption would have been over multiple years. 

It is impossible to directly compare trends over time once the program effect is present, and the obvious alternatives, 
multiple years of pre-data, are difficult to access and would further constrict the analysis population. As a result, the potential 
for trend differential is hypothesized based on the difference of the participant population from identified potential matches 
based largely on the nature of the selection process. In general, direct install programs work within identified (thus 
identifiable) target populations and the free offerings are easy to accept. These two aspects of direct install programs, the 
identifiable program target populations and free program offerings, make it easier to assume that there are limited trend 
differences in energy consumption between participants and matched non-participants.  

Thermostat rebate programs present a different challenge. The eligible population is unconstrained and, while the rebates 
are sufficient to motivate substantial participation, participants will generally spend at least $100 dollars out of pocket above 
the provided incentive. The matched comparison group process must draw from the full residential population and does so 
without any way to target the limited subset of customers who might be willing and able to spend $100 on a new 
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thermostat.48 To the extent that the characteristics of those purchasing rebate program thermostats are correlated with a 
consumption trend over time that is different from that of the general population, a matched comparison group created under 
these circumstances cannot intentionally avoid the bias associated with a trend differential. For example, it is not 
unreasonable to imagine that those willing and able to spend that $100 are more likely to add an EV during the evaluation 
period than those who are not. In this case, a self-report survey after the fact could support a simplistic adjustment. 

For the PY2018 rebate program impact evaluation, we devised a more comprehensive adjustment to address differences in 
trends over time. Because thermostats are expected to impact only heating and cooling consumption, the difference 
between participant and comparison group pre-to-post baseload consumption provided a proxy estimate of the trend 
differential. We used the participant group's percent change in baseload to adjust the percent change in the group's heating 
and cooling load. This adjustment involved the simplifying assumption that the baseload trend was a good proxy for the 
overall trend. 

The models used for the current analysis follow similar logic but within an explicit regression framework. The panel models 
used effectively incorporate this approach into the structural equation with some subtle differences. A single trend is 
estimated across all three consumption components: baseload, heating, and cooling. The only flexibility for the model to 
capture program-related change is through a shifting degree-day base. This model structure-enforced relationship is 
consistent with the understanding that a smart thermostat causes a decrease in summer reference temperature values and 
an increase in winter reference temperature values. The shared trend over the three components, baseload, heating, and 
cooling, makes the panel regression non-linear in parameters, but the underlying structure is a linear model that quantifies 
the reference temperature-related shift due to a smart thermostat installation while controlling for differences across 
participant and comparison groups and trend over time. 

In contrast, the original PY2018 and PY2019 results used two-stage site-level models. Pre- and post-installation data were 
modeled independently at the site-level and the second stage effectively aggregated the annualized, weather normalized 
results from those site-level models. The new specification is a panel model that includes all customers’ and pre- and post-
installation interval data in a single model structure. This model does, in fact, incorporate information from the pre-installation 
models as the pre-installation degree-day bases provide the customer-specific baseline against which change in degree-day 
base can occur because of the program. It is the combination of site-level information from site-level models and a panel 
model specification that structurally separates program-related effects from a simple linear trend over time that makes this 
approach so unique and compelling. 

A nice attribute of the panel specification is that we can estimate it with and without the trend component. This quality allows 
structurally consistent results and comparisons between the no-trend panel model and the PY2018 and PY2019 unadjusted 
two-stage DID model results and the panel model with trend and the PY2018 and PY2019 adjusted results. 

The panel model results support the conclusion that energy consumption trend differential caused a downward bias of first-
year unadjusted PY2018 rebate program savings estimates. They indicate the need to account for such differential between 
participant and comparison group households, which DNV undertook in the PY2018 rebate evaluation. The PY2019 direct 
install evaluation assumed no similar differential and did not apply an adjustment in the study. The current results indicate 
that it may have also been appropriate to include the adjustment in the PY2019 direct install analysis.   

Table 4-11 compares savings estimated based on smart thermostats delivered through PY2018 direct install programs used 
to evaluate PY2019 claims, and PY2018 rebate programs used to assess PY2018 claims.  

 
 
48 While it is possible to develop data correlated with being “able” to afford a new rebated thermostat, it will be far more challenging to do the same for being “willing” to 

spend money on the technology.  
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Rebate program smart thermostat electric savings change from negative to positive and are significant when we account for 
trend differences. The trend estimates for participants and non-participants in the panel models (Table 6-1, Appendix A) are 
different and statistically significant, indicating the need to control for trend differences. The panel model results reveal that 
the prior PY2018 ad hoc corrections somewhat overstated rebate electric savings. There are also gas consumption trend 
differences for rebate program smart thermostats. The panel model indicates that gas consumption trend estimates are 
different and statistically significant for participants and non-participants (Table 6-3, Appendix A). The panel results suggest 
that the prior PY2018 adjusted gas savings are also overstated.   

Direct install electric savings estimates from the unadjusted PY2019 DID and the current panel approaches are similar. 
Panel model savings estimates that account for trend differences indicate that the PY2019 electric direct install evaluation 
may have overstated savings. Direct install smart thermostat gas savings based on panel models are higher than the two-
stage DID results. However, similar to the rebate program gas smart thermostat savings, accounting for trend differences 
does not appear to affect these gas savings.  

Overall, the DID and panel data approaches indicate electric and gas savings are well below claimed levels.       

Table 4-11. Comparison of PY2018 and PY2019 evaluated and current model savings per household49 

Delivery type Model type Models50 Electric savings (kWh) Gas savings (therm) 

Rebate 

No trend Current panel -106 -6 
 Prior two-stage PY2018 DID -104 -4 

Trend Current panel 29 -10 
 Prior two-stage PY2018 DID 64 2 

Direct Install 
No trend Current panel 44 5 

Prior two-stage PY2019 DID 43 0 

Trend Current panel -13 5 
     

The current panel model also allows for the inclusion of multiple years of post-installation data. Table 4-12 provides a 
summary of the results based one- and four post-year data. It indicates that average annual savings based on four post-year 
data are higher for both electricity and gas. 

Table 4-12. Comparison of current model annual savings per household: one-year and four year-post results 

Delivery type Model type Models Electric savings (kWh) Gas savings (therm) 

Rebate 
Trend 

One post-year panel 29 -10 
All-post-years panel 45 -2 

Direct Install One post-year panel -13 5 
All-post-years panel 4 9 

The four-year trends are perhaps misleading because by the second post-year, the COVID pandemic effects are present in 
the data. By the third post-year almost all the data is from the pandemic period. The pandemic saw a general increase in 
residential energy consumption though impacts varied across the population depending on location and occupation. Despite 
the possible COVID-induced reductions in energy savings, in general, it appears that energy savings from smart thermostats 
installed in PY2018 have increased over time.  

 
 
49 Negative values in all tables indicate dissavings.  
50 The two-stage DID results in this table are participant weighted per site savings. The table does not include two-stage PY2019 DID result for direct install programs since 

DNV did not adjust the PY2019 DID results for any possible trend differences. 
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4.2.4 Energy impact across all customers 
We obtained the overall impact of smart thermostat installations on energy consumption by combining panel model 
coefficients (provided in Appendix A) with pre-period reference temperature values using the approach detailed in section 
3.3.5. Estimated electric and gas savings reflect both the global reference temperature estimates and the participant group’s 
incremental reference temperature shifts and the participant group’s estimated slope and trend coefficients, as specified in 
(Equation 3). 

In general, the electric model results indicate either limited difference between the cooling reference temperature estimates 
of participants and non-participants or lower cooling reference temperature estimates for participants in the post period 
indicating higher cooling load post-installation. They also reflect electric heating reference temperature estimates that are 
generally lower among participants in the post period indicating lower electric heating load. Table 4-13 summarizes the 
electric cooling and heating results. It indicates electric cooling increases (negative values) and electric heating savings 
(positive values) post smart thermostat installations based on the estimated incremental reference temperature changes. For 
rebate participants, cooling increases are lower and heating savings are higher when we account for energy consumption 
trend differential between participants and matched non-participants—that is, for the models that include the trend terms.  

Table 4-13. PY2018 smart thermostat electric cooling and heating savings per household  

Delivery type Models  Cooling electric savings Heating electric savings 
kWh p-value RP kWh p-value RP 

Rebate 
Trend, All-post-years -13 0.01 0.02 59 0.00 0.00 
Trend, One year-post -19 0.01 0.02 47 0.00 0.01 
No trend, All-post-years -90 0.00 0.00 -16 0.01 0.04 

Direct install 
Trend, All-post-years -30 0.00 0.00 34 0.00 0.00 
Trend, One year-post -39 0.00 0.01 26 0.00 0.00 
No trend, All-post-years -1 0.91 11.46 44 0.00 0.00 

The estimated overall electric (kWh) and gas (therm) impacts along with their significance and relative precisions (RP) are 
provided in Table 4-14 for the trend and no-trend models. The overall electric impacts reflect the combined effect of electric 
cooling and heating savings. All estimated electric savings are statistically significant and have a relative precision of at least 
0.20, with most models indicating more precisely estimated values.  

Rebate program thermostats exhibit electric savings only when we account for differences in energy consumption trends 
between participants and non-participants. Accounting for trend differences does not affect the gas savings of rebate 
program thermostats, which do not provide gas savings. Controlling for trend differences also matters for direct install smart 
thermostat electric savings. Without such accounting, the electric savings of direct-install smart thermostats appear to be 
overstated. Accounting for trend differences does not affect direct install gas savings. In all cases, there is evidence of 
improvements in smart thermostat savings over time.  

Table 4-14. PY2018 smart thermostat savings per household  

Delivery type Model type Electric impact Gas impact 
kWh p-value RP Therm p-value RP 

Rebate 
Trend, All-post-years 45 0.00 0.01 -1.5 0.20 0.54 
Trend, One year-post 29 0.01 0.01 -10.0 0.01 0.02 
No trend, All-post-years -106 0.00 0.01 -6.0 0.01 0.03 

Direct install 
Trend, All-post-years 4 0.02 0.05 9.1 0.01 0.02 
Trend, One year-post -13 0.01 0.02 5.1 0.04 0.09 
No trend, All-post-years 44 0.06 0.14 5.0 0.03 0.07 
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We calculated savings from the annual shift models to gauge savings relative to baseline over time.51 Table 4-15 provides 
the estimated savings based on these models. Rebate smart thermostat electric savings are positive in all years, and gas 
savings are positive in most years. Direct install electric savings are low or negative in all years, and gas savings are positive 
and similar in all post years. The models do not exhibit systematic trends over time, fuel, or program, but results from post 
years 2 onwards are likely to reflect the COVID pandemic effects. 

Table 4-15. PY2018 smart thermostat savings per household and by year 

Delivery type Period Electric impact Gas impact 
kWh p-value RP Therm p-value RP 

Rebate 

Post year 1 53 0.00 0.00 -11.5 0.00 0.01 
Post year 2 43 0.00 0.01 9.5 0.01 0.03 
Post year 3 25 0.01 0.03 11.8 0.01 0.02 
Post year 4 60 0.01 0.01 10.2 0.02 0.04 

Direct install 

Post year 1 7 0.01 0.02 7.2 0.01 0.03 
Post year 2 -12 0.01 0.02 10.2 0.01 0.02 
Post year 3 -49 0.00 0.00 8.9 0.01 0.04 
Post year 4 -16 0.01 0.02 6.0 0.05 0.13 

4.2.5 Energy impact by customer segment 
The preceding section provided the impact of smart thermostats from all the models we estimated across all customer 
segments. In this section, we provide the impact of smart thermostats on overall energy consumption by customer segment 
based on all-post-years models, which include up to four years of post-period data and incremental reference temperature 
shift terms for participants. Model coefficient estimates for customer segment models are provided in Appendix 6.2.  

We sought to understand if smart thermostat savings varied by participant demographic segments, levels of energy 
consumption, household characteristics, rates, and smart thermostat brand. Particularly, we explored smart thermostat 
savings differences by: 

• Demographic segments (HTR, DAC status) 
• Consumption level and household characteristics (consumption quartile, dwelling type, climate zone) 
• Rate, demand response and technology brand (TOU, DR, smart thermostat brand) 

We explored the impact of smart thermostats for all the customer segments listed above, but report on results for only those 
segments where matching between participants and non-participants was well-balanced. We were able to estimate the 
impact of smart thermostats on HTR but not DAC status for this reason. Since participants were matched to non-participants 
by location (climate zone) and housing type, it was possible to determine impact by HTR status, which partly reflects 
geographic status and renters in multifamily and mobile homes. In some cases, we also had data from only a limited number 
of customers within a particular segment, which did not make it possible to report the energy impact of smart thermostats 
among such customers. For example, we had data from about 300 rebate and 28 direct install customers on demand 
response, which did not enable us to determine smart thermostat impact by demand response status. 

Table 4-16 provides electric and gas impacts of smart thermostats by household characteristics, including dwelling type, 
HTR status, consumption level, and technology type.  

The electric impact of smart thermostats differs by HTR status and dwelling type. Both rebate and direct install non-HTR 
participants have electric smart thermostat savings and non-HTR participants have electric dissavings. Participants in 

 
 
51 Model coefficients for these models are provided in Table 6-1 to Table 6-4 in Appendix A.  
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multifamily dwelling units also have higher electricity use post-installation than those in single-family and mobile homes.52 
There is considerable overlap between HTR status and multifamily residence since being a multifamily renter is one of the 
criteria used to define the former. The electricity dissavings of HTR and multifamily participants is likely higher due to 
customer takeback. Participants in these two groups likely reside in less efficient homes than non-HTR and single-family 
participants and experience higher levels of energy deprivation. A technology that promises to regulate and reduce energy 
use and cost could lead such participants to increase their comfort and use more energy inadvertently. This pattern holds for 
gas rebates participants. Customer responses from participant surveys conducted for DNV’s impact evaluations of the PAs’ 
PY2018, 2019, and 2020 rebate and direct install programs indicate a significant increase in customer comfort post smart 
thermostat installation, which could be indications of takeback.53 

We also note higher electricity and gas savings for rebate participants in the top consumption quartile than in the other 
consumption quartiles. It appears that smart thermostats enable a reduction in energy use among the consumption quartile 
that can most readily accomplish this.  

Table 4-16. PY2018 all post years annual savings by household characteristics and technology type 

Delivery type Segment value Electric impact Gas impact 
kWh p-value RP Therm p-value RP 

Rebate 

HTR -54 0.02 0.02 -9.6 0.01 0.03 
Non-HTR 43 0.00 0.03 -1.2 0.38 1.12 
Top Btu Quartile 151 0.00 0.00 11.8 0.01 0.02 
Other Quartile 3 0.00 0.07 -5.8 0.01 0.03 
Technology 1 55 0.00 0.03 -1.5 0.22 0.60 
Technology 2 17 0.00 0.02 2.6 0.26 0.72 

Direct install 

HTR -15 0.00 0.02 10.2 0.01 0.03 
Non-HTR 17 0.00 0.07 7.5 0.02 0.06 
Top Btu Quartile -119 0.00 0.00 8.9 0.05 0.14 
Other Quartile -8 0.00 0.02 8.8 0.01 0.01 
SF/MH 123 0.00 0.02 7.3 0.03 0.07 
MF -15 0.00 0.01 11.0 0.01 0.02 

Table 4-17 provides electric and gas savings estimates by time of use (TOU) rate and location. Being on a TOU rate 
appears to have a significant effect on overall smart thermostat electric savings. Rebate participants on TOU rates have 
robust smart thermostat electric savings while those not on TOU rates have a small increase in electric consumption. This 
pattern does not hold for direct install participants on TOU. 

Both rebate and direct install participants outside of ELRP climate zones have significant electric savings but those in the hot 
ELRP climate zones either have limited electric savings or have electric dissavings. The significant cooling needs in the hot 
climate zones are the likely reason for this outcome. We noted overall gas savings among direct install and gas consumption 
increases among rebate participants earlier and note the presence of significant gas savings in both ELRP and non-ELRP 
climate zones for direct install participants. Rebate participants outside of the ELRP climate zones have gas savings but not 
those in the ELRP climate zones, which indicates location matters for savings among rebate participants. 

 
 
52 Unlike multifamily homes, single-family and mobile homes have their own walls and roofs, and energy consumption is unaffected by adjacent homes. However, single-

family and mobile homes may have different insulation levels and, thus, leakiness. We grouped these two home types in the analysis because the PAs' CIS data 
often only distinguishes attached and detached homes, which made it challenging to identify mobile homes for matching. 

53 The following links include DNV’s impact evaluations of the PAs for PY2018, 2019, 2020: 
https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf (Table 4-9), 
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf (Table 4-9), 
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf (Table 5-8). 

https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf
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Table 4-17. PY2018 all post years annual savings by TOU rate and location 

Delivery type Segment value Electric impact Gas impact 
kWh p-value RP Therm p-value RP 

Rebate 

TOU 54 0.00 0.01 -9.5 0.02 0.06 
No TOU -3 0.00 0.09 -0.6 0.73 3.58 
ELRP CZ 2 0.00 0.23 -6.4 0.01 0.03 
Non-ELRP CZ 69 0.00 0.05 4.5 0.04 0.12 

Direct install 

TOU -35 0.88 0.23 33.6* 0.03 0.03 
No TOU -33 0.00 0.01 7.9 0.01 0.03 
ELRP CZ -29 0.00 0.01 10.4 0.01 0.02 
Non-ELRP CZ 71 0.00 0.00 6.1 0.03 0.08 

*Estimate based on only 35 customers 

4.3 Device data results 
This research is motivated to address the challenge of quantifying thermostat-related savings using household level 
consumption data when those savings may amount to just 1-2% of household consumption. The specific challenge is the 
potential presence of bias due to self-selection manifesting in differential trends in consumption between participants and the 
comparison group. This bias could be of similar magnitude to the expected savings and could be the reason for the 
consistently modest estimates of savings. The pandemic, an extreme example of an exogenous effect, makes the effort of 
estimating savings that much more challenging. In requesting device data from thermostat manufacturers, we sought 
evidence for one of the base assumptions of process – that there is evidence of consumption reduction in the available 
HVAC system data. 

The aggregate device data for a set of thermostats activated during the last 6 months of 2019 and all of 2020 provide a 
unique view into HVAC usage before and during the pandemic. These average runtime data reflect demand for cooling or 
heating as reflected in the number of minutes per hour the system was running.54 Runtime is the primary source of energy 
consumption that a thermostat controls.55 The runtime data illustrate how demand for heating and cooling changed over the 
first years of the pandemic. Because the aggregated population continues to grow through 2020, observed changes may 
also reflect changing underlying characteristics of thermostat acquirers. As the potential for this conflating factor is difficult to 
assess (we did not receive data reflecting the growing counts), we had to consider the data as if this was not a factor. 

Figure 4-12 provides plots of the hourly runtime for 2019, 2020, and 2021 normalized to 2020 weather conditions. The left 
panel plots the three average normalized runtimes across the four months June through September (full summer) while the 
right panel shows just the hotter months of July and August (high summer). Both plots illustrate the substantial increase in 
daytime runtime in 2020, the first year of the pandemic, relative to the baseline year of 2019. Looking at actual weather, non-
normalized shapes, the increase in 2020 is even more dramatic because 2020 was substantially hotter than the other two 
years.56 This increase is consistent with increased daytime occupancy due to shutdowns. Cooling runtime in 2020 is higher 
across all hours during July and August, while during the full summer, the increased cooling during the day appears to lead 
to lower runtimes later in the evening.  

 
 
54 Runtime is roughly analogous to electric consumption, though system connected load (the load required by the systems to run at any moment) changes with current 

outdoor temperature. For example, when in cooling mode, AC connected load generally increases by about one percent for each degree increase in the temperature. 
55 Thermostats also control fan usage and may, in fact, make increased fan usage easier via convenient scheduling, etc. 
56 We pursued a similar analysis for the heating runtimes. Because of the timespan of the data, only two winters, one pre- and one post-COVID, were available for 

consideration. The 2020-2021 heating runtime plot demonstrated a substantial shift in runtime, increasing the morning peak, pushing it an hour later, and with heating 
runtime remaining well above winter 2019-2020 runtime throughout the morning hours. Across the whole day, heating runtime decreased by an average of 3% in the 
winter of 2020-21 compared to the pre-COVID winter of 2019-2020. One possible explanation of this slight reduction in average runtime even under the apparent 
increased daytime occupancy is that the thermostats were decreasing customers’ demand for heating.  
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Figure 4-12. Average weather normalized hourly cooling runtime (in minutes) by year 

 

Due to the pandemic-related changes in runtime, and the potentially conflating factor of the growing underlying population, it 
is difficult to determine whether smart thermostats had any effect on HVAC usage levels based on these year-over-year 
comparisons. The 2021 runtime shapes do appear to show modest reductions in overall and peak runtime relative to the 
2019 baseline. The weather-normalized runtime in 2021 continues to show evidence of increased daytime occupancy but 
demonstrates a lower peak runtime. Across the whole day, 2021 runtime was lower by 1% for the whole summer. Load 
during hour 18, a proxy for peak load, was lower by 2% and 3% for the whole summer and high summer (hot) months, 
respectively.  

A reduction of 1% in runtime, where cooling consumption is approximately 25% of household consumption across the state’s 
geographically dispersed population, would represent a decrease in household consumption of just 0.3%.57 As noted above, 
this is a reduction that can be difficult to distinguish from natural variation in the billing analysis context. These data indicate 
that demand for cooling had modest reduction for this cohort by 2021 despite obvious upward pressure from pandemic-
related changes in household occupancy. Without data from a comparison group of non-smart thermostats for comparison, it 
is impossible to say confidently that this is, indeed, an effect caused by the thermostat and not just a subtle change in 
cooling behavior that reflected wider trends. 

While these data may establish the feasibility of smart thermostat-related reduction in consumption, we need to consider 
several caveats in this analysis. The data provide no information on the number of smart thermostats aggregated in each 
climate zone, and it is unclear how those thermostats accrued over the second half of 2019 into 2020. As a result, the 
summer 2019 baseline is an incomplete baseline for the later years. Furthermore, even if the 2019 baseline were reliable, 
other dynamics could explain lower runtimes unrelated to smart thermostat-specific operations. For example, in 2021, some 
pandemic-related relief programs ended with possible economic effects on individuals. Alternatively, with the return to 
travelling, aggregate 2021 numbers include an increasing number of vacation days with associated setbacks. While it is 
impossible to disentangle these kinds of year-over-year impacts using these device data, it is possible to address them in 

 
 
57 Even if we could measure a higher reduction in runtime based on baseline thermostat use or comparison group data, the percent of reduction in household consumption 

is unlikely to exceed 2%-3% since average cooling load makes up about a quarterly of total energy consumption. 
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the primary analysis of this study, which uses a comparison group and the novel approach of addressing differential trends 
over time. 
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5 CONCLUSIONS AND RECOMMENDATIONS 
In this study, we used data from the large installed base of smart thermostats delivered from PY2018 through PY2020 via 
rebate and direct install programs to gain insights regarding program participation. We also used one year of pre- and four 
years of post-installation data from PY2018 installed rebate and direct install programs to understand savings variability. The 
study enabled us to validate and strengthen our understanding of the following: 

• Matching of participant and non-participant data. The panel model results validated the matching and the balance 
achieved between participant and non-participant energy consumption data, not only in overall energy use but also in 
the coefficients that characterize base, heating, and cooling patterns. 

• Energy consumption trends are different between the two groups. While we achieved a close match between 
participants and non-participants pre-installation, the two groups exhibit different underlying trends unrelated to smart 
thermostat installations. 

• Savings, to the extent they exist, are small. While our study illuminates the variability by various demographic and 
geographic customer segments, evaluated gross savings estimates are still significantly and uniformly lower than 
expected savings. 

The findings from this study and resulting recommendations and implications for programs that will include or employ smart 
thermostats are summarized in Table 5-1 below. 

Table 5-1. Key findings and recommendations 

Key findings Implications and recommendations 

1. Our analysis indicates that the proportion of vulnerable 
customers (DAC, HTR, and non-metro area customers) 
receiving smart thermostats via direct install programs has 
increased significantly from PY2018 through PY2021, even 
as the participation of customers from these segments in 
smart thermostat rebate programs has remained flat. 
Participation of multifamily customers in direct install 
programs has also been significantly high at 57% over this 
period.58 These findings indicate improved targeting of 
these populations. 

Direct install programs should continue serving the state’s 
vulnerable customers, given this customer segment’s 
limited resources to take advantage of rebate programs’ 
EE offerings. Direct install programs should also continue 
serving the multifamily sector, which makes up one-third 
of the state’s residential population since this is the 
primary channel for multifamily households to access IOU 
EE program offerings. 

2. Top-quartile energy consumption rebate program 
participants achieved significantly higher electric and gas 
savings than customers in lower energy consumption 
quartiles, at 151 versus 3 kWh per household and 12 
versus -6 therms per household, respectively. 

Smart thermostat savings may be improved by factoring 
in household energy consumption levels in program 
targeting. Rebate programs should consider using the 
level of energy consumption as a key targeting variable. 

3. The single consistent modeling approach we used in the 
study addresses the self-selection bias identified in 
previous evaluations. Model estimates indicate that the 
energy consumption trends of participants and non-

When feasible, evaluations should identify and correct for 
these possible biases when estimating the effect of opt-in 
programs using consumption data analysis. 

 
 
58 In contrast, rebate participation among multifamily customers is low at 4%, which reflects that property managers and not individual tenants are the decision-makers for 

program participation in this sector. 
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Key findings Implications and recommendations 

participants are different and statistically significant. These 
differences affect estimated electric rebate and direct install 
smart thermostat savings but have limited effect on gas 
savings. When moving from a model that does not account 
for trend differences to one that does, rebate smart 
thermostat electric savings go from negative to positive, 
and direct install smart thermostat electric savings go from 
positive to a small negative number. 

4. The evidence suggests that energy savings from smart 
thermostats installed in PY2018, while small, increased 
over time despite the possibility that COVID-related 
increased occupancy eroded the saving potential for 
thermostats. DNV’s new model results, presented in Table 
4-12, show that electric and gas savings from both the 
rebate and direct install channels are higher when 
estimated using data from all post-years compared to the 
pre-COVID first post-year. Device information DNV 
received also indicates that average HVAC cooling 
runtimes decreased in 2021 compared to 2019. 

Thermostat optimization could improve smart thermostat 
energy savings performance. Additional studies that track 
smart thermostat savings over time are needed to 
strengthen this finding. 

5. Previous smart thermostat savings may have been 
overstated. The current panel and previous DID evaluation 
results indicate similar findings when neither corrects for 
trend differences (Table 4-11). However, the current model 
results reveal that the prior PY2018 ad hoc corrections 
somewhat overstated rebate electric and gas savings. They 
also indicate that the PY2019 electric direct install 
evaluation may have overstated savings. 

We recommend continued evaluation of new installations 
to confirm the results identified in this study. 

6. Both rebate and direct install non-HTR participants have 
electric savings, while HTR and multifamily participants do 
not. Participants in the latter two groups likely reside in less 
efficient homes than non-HTR and single-family participants 
and experience higher levels of energy deprivation. 
Customer responses from participant surveys conducted for 
DNV’s impact evaluations of the PAs’ PY2018, 2019, and 
2020 rebate and direct install programs indicate a 
significant increase in customer comfort post smart 
thermostat installation.59 Smart thermostats’ promise to 

There is higher energy consumption post-installation 
among some customer segments. Given this, we 
recommend improved customer education on how smart 
thermostats work and how they provide energy and cost 
savings. The PAs cannot require “eco” settings on these 
program-provided thermostats, but they need to find a 
way to encourage more participants to adopt those 
settings. 

 
 
59 https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf (Table 4-9), 

https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf (Table 4-9), 
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf (Table 5-8) 

https://www.calmac.org/publications/CPUC_Group_A_Report_Smart_Thermostat_PY_2018_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/Group_A_Residential_PY2020_RES_HVAC_Final_Report_CALMAC.pdf


 
 

DNV  –  www.dnv.com  Page 39 
 

Key findings Implications and recommendations 

regulate and reduce energy use and cost could have led 
some of these participants to increase their comfort and 
use more energy inadvertently. 

7. Unlike direct install programs that delivered largely the 
same smart thermostat technology type to participants, 
rebate program participants purchased different smart 
thermostat types. Using these data, DNV estimated the 
electric savings of one vendor’s device (Technology 1) to 
be 55 kWh per household and another vendor’s device 
(Technology 2) to be 17 kWh per household. Neither 
technology type provided statistically significant gas 
savings. 

The savings potential of smart thermostats continues to 
change even after installation due to software updates. 
Programs should factor in variations in technology and 
evolving algorithms that result in notably different 
outcomes when considering this measure for programs. 

PAs should assess savings by specific technologies 
periodically to understand if there are differences and 
calibrate technology/measure package recommendations 
accordingly. 

8. CPUC D. 21-12-015 (in Rulemaking R.20-11-003), adopted 
in December 2021, is designed to reduce load in hot 
climate zones 9-15 and directs PAs to subsidize smart 
thermostats for customers in these climate zones. The 
absolute number of smart thermostats installed 
cumulatively in these climate zones through the PAs’ direct 
install programs from PY2018 through PY2021 is 
approximately 286,000. The total installed base of smart 
thermostats in these climate zones is more than 286,000 
since it will also include those provided at low to no cost by 
other energy efficiency programs like Energy Savings 
Assistance (ESA) and non-program adoption of smart 
thermostats. 

Assuming a non-program smart thermostat adoption rate of 
25%60 and a statewide average annual ESA program 
footprint of 260,000,61 the smart thermostat installed base 
is likely lower than the estimated 3.5 million of five million 
households that use air-conditioning62 in these specific 
climate zones. Households with air-conditioning contribute 
to grid stress from increased cooling demand during peak 

There are program opportunities to increase smart 
thermostat penetration in households with air-conditioning 
in hot climate zones. Programs should aim to expand the 
penetration of smart thermostats that can operate as part 
of a “fleet” serve as virtual power plants (VPPs) to provide 
direct relief to the overloaded parts of the grid.63 

 
 
60 The prevalence of smart thermostats among non-participant households is estimated in the CPUC Group A PY2019 Smart Thermostat Evaluation. 

https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf 
 The prevalence of smart thermostats among non-participant households is estimated in the CPUC Group A PY2019 Smart Thermostat Evaluation. 

https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf 
61 The PY2015-2017 ESA Program Impact Evaluation indicated the statewide average annual footprint of the program. 2015-2017_ESA_Impact_Evaluation_-_FINAL_-

_CALMAC_Posting.pdf 
62 The EIA’s RECS survey estimates that 70% of CA households have air-conditioning. Applying this penetration to the five million households in climate zones 9-15 results 

in an estimated 3.5 million households with air-conditioning. https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf 
 The EIA’s RECS survey estimates that 70% of CA households have air-conditioning. Applying this penetration to the five million households in climate zones 9-15 results in 

an estimated 3.5 million households with air-conditioning. https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf 
63 VPPs adjust the power use of a fleet of electric devices and appliances like smart thermostats, heat pumps, and induction stoves to reduce stress on the grid. 

https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/CPUC_Group_A_Residential_PY2019_SCT_Final_Report_CALMAC.pdf
https://www.calmac.org/publications/2015-2017_ESA_Impact_Evaluation_-_FINAL_-_CALMAC_Posting.pdf
https://www.calmac.org/publications/2015-2017_ESA_Impact_Evaluation_-_FINAL_-_CALMAC_Posting.pdf
https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf
https://www.eia.gov/consumption/residential/data/2020/state/pdf/State%20Air%20Conditioning.pdf
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Key findings Implications and recommendations 

periods from May through October. These households 
represent ideal targets for energy efficiency and demand 
response programs that deploy smart thermostats. 

9. Smart thermostats' peak load reduction potential makes 
them suitable for use in DR programs. However, DR 
program enrollment among smart thermostat program 
participants has been modest at 7% for rebate program 
participants and no more than 6% for direct install 
participants.  

Programs delivering free or subsidized smart thermostats 
should consider automatically enrolling direct install 
program participants in DR programs with an opt-out 
option and providing information on DR programs for 
rebate program participants to maximize peak load 
savings.64 

 

 
 
64 Smart thermostat program participants could be enrolled in PA and other DR programs such as Power Saver Rewards, OhmConnect, SmartRate Plan, Summer Discount 

Plan, Smart Energy Program, AC Saver (Summer Saver) Program, and AC Saver Thermostat Program. SCE's PY2021 Residential Direct Install Program that 
leveraged SCE's smart thermostat DR program is an example of a successful application of such an integrated demand side management (IDSM) approach. The 
initiative has yielded success in its first year of operation. Survey results showed a higher proportion of participants became aware of and enrolled in the smart 
thermostat DR program due to the IDSM campaign. 
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6 APPENDICES 

6.1 Appendix A: Panel model results across all customers 
In this section, we provide coefficient estimates and discussions of the results for models estimated across all customers. 
Table 6-1 provides estimates from the panel electric rebate models, including those based on one year of pre- and up to four 
years of post-installation period. It also provides estimates from the model based on one year of pre- and only one year of 
post-installation data, the annual thermostat shift model, and the model with no trend terms. 

Table 6-1. Electric rebate model results 

Term All-post-years model One post-year model Annual shift model No trend model 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 14.66 0.00 15.16 0.00 14.99 0.00 14.96 0.00 
𝜶𝜶𝒏𝒏 14.72 0.00 15.15 0.00 15.03 0.00 15.68 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏65 0.028 0.00 -0.071 0.00 0.008 0.10  
1000𝝀𝝀𝒏𝒏 0.090 0.00 -0.024 0.04 0.070 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.22 0.00 0.25 0.00 0.21 0.00 0.22 0.00 
𝜷𝜷𝒏𝒏 0.19 0.00 0.21 0.00 0.18 0.00 0.18 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 1.46 0.00 1.55 0.00 1.47 0.00 1.48 0.00 
𝜸𝜸𝒏𝒏 1.44 0.00 1.57 0.00 1.45 0.00 1.51 0.00 
𝜹𝜹𝑯𝑯 -0.57 0.05 1.41 0.00 

 

0.48 0.08 
𝜹𝜹𝑪𝑪 0.24 0.00 -0.20 0.01 -0.04 0.44 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.34 0.00 -1.36 0.01 0.52 0.24 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.11 0.16 -0.13 0.22 -0.66 0.00 
𝜹𝜹𝑯𝑯𝑯𝑯 

 

-0.99 0.00 

 

𝜹𝜹𝑯𝑯𝑯𝑯 -0.43 0.24 
𝜹𝜹𝑯𝑯𝑯𝑯 0.82 0.08 
𝜹𝜹𝑯𝑯𝑯𝑯 0.76 0.26 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -3.07 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -2.58 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -1.24 0.09 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -1.48 0.14 
𝜹𝜹𝑪𝑪𝑯𝑯 0.45 0.00 
𝜹𝜹𝑪𝑪𝑯𝑯 0.29 0.00 
𝜹𝜹𝑪𝑪𝑯𝑯 -0.34 0.00 
𝜹𝜹𝑪𝑪𝑯𝑯 -0.17 0.27 
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯 -0.12 0.08 
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯 -0.15 0.11 
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯 -0.08 0.55 
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯 0.14 0.53 

For all the models, except the No trend model, similarity in the estimated responses to weather, captured by beta and 
gamma coefficients, and baseload, captured by alpha, indicate that our matching produced participant and non-participant 
groups with well-balanced consumption characteristics. As expected, for the No trend model, beta and gamma coefficients 
are similar, but the baseload coefficient, alpha, is quite different. That the models balance across participants and non-

 
 
65 We multiplied the estimated trend terms by 1000 for ease of interpretation. The original estimates reflected average change in daily consumption over the analysis period 

covered in each model.  
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participants separately for baseload, heating, and cooling is one of the novel improvements of the current approach over a 
basic two-stage DID approach.  

The lambda estimates for the electric rebate models support the PY2018 and PY2020 study findings that rebate participants 
have higher trends than the matched comparison homes but control for them in an internally consistent and comprehensive 
way. These estimates indicate a faster increase in energy consumption for participants over time.  

In the models, the delta terms capture the effect of smart thermostats. These terms capture general reference temperature 
shifts in the post period for all customers and incremental reference temperature shifts for participants. Estimates of the 
cooling reference temperature parameter (𝛿𝛿𝐶𝐶) capture overall cooling reference temperature shifts across all customers, 
while the heating reference temperature parameter (𝛿𝛿𝐻𝐻) captures general heating reference temperature shifts across all 
customers. The incremental shifts in cooling and heating estimates for participants include 𝑝𝑝 subscripts in the delta terms. 

• In the All-post-years model: 

o The negative estimate for 𝛿𝛿𝐻𝐻 indicates a lower electric heating reference temperature for all customers in 
the post period, while the negative estimate for 𝛿𝛿𝑝𝑝𝐻𝐻 shows an additional decrease in electric heating 

reference temperature for participants in the post period  

o A positive estimate for 𝛿𝛿𝐶𝐶 indicates a higher electric cooling reference temperature for all customers but 
the insignificant estimate for 𝛿𝛿𝑝𝑝𝐶𝐶  indicates no additional increase in the cooling reference temperature for 

participants  

o The estimates indicate significant electric heating load decrease but no cooling load reductions due to 
smart thermostats for rebate participants  

o The decrease in electric heating reference temperature values apply only to proportion of the participating 
population that has electric heating 

• In the One post-year model: 

o Consistent with All-post-years model, the incremental heating delta (𝛿𝛿𝑝𝑝𝐻𝐻) estimate for participants shows 
heating savings, but the incremental cooling delta (𝛿𝛿𝑝𝑝𝐶𝐶) estimate for participants fails to show cooling 

savings   

o The electric heating savings are not as high as the savings in the model using all the data and as noted 
above, apply only to a subset of the participating population that has electric heating  

• In the Annual shift model: 

o The participant electric heating reference temperature increments (𝛿𝛿𝑝𝑝𝐻𝐻1- 𝛿𝛿𝑝𝑝𝐻𝐻4), which are statistically 

significant for the first 3 post years, indicate that electric heating savings exist but decline over time 

o There are increases in electric setpoints across the population, particularly in the first two post years, but 
the electric cooling reference temperature increments (𝛿𝛿𝑝𝑝𝐶𝐶1 - 𝛿𝛿𝑝𝑝𝐶𝐶4) become less negative over time and 

positive, though not significant, in the last post year providing directional evidence of improvements in 
participant electric cooling savings  

• In the No trend model: 

o Where we don’t control for differential energy consumption trends between participants and non-
participants, we observe no electric heating savings (with a statistically insignificant positive heating 
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reference temperature estimate for 𝛿𝛿𝑝𝑝𝐻𝐻) and cooling dissavings (with a statistically significant negative 
value for 𝛿𝛿𝑝𝑝𝐶𝐶) 

• In general, in electric rebate models: 

o The similarity of the baseload (α) and weather response (β, γ) terms between participants and non-
participants indicate good matches  

o We observe electric heating savings but no statistically significant cooling savings, except when there is 
no trend term where we observe no electric heating savings and electric cooling dissavings, which 
demonstrate the importance of allowing for the differential trends 

o Trend estimates are highly statistically significant and participant minus non-participant trend terms are 
positive indicating faster energy consumption increase (or slower decrease) among participants, unrelated 
to reference temperature shifts 

Table 6-2 provides estimates from panel models based on electric direct install data. We used data from direct install 
programs where smart thermostats were the only installed measure by the programs.  

Table 6-2. Electric direct install model results 

Term All-post-years model One post-year model Annual shift model No trend model 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 9.47 0.00 9.50 0.00 9.70 0.00 9.44 0.00 
𝜶𝜶𝒏𝒏 9.70 0.00 9.86 0.00 9.95 0.00 9.49 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.005 0.12 -0.058 0.00 -0.012 0.01     
1000𝝀𝝀𝒏𝒏 -0.030 0.00 -0.102 0.00 -0.044 0.00     

𝜷𝜷𝒏𝒏𝒏𝒏 0.20 0.00 0.23 0.00 0.19 0.00 0.20 0.00 
𝜷𝜷𝒏𝒏 0.11 0.00 0.13 0.00 0.11 0.00 0.11 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 0.92 0.00 0.97 0.00 0.92 0.00 0.92 0.00 
𝜸𝜸𝒏𝒏 0.88 0.00 0.93 0.00 0.88 0.00 0.86 0.00 
𝜹𝜹𝑯𝑯 2.90 0.00 3.13 0.00     2.77 0.00 
𝜹𝜹𝑪𝑪 -0.34 0.00 -0.52 0.00     -0.29 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.82 0.00 -1.82 0.00     -3.97 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.29 0.00 -0.34 0.01     -0.01 0.93 
𝜹𝜹𝑯𝑯𝑯𝑯         1.55 0.00     
𝜹𝜹𝑯𝑯𝑯𝑯         2.87 0.00     
𝜹𝜹𝑯𝑯𝑯𝑯         2.67 0.00     
𝜹𝜹𝑯𝑯𝑯𝑯         4.53 0.00     
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯         -3.20 0.00     
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯         -2.47 0.00     
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯         -1.63 0.04     
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯         -2.07 0.04     
𝜹𝜹𝑪𝑪𝑯𝑯         -0.02 0.71     
𝜹𝜹𝑪𝑪𝑯𝑯         -0.46 0.00     
𝜹𝜹𝑪𝑪𝑯𝑯         -0.67 0.00     
𝜹𝜹𝑪𝑪𝑯𝑯         0.58 0.00     
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯         -0.23 0.00     
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯         -0.37 0.00     
𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯         -0.61 0.00     



 
 

DNV  –  www.dnv.com  Page 44 
 

Term All-post-years model One post-year model Annual shift model No trend model 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜹𝜹𝒏𝒏𝑪𝑪𝑯𝑯         -0.45 0.06     

In the PY2018 and PY2020 direct install evaluations, there was no clear evidence of consistent trend differential in the 
energy consumption of participants and non-participants. Thus, we did not apply an adjustment. The panel models that 
include trend terms indicate a trend differential but in the opposite direction from the rebate programs. This differential 
suggests that prior direct install evaluations may have overestimated savings due to unaddressed self-selection among 
participants. There was no way to identify this using the original DID specifications and, thus, no way to develop an 
adjustment.  

• In the All-post-years model: 

o The electric coefficients are not perfectly matched; electric heating coefficients in particular indicate 
different electric heating levels between participants and non-participants, possibly related to the presence 
of space heating  

o However, because the models allow participants and non-participants to have separate slopes, they 
provide estimates of heating and cooling reference temperature shifts for participants given baseload, and 
heating and cooling loads for the two groups 

o We observe the energy consumption of all customers trending down over time with that of participants 
decreasing faster than non-participant (the 𝜆𝜆𝑝𝑝 estimate is more negative than the 𝜆𝜆𝑛𝑛𝑝𝑝 estimate) 

o Reference temperature baseline estimates indicate shifts towards more heating (as indicated by the 
positive 𝛿𝛿𝐻𝐻 estimate) and cooling (as indicated by the negative 𝛿𝛿𝐶𝐶  estimate) across all participants 

o We see participant heating savings (statistically significant negative estimates for 𝛿𝛿𝑝𝑝𝐻𝐻), but cooling 
dissavings (statistically significant negative estimates for 𝛿𝛿𝑝𝑝𝐶𝐶) 

• In the One post-year model: 

o Indicates similar energy consumption trends and reference temperature baseline shifts as the All-post-
years model 

o There are savings from electric heating, but not as high as in the model using all the post data 

o We observe statistically significant cooling dissavings 

• In the Annual shift model: 

o We see significant heating savings for participants that decline in magnitude over time 

o There are significant cooling dissavings for participants in all post years 

• In the No trend model: 

o Heating savings are higher than in models that include trend terms indicating that differential energy 
consumption trends are being estimated as heating savings when we don’t control for these differentials  

o There are no cooling dissavings when we don't control for differential trend indicating that differential 
energy consumption trends mask cooling load increases 

• In general, in electric direct install models:  
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o Differences in heating and cooling responses for the two (participant and non-participant) groups show the 
value of models that allow for different slope (beta and gamma) estimates between the two groups  

o Indicate strong electric heating savings and no cooling savings. Since these customers had low cooling 
usage compared to otherwise matched counterparts, and compared to the rebate customers, they may 
have had little savings opportunity 

o Show significant trend estimates, where participant energy consumption trend is lower than non-
participant trend, which suggests analyses that includes trend terms is useful for direct install participants 
as well 

Table 6-3 provides estimates from the panel gas models for the rebate program. The table includes estimates from the 
model that includes data for all four post years, only from the one post-year period data, the Annual shift model, and the No 
trend model.  

Table 6-3. Gas rebate model results 

Term All-post-years model One post-year model Annual shift model No trend model 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 0.65 0.00 0.63 0.00 0.70 0.00 0.62 0.00 
𝜶𝜶𝒏𝒏 0.68 0.00 0.64 0.00 0.72 0.00 0.65 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.083 0.00 -0.077 0.00 -0.101 -0.083   

1000𝝀𝝀𝒏𝒏 -0.064 0.00 -0.057 0.00 -0.057 -0.064   

𝜷𝜷𝒏𝒏𝒏𝒏 0.12 0.00 0.13 0.00 0.13 0.00 0.12 0.00 
𝜷𝜷𝒏𝒏 0.13 0.00 0.14 0.00 0.14 0.00 0.13 0.00 
𝜹𝜹𝑯𝑯 2.31 0.00 1.84 0.00   1.76 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 0.05 0.26 0.30 0.00   0.20 0.00 
𝜹𝜹𝑯𝑯𝑯𝑯 

 

2.11 0.00   

𝜹𝜹𝑯𝑯𝑯𝑯 2.97 0.00 

 

𝜹𝜹𝑯𝑯𝑯𝑯 2.73 0.00 
𝜹𝜹𝑯𝑯𝑯𝑯 2.06 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 0.35 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.28 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.35 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.31 0.03 

• In the All-post-years model: 

o The similarity in baseload (α) and heating load (β) estimates of participants and non-participants indicates 
that these groups are well matched 

o The estimates on the lambda (λ) term indicate energy consumption of all customers trended downwards, 
with the decrease for participants being slower than for non-participants 

o Heating reference temperature estimates across all customers are positive indicating increasing heating in 
the post-period compared to the pre-period 

o And the incremental heating reference temperature shift (𝛿𝛿𝑝𝑝𝐻𝐻) indicates no statistically significant average 

heating savings for participants over the four-post year period  

• In the One post-year model: 



 
 

DNV  –  www.dnv.com  Page 46 
 

o Model estimates indicate outcomes similar to those of the All-post-years model with well-balanced 
participant and non-participant consumption data, decreasing consumption trend for all customers but 
slower decrease for participants, and heating load increase across customers 

o The estimate of incremental heating reference temperature shift is also positive and statistically significant 
indicating increasing heating load among participants in the first post-year  

• In the Annual shift model:  

o Estimates are based on a randomly selected 50% matched pairs since it was not feasible to run the rebate 
gas model using all the data, which involved data from over 80,000 participants and non-participants66 

o Baseline heating reference temperature shifts are higher in all four post years compared to the pre-period 
indicating higher heating load across all customers in the model  

o Incremental heating reference temperature shift estimates indicate that participants have heating 
dissavings in post-year one, but have savings in the remaining 3 post-installation years 

• In the No trend model: 

o We observe positive and statistically significant incremental heating reference temperature estimates  

o Heating dissavings are apparent when we don’t control for the trend differential in energy consumption 
between the two groups  

• In general, rebate gas models: 

o There is similarity in baseload (α) and heating load (β) terms for participants and non-participants that 
indicates consumption data is well-balanced 

o The estimates of the trend terms are highly significant and indicate differential energy consumption trend 
between participants and non-participants  

o Indicated no heating savings across all years with modest heating reference temperature increases 
indicating heating savings in post years 2, 3, and 4  

Table 6-4 provides estimates from gas direct install models estimated using participants that received only smart 
thermostats from the programs. 

Table 6-4. Gas direct install model results 

Term All-post-years model One post-year model Annual shift model No trend model 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 0.56 0.00 0.45 0.00 0.54 0.00 0.53 0.00 
𝜶𝜶𝒏𝒏 0.56 0.00 0.44 0.00 0.53 0.00 0.54 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.075 0.00 0.367 0.00 -0.008 0.32  
1000𝝀𝝀𝒏𝒏 -0.048 0.00 0.411 0.00 0.027 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 
𝜷𝜷𝒏𝒏 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 
𝜹𝜹𝑯𝑯 4.47 0.00 0.95 0.00  3.66 0.00 

 
 
66 The second smallest analysis data used in the study has less than one-third of the observations of the gas rebate data set. The randomly selected 50% of rebate gas 

pairs for the Annual shift model reflect the distribution of climate zones in the full data. 
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Term All-post-years model One post-year model Annual shift model No trend model 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜹𝜹𝒏𝒏𝑯𝑯 -0.71 0.00 -0.49 0.03 -0.41 0.00 
𝜹𝜹𝑯𝑯𝑯𝑯 

 

4.21 0.00 

 

𝜹𝜹𝑯𝑯𝑯𝑯 4.63 0.00 
𝜹𝜹𝑯𝑯𝑯𝑯 1.86 0.00 
𝜹𝜹𝑯𝑯𝑯𝑯 -0.20 0.56 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.59 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.83 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.82 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯𝑯𝑯 -0.63 0.18 

• In the All-post-years model: 

o The similarity of baseload (α) and heating load (β) estimates between participants and non-participants 
indicate well-matched groups 

o The trend term estimates indicate energy consumption decreases less rapidly for participants than for non-
participants  

o Incremental heating reference temperature shifts are negative indicating heating savings for participants 
compared to non-participants 

• In the One Post-Yeas Model: 

o Baseload and heating load estimates as well trend estimate terms indicate similar outcomes to the All-
post-years model 

o Negative incremental heating reference temperature estimates also indicate heating savings, which is 
lower than that based on all post-installation data 

• In the Annual shift model: 

o Negative incremental heating savings indicate consistent savings across all four post years, although the 
estimated decrease in year four is not statistically significant  

• In the No trend model: 

o Negative heating reference temperature shifts for participants indicate the presence of heating savings, 
which are statistically significant but lower in magnitude than when we control for the energy consumption 
trend differential 

• In general, in all gas direct install models: 

o There is high similarity in baseload (α) and heating load (β) between participants and non-participants 
indicating good balance between the two groups 

o Coefficient estimates of trend terms indicate the difference in energy consumption trend between 
participants and non-participants is positive, with slower gas decrease or faster increase for participants 
compared to non-participants 

o Estimated heating reference temperature shifts are negative and indicate heating savings across all four 
post-installation years 
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Comparison between rebate and direct install electric models: 

o Faster increase in energy consumption among participants compared to non-participants in rebate programs and 
the opposite in direct install programs 

o Incremental electric heating reference temperature reductions among participants in both rebate and direct install 
programs (of similar magnitude of about 2 degrees) indicating electric heating savings associated with smart 
thermostats 

o No incremental electric cooling reference temperature increases among participants in both rebate and direct install 
programs indicating either the absence of electric cooling savings or electric dissavings associated with smart 
thermostat installations  

o We observe electric heating and cooling dissavings for rebate and greater electric heating or lower electric cooling 
dissavings for direct install participants when we do not account for trend differential 

6.2 Appendix B: Panel model results by customer segment  
In this section, we provide coefficient estimates and discussions of the results for models estimated by different customer 
segments. 

6.2.1 High-level panel model results by customer segment 
To investigate smart thermostat savings by different participant segments, we estimated All-post-years models that include 
one pre- and up to four years of post-installation data for all customers.  

We include model estimates for each customer segment in section 6.2.2 that provide estimates of all model coefficients. We 
provide estimates of incremental reference temperature shifts that are indicate smart thermostat impact on load in Table 6-5.  

Table 6-5. Estimates of incremental reference temperature shifts by customer segment 

Segment Term Electric rebate Electric DI Gas rebate Gas DI 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

TOU 
𝜹𝜹𝒏𝒏𝑯𝑯 0.11 0.37 0.05 0.58 0.29 0.06 -1.35 0.28 
𝜹𝜹𝒏𝒏𝑪𝑪 0.13 0.42 -0.31 0.01     

No TOU 
𝜹𝜹𝒏𝒏𝑯𝑯 0.05 0.58 -2.98 0.00 0.02 0.68 -0.67 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.31 0.01 -0.44 0.00     

SF/MH 
𝜹𝜹𝒏𝒏𝑯𝑯 

 

-5.23 0.00 

 

-0.29 0.09 
𝜹𝜹𝒏𝒏𝑪𝑪 0.07 0.79   

MF 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.62 0.00 -1.18 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.30 0.00   

Technology 1 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.01 0.00 

 

0.05 0.31 
 𝜹𝜹𝒏𝒏𝑪𝑪 -0.02 0.83   

Technology 2 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.31 0.03 -0.08 0.60 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.39 0.03     

Top Btu 
Quartile 

𝜹𝜹𝒏𝒏𝑯𝑯 -2.63 0.00 -1.70 0.06 -0.26 0.00 -0.30 0.42 
𝜹𝜹𝒏𝒏𝑪𝑪 0.33 0.01 -0.73 0.00     

Other 
Quartile 

𝜹𝜹𝒏𝒏𝑯𝑯 -1.27 0.00 -2.26 0.00 0.25 0.00 -0.93 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.43 0.00 -0.31 0.00     

HTR 
𝜹𝜹𝒏𝒏𝑯𝑯 -0.64 0.48 -2.42 0.01 0.44 0.01 -1.06 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.58 0.01 -0.31 0.02     
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Segment Term Electric rebate Electric DI Gas rebate Gas DI 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

Non-HTR 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.38 0.00 -2.72 0.02 0.03 0.50 -0.46 0.02 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.04 0.74 -0.07 0.62     

ELRP CZ 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.06 0.00 -2.42 0.01 0.22 0.00 -0.95 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.20 0.09 -0.31 0.02     

Non-ELRP 
CZ 

𝜹𝜹𝒏𝒏𝑯𝑯 -2.56 0.00 -2.72 0.02 -0.13 0.05 -0.42 0.04 
𝜹𝜹𝒏𝒏𝑪𝑪 0.01 0.93 -0.07 0.62     

Differences in incremental cooling reference temperature estimates are evident by segment among rebate customers and 
are more limited among direct install participants. Such cooling reference temperature estimates are positive, although 
insignificant, for rebate participants on TOU rates and positive and statistically significant for rebate participants in the top 
consumption quartile. These estimates are negative for rebate participants not on TOU rates and in the other consumption 
quartiles. Participants in the top consumption quartile can most readily reduce their energy use, and the statistically 
significantly positive incremental cooling reference temperature estimates reflect how smart thermostat enable these 
customers to trim their consumption. However, the same patterns are not evident among direct install customers, which 
probably indicates the relatively slower trend in energy consumption among such participants compared to non-participants 
that results in energy consumption increases once the models account for these trend differences.    

Both rebate and direct install participants that are HTR and in ELRP climate zones have negative incremental cooling 
reference temperature estimates, while non-HTR and non-ELRP climate zone participants do not have statistically significant 
changes in cooling reference temperature estimates. Higher cooling loads post installation for HTR customers could reflect 
takeback and for participants in ELRP climate zones cooling for comfort during hot summers.  

Incremental cooling reference temperature estimates are not statistically significantly different from zero for single-family 
direct install participants but are negative and statistically significant for multifamily direct install participants. These 
reference temperature estimates are insignificant for rebate customers with Technology 1 but negative and statistically 
significant for rebate customers with Technology 2.  

There is less distinction in incremental electric and gas heating reference temperature estimates by segment among rebate 
and direct install participants. Being on a TOU rate does not provide heating load savings advantages. While the magnitudes 
differ, participants in all housing types have both electric and gas heating savings. Additionally, electric and gas heating 
savings do not vary by technology type. Participant heating reference temperature estimates also generally indicate heating 
load reductions regardless of consumption level, except for gas rebate participant dissavings in the bottom consumption 
quartiles. Similarly, heating reference temperature changes are mostly not dependent on HTR status and climate zone. 

6.2.2 Detailed panel model results by customer segments 
We provide estimates of the panel models we estimated by customer segment in this section. Table 6-6 provides electric 
model estimates by HTR status.  

Table 6-6. Electric model results by HTR status 

Term 
Rebate Direct install 

Hard to reach Not hard to reach Hard to reach Not hard to reach 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 12.67 0.00 15.76 0.00 9.62 0.00 9.53 0.00 
𝜶𝜶𝒏𝒏 12.47 0.00 15.81 0.00 9.91 0.00 9.59 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 0.06 0.00 0.02 0.00 0.00 0.47 -0.01 0.31 
1000𝝀𝝀𝒏𝒏 0.14 0.00 0.07 0.00 -0.04 0.00 -0.02 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.26 0.00 0.19 0.00 0.20 0.00 0.16 0.00 
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Term 
Rebate Direct install 

Hard to reach Not hard to reach Hard to reach Not hard to reach 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜷𝜷𝒏𝒏 0.21 0.00 0.16 0.00 0.12 0.00 0.08 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 1.43 0.00 1.51 0.00 0.91 0.00 0.99 0.00 
𝜸𝜸𝒏𝒏 1.44 0.00 1.47 0.00 0.86 0.00 0.98 0.00 
𝜹𝜹𝑯𝑯 -2.04 0.00 -1.03 0.03 2.55 0.00 3.50 0.00 
𝜹𝜹𝑪𝑪 1.08 0.00 0.17 0.03 -0.82 0.00 0.28 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 -0.64 0.48 -2.38 0.00 -2.42 0.01 -2.72 0.02 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.58 0.01 -0.04 0.74 -0.31 0.02 -0.07 0.62 

Table 6-7 provides electric model estimates by consumption quartile. It provides estimates for customers in the top 
consumption quartile and customers in other consumption quartiles.  

Table 6-7. Electric model results by consumption quartile 

Term 
Rebate Direct install 

Top quartile Other quartiles Top quartile Other quartiles 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 24.58 0.00 11.13 0.00 19.96 0.00 8.43 0.00 
𝜶𝜶𝒏𝒏 24.63 0.00 11.02 0.00 20.30 0.00 8.60 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.02 0.00 0.06 0.00 -0.10 0.00 0.01 0.00 
1000𝝀𝝀𝒏𝒏 0.02 0.01 0.15 0.00 -0.13 0.00 -0.01 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.42 0.00 0.21 0.00 0.37 0.00 0.17 0.00 
𝜷𝜷𝒏𝒏 0.35 0.00 0.19 0.00 0.43 0.00 0.10 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 1.81 0.00 0.99 0.00 1.41 0.00 0.78 0.00 
𝜸𝜸𝒏𝒏 1.78 0.00 0.98 0.00 1.34 0.00 0.74 0.00 
𝜹𝜹𝑯𝑯 -1.49 0.00 -0.28 0.17 5.01 0.00 3.23 0.00 
𝜹𝜹𝑪𝑪 -0.17 0.06 0.17 0.00 -1.68 0.00 -0.64 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.63 0.00 -1.27 0.00 -1.70 0.06 -2.26 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 0.33 0.01 -0.43 0.00 -0.73 0.00 -0.31 0.00 

Table 6-8 provides electric model results by technology type for rebate and by dwelling type for direct install participants. 
Over 90% of rebate customers are single family participants and, thus, it is not possible to breakout results by dwelling type 
for rebate participants.  

Table 6-8. Electric model results by dwelling and technology type 

Term 
Rebate Direct install 

Technology 1 Technology 2 SF and MH MF 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

alpha_0 14.65 0.00 14.48 0.00 12.67 0.00 9.31 0.00 
𝜶𝜶𝒏𝒏𝒏𝒏 14.57 0.00 14.23 0.00 12.35 0.00 9.56 0.00 
𝜶𝜶𝒏𝒏 0.03 0.00 0.03 0.00 0.01 0.68 -0.01 0.05 

1000𝝀𝝀𝒏𝒏𝒏𝒏 0.09 0.00 0.11 0.00 0.02 0.06 -0.04 0.00 
1000𝝀𝝀𝒏𝒏 0.22 0.00 0.22 0.00 0.20 0.00 0.18 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.21 0.00 0.19 0.00 0.18 0.00 0.08 0.00 
𝜷𝜷𝒏𝒏 1.46 0.00 1.42 0.00 1.38 0.00 0.88 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 1.46 0.00 1.44 0.00 1.47 0.00 0.83 0.00 
𝜸𝜸𝒏𝒏 -0.88 0.02 -1.11 0.14 1.42 0.19 3.08 0.00 
𝜹𝜹𝑯𝑯 0.21 0.00 0.69 0.00 0.19 0.36 -0.52 0.00 
𝜹𝜹𝑪𝑪 -2.01 0.00 -2.31 0.03 -5.23 0.00 -2.62 0.00 
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Term 
Rebate Direct install 

Technology 1 Technology 2 SF and MH MF 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜹𝜹𝒏𝒏𝑯𝑯 -0.02 0.83 -0.39 0.03 0.07 0.79 -0.30 0.00 

Table 6-9 provides electric model results by time of use (TOU) rates. Customers who were on TOU rates at any point during 
the analysis period were considered TOU customers in the evaluation. 

Table 6-9. Electric model results by TOU status 

Term 
Rebate Direct install 

TOU No TOU TOU No TOU 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 15.03 0.00 14.50 0.00 14.50 0.00 9.90 0.00 
𝜶𝜶𝒏𝒏 14.90 0.00 14.70 0.00 14.70 0.00 10.15 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 0.03 0.00 0.03 0.00 0.03 0.00 -0.02 0.00 
1000𝝀𝝀𝒏𝒏 0.09 0.00 0.08 0.00 0.08 0.00 -0.05 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.18 0.00 0.23 0.00 0.23 0.00 0.19 0.00 
𝜷𝜷𝒏𝒏 0.16 0.00 0.21 0.00 0.21 0.00 0.11 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 -0.03 0.97 -1.40 0.00 -1.40 0.00 0.95 0.00 
𝜸𝜸𝒏𝒏 -1.66 0.12 -1.95 0.00 -1.95 0.00 0.89 0.00 
𝜹𝜹𝑯𝑯 1.34 0.00 1.46 0.00 1.46 0.00 2.67 0.00 
𝜹𝜹𝑪𝑪 1.39 0.00 1.43 0.00 1.43 0.00 -0.92 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 0.11 0.37 0.05 0.58 0.05 0.58 -2.98 0.00 
𝜹𝜹𝒏𝒏𝑪𝑪 0.13 0.42 -0.31 0.01 -0.31 0.01 -0.44 0.00 

Table 6-10 provides electric model estimates by climate region. In particular, the table provides model estimates for 
customers in both hot or emergency load reduction program (ELRP) and non-ELRP or mild climate zones.  

Table 6-10. Electric model results by climate region 

Term 
Rebate Direct install 

Hot climate zone Not hot climate zone Hot climate zone Not hot climate zone 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 15.93 0.00 14.12 0.00 9.80 0.00 9.20 0.00 
𝜶𝜶𝒏𝒏 16.08 0.00 13.99 0.00 10.13 0.00 9.12 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 0.01 0.00 0.02 0.00 -0.02 0.00 0.00 0.45 
1000𝝀𝝀𝒏𝒏 0.07 0.00 0.10 0.00 -0.04 0.00 -0.01 0.05 

𝜷𝜷𝒏𝒏𝒏𝒏 0.22 0.00 0.20 0.00 0.20 0.00 0.20 0.00 
𝜷𝜷𝒏𝒏 0.19 0.00 0.17 0.00 0.12 0.00 0.10 0.00 
𝜸𝜸𝒏𝒏𝒏𝒏 1.49 0.00 1.18 0.00 0.93 0.00 0.77 0.00 
𝜸𝜸𝒏𝒏 1.46 0.00 1.18 0.00 0.87 0.00 0.83 0.00 
𝜹𝜹𝑯𝑯 -0.65 0.16 0.13 0.76 2.58 0.00 3.60 0.00 
𝜹𝜹𝑪𝑪 -0.40 0.00 0.13 0.05 -0.95 0.00 -0.30 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 -2.06 0.00 -2.56 0.00 -3.31 0.00 -1.70 0.05 
𝜹𝜹𝒏𝒏𝑪𝑪 -0.20 0.09 0.01 0.93 -0.47 0.00 0.51 0.00 

The next set of tables provide the analogous results for gas models. Table 6-11 provides gas model estimates by HTR 
status. 
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Table 6-11. Gas model results by HTR status 

Term 
Rebate Direct install 

Hard to reach Not hard to reach Hard to reach Not hard to reach 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 0.57 0.00 0.68 0.00 0.54 0.00 0.56 0.00 
𝜶𝜶𝒏𝒏 0.59 0.00 0.71 0.00 0.55 0.00 0.57 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.09 0.00 -0.07 0.00 -0.11 0.00 0.01 0.32 
1000𝝀𝝀𝒏𝒏 -0.07 0.00 -0.06 0.00 -0.10 0.00 0.04 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.08 0.00 0.15 0.00 0.03 0.00 0.07 0.00 
𝜷𝜷𝒏𝒏 0.09 0.00 0.15 0.00 0.04 0.00 0.07 0.00 
𝜹𝜹𝑯𝑯 2.89 0.00 1.98 0.00 6.05 0.00 1.94 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 0.44 0.01 0.03 0.50 -1.06 0.00 -0.46 0.02 

Table 6-12 provides gas model estimates by consumption quartile. It provides estimates for customers in the top 
consumption quartile and customers in other consumption quartiles. 

Table 6-12. Gas model results by consumption quartile 

Term 
Rebate Direct install 

Top quartile Other quartiles Top quartile Other quartiles 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 1.13 0.00 0.47 0.00 1.34 0.00 0.47 0.00 
𝜶𝜶𝒏𝒏 1.18 0.00 0.49 0.00 1.38 0.00 0.46 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.10 0.00 -0.07 0.00 -0.14 0.00 -0.08 0.00 
1000𝝀𝝀𝒏𝒏 -0.08 0.00 -0.05 0.00 -0.12 0.00 -0.05 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.18 0.00 0.09 0.00 0.12 0.00 0.03 0.00 
𝜷𝜷𝒏𝒏 0.19 0.00 0.10 0.00 0.12 0.00 0.03 0.00 
𝜹𝜹𝑯𝑯 1.98 0.00 3.19 0.00 3.71 0.00 5.49 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 -0.26 0.00 0.25 0.00 -0.30 0.42 -0.93 0.00 

Table 6-13 provides gas model results by technology type for rebate participants and by dwelling type for direct install 
participants. Over 90% of rebate customers were single family participants and it was not possible to breakout results by 
dwelling type for rebate participants. 

Table 6-13. Gas model results by technology and dwelling type 

Term 
Rebate Direct install 

Technology 1 Technology 2 SF and MH MF 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 0.66 0.00 0.59 0.00 0.65 0.00 0.54 0.00 
𝜶𝜶𝒏𝒏 0.69 0.00 0.61 0.00 0.66 0.00 0.54 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.09 0.00 -0.08 0.00 -0.06 0.00 -0.13 0.00 
1000𝝀𝝀𝒏𝒏 -0.06 0.00 -0.08 0.00 -0.04 0.00 -0.09 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.13 0.00 0.12 0.00 0.11 0.00 0.03 0.00 
𝜷𝜷𝒏𝒏 0.14 0.00 0.13 0.00 0.11 0.00 0.03 0.00 
𝜹𝜹𝑯𝑯 2.35 0.00 2.25 0.00 2.36 0.00 6.52 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 0.05 0.31 -0.08 0.60 -0.29 0.09 -1.18 0.00 

Table 6-14 provides gas model estimates by TOU rate. Customers who were on TOU rates at any point during the analysis 
period were considered TOU customers in the evaluation. 
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Table 6-14. Gas model results by TOU status 

Term 
Rebate Direct install 

TOU No TOU TOU No TOU 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 0.58 0.00 0.67 0.00 0.48 0.00 0.56 0.00 
𝜶𝜶𝒏𝒏 0.58 0.00 0.70 0.00 0.41 0.00 0.56 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.09 0.00 -0.09 0.00 -0.06 0.28 -0.07 0.00 
1000𝝀𝝀𝒏𝒏 -0.08 0.00 -0.07 0.00 -0.13 0.00 -0.05 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.11 0.00 0.13 0.00 0.08 0.00 0.04 0.00 
𝜷𝜷𝒏𝒏 0.12 0.00 0.14 0.00 0.10 0.00 0.04 0.00 
𝜹𝜹𝑯𝑯 1.96 0.00 2.59 0.00 2.68 0.01 4.50 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 0.29 0.06 0.02 0.68 -1.35 0.28 -0.67 0.00 

Table 6-15 provides gas model estimates by climate region. In particular, the table provides model estimates for customers 
in both hot or emergency load reduction program (ELRP) and non-ELRP or mild climate zones.  

Table 6-15. Gas model results by climate region 

Term 
Rebate Direct install  

Hot climate zone Not hot climate zone Hot climate zone Not hot climate zone 
Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜶𝜶𝒏𝒏𝒏𝒏 0.68 0.00 0.61 0.00 0.54 0.00 0.60 0.00 
𝜶𝜶𝒏𝒏 0.71 0.00 0.63 0.00 0.54 0.00 0.60 0.00 

1000𝝀𝝀𝒏𝒏𝒏𝒏 -0.09 0.00 -0.08 0.00 -0.07 0.00 -0.07 0.00 
1000𝝀𝝀𝒏𝒏 -0.07 0.00 -0.06 0.00 -0.04 0.00 -0.04 0.00 

𝜷𝜷𝒏𝒏𝒏𝒏 0.13 0.00 0.12 0.00 0.04 0.00 0.05 0.00 
𝜷𝜷𝒏𝒏 0.13 0.00 0.13 0.00 0.04 0.00 0.05 0.00 
𝜹𝜹𝑯𝑯 2.74 0.00 1.92 0.00 4.18 0.00 4.02 0.00 
𝜹𝜹𝒏𝒏𝑯𝑯 0.22 0.00 -0.13 0.05 -0.95 0.00 -0.42 0.04 



 
 

DNV  –  www.dnv.com  Page 54 
 

6.3 Appendix C: Response to comments  
Comment # Commenter Topic/Section  Comment Response to comment 

1 SCE 1.1; Page 1 

Please be specific and explicit as which specific climate zones 
recommendations are being provided for.  When referring to hot 
climate zones, please clarify which specific climates zone the 
report is referring to, e.g., CZ11, CZ13, CZ15, etc.  

Climate zones 9-15 are hot climate zones. The rest are mild 
climate zones. We indicate in several parts of the report the 
definition of hot climate zones, such as in Section 1.2.3 of the 
Executive Summary and Section 4.1.3 of the main body of the 
report. To make the definition more explicit, we have now also 
added a definition for the hot climate zone in a footnote where 
it is first mentioned on the first page of the Executive 
Summary. 

2 SCE 1.2; Page 2 
Did the study evaluate and/or validate technology’s savings 
potential on other features including fan-delayed control? 
Please clarify and expand as needed.  

The study uses site-level consumption data so all savings are 
included but there is no ability to specify whether savings 
come from one feature or another. 

3 SCE 1.2.1; Page2 

“Continue targeting key underserved demographic customer 
segments in direct install programs” –  
 
Please clarify the basis for this recommendation.  Is the 
recommendation based on savings potential opportunities?  
Why should the measure be implemented for underserved 
customers if there are marginal savings and/or it can induce 
higher energy consumption?  Please clarify. 
 
Consider updating recommendation to include critical EE 
offerings that are likely to improve space comfort with 
weatherization EE treatments first in addition to fuel substitution 
EE treatments, etc. To the study’s point…”…HTR and 
multifamily participants likely reside in less efficient homes than 
non-HTR and single-family participants and experience higher 
levels of energy deprivation.” 

CA PAs' EE programs provide smart thermostats via direct 
install and rebate programs. The results from the program 
participation analysis in this report show that this segment 
has relatively lower participation in rebate programs for smart 
thermostats relative to participation in direct install programs. 
Direct install programs provide and install energy-efficient 
electric appliances, energy efficiency measures, and related 
upgrades directly to consumers at minimal or no cost. These 
programs serve low to middle-income households, a 
significant proportion of which are MF customers. These 
segments have been shown to be underserved and 
participate at lower rates in EE programs. The report 
recommends that programs continue to target these 
segments given the known financial barriers to acquiring 
thermostats without any rebates or subsidies and the 
aforementioned lower participation in rebate programs. 

4 SCE 
1.2.1; 1.2.2; 
Table 1-1; Figure 
1-1; Page 2 

To support the update of EE deemed measure packages, 
savings potentials should be documented for each applicable 
residential building type, ALL climate zones, and segmentation 
(and program type). 
 
Please include comparative analysis and documentation on 
kWh, kW, and Therms for all evaluated program years to 
understand variation on savings potentials due to improvement 
on evaluation methods and/or assisted by the smart thermostat 
learning AI algorithm.   

This is not an impact evaluation and documenting the savings 
potential of smart thermostats by residential type, climate 
zones, and program type is beyond the scope of the study. A 
comparative analysis and documentation of savings by 
different segments were done as part of the PY2018 to 
PY2020 impact evaluations. 

5 SCE 1.2.2; Figure 1-1; 
Page 3 

“The model estimated different energy consumption trends 
between participants and matched non-participants and 
captured shifts in smart thermostat setpoints among 
participants” per the previous comment, for transparency of the 
analysis, please document specific temperature setpoint 
reductions per building type and all climate zones. Additionally, 

As indicated in the response to the previous questions, 
estimating these shifts by the subgroups listed in the question 
was not in the scope of this study. The temperature setpoint 
shifts estimated by the model are captured by the parameter 
estimates associated with the incremental delta terms in the 
model. These estimates indicate both modest increases and 
modest decreases that are no different than 2 degrees (and 
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Comment # Commenter Topic/Section  Comment Response to comment 

can you specify how they compare with RASS temperature 
setpoints? If different, why is that the case? 

often no different than a half degree). These are provided in 
appendix section 6.1 in Tables 6-1 to 6-4. 

6 SCE 1.2.2; Page 4 

“Given the evidence of possible improvements in smart 
thermostat savings over time, we recommend continued 
evaluation of new installations and additional years of existing 
installations to ascertain if the improved later-year results found 
here are borne out.” 
Given (a) limited, marginal, or negative (in some cases) savings 
potentials of the measure; (b) resource optimization on 
evaluation activities; (c) measure has been evaluated several 
times - consider updating recommendation to NOT to support 
additional evaluation of the measure for the short term.  

This evaluation indicates that applying first-year savings to 
later years may not be appropriate given increased savings in 
later years compared to year 1, as shown in the report. We 
make the recommendation to evaluate additional years of 
existing installations in order to establish longitudinal savings 
trends for smart thermostats and consequently estimate 
lifetime savings and assess cost-benefit for the measure 
more accurately. 

7 SCE 1.2.3; Page 6 

“There are program opportunities to increase smart thermostat 
penetration in households with air-conditioning in hot climate 
zones” – per previous comments, which specific CZs is the 
report referring to?  Please clarify.   

Please see the response to comment #1.  

8 SCE 2.1; Page 7 

Particularly for “equity” customers, did the study evaluate 
potential WiFi connectivity issues that may prevent the use of 
technology’s full functionality, e.g., fencing, learning, etc.?  How 
do savings realization compare between WiFi connected and 
disconnected devices, particularly for equity customers? 

While this evaluation does not study Wi-Fi connectivity 
issues, survey data from past evaluations indicate that lower 
income/equity customers do not make full use of smart 
thermostat features relative to their higher income 
counterparts, which could be a contributor to lower realized 
savings for this segment. 

9 SCE 2.2; Page 8 
Please elaborate on technology’s occupant learning and 
vendor-operated optimization features. What are these?  How 
are these driving savings realizations?    

Occupancy or motion sensors enable smart thermostats to 
adjust temperatures based on real-time occupancy data and 
learn occupancy patterns to optimize heating and cooling 
setpoints. By optimizing heating or cooling only when needed, 
smart thermostats enhance energy efficiency, leading to 
significant cost savings and reduced environmental impact. 
Manufacturers often push software updates to installed smart 
thermostats to enhance energy efficiency and user 
experience. These updates may include improved algorithms 
for learning user preferences, enhanced scheduling features, 
setpoint refinements, and compatibility with the latest smart 
home technologies. By continually optimizing the thermostat's 
functionality, these updates contribute to ongoing energy 
savings by ensuring more accurate temperature control and 
better adaptation to user behavior. 

10 SCE 3.1; Page 9 Please clarify weather data source, e.g., CALMAC? 
We sourced actual weather data from NOAA and typical 
meteorological year (TMY) data from CALMAC. We have 
added a description of the weather data sources in a footnote 
in Table 3-1. 

11 SCE 3.1; Page 9 

Please clarify which specific device data was collected and 
provided by vendors. Additionally, please clarify and provide 
data characterization on data provided by NEST/google to 
support evaluation.  

The device data used in this study is described in Section 3.4. 
Google/Nest provided aggregate zip code level smart 
thermostat/HVAC operation data including runtime for 
installed Nest smart thermostats (not just PA program 
participants) among CA IOU customers. 
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Comment # Commenter Topic/Section  Comment Response to comment 

12 SCE 3.2; Page 9 
Did customer segmentation include customers with PV or EV? If 
so, were there adjustments made to the base load to account 
for these load conditions? Please clarify where appropriate.    

The data analysis excluded customers with PV. We used data 
from a large installed base of smart thermostats delivered in 
PY2018 for the consumption data analysis. We could only 
use the rate code available in the billing data to identify 
customers with EV. This data indicated no more than 3.5% of 
program participants had EV. Given the small proportion of 
customers with known EV data, both in participant and non-
participant groups, the impact of EV on the results is likely 
minimal. Moreover, only changes in EV during the analysis 
period matter. The modeling framework explicitly specifies 
and estimates the different energy consumption trends of the 
participants and comparison group customers and controls for 
any small differential in EV adoption trends between the two 
groups.  

13 SCE 3.3.1; Page 11 
Did the study track distribution and characterization of HVAC 
equipment controlled by the smart thermostat, e.g., central 
DX/GAS vs central HP vs other?  

The only source of HVAC equipment type is the tracking data 
for participants and utility customer information system (CIS) 
data for both participants and non-participants. The tracking 
data included a column on HVAC equipment type but did not 
provide the specific HVAC type for most participants. Most 
entries were rWtd, a generic weighted residential HVAC type 
that reflects 50% DXGF, 25% HP, and 25% electric 
baseboard. The CIS did not provide this information, and 
additional data requests DNV made while conducting the 
PY2018 to PY2020 impact analysis did not yield this 
information. While it was impossible to account for the 
specific HVAC type in the analysis, DNV matched participants 
and non-participants based on seasonal loads, such as 
summer-to-winter period ratios, to account for the extent of 
gas and electric heating and electric cooling.  

14 SCE Table 3-4; Page 
16 

“Table 3-4. Winter and summer average smart thermostat 
operations by year” how does NEST data compare with that of 
RASS?  As I understand NEST data may not be fully 
representative of statewide stock and/or consistent with that in 
RASS.  Was there any attempt to align and/or adjust the NEST 
data with that in RASS?  On a related note, the study points out 
that non-equity customers users of smart thermostat technology 
may naturally use more energy.    

Table 3-4 summarizes the key operation metrics of all Nest 
smart thermostats activated in California from mid-2019 to 
late 2020 that DNV received. It is population-level data and 
not an estimate based on a subset of activated Nest 
thermostats. RASS provides data based on survey samples. 
Any comparisons between the two would not be an apples-to-
apples comparison. Moreover, as detailed in the report, DNV 
used the Nest data to compare changes in the operation 
(runtime) of these activated thermostats over time to glean 
insights on possible improvements in smart thermostat 
operations. RASS provides summary data at a given time, 
which would not make it possible to estimate such changes 
year-over-year. 
As indicated in an earlier response, Nest provided aggregate 
data at the zip code level, which does not make it possible to 
analyze data by customer segment (including equity 
customers).  
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Comment # Commenter Topic/Section  Comment Response to comment 

15 SCE Figure 4-1; Page 
18 

Figure 4-1. Number and proportion of installations from PY2018 
to PY2021 by delivery channel.  Savings potential should be 
documented for each applicable residential building type, 
climate zone, program and segmentation so that values can be 
used for updating EE deemed measure package values. 

Please see the response to comment #4.  

16 SCE Figure 4-1; Page 
18 

From the electric claims, is there a way to desegregate central 
DX vs HP?  This would be useful for adequately updating 
deemed measure package values per technology type.   

Please see the response to comment #13.  

17 SCE Table 4.11; Page 
30 

The comparison needs to be made among all CZs, BTs, and 
sectors or program types.  
 
Per previous comment, it would be valuable to include 
comparative analysis and documentation on kWh, kW, and 
Therms for all evaluated program years (per specific CZ, BTs, 
and program type and segmentation) to understand variation on 
savings potential due to improvement on evaluation methods 
and/or assisted by the smart thermostat learning AI algorithm.  

Please see the response to comment #4.  

18 SCE 5; Page 37 

“Savings, to the extent they exist, are small. While our study 
illuminates the variability by various demographic and 
geographic customer segments, evaluated gross savings 
estimates are still significantly and uniformly lower than 
expected savings.” 
 
Given that the measure yields marginal savings (if any), and per 
previous comments, consider recommending for the measure 
NOT to be re-evaluated in the near future.      

Please see the response to comment #6.  

19 SCE 5; Page 40 

“The peak load reduction potential of smart thermostats makes 
them suitable for use in DR programs” …what level of peak 
demand savings potential are you referring to? Although these 
are currently not claimed under EE, please report peak demand 
savings potential per climate zone, building type, and 
segmentation. It would be useful to gauge the potential demand 
savings from technology.   

The DR potential of smart thermostats is established in many 
places and was not the focus of this study. 

20 SDG&E Recommendatio
n 7; Page 39 

DNV states "PAs should assess savings by specific 
technologies periodically to understand if there are differences 
and calibrate technology/measure package recommendations." 
Due to the fact the smart thermostats are deemed measures, 
SDG&E confirms that savings per technology or brand of 
thermostat is not tracked. The favoring or separating of one 
thermostat brand over the other goes against historical deemed 
offerings where brand neutrality must be maintained. 

DNV understands that the smart thermostat is a deemed 
measure whose savings are not tracked by brand. DNV's 
recommendation does not call for evaluation or assessment 
by brand. It is an implementation recommendation to consider 
savings by brand and technology from time to time based on 
our findings of different savings potential, which likely evolve, 
of different smart thermostat types. 

21 SDG&E Recommendatio
n 9; Page 40 

DNV states "Programs providing free or subsidized smart 
thermostats should consider automatic enrollment with the 
ability for customers to opt-out" in regard to DR programs. As 
auto-enrolling customers into DR programs is not always 
feasible, SDG&E recommends the evaluator clearly define 

This recommendation aligns with the CPUC decision (Energy 
Efficiency: R.13-11-005) to install smart thermostats in hot 
climate zones and incentivize customers to participate in 
demand response programs. The PAs' existing EE programs 
that disburse smart thermostats can engage customers in 
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which program types they are referring to for these auto-
enrollments. 

demand response by 1) providing information encouraging 
customers to participate in demand response programs when 
they avail of rebated smart thermostats and 2) auto-enrolling 
and providing information about how to engage in demand 
response programs to customers who receive free smart 
thermostats. Programs can provide information either at or 
after the point of purchase/installation. This recommendation 
is especially applicable to customers residing in hot climate 
zones 9-15. 

22 SoCalREN Device data 
analysis 

Beyond the statement about technology one and two for the 
non-NEST thermostats, was much done to evaluate the other 
thermostats to the same level of detail? 

Both rebate and direct install programs offered mostly Nest 
and, to a lesser extent, Ecobee thermostats. While the 
percentage of Nest thermostats installed through the PA 
programs has declined over time (with PY2021 direct install 
programs mainly offering Honeywell thermostats), on 
average, from PY2018 to PY2021, 88% of installed smart 
thermostats were Nest. The average percent of Ecobee 
thermostats over the same timeframe was 5%. Since DNV 
based the consumption data analysis on the large installed 
base of PY2018 installations, where 94% of installed 
thermostats were Nest, 5% were Ecobee, and only 1% were 
other smart thermostats, there was only sufficient data to 
analyze by brand for these two technologies. 

23 SoCalREN Device data 
analysis 

Were occupants who turned their HVAC off for significant 
periods (as would be seen in Southern California) analyzed 
separately as part of this effort? The Tobit analysis would have 
adjusted annually, but it seems the impact on runtime is 
seasonal? 

DNV conducted the Tobit analysis using the aggregate 
climate zone smart thermostat operation data received for 
Nest smart thermostats. Since the analysis reflects aggregate 
data, any changes in HVAC or smart thermostat operations at 
the customer level cannot be observed. Any HVAC operation 
changes will affect DNV's energy consumption analysis, 
which relies on customer-level data. However, the purpose of 
including matched comparison households in the study is to 
control for such non-program-related changes. Any HVAC 
shutdowns on the participant side are also happening among 
matched participants, which makes it possible to control for 
this effect and isolate the impact of the smart thermostat. 

24 SoCalREN Energy Savings 

For the panel approach, wouldn’t other changes (e.g., other EE 
program participation post the initial effort, renovation, 
occupancy changes, etc.) during the four-year evaluation period 
have a significant impact? How were these accounted for in 
selecting the participant and non-participant groups? The panel 
model implies adjustments were made and the groups align at 
an overall usage level, but do they address these other factors? 

The study design involved the inclusion of participants that 
only installed smart thermostats. Additionally, we selected 
non-participants who did not participate in any utility EE or DR 
programs. Both participants and non-participants can have all 
types of non-program-related changes. As we indicated in 
responses to the previous comments, the purpose of 
including matched comparison households in the study is to 
control for such non-program-related changes. Any changes 
on the participant side are also happening among matched 
participants, making it possible to control for these changes 
and isolate the impact of the smart thermostat. 
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25 SoCalREN Energy Savings 
The report implies that there were some participants without 
AC. Was that true, and if so, would it have lowered the savings 
impacts significantly? 

It is unclear where the report implied that some participants 
did not have AC. DNV evaluated electric savings for all 
customers with kWh savings claims, which indicates that the 
customers had cooling systems, and gas savings for all 
customers with therm savings claims, which signifies that the 
customers had gas heating systems.  

26 SoCalREN Energy Savings 

The report concluded that high energy consumers should be 
targeted. However, SoCalREN’s understanding of prior studies 
(including Impact Evaluation of Smart Thermostats Residential 
Sector - Program Year 2018) was that the users who actively 
manage their thermostats tend to save little. Was that factor 
considered as part of the opt in participant bias? 

Active management of smart thermostats does not 
necessarily mean customers have high energy consumption. 
High energy consumption could be motivated by a desire for 
comfort. Our evaluation indicates that customers with high 
energy consumption realize higher savings and, thus, are a 
desirable target for EE programs.    

27 SoCalREN Energy Savings 
Please provide more clarification on the trend adjustment 
approach and how it differs from prior approaches used to 
evaluate the smart thermostats. 

As detailed in our PY2018 and PY2020 evaluations, we used 
the identified baseload trend differences between participants 
and matched non-participants to adjust heating and cooling 
savings estimates. We adjusted the percent change in 
estimated heating and cooling savings by the percent 
increase in baseload among participants compared to non-
participants. The current evaluation formalizes our approach 
to account for trend differentials in a modeling framework. 
Sections 3.3.3 to 3.3.5 of the report provide the details. As 
indicated in those sections, we interact trend terms with 
baseload and heating and cooling load separately for 
participants and matched non-participants to control trend 
differences between the two groups and estimate smart 
thermostat impacts through shifts in temperature reference 
points associated with smart thermostat setpoints. 

28 SoCalREN Energy Savings 

The conclusions emphasize targeting DI customers (page 2). 
However, the results tend to indicate that the DI customers do 
not yield much electric savings (Table 1-1). While the drivers 
are different for each conclusion, as written, this seems 
somewhat contradictory. Can this be reconciled? 

Please see the response to comment #3.  

29 SoCalREN Energy Savings; 
Page 3 

Per page 3 of the draft report, “The evidence suggests that 
energy savings from smart thermostats installed in PY2018, 
while small, increased over time despite the possibility that 
COVID-related increased occupancy eroded the saving 
potential for thermostats. These savings would occur due to 
thermostat optimization over time.” Shouldn’t the COVID period 
be analyzed separately from non-COVID periods for the reason 
noted? Also, our understanding is that the learning mechanism 
of the thermostat is over the course of weeks not several years. 
Can you explain why the savings would increase over time if the 
smart thermostats algorithms only require 1-2 weeks to predict 
the occupant usage patterns? Is this related to software 
updates that are noted elsewhere or additional factors? 

The study's purpose was not to investigate savings 
differences between COVID and non-COVID periods. 
However, we did use aggregate data on smart thermostat 
operations to understand HVAC runtime differences during 
COVID and non-COVID periods. 
While smart thermostat learning algorithms require a 
relatively short period to learn occupant usage patterns, the 
increased savings from smart thermostats over time the study 
discussed is related to smart thermostat optimization (a 
process designed to save more energy through additional 
setpoint adjustments that balance each home's response to 
weather conditions and energy use habits) through continual 
software updates pushed by manufacturers well after 
installation/in later years.    
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30 SoCalREN Energy Savings; 
Page 4 

Per page 4 of the draft report, “HTR and multifamily participants 
likely reside in less efficient homes than non-HTR and single-
family participants and experience higher levels of energy 
deprivation.” Wouldn’t lower efficiency homes realize more 
savings from the thermostats? 

As noted in section 4.2.5 of the report, the HTR/MF 
participants could also be motivated by comfort and have 
takeback which reduces the level of savings realized. 
Individuals in these categories likely live in less energy-
efficient homes compared to non-HTR and single-family 
participants, leading to increased energy deprivation. The 
installation of a technology aimed at regulating and reducing 
energy consumption and costs could potentially encourage 
participants in these groups to enhance their comfort levels, 
resulting in higher energy usage. 

31 SoCalREN Energy Savings; 
Page 4-5 

Per pages 4-5 of the draft report: “Generally thermostats 
produce savings by reducing consumption in ways that do not 
undermine comfort.” This seems to contradict the following 
which makes sense: “Smart thermostats cannot generally 
improve comfort while also reducing consumption. It is possible 
that smart thermostats’ promise to regulate and reduce energy 
use and cost could have led some of these participants to 
inadvertently increase their comfort and use more energy.” If 
their thermostats were set up to better control for occupant 
usage, it could improve comfort and maybe save energy vs a 
single set point that is turned on /off. Was this level of data 
collected? 

Smart thermostats deliver savings by optimizing heating and 
cooling schedules and setpoints based on occupancy 
patterns, learning guided by user preferences, and remote 
control via mobile apps. Baseline energy consumption 
appears lower for customers experiencing energy deprivation. 
These customers could specify higher comfort preferences 
post-installation, which translates to higher consumption (i.e., 
takeback), thus reducing the potential savings. The second 
statement the comment cites describes such takeback and 
does not contradict the first cited statement. 

32 SoCalREN Energy Savings 
DR is mentioned as a recommendation and in terms of overall 
participation. Did the data savings analysis account for those 
participating in DR and EE separately? 

DNV attempted to estimate impact separately for those on DR 
and EE from those only in the EE program. However, since 
the original study design did not stratify by DR participation, 
there were not sufficient numbers of participants in DR 
programs matched to non-participants also in DR to make this 
analysis possible.  

33 SoCalREN Software Update 
Impacts 

Interesting observation about the software changes. Was any 
effort made to see if those impacted savings significantly? 

The longitudinal savings trend indicates that savings post 
installation increased (i.e. savings in later years were greater 
than first year savings) and that this increase was significant. 

34 SoCalREN 
Access to 
Program 
Benefits 

Is “non-metro” meaning not in a census defined metropolitan 
area? The reported 56% of California seems high for this. 

As indicated in footnote 30 of the report, we used the U.S. 
Office of Management and Budget (OMB’s) core-based 
statistical areas (CBSAs) definition of metro areas, which 
include the San Francisco Bay area, San Diego, Greater Los 
Angeles (Los Angeles, Orange, San Bernardino, Riverside, 
and Ventura counties), and Sacramento. Non-metro is a 
county-level variable that includes those outside the CBSA 
metro regions. 

35 SoCalREN 
Access to 
Program 
Benefits 

n=10,651,613 for CA population. Is this value CA population or 
customer accounts? SoCalREN assumes the context is within 
IOU territory. This seems low if population. 

This number refers to the size of the CA IOU population. We 
have now updated the titles of tables and figures to indicate 
this. 
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36 SoCalREN 
Energy 
Consumption 
Trend 

In selecting participants to analyze (through the Panel method), 
was there any discretion when grouping participants based on 
occupancy, or schedule (work from home vs. leave home to 
work)? 

We based the data analysis on PY2018 participants and their 
matches, some of whom may have worked from home and 
others who may have worked outside of the home once the 
pandemic began. In other words, we used customers in the 
study selected before the pandemic. While there is no readily 
available variable to capture daytime occupancy during the 
pandemic, future st+F48udies that include data from this 
period could construct such variables based on the percent of 
daytime energy consumption relative to total daily 
consumption outside of heating and cooling seasons to 
account for such occupancy differentials.  

37 SoCalREN 
Energy 
Consumption 
Trend 

In multifamily cases, was change in occupancy (tenants leaving 
and new tenants coming in) accounted for? This could 
increase/decrease energy usage drastically as the behavior of 
the pre-existing tenant may be different to the newer tenant. 

We used person and premise identifiers to construct a unique 
customer in the analysis. We included only customers 
(participants and their selected matches) residing at a 
premise at least one year before and one year after 
installation in the study. We did not include data from 
locations (premises) where occupants changed during this 
period. Since this was a longitudinal analysis, we did not use 
data from a particular premise if the occupant (participant or 
matched non-participant) left 12 months post-installation. This 
condition applied to single and multifamily participants. 

38 SoCalREN 
Energy 
Consumption 
Trend 

Was climate zone and/or weather data factored into the 
analysis as some climates may use more or less 
heating/cooling and could impact the participant groups energy 
savings if not accounted for? 

Yes. The model we specified included cooling and heating 
degree days (HDD and CDD) to account for the impact of 
weather. We estimated impact based on model parameter 
estimates evaluated at typical meteorological year (TMY) 
weather data.  

39 SoCalREN 
Energy 
Consumption 
Trend 

Did the analysis include factoring in additional measures that 
may have been installed along with the thermostat (such as 
duct sealing, insulation replacements, HVAC upgrades, etc.) or 
do the participant groups have homes with only thermostat 
installs? This would impact multifamily as there could be 
renovations to tenant units that could impact savings/usage. 

As section 3.3.1 of the report indicates, the study included 
participants who installed only smart thermostats. We would 
expect any participant post-installation changes, including 
participation in other programs or renovations, to be mirrored 
by similar changes among matched non-participants. As we 
stated in response to prior comments, the purpose of 
including matched non-participants is to control for non-
program-related changes.  

40 SoCalREN 
Energy 
Consumption 
Trend 

To the point above, does the multi-year study factor in/account 
for upgrades that may have occurred during the years after the 
thermostat was installed that could impact HVAC energy 
usage? If so, how? 

We do not return to participants to capture any changes in the 
household in later years/post-program participation that may 
impact savings. The matched comparison group is assumed 
to have changes in similar proportions and hence an explicit 
consideration of these changes is not necessary. The 
comparison group combined with the adjustment for the trend 
differential addresses any such changes comprehensively. 
Please see the response to comment #30 for additional 
details.  

41 SoCalREN Energy Impact 
by Customer 

Per page 4 of draft report: If “HTR and multifamily participants 
likely reside in less efficient homes than non-HTR and single-
family participants and experience higher levels of energy 

The report points to less efficient homes to underscore lower 
savings due to factors such as a leaky building envelope or 
inefficient HVAC equipment. Less efficient homes combined 
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Segment; Page 
4 

deprivation”, wouldn’t the savings still exist between both 
groups, but those with the less efficient homes would “lose” the 
savings through their less efficient homes, maybe through 
single pane windows or though lower insulation levels as 
compared to non-HTR/single family participants? 

with any potential takeback, result in lower savings for HTR 
and MF customers. 

42 PG&E Device data, 1.2; 
Page 2 

Can the evaluation team clarify why data was only collected for 
Google on Nest and no other smart thermostat devices, such as 
Ecobee and Emerson devices? PG&E believes it would be 
useful to conduct similar analyses using aggregate thermostat 
data in order to offer insights on the energy savings potential of 
smart thermostats as well as on impact on load management. 

DNV had exploratory conversations with Google, Ecobee, 
and Resideo to receive smart thermostat operations data in 
November 2019. We included Nest data in the analysis since 
we made more progress receiving data from Google. Nest 
thermostats comprise over 88% of EE program installations 
across PY2018 to PY2021.The findings based on device data 
analysis generally reflect the outcomes of the installed base 
of smart thermostats disbursed via the CA PAs' EE programs. 

43 PG&E 
Device data 
results, 4.3; 
Page 34 

Can the evaluation team offer any insights or suggestions from 
its research about how participant behaviors related to 
controlling smart thermostats (e.g., optimal temperature set 
points) can influence load management metrics (e.g., maximize 
load reduction)? 

The evaluation includes a participant survey to determine 
program attribution. The surveys also capture smart 
thermostat user behavior such as remote control via 
thermostat apps, precooling, etc. Since participants 
completing the survey are a small subset of program 
participants, the respondent sample does not support 
consumption analysis to estimate savings by smart 
thermostat user behavior-defined customer segments. 

44 Google Overarching 

The Study should analyze the causes for the sharp decline 
in smart thermostat installations by investigating program 
design and enrollment issues. 
Households with smart thermostats are poised to play a critical 
role in meeting California’s ambitious climate targets. Not only 
do smart thermostats provide immediate value to customers in 
reducing energy consumption, but they can also prime the 
home for future participation in demand response or other 
demand flexibility programs. This secondary use of smart 
thermostats is particularly important as the Commission 
examines how to roll out demand flexibility rates that will rely on 
technology to respond to these rates and shift customer load.  
However, the Smart Thermostat Study shows that installations 
both by direct install and rebate are declining, with direct install 
showing the most acute drop-off.67 We appreciate the Study’s 
narrative that identifies the negative implications of this trend: 
direct install programs primarily serve communities that face 
energy and income burdens in greater proportions (and thus a 
decline in smart thermostat deployment exacerbates inequity), 
and smart thermostats can support California’s resource 
adequacy needs via the ELRP (and thus a decline in smart 
thermostat deployment exacerbates reliability issues). But what 

While the past smart thermostat evaluations conducted by 
DNV have included customer and contractor research to 
gather insights on user behavior and program attribution to 
inform the estimation of gross and net impacts, they have not 
focused on broader program design and delivery elements. 
These are outside the scope of this and prior impact 
evaluations and are usually covered in depth in a process 
evaluation. Additionally, customer education on the use of 
smart thermostats to ensure and encourage energy savings 
should be conducted by program implementers, as DNV has 
recommended in past evaluation studies, and by 
manufacturers.  

 
 
67 Forward-looking Smart Thermostat Study, at p. 18. 
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we did not see in the Study, and what we strongly encourage 
DNV-GL and the Commission to further explore, are the 
underpinning causes for these declines. Google Nest believes 
that the Study should evaluate the Direct Install program 
designs and implementations. It is not clear how Direct Install 
customers learn about and use their smart thermostats, 
especially when they may have been installed without their 
knowledge or interest. Research questions could include: 
1. How are thermostats installed in multifamily units? Can 
tenants object? How do they connect to WiFi? 
2. How do customers use the thermostats and how does it vary 
with WiFi connection, program design or implementor practices, 
or other factors? 
3. What customer education is provided upon install? What 
education on maximizing energy savings might still be needed? 
4. Do some programs, or contractors within programs, provide 
better support for customers and education on how to use smart 
thermostats effectively? 
These questions are essential to answer because there is still a 
significant potential for smart thermostat deployment throughout 
California. Based on available RECS data, approximately 1.7 
million California homes currently have smart thermostats and 
5.6 million homes with central A/C do not yet have smart 
thermostats representing a large potential for meaningful load 
reductions, particularly during periods of peak demand. 
 
Programs with enabling technology like thermostats have 
proven to be extremely effective in generating demand 
flexibility. The latest IOU load impact protocol (“LIP”) reports for 
residential thermostat demand response programs show load 
reductions of 0.9 kW per household.68 OhmConnect has 
additionally demonstrated that households with participating 
devices have over four times the load reduction per event as 
compared to households without a device.69 In summary, the 
decline in smart thermostat deployments impacts more than just 
California’s energy efficiency goals. It also has significant 
bearing on California’s ability to meet its demand flexibility 
aspirations. For these reasons, we believe it is crucial to assess 
program designs to inform future smart thermostat 
deployments. 

 
 
68 See March 2023 “SCE 2022 Demand Response Executive Summary”, available at https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M505/K462/505462861.PDF. 
69 See May 10, 2023 “OhmConnect 2022 LIP Evaluation”, at Slide 8, available at https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-response/ demand-response-workshops/2023-

load-impact-protocol-workshops/ohmconnect_2022_lip_presentat ion.pdf. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M505/K462/505462861.PDF
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-response/%20demand-response-workshops/2023-load-impact-protocol-workshops/ohmconnect_2022_lip_presentat%20ion.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-response/%20demand-response-workshops/2023-load-impact-protocol-workshops/ohmconnect_2022_lip_presentat%20ion.pdf
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45 Google Overarching - 
Methodology 

Using Reference Temperature Estimates as Explanatory 
Variables  
One of the major changes in the new statistical modeling 
approach is that it represents all smart thermostat energy 
savings as occurring through changes in the heating and 
cooling reference temperatures. These reference temperatures 
are themselves statistical estimates from modeling each 
customer's energy use separately in the pre- and post-periods. 
This approach creates several significant problems: 
a) The use of statistically estimated reference temperatures on 
the right hand side of the model will bias the impact estimates 
low. A key assumption in regression modeling is that the 
explanatory variables are fixed values and not statistical 
estimates or measured with error. This problem is known as 
attenuation bias (a.k.a. regression dilution) because it leads to 
systematic underestimation of the regression coefficients. The 
attenuation bias is expected to be especially large in this 
application due to high uncertainty in reference temperatures 
estimates, which will cause underestimation of impacts. 
b) The reference temperatures are treated as estimates of 
thermostat setpoints, but there is only a weak relationship 
between reference temperature estimates and actual 
thermostat setpoints70, 71 – especially for electricity with many 
seasonal end uses. Cooling reference temperatures are 
especially suspect due to summer seasonal load changes 
(school schedules, pool pumps, refrigerators, etc.). 
c) The fitting of the reference temperatures in a separate 
regression also means that the main panel data regression fit 
can't properly account for the correlation between parameters 
or the variance in the reference temperatures. 
d) The model assumes that smart thermostats have no impact 
on energy use other than through temperature setpoints. But 
smart thermostats can affect energy use in ways that don't 
involve setpoints – such as HVAC fan overrun to harvest 
cooling at end of cycles (e.g. Nest's Airwave feature), optimized 
staging of multistage systems and heat pump aux heat, and fan 
scheduling for customers who run fan-only. It is unclear how 
these savings would be accounted for in the model. 

First, the study does not claim the approach is flawless. There 
is no perfect model. All models are approximations of 
complicated realities. Our model controls for trend differential 
and provides information on how it affects smart thermostat 
impacts. The model provides value by indicating how the 
device shifts tau, the outdoor temperature at which heating or 
cooling begins. We have clarified the role of the models we 
use to estimate smart thermostat effects and included 
appropriate caveats about possible limitations. i.e. while 
degree day shifts affect thermostat setpoints, additional 
activities and changes in the home could also affect the 
setpoints.  
 
More importantly, the main takeaways from prior evaluations 
remain the same. All attempts to adjust for possible selection 
bias have not provided savings at the claimed levels. As DNV 
has stated in response to previous comments, the current 
quasi-experimental modeling framework is the best approach 
to estimate EE intervention impacts. We welcome any 
credible and industry-vetted approaches to account for 
selection issues likely to affect EE impacts. Some have 
suggested using smart thermostat operations rather than 
energy consumption data as a possible solution. However, 
without baseline information, these data don’t provide the 
information necessary to estimate impact.  
  
a) Our model included pre-estimated baseline reference 
temperatures (tau). It then estimated shifts from these 
baseline reference temperatures in the post-period for 
everyone and incrementally for the participant group. The 
model allowed for post-period reference temperatures to be 
different from pre-period reference temperature values by the 
amount of the shift term. While attenuation bias may be 
present in the estimated degree day slopes (the only 
parameters incorporating tau), it is unclear whether the bias 
would affect the shift above or below tau, which is the actual 
basis of the impact estimate. 
  
b) Our analysis does not presume that tau estimates 
setpoints. It assumes that shifts in setpoints result in shifts in 

 
 
70 The seminal paper on variable reference temperature energy modeling cautioned against assuming that changes in reference temperatures can be tied to changes in thermostat setpoints. See p.11 in PRISM: An 

Introduction, M. Fels, Energy and Buildings 1986. Available at https://www.sciencedirect.com/science/article/abs/pii/0378778886900034. 
71 An Oak Ridge National Lab study (https://www.osti.gov/servlets/purl/5129762) looked at changes in reference temperatures vs. monitored indoor temperatures and found "Often changes in the base reference 

temperature have been attributed to a change in the thermostatic set point. However, the indoor temperature data collected from the monitoring does not indicate substantial changes between the two periods in the 
temperatures maintained." (p.28) 

https://www.sciencedirect.com/science/article/abs/pii/0378778886900034
https://www.osti.gov/servlets/purl/5129762
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tau by the same amount, which is what basic PRISM theory 
states. For HVAC savings to occur, average setpoints must 
have shifted, and those shifts will be evident in a reference 
temperature shift, tau. The model estimates these shifts to 
evaluate the impact of smart thermostats. Seasonal end-uses 
certainly have the potential to affect the relationship between 
thermostat setpoints and reference temperatures. However, 
for this to substantially bias the impact estimates, these 
seasonal end-uses would have to vary year over year within 
participants and/or differ from the comparison group year-
over-year differences. The DID structure does not entirely 
avoid this potential concern but limits the magnitude. 
 
c) This is true to an extent. The variability of the estimated 
energy impact reflects the variability of all model parameter 
estimates. However, it takes the proportion of days with 
heating and cooling degree days, which are functions of the 
pre-estimated baseline temperatures as a given. Thus, we 
may not have fully accounted for all cross-correlations and 
properly entrained the variability of the pre-estimated baseline 
temperature values. The likely effect of such accounting is 
additional variability in the estimated energy impact. However, 
given the large number of data points and the high precision 
of all variable estimates, it may not have a material impact on 
the variability of the estimated savings estimates.  
  
d) The additional effects of smart thermostats, including fan 
control delays and fan scheduling, are likely to impact savings 
in both positive and negative directions. Moreover, the Nest 
Airwave feature, which increases fan runtimes but decreases 
AC (compressor) usage, is weather-correlated and, thus, 
related to temperature reference point shifts, which our model 
estimates. Additionally, all estimates happen in a DID context 
where we include the same treatment for the comparison 
group, which mitigates the noted effects.    

46 Google Overarching - 
Methodology 

Selection Bias Adjustment 
Prior California evaluations found a significant (and initially 
unexpected) increase in baseload electric use for rebate 
participants relative to the carefully matched comparison group. 
Customer surveys revealed that participants reported 
significantly more household changes that increased energy 
use than the comparison group – such as adding an EV (9% for 
participants vs 3% for comparison group), increased household 
size (net 5% more), and increased living space (net 4% more). 
Significant selection bias among smart thermostat program 

a) The net changes noted in the comment come from prior 
DNV evaluations. These changes partially (occupants and 
living space increases) or wholly (EVs and refrigerators) 
increase baseload. In the current study, DNV accounted for 
the different energy consumption trends precipitated by such 
changes through baseload trend adjustments.  
To the extent these life changes are associated with smart 
thermostats, these changes do not coincide with smart 
thermostat installations but happen over time. They are more 
diffuse. In other words, these are not step changes that occur 
all at once at the same time as smart thermostat installations. 
Thus, the trend terms in our models provide first-order 
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participants has also been found in other studies72 and is 
further supported by the EIA RECS 2020 mentioned later in 
these comments. The prior evaluations recognized and 
attempted to adjust for this bias by assuming that any changes 
in baseload use provide a direct estimate of the baseload bias 
(i.e., estimated baseload use is unaffected by the thermostat) 
and that the heating and cooling loads experienced the exact 
same percentage bias. The prior evaluations adjusted the 
results using the average change in baseload use from 
individual weather normalization models. The new study 
analysis makes the same assumptions but attempts to improve 
on it by estimating a linear trend as part of a panel data 
regression model. There are several concerns with this 
approach: 
a) The model assumes that the bias is a linear trend. But 
research on the timing of the biasing activities has shown that 
most changes occur after thermostat installation73 – particularly 
for households having a baby (perhaps the largest potential 
change on HVAC use) – and so the trend isn't linear. The 
pandemic makes this linear trend assumption even less realistic 
(see later comments). 
b) The approach still assumes that changes in baseload usage 
can be accurately estimated from meter data even though many 
baseload uses (lighting, refrigerators, pools) have seasonal 
patterns that bias this allocation of load components. In 
addition, the timing of new baseloads can make them appear as 
partly heating or cooling (e.g., an EV added in May will increase 
the estimated cooling load in year 1). 
c) The approach still assumes that smart thermostats have no 
impact on estimated baseload use. But smart thermostats 
provide scheduling features (vs simple on/off provided by 
standard thermostats) that could reduce HVAC fan-only runtime 
that is sometimes used for air quality or comfort/circulation 
reasons. Fan runtimes for Nest thermostat customers averaged 
significantly lower than published data from Wisconsin (38% 
fewer hours) and Minnesota (55% fewer hours). Google Nest is 
not aware of any California-specific studies but it stands to 
reason that some reduction is certainly conceivable which 
would reduce baseload use and cause too small a bias 
adjustment. 
d) The approach still assumes that heating and cooling biases 

approximations of these changes. 
  
b) The seasonality effect is a recognized limitation of the 
degree day analysis. Some seasonal biases are unaccounted 
for (particularly where there is change over time, as in the EV 
example). However, these are also unaccounted for among 
the matched comparison group. The purpose of including 
matched comparison households in the study is to control for 
these types of non-program effects. To the extent there is a 
mismatch between treatment and comparison, these are the 
kinds of differences that will cause selection-related bias. 
However, bias due to differential non-heating and cooling 
seasonality between participant and comparison group 
households is a second-order effect. 
 
c) A study on the fan runtime effect of Nest would be valuable 
to determine the claim that Nest's effect on baseload is in a 
direction that saves energy. Such a study should include 
baseline fan runtimes to accurately estimate the impact of the 
Nest thermostat on baseload. DNV has pointed out in the 
past that the relative ease of scheduling regular fan time via 
the Nest app, a non-binary capability not present in 
programmable or dial thermostats, could easily increase 
average fan load. The studies cited (the same as with 
previous report comments) do not  prove the alternative. 
 
d) As stated earlier, the approach DNV used in the current 
study is a reasonable solution to address selection bias. In 
previous evaluations, DNV assumed a structure to 
approximate the level of bias and provided an adjustment 
based on it. This study takes that structure and formalizes it in 
a modeling framework. The model is informative and a good 
way of looking at the data. Our model does not assume the 
"bias" is the same in heating/cooling and baseload but 
considers the trends between them to be similar. 
Additionally, without investigating and quantifying the bias or 
trend differences that exist between baseload and 
heating/cooling load, the current adjustment is a reasonable 
one. For example, it may be valuable to investigate the extent 
to which percentage change in baseload and heating/cooling 
load differ based on data from non-participating homes. In 

 
 
72 For example, https://neea.org/resources/northwest-smart-thermostat-research-study with key finding "Major home and life changes occurring in a similar timeframe to thermostats impacted energy savings substantially" 
73 The NEEA study (prior footnote) found that two thirds of the changes occurred during or after thermostat installation vs one third before. For increases in household size (e.g., having a baby), the skew was even larger 

with 78% born at the same time or after (14% of thermostat households had a baby during or after thermostat installation vs 4% before). 

https://neea.org/resources/northwest-smart-thermostat-research-study
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are the same percentage as the baseload change. But this 
assumption has no basis and, given that having a new baby is a 
major source of the bias (found in California and elsewhere), it 
is easy to imagine heating and cooling biases being much 
larger than baseload – especially in California's mild climates 
where small changes in set points result in large relative 
changes in heating and cooling loads (often 10% or more per 
degree F). This untested assumption can have a significant 
impact on overall savings estimates. It would be easier to adjust 
for the major biases affecting smart thermostat impact 
estimates if changes in estimated baseload energy use 
accurately captured the large selection bias present in these 
studies and if the percent bias were the same for heating and 
cooling. But we believe these assumptions are not very realistic 
and the true bias could differ to the extent of having a 
meaningful impact on overall conclusions. 

terms of the magnification of this problem in mild climate 
zones, while this could be the case in percentage terms, 
given the relatively low cooling load, the impact on the 
estimated cooling load is likely small. 

47 Google Overarching - 
Methodology 

Pandemic Impacts 
The multi-year analysis contained in the Study is interesting, but 
the overlap with the Covid-19 pandemic adds more sources of 
bias and risks drawing conclusions based on extraordinary 
times. The EIA RECS 2020 survey added questions about 
work-from-home to assess impacts of the pandemic (RECS 
deployed in late 2020 /early 2021). RECS includes 1,152 
California households, with 14% having smart thermostats. 
California households with smart thermostats were 78% more 
likely to have been working from home than other households 
(64% vs 36%), implying that the pandemic had a greater impact 
on smart thermostat homes. This difference would be expected 
to have a major biasing impact on energy use and thermostat 
setpoint changes over the period and thwart any attempts to 
assess how thermostat impacts shifted across 2020 and 2021. 
RECS also provides a wealth of data showing major differences 
between households that have or don't have a smart 
thermostat. California smart thermostat households were 4.6 
times more likely to have EV charging (11.1% vs 2.4%), 34% 
more likely to have children in the home, 37% less likely to have 
a senior citizen, and 55% more likely to be employed full time. 
Smart thermostat households had 3.6x as many smart 
speakers, 1.6x as many video game consoles, 
3.3x as many home theater systems, 1.5x as many laptops and 
desktop computers and were 1.9x as likely to have multiple 
refrigerators. These differences illustrate the large and wide-
ranging self-selection biases at work and makes any attempted 
statistical adjustment 
speculative at best and potentially quite misleading. 

The analysis presented in this report uses data from PY2018 
participants and their matches. Year 1 (2019) impacts are 
unaffected by the pandemic. Only the second post-installation 
year outcome is affected by the pandemic directly. The effect 
on the rest of the post-installation years is diffuse. 
Additionally, while the pandemic may impact subsequent 
years (2020 and beyond), as we indicate above, the 
comparison group mitigates these effects to some extent. 
Furthermore, as noted previously, while our model may not 
capture every possible source of selection bias, the trend 
differential adjustment accounts for the remainder of the 
effects.  
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48 Google Overarching - 
Methodology 

Statistical Model Errors/Typos in report 
Google Nest identified multiple errors in the description of the 
main regression model, perhaps a reflection of the complexity of 
the specification. 
● On page 14, the descriptions of 𝛿𝛿H and 𝛿𝛿C are both inaccurate 
in claiming that the shifts are "due to smart thermostats" when 
they are instead the average change in post period. 
● On page 15, equation 3 and also the text in the bullet below 
both erroneously use 𝛿𝛿H in the cooling term when they should 
have used 𝛿𝛿C. We recommend examining the model and 
analysis to ensure that errors were just in the text and not the 
calculations. 

Thank you. We have edited the explanations for the reference 
temperature parameters on page 14. The actual model as 
specified on page 15 was fitted correctly. We have fixed the 
typos in the equations on page 15. 

 



 
 

 

About DNV 
DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property and 
the environment, we enable our customers to advance the safety and sustainability of their business. We provide 
classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas, power, and 
renewables industries. We also provide certification, supply chain and data management services to customers across a 
wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the 
world safer, smarter, and greener. 
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