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Introduction

Qverview

The importance of accurately measuring the impact of demand-side management programs is clear.
Uilities regnlatory anthorities, and rate payers, as well as society as a whole, all have incentives 1o carry oul
effective demand-side management (DSM) and to avoid ineffective and eogpensive programs. As a result, these
. .parties have the incentive to minimize the costs of measuring these programs and (o maximize the effectivencss of

measurement methods., This paper

Analysis) is the appropriate technigue for evaluating the is designed 1o compare-in terms of

‘E.:rhim: Simulation Analysis (ofien referred to as Monrte Carlo
accuracy of alternative DEM measurement methods. their accuracy—alternative methods

for measuring the impact of DSM programs. The technigue that will be used in drawing the comparison is rather
new 1o the utility indwstry but is well established in many other business and economic disciplines. The technigue
iz that of Simulation Analysis, often referred 10 as Monte Carlo Analysis,

Regulatory Background

In 1991 the California Public Uhilitics Commission released an OILVOIR designed to establish a set of
protocals that would govern efforts to empinically verify the encrgy savings from utilities' demand-side
management programs. In the summer of 1992, SDG&E actively participated in the drafting of the main body of
the DSM measurement protocols, alang with other wtilities, CPUC and CEC representatives, and other partics that
are associated with the California electric and natural gas energy industry.

While SDG&E penuinely favors the overall intent of this effort, and in 1992 actively supported the
construction of a uniform set of guidelines, the company became concerned over the fact thar the protocols
specifically prescribed the statistical techniques that would be applied in the DSM studics, and that the prescribed
statistical technbques imply excessive DSM measurement expense. While SDG&E sought to support the overall
effort to drafl a comprehensive set of statewide measurement protocols, it looked to esiablish its own position with
respect 1o these isspes. In general, the company's twofiold position was advanced along the following lines:

(1) The statistical technigues that mmmwmm

mid-1992, MMW&HHHMWMMWWW
DSM energy savings, and the company had successfully applied the techniques to data degived from its
largest DSM program (sse Schiffman, et al., 1993, for published results). These statistical techniques arc
capable of satisfying the key elements of the protocols; yet they are incapable of salisfying cnly one of the
protocol's particular reporfing requirements, a reporting requirement that is not central to the DM
measurement issue. SDG&E instead seeks to employ the statistical technigues that it has developed.
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15 mD Ii i i an ¢ additional costs. SIDGEE has estimated that the additiomal
cost of data collection and anslysis that stems from the protocols’ narmowly defined statistical techniques is
most likely in the range of 1 million annnally. SDG&E secks to avoid this expense given that the
statistical evidence indicates that there iz no added benefit from the expenditure of this sum,

-SE]GEE':pnﬁﬁnn was articulated in the company's “Appendix Z filing " Details concerning these issues and the
Appendix Z filing will now be discussed.

The Protocols and Specific DSM Measurement Issues
FPreseriptive Elements of the Protocols: The "Base Usage™ Issue

The central issue which penerted the company's Appendix X filing is contained in the reporting
requirements tht are given in the protocols' Table 6: Protecols for Reporting of Results of Impact Measurement
Studies Used fo Support an

Key Point: SDG&E's Appendix Z filing is based primanly on a gogls J y
reporting 2 et e e P ing Egrmimgs Claim (Part I, p. 15). The
requirement that is not central 1o the measurcment of DSM company approves of the main body

of Tahle &; if is only the
"Base Usage” clement of the table—-an element which from the point of view of cffective DEM measurcment is
unnecessary—tio which the company objects.

A comrect understanding of the company’s objection depends on an understanding of the relationship
between the protocols’ Table 6 and the protocels” Table 5 (Part T, pp. 12-13). Tn Table 5, "Load Impact"—which is
defined by end-nse—is established as 2 concept.! For an indoor lighting program, for example, the Jighting Load
Impact 15 the energy impact per square foot of lighted area, per thousand hours-of-operation (or simply, the impact
per square foot of lighted area).

Clearly, it is Load Impact that 15 of interest to all parties. An estimnate of Load Impact is the natural goal
of DSM measurement effons, and it is this goal around which SDGEE has designed it DSM measurement activily.
However, the protocols’ Table 5 goes on to define Load Tmpact as follows:

b Load Impact = { Base Usage) - Usage in the Impact Year),
whe:re,mm:gpnnﬂj:', "Base Usage” is defined as energy consumption (for the end-use) prior 1o the program impact,
Eey Point: The best estimator for Load Impact may be one that estimates i i ey :
Load Tmpact directly, rather than one that estimates Load Tmpact Year® iz energy consumption
indirectly by estimating its two usage components. (for the end-usc) after the
———————= ===
program impact. An
V5ee uise the protoools’ Table C=4
Introdction
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important polnt is that while equation (1} 15 gerainly conceptually correct, it has ] L
process. That is, it may be that the best estimator for Load Impact is ane that estimates Load Tmpact directly,
rather than one that estimates Load Impact indirectly by estimating its two usage components (Base Usage, and
Tsage in the Impact Year), It is in fact the pogition of SDNG&E--based on the company's expericnce in measuring
the load impact of its Commercial Lighting Retrofit program—that the best estimator for Load Impact js one that
estimates Load Impact directly, and it is this position that is reflected in the company’s Appendix Z filing.

Ths This position can be supported by a simple illustration. Imaging the two end-use waorld of Figure 1 which
shows, in two different ways, the moathly energy consumption of a hypothetical customer. On the lefi-hand side of
Figure 1 consumption is disaggregated by end-use, while only total energy consumption is shown on the right-hand
side, Consumplion for both end-uses is consfant, except that end-use #2 iz subject fo the installation of an
energy-saving mepsare Which has its energy (and load) impact, The point that can be made from Figure 1 is that
the estimation of the energy and load impacts for end-usc #2 can be accomplished based only on the data that is
found on the right-hand side of the figure (total consumption). There is no need to attempt o estimate Bage Usage
and TUsage in the Impact Year by end-use,

Figure 1

Is it Necessary 1o Disaggregate Energy Consumplion by End-Use
in Order to Measure the Savings that are Associated with a Single End-Use?

The statictical technique that s designed to estimate Base Usage and Usage in the Impact Year by end-use
is referred to in the company's Appendix Z filing as Conventional Conditional Demand Analysis (C-CDA). (As
will be discussed, the statistical technique that has been developed by SDGAE to cxpleit data like those on the
right-hand side of Figure 1 is referred to in the company's Appendix Z filing as Simplified Conditional Demand
Analysis, or 5-CDA) The C-CDA technique was, at its inception, specifically designed as a means of estimating
the level of energy usage (Base Usage and Usage in the Impact Year) by end-use (scc Panti and Parti (1980)). The

Iniraire tan
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C-CDA framework has besn used widely for residential customers and has been surveyed by Lawrence and

Parti (1984) and Sebold and Parris (1989). Particular applications which combine enginecring and econometric
estimates are Bartels and Fichig (19%90), Caves, Train, ef al. (1987), and Aigner and Schonfeld (1990) whils others
focus on end-use load shapes as in Ficbig, Bartels, and Aigner (1991), Hendricks and Koenker (1992), Hill (1982),
and Engle, Granger, and Ramanathan (1981)

However, none of these smdies deals with commercial customers, and it is highly questionable whether
C-CDA is the optimal technique for estimating the change in energy usage for a particular end-use, especially for
the nonresidential sector. 1n EPRI (1988) which documenis the COMMEND sysiem, ensffy usage was estimated
by end-use, for the commercial sector, A variety of techniques including expert judgment, direct metering, bill
disaggregation, and engineering studies, were used to ammive at the estimates of usage, estimates of encTgy usage
were actually estimated using C-CDA for only a few end-uses. In fact, RER (1991) says "Becanse of the
camplexity of commereial building systems and the diverse nature of occupant behavior, the pure econometric
approach does not work for commercial ssctor applications. "

Therefore, in peneral, the use of C-CDA for estimating the change in energy usage for a particular
end-use is highly questionable for numenous reasons. As previpusty argued, it is obviously unnecessary to
disaggregate energy consumption by end-use in order to estimaie the change in energy usage for a panticular
end-use. In addition, the C-CDA technique depends crucially on the correct and complete specification of a single
mathematical equation which supposedly adequately describes the energy-consumption behavior of individoal
customers within 2 large sample of customers; detailed site-specific data (data related 1o customers' end-uses and
building characteristics) are then used in an attempt to calibrate the equation. As already discussed, the calibeation
{estimation) of these sorts of C-CDA equations is an extremely ambitious undertaking in the cass where it is only
the levels of consumption (by end-use) that are to be estimated and that this is due to the fact that it is extremely
difficult to represent energy consumplion behavior, to the required degree of accuracy, by a single mathematical
equation. While this mast be attempted if the fundamental purpose of the analysis is to estimate the level of
consumption by end-uss, the mathematical disaggregation of total consumption by end-use, when it is not the
fundamental poal of the analysis, unnecessarily invites into the analysis all the problems that are associated with
C-CDA. In fact, the main problems have 1o do with faulty site-specific data collection and the misspecification of
the mathematics of the C-CDA equation, not 1o mention excessive data-collection expenss. 'While these problems
are unavoidable if C-CDA is being applied according 10 its original purposes, they can be avoided in DSM
measurement.

It has been argued by some that there is valoe in the C-CDA framework for DSM measurement in that it
requires detailed site-specific data; these data (the argument goes) can be used to account for changes in energy
usage within the facilitics of a given customer that are not associated with the DSM measure. SDGEE agrees that
detailed site-specific data are very useful. However, there is centainly no need o adopt an inappropriate estimation
framework (C-CDA) simply becanse it entatls the collection of useful data. I detailed site-specific data are useful,
they should indeed be collected as time and financial resources allow, and they should be utilized in the estimation

introduction
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framework that is optimal with respect to estimating the impact of DSM activity. In fact, detailed site-specific data
can be collected with better focus if resources that would be devoted to the pones=ntil task of estimating energy
consumplion by end-use (Base Usage, and Usage in Impact Year) are made available in the effort 1o collect only
thase data that are truly useful,

Finally, there is the issue of the timely (and cost conscious) complstion of DSM mezsurcment studiss. Mo
C-CDA study can even begin without the long and costly process of site-specific data collection. And the
implementstion of C-CDA typically involves 2 pocloged sequince of stempts o improve the C-CDA
EnETEy-consumplion equation. As a result, very few sigmificant attempts at C-CDA are completed within a year's
time and for less than six-figure dollar sums. This is especially alarming in the case of DEM measurement, since
the large majority of cases in which C-CDA has been applied have little or nothing to do with that area; for DSM
measurement, the expense and duration of the analytical activity that is required for C-CDA. is likely to be greatly
increased,

However, as will be shown, there exist alternative statistical techniques that can be implemented withoat
detailed site-specific data, and which are perfectly capable of exploiting such data as time and respurces make them
available. These techniques (the primary one being that of Simplified Conditiomal Demand Analvsis, or S-CDA}
will be discussed at length later, as they are an integral pan of the company’s Appendix Z filing. However, at this
point in the report, the framework of the protocols will be discussed further in order to further clarify the issues.

Prescriptive Elements of the Protocols: The "Net Impact™ Issue

The overall goal of DSM measurement is 1o estimate the energy savings impact of the DSM program, As
aﬂgnuwmmwmmdmhmmuhpmmﬂﬁm

Th:pml.u-:ulsmpmm measure Mef Lmﬂmpac:f&rutpmpmuﬁmﬂﬂmumpmumis'hhhs
pp. 12-13):

(2} Net Load Impact = Participant Group Load Impact) - (Nonparticipant Group Load Impaet)
The fundamental thinking here is that the estimated Nonparticipant Group Load Impact acts as a measure of the
technology's impact in the absence of the propram.

The main problem with this approach has to do with the so-called "seif-selection” phenomenon which
causes the resunlis from this approach to be bissed in the direction of an over-estimation of Net Load Tmpact. The
phenomenon is based on the fact that ensrgy-using customers can (obvicusly) make decisions concerning program
participation. To simplify the argument, imagine an ensrgy-saving technology that is clearly cost effective;
suppose, for example, that the payback period for the DEM technology is only ene month (that is, the payback is
virtually instantaneons). As a result, most energy-using customers will adops the technology in the sbsence of the
program. However, in the presence of the program these same customers will choose 1o participate in the program
(they will “select themselves” into the program), thereby removing themselves from the population of

Indrodanciion
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nonparticipants, the population that is—under the protocols--supposcd to provide information concerning the
technology adoption that would occur in the absence of the program.  This obviously leads to an estimate of
Koy Poiar: Ta the profocads, fhe ol fr cloting e Net L. § P croup-Loac Imgacs thet
Impact uanEM]ngerlm:.istulﬂﬁmﬂrs of MNet Load is quite large. Morcover, the
o e 0 o ok it | oot poptaion v
- — contain only those customers that
have not adopted, and will not adopt, the technology (Why should any customer who is going to adopt the
technology remain outside of the DSM program?), so that in line with equation (2) above, the Nonparticipant
Group Load Impact would be zero, The result is an estimate of Net Load Impact that is quite large when in fact
the actual Net Load Impact of the program is close to zero,

Based on this issue, SDGEE filed the "Discrete Choice Analysis™ portion of its Appendix Z filing. The
Discrete Choice approach to calculating Net Load Impact has to do with going directly to the issue of customers”
decision making with respect to the adoption of DSM technology. Once this decision making behavior is
charscterized and empirically verified, the self-selection of customers into DSM program can be carrectly
accounted for in the estimation of the Met Load Impact of the program.

The Appendix Z Filing: Summary

In summary, the company's Appendix Z filing is directed al two statistical izsues. First and most
impogtant i the issue of optimally estimating the gross impact of DSM programs; the corresponding element of the
Appendix Z filing is conched in terms of subgtituting the so~called Simplified Conditional Demand Analysis for the
Conventional Conditional Demand Analysis that is prescribed in the measurement protocols. The second issoe is
that of correcting for self-selection bias by using the Discrete Choice Analysis Each of these issnes will come into
greater focus as the report continues.

Objections to the Appendix Z Filing and the Origin of the Simulation Study

Once SDGAE had advanced its position on improving the protocols through the Appendix Z filing, the
DRA of the CPUC argued that SDGEE had not adequately established the fact that the statistical techniques that
are contained within the Appendix Z filing lead 1o a comparable level of accuracy in terms of DSM measurement
results, SDGEE responded with several additional points.

SDGEE pointed out that there is no real basis for the claim that the statistical techniques thar are
prescribed within the protocols are more accurate than other techniques. The DRA's claim that C-CDA is
relatively more accurate was unsupporied by either statistical theory or empirical evidence. In fact, the argument
that C-CDA is more accurate can only be made (if at all) along two lines of reasoning. One argument—one which
has already been alluded to-is that C-CDA requires the collection of detailed site-specific data on energy-use,
However, as already mentioned, there is no need to adopt an inappropriate estimation framework (C-CDA) simply
bdﬂ.us:il:nhilsth:mﬂn:ﬁnnufnsﬂulMndﬁdnmwﬂtﬂeﬁﬁ:hanuLﬁqﬂMHmb:

ntrodyction
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collected as time and financial resources allow. SDG&E favors the collection of detailed site-specific gxcept for
thoss data whose only purpose is to support a suboptimal estimation framework. The second argument for C-CDA
accuracy is that it wtilizes information conceming the overall nature of energy consumpiion (in that it explicitly
considers all the individual end-uses), and thal whenever mare information is wsed, the resulting estimation results
must be better, at least 10 some degree. This argoment is in fact a valid one if those who are employing the C-CDA
framework are successfisl in correctly and completely specifying a single mathematical equation that accurately
describes the energy-consumption belhavior of all customers within a large sample, provided that detailed
site-specific data are collected accurately. The only issoes that remain ane the degree of relative accumcy
{assuming the accurate collection of site-specific data) and the impact of faulty data collection.

To effectively address the accuracy issue, SDGEE offened to undertake a Simulation Study, ofien referred
1o as a Mowre Carle Study. A simulation study is a computer-based study that simulates the "real world” (the
world that penerates “real-world data™), in this case, the "world" of energy consumption and DEM. In general,
simulation (Monte Carlo) methods have been used extensively in Economics, Business, and Statistics for many
years. In 1984, the Handbook of Econometrics surveyed the applications in economics, although the list of such
studies is much longer today. These methods arc now becoming so computationally incxpensive that they are oflen
advocated a5 a companion fo econometric model bailding.

The computer simulated world of the simulation study provides several advantages. First, this world can
be duplicated at will, so that issues such as which DSM measurement techmigue should be adopted can be analyzed
under a variety of conditions; the “real world" takes place only once. Second, in the real world, the te numencal
value for that ftem which is being estimated (e.g., energy savings from a DEM program) is unknown; as a result,
Key Point: Alternative statistical techmiques cannot be tested using there is no known standard by which

"“real” data since the object of cstimation (2§, actunl DSM | - gypergiive amalytical tools cam be

savings) is unknown. On the other hand, with simulated

data the object of estimation is known, and the two judged In a simulation study, a

alternative iechniques can be judged accondingly. known value for the item which is
being estimated can be built directly into the computerized framework, and allernative analytical tools can be
judged in terms of their ability to detect this known value,

In the specific case of the Appendix Z filing. a simulation study is the natural tool. ‘While as competing
statistical techmiques, C-CDA and S5-CDA could be applied to actual DSM program data, for reasons just stated
there could be no answering the accuracy question in this setting due to the fact that the object of estimation (the

TENE OGN SR 100 Key Point: With a simulated environment, the estimation task can be

unknown, while this is not the repeated hundreds or even thousands of times, 5o that

cmc in 3 simulated DEM seting relative accuracy of the alternative techniques can be
viewed directly.

Moreover, with a simulated DSM e

environment, the 135k of estimating DEM savings can be repeated hundreds or even thousands of imes, so that
relative accuracy of the altermative techniquees can be viewed directly,

ftrooinctiom
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The simulation study idea was ultimately sanctioned in D, 93-05-063, dated May 19, 1993, Itis the
purpose of this report to present, in significant detadl, the results of a two-pant smulation stedy which addressed
the izsue of C-CDA and 53-CD'A in the estimation of the gross energy impact, as well as the issue of estimating net
impacts using Discrete Choice Analysis.

“The Analytical Framework

Ovarview

Figure 2 provides a broad schematic view of the simulation study, The study is basically composed of a
large number of "iterations™ {1,000 iterations for each portion of the study), At the start of cach ileration, each
customer {(building) is assigned an entirely new sot of attributes. In addition, weather is recalculated with each
iteration. Most important, with each new iteration, new "random varistion” is added to the model; the random
variation is added to the framework in order to obfuscate its underlving structure, so that alternative estimators
(such as C-CDA and 5-CDA) can be judged in terms of their ability 1o overcome this element of the model, The
moda] then penerates the simulated data that are required by the measurement protocols and the Appendix Z filing,
and the alternative estimators are applied to these data. The resulis are stored for each of 1,000 iterations so that
the relative accuracy of the alternative estimators (2.2, C-CDA versas S-CDA) can be determined,

This fundamental technique was applied to the issue of C-CDA versus 5-CDA, and to the DEM
measurement adoplion issue that was previously discussed having 1o do with Discrete Choice Analysis. In addition
1o studying the fandamental propertics of alternative estimators under the best conditions for data collection and
mathematical specification, the properties of the alternative estimators were studied under Jess than optimal
conditions; each issue of this son entailed an additional 1,000 fterations of the compuierized model. Details will
now be provided.

Investment Decision Model
Prefiminary Specifications

The exact details of the model will be fully explained in forthcoming paragraphs. However, several of the
model's elements must be presented on a preliminary basis, o that the overall framework can be understood
correcily, The analysis will assume that there exists o single ensrgy-cfficient lighting measure, Conceptually, this
assumption is manifested within a larger framework where lighting fixtures are uniform across customers in terms
of their physical makeup: The detailed sot of numbers which are found in the forthcoming framework are
comsistent with the situation where all fixtures begin with four standard 40-watt lamps and two standard
core & ool ballasts, and end with two energy-efficiént "T8” lamps and a single clectronic ballast; the single
lighting measure can then be defined as the fixture retrofit itself. (In addition, if the number of fixtures per square
fool ks constant across customers, it follows that the lighting measore vields a constant energy-demand savings per

The Analytical Framowork
Clviangiea o
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square foat.) In rzality such a retrofit entails a capital cost of approximately $44 per fixture, and the customer
incentive payment that is available under SDG&E's Commercial Lighting Retrofit program is approsimately
one-foarth of this sum. The associated energy-demand impact would be expected to equal approximately
rwo-thirds of the fixture's original ensrgy demand, which changes 45 a resalt of the retrofit by approximately 123
watls, from approximately 184 walls o 61 walts.

Figure 2

For sach iteration, each customer [building) iz azeigned s

entirely naw set of sttributes |Square-foctage, Howrs af
Oporation, el Weather is recalodated with sach itersfio
a5 is the random warizsion in madel,

The numbers that are given in the prévious paragraph allow for the calculation of the lighting measure's
financial payback period. Payback (measured in years) equals the customer's initial capital expense divided by the
dollar valoe of annual encrgy savings. The customer's indtial capital expense is 544 less the 23% inccntive
paymenk if the costomer adopis the measyre under the program.  Annual energy savings por fixtore depend on the
cost of energy (set at %¢ per kK'Wh), annual hours-of-operation for lighting for customer j during iteration i (h;),
and the energy demand savings ((184-61)/1,000 = 123 kilowatts):

(Initial Capital Cost per Fixturs) (1-c)(544)

Eaaic e ($/ kWh)| by J{ Energy Demand Savings) " (s.09) b, J(.123 kW)

i

Under the costomer incentive, ¢ = 253%; ¢ = 0 if the customer adopts the measure outsids of the program.

The Analyiteal Framnowork
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Mathematical Specification of the Investment Funciion

As will be discussed Eater, it will be assumed thar each customer can consider installing the measurs
within an exogenously determined area of the customer's facility. This area will be referred to as the "square
footage of affected lighted space™ and will range from 10-100%; of the total square footage of the facility. The
probability q that the customer goes on to adopt the single lighting measure (to be installed across the affected
]Jghl.ul space) is assumed to be a simple logit-function of pavback:

(5.09){ b, . 1235w

Equation (3}, which is graphed as a function of payback in Figure 3, is the Jmesimens Decision Function that
Envemns measure adoption.

(3) q{ha,nlll-{'i+m[{—¢-1£}+tlTﬁ}iPﬁYBhﬂKu}]}ﬂ-.-[11&1{{4_]3}*[175"[ (1-c)(544) ]]}

Figure 3
Likelihood of Adopting DSM Measure

o.og 025 @.50 0.75 1.00 1.25 1.50 1.75 200
Payback (in Years)

The Anaiytical Framawark
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For any iteration within the study, averags hours-of-operation were approximately b, = 3,000; a quick ¢
venty,
=14 i
PAE'EJ'LE:K_‘L“MHM BT LATHALRy e=1H b - R =]
#
. qf3,000,0%)=0.3, qf3,000,25%)=06

The rals of the Tnvestment Decision Function will now be discussed,

P [
| #T g il Pl ralrlaft W TR TR LT LR FERRL TS Fid AT T AR L el g R

Generating Adopiers and Now-Adoprers Within the Participant and Nonparticipant Groups

Although the issue of self-selection bias is, mn practice, a serious one, it is nol an issue that is central to
thiz study. In other words, given the regulatory issees that penerated this study, i 15 not esefil 1o simplste the
self-seleciion phenomenon in the study as a means of evaluating the measurement protocols. It is more useful to
"give the protocols a chance” in the study, by constrocting the simulated eovironment in such a way as to free the
protocels framework from the self-selection issue. In this way, the other findamental properties of the protocols’
approach can be compared to those of the Driscrete Choice Analysis approach,

To accomplish this, the simulation study assumes that for each fteration there are 400 customers (5o
Figure 2), 200 of which are unaware of the DSM program (and the associated cusiomer incentive payments) and
200 of which are gware of the DEM program; the 200 costomers that are aware of the program will be referred o
as "participants” (they are participants in the senge that they face the "incentivized” price for the DEM measure,
since they are aware of the program) and the 200 customers that are anaware of the program will be referred o as
"nonparticipants.® This allows the profocols’ method for calculating net impact to function, since nonparticipants
will not "select themselves” into the program (since they are unaware of its existence), and there will be a group of
nonparticipants that will adopt the DSM measure. Details of this portion of the study will now be considered.

e Faris Tl 1 Lr POV ET A A - s e P sl g Arr el Fi o -'|

The 5A5 random-number generator was used extensively within the study, This random nomber
gensrabor pensrates a uniformly disiributed random varable that rangss betwesn rero and one. With the proper
linear transformation, the random number genesator can be used to generate any wniformly distributed random
variable, with an arbitrarily specified mean and range. 'We adopt the following notation:

Notation;
Let "ufp £8)" represent the realized valoe of a uniformly distributed random variable which has
mean i, and lower and upper bounds of p-5 and p+8, respectively, on its probability distribution.

The AnalyGeal Fromowork
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Given that the framework contains customears that are aware and ungware, 3 major step in the study is to
establish—through the Investment Decision Function—the adopters within cach group. The breakout of customers
is depicied in Figure 42

Figure 4

A
p =
200 cusfomers awarg Investment Dacision
[participants) [e = Z5%) \
B

It follows from prévious definitions that,
pmh{ul:.iiﬁ} = q{hﬁ ,n}} = q{hh,c}

Then during iteration i, the scheme for detennining adopiers is;

{ut.ﬁt.ﬂn ‘Eq{h;j ,'.‘."’ri}]' implies { The Unaware Customer j is an Adopter During licrationi}

{u(.52.5), salhg.25%)} implies {The Aware Customee s an Adopter During ltesationi}

Ii follows from equation (4) that for each iteration approximately 120 of the 200 customers that are aware of the
program will become adopters (60% of 2000, while approximately 60 of the 200 customer that are unawars will be
sdoptess (30% of 200).

The Analyfical Framawork
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The Investment Decision Function is obwviously at the heart of the net-to-gross issne. However, at this
point we leave the Investment Decision Function until the associated cstimation issues are addressed later in the
report.

Consumption by End-Use and Conventional Conditional Demand Analysis
- Introduction

Thres end-uses wese established for the study, two of which were indoor lighting and air conditioning.
The third end-use is "cooking,” although the basic structure of this component of the model could be asseciated
with a variety of different end-uses. The lighting and air conditioning components of the model were developed
because of their importance in reality, and it is the lighting component of the model that is the DSM-related
element in the study.? The cooking end-use simply enhances the model in line with the fandamental structure of
models of this sort that are estimated from actzal data. The details of the model now follow.

Building Characteristics and Lighting

A customer's building is the primary means by which a single customer contributes to the study, In turn,
buildings are primarily characterized by their squars footage. The study is consistent with an analysis of medium
office buildings of approximately 25,000 square feet. The previously mentioned SAS random number generator
was used 1o determine building square footage, during iteration i, customer j:
(5 EQFF.-I = (25, 000 tﬁ,!iﬂja
Therefore, for any iteration, buildings are expected to range from 18,750 i 31,250 square feet.?

For all customers, lighting-related eleciricity usape—before any lighting retrofit—is assumed to be constant
at 2 watts per square foot. Since an assumption has already been made that comesponding watts per fixture is 184,
it finllows that fixtures are placed at one per 92 sguarc-fioot arca. Annual hours-of-operation for lighting are
assigned as according 1o,

() hy =u(3,000%500),

Base energy consumption for lighting (energy consumption for lghting before amy lighting retrofit) during month t
(in k'Wh) is then,

N LIG'HT;* =hwﬂr{[ﬁ}mﬂu ]{],FLI]M:I]

Illnl.i::lnd-mﬂlﬁh-i]hWilﬂltﬂﬂ-
sttt e emphasized hers that the $A%5 random number procrator i srmply wed at this poied 10 establish, within the deratise, Se distribution of
Thurildings scress squase footage; the resolis of this proces do ot grwrats smytkang thal for snalytical purposes comstilules & bona fide random

GCensumption by End-Uise and Conventioral CondiSonal Dermond Analysis 14
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As mentioned, each customer can consider installing the measure within an exogenously defermined ares
of the customer's facility.* This area will be referred to as the "square footage of affected Hghted space™ and will
range from 10-100% of the (o2l square footapge of the facility (see Figure 5)

SQFT;" = u(.55+ 45)(SQFT; |

Figure 5
The Square Footage of Affected Lizghted Space is 10-100%
of the Total Square Footage for the Facility

SQUARE FOOTAGE (TOTAL)

SQUARE FOOTAGE OF AFFECTED LIGHTED SPACE

As already established, the energy demand savings that is associated with the lighting retrofif &5 a fraction
(123 watts)(184 watls) of the onginal demand of 2 watts per square foot, so that the ensrgy consumption for
lighting is,

(®  LIGHT, = LIGHT, - ALIGHT,

ﬁhwﬁﬂm#ﬂmﬁﬁdﬂﬁmim@mhhmﬁﬂﬂm&u&tﬂmhﬂn%ﬁﬂumhmi
msnply assigned ot resdosn within The enadlel, rather thas delarmined by some oliwr kny alemant of the analysiz. 1L i the desiiacn whether o nol 16
wetrafit the square fotape of affcried lighted spacs thal is mdoyenogs to the modal, Swough the Invesiment Desistan Function,

The Analyfical Framawerk
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where the change 1o base lighting is the change that is associated with the square footage of affected lighted space:

(%)  ALIGHT, =[E]t’z waur)[{d,—,{h—i 'SQFI?."HHLBDEJ]

12 monthe

The varisble d_, is an econometric durmmy varisble that is zero prios to any retrofit and onc at the point of retrafit
and thereafter. For each customer, during each iteration, 36 months of consumption data (which includes
" lighting-related consumption) were generated within the model. For those customers who adopted (in line with the
Imvestment Decision Function), the retrafit date was assigned to costomers from months 13 to 24, with customers
hasically uniformly distributed across these twelve months.

Equaticas {7}, (8}, and {¥) constitute a complete specification of monthly energy consumption for the
end-use that is lighting Specifically, the square-bracketed factors that can be found within equations (7) and (%)
will act as regressors In the complete regression model that will be presented in later sections.

Air Conditioning

The gir conditioning (AC) component of the mode] will now be developed, In line with the economeiric
approach that is generally taken the AC component will be based primarily on weather varizhles and bailding
surfaces--which depends primarily on weather variables and building characteristics—must be at the heart of the
AC model *

A regression model] that allows for heat gain through building surfaces—by comduction through surfaces,
and by sodar gain through windows—will have in it one or more companents that are of the following general form
(for building j during month t):

(10)  AC Regression Component = [§:x(WEATHER VARIABLE), x(SURFACE m}j

For the simulation study, calibrating a set of AC regression components that are of this general form is a task that
is conceptuaily straightforward: the product of the coefficient fi and the weather variable needs to have the comrect
units of measurement, so that when this product is multiplied by the appropriste surface area variable the result is a
sensible value for monthly AC energy consumption, While this could be accomplished in a varicty of ways, certain
elements of the encrgy engincering literature are apposite: ASHRAE (1989, pp. 26.32-26.62) contains the
CLTIVCLF Caleulation Procedure (CLTD for "Cooling Load Temperature Difference”, and CLF for "Cooling
Load Factor™) for estimating hourly AC load in buildings, based on the physical characteristics of the building in
question as well as its geographic location. Although the procedure is less accurate than other more sophisticated
estimation procedures (hat can be found in the same body of literature, it is designed for ease of calculation and
reasonable accuracy. Mare important for our purposes, the CLTIVCLF Calenlation Procedure expresses houtly

Heat gain from intemal sources (lighting, people, and office squipment) will als b considered.

The Analyfical Framowork
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AC load in "regression-like" terms that are comparable to the monthly expression in equation (10). Shortly (aftera
discussion of the supposed physical makeup of the study's simulated buildings), the CLTIVOLF Caloulation
Procedisre will be exploited as a means of calibrating the AC component of the model,

As already stated, at the heart of the AC issue is the heat gain that is associated with conduction through
building surfaces (roofs, walls, and windows) and with solar gain through windows. This leads 1o the
consideration of building dimensions, buillding oricntation, and the physical makeup of buildings. So that the
study as a whole would remain managesble, the study's simulated buildings were single-story, square buildings of
width and depth *b* feet (see Figure 6), 5o that in light of equation (5) the building dimension for customer j is
{suppressing the iteration subscript | at this point),

The ratio of the building height to width (or depth) was set at 9160, this leads 10 reasonable results for buildimg
height in hght of the variation in square footage across buildings that has already been established in equation (5).
The buildings have an exact north/'south/cast/west arientation as in Figure 6, and windows comprise one-thind of
the surface area of walls.

Figure &
Building Proportions and Orientation

This Analyfical Framewoni
Corsumpden by Sad-LUse snd Conventional Condtional Damand Analyss 17
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Mode that several implications concerning wall {non-window) area and orientation, window area and orentation,
and roof area follow from these assumptions (continmng 1o suppress the ilsration subscopt 1)

AREA;""""=[—; s QFT;, r=north, south, cast, west

160
(1)  AREA]™ =[-§I%]50Frj. r = north, south, cast, west

AREA™ =SQFT,

As mentioned, the ASHRAE standards have been used to calibrate the AC portion of the model. Tn
particular, CLTD is 4 temperature variable (in units of *F) for which standards have been developed, standards that
allow for the estimation of the hourly heat gain that is asseciated with conduction through exterior surfaces. These
ASHRAE standards are available by geographic location, surface-type (roof, wall, and window), surface orientation
(morth, south, east, west), month, and hour, Table 1 contains the CLTD standards for roofs that were used in the
study (CLTDS™). Two additional sets of four tables (tables that are comparable to Table 1, for walls and

windows, each of which has four possible orientations) are available from the same source. The CLTD standards
are designed to be used in conjunction with a consociate set of standardized "heat transfer cocfficients” (defined by
surface type), so that the final calculation for heat gain has the proper units. For golar gain, the *CLF" portion of
CLTDVCLF Calculation Procedure periains to standards that are similarly available-—-again, by geographic

The conduction (CLTD) and solar (CLF) gain portions of heat gain will now be modeled. In accordance
with Table 1 let,

CLTD . = ASHRAE CLTD Standard (in “F) foc {surface s = roof, wall, window}
{ oricntation r = north, south, cast, west |
{ month t = January, February, .- December)
{hourt=1...24}

Let U* (in units of Brwh-fi* *F) denote the standardized heat gain coefficient for surface s (assumed to be uniform
across buildings, for surface 5). Accordingly, the standard for comduction beat gain (im Biw'h) for month t at hour 1
through these three surfaces s,

The Analytical Framawork
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u(cLoi)area®)s ¥ (v} ¥ (curpffarea¥)

srimaderw, l\-_m

"= wall st sl

_.htlhiipnimasinlpiif}iu assumption is made. If CLTDT for windows and walls is roughly proponional to
f.‘L‘I'.I}f. it follows from (11} that conduction heat gain for month © af hour Tis,

HEATGAIN v _ (yyoomassion)( oy iyt (s,
where the parameter U™ (the "composite heat transfer coefficient”} is a complicated function of the factors
of proportonality and every building parameter that has been defined 1w this point

For solar gain through windows, the ASHRAE liferature can be similarly exploited, although for
compactness the description of this effort will be parsimonious ®* Standards have been established which allow for
the construction of a solar gatn variable X1 as well as a final expression for solar heat gain for the building (in
units of Bio/h-f*):

HEATGAING " =(sc)| 3 (. [ arEar=)
[T

e 0 W

The standardized parameter SC is a unit-free factor of proportionality ("shading coefficient™) that depends on the
physical properties of windows (assumed uniform across baildings, in the study). If X, is similarly assumed 1o be
m,g]:u:rprmﬂmaitnﬂ:l,mﬂ""d it follows from (11) that solar heat gain for mogth §at hour 1is,
HEATGAIN®™ = (U™ )(cLoi )(sarFT)
where lh:pamnn:ru"' s a function of the factor of proportionality and building parameters.
The final expression for heat gain through surfaces is then,

HEATGAIN ,, = HEATGAIN & "™ + HEATGAIN o~
= (===, = {cLto g™ )(sarT,) = (u){cLoz )saFT;)

B Ihe stamcurds and the associated caloulstion for sedar beat gain are resdily available in ARHRAE (1989), Chagiter 26, A bewef sommary is available
on p 2633,

The Aralytical Framework
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Tabla 1
ASHRAE Standards for Cooling Load Tomperature Differance (*F) hthmnmmLTD:“;
Hortd=+| 1 [ 213 ]l4]s|es|l7]a]ls|w|nn|epe s
wanth (4 AR
T
snlwlwlalnlels]ls|lilelo]r]s et e
Fab 2 [ fmw|laln]slels|s)els |- e =
Moo [l lmls]a|]lw]io] oo gl
por |33 |30 (28 |25 |22 |20 |47 |16 |14 [ 195 |47 [ T
my |l olelzlul=zlwlols|lwla|lwlf S
Jn |38 | 38 |31 |28 | 25 |98 |90 |98 [ 47 | a7 |98 [0 | e i
| oz ol lwlw{wlelwlwl s
Amglsslsolos[os|ooloofo7 |95 (44|14 48| or il
sep | 29 | 26 | 2 | 2 [sa e la3] v |s0f10]f 41|49 i A
oct|2e (2 | ]e|l3|a]ele|s5]|s]|6|@f - e Ck
v |19 lualn]les]le]lal1]lolo]1 | s [ElisenTma g
pea |17 [ e2lolelaltlalalalal B A
ey 15 s F E :_: ﬁ'-\.ﬁ = [ P = 3 e i 23 ]
Hourfd)— |13 [ 14 [ 15 [ e[o7 |18 |10 |20 |21 |22 |30 | 24
Mondh () 4 I:r:.mr":lntm}i[u.‘m;‘:l
-
Jan| & |10 |15 |mw|za|w|m |2 |22 |3 |2 10,230
Fab |11 |15 20 | 24 |28 | 31 |30 |34 |34 |32 |30 | 27 13,830
Mar | 96 | 20 | 25 | 20 |33 |38 |38 |30 (30 | a7 |35 | 32 17,430
ppe |20 |2a |20 |3 |7 |aol4af4a|aa]a1 |30]38 20,310
Mgy 26 |31 |35 |39 |42 |44 J 45 [ 45 | 43 | 41 | 38 21,750
Jun |23 [ o7 |30 | e |40 |43 | 45| 46 |45 | 44 | 42 | 30 22470
iz 26|23 |as|wla2|ulaslas || 21,750
gl || dln|lv|lole|la|lalal|s]s 20,310
16 |20 |25 120 |33 |25 |38 |% |3 |3 |5 |3 17,430
Oct [ 11 |15 (20 | 24 |28 | o1 | 33 |34 [34 |32 |90 |27 13,830
Mov | 6 (10 |15 |19 |73 |26 |38 | 20 |29 |27 | 26 | 20 10,230
Dec| 4 | & |93 [17 |20 |24 (26 |27 |27 |25)|23 |20 8,730
Wikhin fhe cairgory “With Suspended Ceiling® roof type #7 was selected from ASHRAZ (1985) Table 29 (p. 26.34),
The values in Table 29 were modifed for Intituds based on ASHRAE (1989) Table 32 (p, 26.37), for North latitede 32 dep

Tiea Arcaiyfical Framewark
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Based on this, the final expression for Bru's per month (assuming thirty days per month) is,

(12) {m}liﬁﬁa:rmmj,f{u](mm?”]l[mm]

WhCIE,

: iﬂTﬂ?"Ha—u}iiﬂt‘m:‘}

gl

Tabie 1 contains the final CLTD}™ values that have been constructed for the study. In tarn, based on reasonable
assumptions for building characteristics, the composite heat transfer coefficient was calculated:

U=19T7 BrfSQFT,;°F
As a result, eguation {12} can be constracted un s entirety,

However, the final step in constructing the regression component is to specify AC efficiency so that
monthly Btu's are translated into k'Wh for the month. Nine watt-hours per Biu was selected as the everall AC

efficiency factor, so that the monthly regression component for AC consumption (for heat gain through surfaces) is
(except for one fortheoming modification]),

{%I{ﬂ-m?“]{mm]fwm]

While the expression in square brackets might be a suitable regressor for the simulation study, only a
single st of twelve monthly values for CLTD™ is available as standards (as is evidenced in Table 1), As a result,
the use of this se1 of standards within the regressor entails the implicit assumption that weather for any given
month-type (say, April) is constant across the years in the simulation study. However, a more well-rounded model
would allow weather to change from year to year. As a result, in the study, for iteration i, ELTEI','“"" was allowed
0 vary across years by +20% of the standard, so that the final form for the AC regression component for heat gain
through external building surfaces has the form (reintroducing the iteration subscripd 1),

(13) ACE™m [%I[W ]{Sﬂﬂ‘i] /l.uuu].

a4 cima =(cumr Y u(it2),)

Note that equation (13} is of the gensral form expressed in equation (10], so that the goal of constructing a
regression component of this form has been satisfied.

Hest gain from internal sources is also a consideration. AC consumpdion related to lighting is simply
proportional to the lighting component of the model

The Analyfics! Framework
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3.412
5
where 3.412 is the appropriate Biu scaling cocfficient. Looking ahead, it is clear that within the overall regression
equation, the coefficient (3.412/%) will simply add to the regression cocfficients thar will be associated with the
regressors in equations (7) and (9).

- .. . Forheat gain from building occopants, a standard of 450 Bioh per occupant was adopied so that for
eight-hour workdays daring a thirty-day month the associated cooling consumption (in k'Wh) is,

as  acg™ =[ ][LIGHT;* — ALIGHT,, |,

Acm_z[ﬂ{sxsuj{ﬁumum}
9 1,000

it
In the sudy, the number of occupants was determined according to,

[loccupanTs,]]

m_‘:::umﬂ‘rs;-[ —:—ii] ][sqr-‘ri]l.
192 15205
This implics a density of one cmployee per arca eight to fourtesn fect-square, or an OCCUpAnE 0N AVETAZE EVETY
1060 squane-feetl

For heart gain from olfice equipment, a standard of 1,300 Brow'h per nnit of equipment was adopted (in line
with standards for heat gain from personal computers) so that for eight-hoor workdays during a thirty-day month,
the associated cooling consumption {in kKWh) is,

.-.::;f""““" _[ 1 ] (8x30)1,800 HTu/h)
g 1,000

On average, the number of units of equipment was set to one-half unit per occupant:
EQUIF, = [u(5+.5), | occupANTs, ).

[(zqurz, |

The final expression for AC consumption s then,
(15) AC, =ACE ™ +ACE" + ACHTP"= 4 ACH et

The exact structure of this expression will be considered as the model develops.

Cooking

A third end-usz was sdded 1o the model: "cooking.® While the specific nature of the model's third
end=-ize has been specified ("cooking™), it 15 unneccssary o specify the end-use as such; any one of a number of
labels (e.g., "outdoor lighting,” “refrigeration”) could be placed on this end-use. The cooking component of
monihly consumption was set ai 2,000 k'Wh (for those cusiomers that had cooking facilities), and, for any iteration,
on average 60% of the costomers were determined to have cooking facilities. The exact stnocture of the cooking
component of the regression model is then,

Tha Analfytical Framowork
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(M COOKy = (2000,

where dff is an econometric dummy variable that takes on the value one if customer j has cooking facilities
during iteration i, and zero otherwise,

The Addition of Random Disturbances and Conventional Conditional Demand Analysis

These three end-uses—lighting, air conditioning, and cooking—make up total monthly energy consumption
for the simulation study. To fully formulsie the energy consumption issue as a regression problem, we now view
equations (8), (16), and (17) as the expected values for consumption for the three respective end-uses; in this case
actial monthly consumption KWh, will equal their sum plus a random disturbance term £,

'I:‘W]\w = [.IEHT' +AE'|.I" +C‘Uﬂ]{# +£-i,|_

The following regression equation results from making substitutions from various definitions that are associated
with eguations (3), (16}, and (17) (regressors are in squase brackets):

(__ by )SQFT;

s ﬁ'[g 12 months )|, 1,000 J]*B,[nmm&mi]m,[mwih palai™]
18 +fs| (T ESE ]:l

+f

e

i{dﬂ' )[ 12 ,::EMIT:E ]]+E*

B, =(2 m][“}.uz} ﬁ:':[i]l[ﬂxiﬂ-]{ﬁﬂﬂ'ﬁ!hjp Eﬁ[gtsu]m{hmmm

g 1,000 9) 1,000 :
197 123, 3.412

= - = - s, j [ A —— --1_34
Bamoets P [ 9]’ Pe um{:sal* 9 ]

Equation (18) is the final regression equation for the simutation study. This regression equation is used directly for
the C-CDA portion of the study, and it is this equation that will be manipulated to arrive at the S-CDA famework.

The Analytical Framovwark
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Note that the lighting coefficients B, and B, contain adjustments for lightingcooling interactions (3.412/9 is the
cooling-related watts, per watt of lighting); this adjustment is necessary for estimation purposes since the lighting
regTess0rs in equation (B} are exactly propertional to those that are implicit in the AC equation (15); note aleo that
B, and B; are in units of watis, Most important, note that B is

ey Point: The gross impact of the the lighting Base Usage coefficient around which the Appendix Z

measure is 1.84 watts per square fool istne revolves, and [, is the gross energy impact of the lighting

measure (1.54 watts per square foot of affecied lighted space), O
course, iy will be estimated using only C-CDA, and [§, will be estimatcd using both the C-CDA and 5-CDA
eslimators.
A key clement of the analysis will be to specify an ermor-vaniance model for the disturbance term £, in

equation (18), The error-variance model will simply be,

a9  Hel)=al
The actual valuss for the disturbances i determined by a rero-mean uniform probability distribution:
5 =k [05)(¥5 )(ulox.5), )

w]u:n:ﬁq 15 the average for the three-vear monthly series that can be penerated using equation (18) {ignoring
£ ), and tu=u{.u1}ijsamuhngfamrfunh=dimmm The implication of this overall structure for the
disturbance term is that the standard deviation of the disturbance term can range (for customer j during iteration i)
from 10-30% of the averape value for expected monthly consumption. As a result, while the disturbances are
homossedastic for cusiomer j during iteration i, the vanance of the disturbances is unresiricted across cusiomers
and iterations. The implications for estimation are discussed at a later point (see the "Basic Accuracy™ section),

As a check on the reasonableness of the model, some simulated data should be examined. The following
valuss were adopted as a basis for generating a single three-vear monthly energy consumplion series:

h;=3000 SOFT,=25000 SOQFT; =(%0)SQFT,
OCCUPANTS, =260  EQUIE,; =130 as =1

The weather variable EL‘II!:M was gvalnated using Table 1 and the procedure that 15 assnciated with
equatien (14), and the dummy variable d, was set at one after August of the second year. The following choices
determuned the dishobance lerms:

kj =015

EWhy = 20,000

The Analytical Framework
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Figure 7

Simulated Monthly Energy Consumption
by End-Lise
(3 years)

Actual Monthly Energy Consumption
for a Single Medium Office Building

(January 1980 through December 1992)
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The result is the simulated consumption data found in the top portion of Figure 7, As a check on reasonableness,
these results are compared in Figure 7 10 actual monthly consumption data for a particalar medinm-sized office
building within the SDGEE service territory,

Simplified Conditional Demand Analysis
-The General Framework”

At this point, the C-CDA framework is generalized so that a general S-CDA framework can be derived.
{During this effort the iteration subscript § will be suppressed.) C-CDA is based on a regression model of energy
consumption for customer j at time {45 it depends on a set of K regressors fi, that are functions of a vector of
weather varizbles and customer characteristics X, :

K
@ kwhy =Y Bdn (X, )} es
=]

The K regressors f; represent the end-use components of energy consumption and their relevant interactions.
Specifically, C-CDA is based on the complete and explicit mathematical specification of the K functions f, and
the completion of the data-collection effort that is associated with X, .

To arrive at a S-CDA framewark, we note that generally at least some (say, K ) of the regressors which

are not central fo the analysis have factors gy, that are independent of time:*
(21 -Tx{i:r}F{Ek[i’k}}{hh[iﬁjn}}- R, ={#p. %020}, km1K.
Defining,

@2y Py =B {Ek {i'; }}-

the C-CD'A equation (20 can be rewrilten as,

kWh, =iﬂ'hl{h’t[ii*ik}}+ i Fh{fk{i,ﬂ}}*'ﬂj-r

k=1 k=i 4l
Define 0 as the set of values for k (within the K terms above) for which the corresponding regression component
is entirely independent of time, so that h, =1 for cach kin £2. This yields the final 5-CDA regression model:

T o thee svesst pard, this section is taken from SDG&EE repori MIAT-52-F50-801-R310, CommerciadTrdustrial Energy Efficioncy Incemtives:
Lighting Rateafit, Extimation of Grogs Energy-Denrond fepacts, June 1993, This report gives the resalts of a highly ssccessdiul application of
SO0 b dats thal are assoctited with the lighling reteofil prograen.

B e vacar i*hwn;pﬂhwnhmﬁuwhpﬂmtmﬂhmm*mhtwh
independent of time,
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KWh, =§ﬂu+éﬁ”{ht{ik.ih}}+ i Budn (%,)] +e,

=K+l

=g+ éﬂ'u{ht{inr%}} + i ﬂk{ft{ih]}ﬂj

=k 41

(23)

Motz the important features of equation (23), in contrast 1o equation (20). In Hmiting the sumber of
regressors to K, equation (20) requires the eoxplicit mathematical specification of the functions gy, a5 well ag the
data elements of %, . However, while equation (23) imvolves 3 large mmhﬁufmdumyvmi:hlﬁ. it is
Lnd:p:ndmtnfbuthﬂtﬂmﬂinm&anﬂﬂmdaﬁltﬂmamﬁamiuiﬂluumwik. (While computer
memory issnes may need o be resolved, modern software tools such as S45 PROC GLIM are readily availsble to
m=et the task of constructing the large number of econometric dummry varables that are associated with
equation (23).) In addition, the above formulation points to additional flexibility that is available, A more flexible
alternative 1o the specifications that are represented in eguations (200-(22) is,

kWhy, = iﬂ:{fu{ik}}* By fu{ip }= {F:J{ﬁnmh:{ij- Ty ]]' By =ﬁk{5:u{"i' :}}

This st of three equations allows for the failure, across customers, of the ¥ mathematical specifications g, that
st hold when C-CDA is applied. Yet these equations also yield equation (23), pointing to the added freedom of
specification that is associated with 5-CDA.

These facts elucidate the fundamental value of 3-CDA in comparison to C-CDA. In cases where anly the
K=K regression cocfficients Py of equation (23) are of genuine interest, the remaining regression coefficients of
copuation (23) can be estimated unconstrained across customers, without regard to the specification of the functions
gy &nd without the data collection efforts that are associated with the vector of customer characteristics W, . In

gencral, the application of 3-CDA will minimize the estimation errors that result when the regression components
g1l % ) are erroneously constructed. Specifically, S-CDA will minimize the impact in the case where the
functions g, (or g, ;) arc mathematically misspecified, and ervors-in-variables bias in the case where the data that
are associnted with Ww; are recorded with errors.

The framework represented by equations (213-{23) addresses a more general cconometns iS5ue,
Demand-side measurement activity 15 ofien characterized by an almost sutomatic tendency toward C-CDA. The
assumption in these cases is that it is possible (and even necessary) to estimate the K parameters of equation (20)
and, equivalently, 1o explicitly model and estimate all the end-uses and their interactions, Certainly this tendency
doos not constitute carcfiul econometric modcling. On the other hand, the framework (21)4(23) accounts for the
fact that in using cross-section/time-series data, careful consideration should always be made as to which clements

The Analyfical Framework
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of the regression are explicitly modeled and which are not.  These sorts of modeling considerations are emphasized
in hasic cconometric texts (se= Judge, ef ai., 1985b, Chapter 13}, yet they are froquently ignoced within mamy
current demand-shde measurement efforts.

The Application af the Simplificd Conditional Demand Analysis Framework
) Certainly equation (18) is of the peneral form given in equation (20) for K = 6, and (continuing 1o
suppress the iteration subscript i),
Ry ={n; SQFT; &, SQFT} TILTDI™ OCCUPANTS; EQUE, a}

The associated functions f, can be easily constructed. In line with equation (21), for K =5 let,

Ffj{ijt}-{El{ijlh}{hliiji,ijn}} -{B:l:[ " En‘:ﬂ’;m{n} =py;{1} 1

12 monthe )| 1,000

B S S 0 S e Ty S S BT WY T P P B RN PR T S T T T TN T P W TN R R TR T T T T TN T e e e i S S S S

f:{ij;}'=‘{=2{ﬁjﬂ}{hz[ij1-sztﬂ' ={ﬁ'1{mmjﬂ{'} =Bz, ;{1}
1% j:] - {33{‘5’}3 :I}{h3{i53-ij3t}] '{ﬂz[ﬂl““‘?j]}ﬂ}' =3 ;{1}
h{ijl}={=4'[ﬁj4]}{34{ijq % j41.]} -{Ih ﬂ'i'}“k]}{ﬂ =y ;{1

fsiij=}={=s{ijs}}{hs{ijs1555;}] ={#5[mm]]]'[ﬁﬁ:m] =55,i{'1m:m f}

L1

Recognizing that Q= {k=1,2,3,4}, and that K— K’ =1 (the single coefficient B, is of prime interest), the final
5-CDA equation (23) is (re-introducing the iteration subscript i),

12 months § 1000

@24) KW, =Bu+ﬁu{CLTD.“"]-+ﬂi|i{di{__hi SQFT; Hﬂa

whare,

The Amalytical Framework
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1, 0D

) 2 e

+{ﬂ3[EQL‘IPu]} +{ﬂ4[dfj“k ]] =P+ + B35 +Pa

MNaote the properties of equation (24), which is the final 5-CDA regression equation for the simulstion study. First,
MmeﬂmjmmmMUﬁmmﬁ,mth:Whm
identified (in the econometric sense) when S-CDA is applied. In addition, the key lighting-savings parameter fi
is constrained across customers while the remaining regression coefficients—the intercepts f,; and the weather
coefficients fi, .—are 1o be estmated unconsirained across costomers. Thercfore, equation (24) does not depend on
the dia elements,

@5) {SOFT, OCCUPANTS, EQUIP, d;"”}

which constitute (for amy k) the clements of W, of equations (21) and (22). This fact points 10 the significant
value of the S-CDA framework in that these data clements—which are required for the implementation af
C-CDA—are very difficult and expensive to collect in that they require detailed on-site collection of data, and they
are typically not part of the relevant DEM program datsbase. (Moreover, the only reason for collecting thess data
would be for purposes of estimating the ynneeded cosfficients of equation (18), or perhaps for some gain in
efficiency that comes from exploiting the exact structure of equation (18). However, this last argument requires the
assumplion that the exact form of the regression equation is known, whereas as already stated the 5-CDA
framework allows for 3 great deal of flaxibility in this area; the possible gain in efficiency is an issue that will be
sddressed as the study results are reported in the "Results™ portion of this report) The data elements that are
present in equation (24) are much more easily obtained and may well be incleded in the program database.

It is the prime purpose of this study to analyze the properties of least-squares regression estimators as they
are applied to the two alternative specifications (18) and (24), in light of the fact that it is the goal of each
estimator to estimate only the single lighting-savings parameter [

Results

Final Structure of the Simulation Study
Figure & shows the final structure of the simulation study, based on the groups A-D of Figure 4. The top
portion of Figure & describes the pant of the stady that supports the Appendix Z filing, With respect to the
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net-to-gross kssue, the data that come from groups A-D (including hours-of-operation) are used for discrete cheioe
model estimation; the hours-of-operation for the participant group (A and B jointly) are then used to estimate the
net-tn-gross ratio by estimating participants’ behavior in the shsence of the costomer incentive payment. With
respect to the gross savings issue, ooly the energy consumption data from group B (participants who adopt) eater
into the S-CDA model; groups C and D are kept out of the mode] since the Appendix Z filing specifies this
position, and group A (nonadopiers) can add nothing to the 5-CDA model due to the fact that the only pasameter
-th.ﬂis-ﬂﬁmlﬂimmmmiilltﬁmﬂﬂﬂﬁ;ﬂfﬂﬂiﬂnﬂ4lnﬁuhml}'ippﬁﬁiﬂthﬂmﬂﬂfﬂﬂﬂpﬁm

The bottom portion of Figure § shows the part of the study that is associated with the protocols, The
panicipant and nonparticipant groups are used in generating separate estimates of gross savings, providing the
basis for an estimate of the net impact. ¥

Figure 8 specifically points 1o the fact that the participant groups A and B will be used in comparing the
5-CDA model of Appendix Z and the C-CDA model of the protocols. As a result, for any iteration, with 200
customers in cach of the two groups (the participant group and the nonparticipant group), the S-CDA model will
be estimated using approsimately 120 adopters (based on the 60% figure of equation (4)), while the C-CDA modcl
will be estimated with the 200 participants, with approximately 120 of them also being adopers.

Details of the simulation study will now be provided. The results concerning the estimation of the gross
impact will be considered first due to the relative importance of this issue and to the fact that the net impact as
calculated under the protocols depends on the estimates across the participant and nonparticipani groups of the
gross energy impact. Estimation results for the net-lo-gross and et impact issues will then be presented.

The Basic Accuracy of the C-CDA and S-CDA Estimators of Gross Impact

As already mentioned, Figure 8 points to the fact that the participant groups A and B will be used in
estimating the 5-CDA model of Appendix Z and the C-CDVA model of the protocols (although since group A
mmﬂyaﬂmﬁmﬁmlnmsam&mﬂiﬁtmimﬂmnﬂmm&mnddwiﬂh:m&mﬁ:ﬂyn;n
simulated data from group B). This allows for the two competing models to be on equal footing for comparison
purposes,

Since every data element of the regression equations (15) and (24) has been clearly established, the
estimation of the key lighting-savings parameter b, for cach of the cquations (18) and (24) (and for any rumber of
iterations), is a straightforward tack. The only complicating factor in applying leasi-squares lechniques are the
implications for efficient estimation that are associaed with the error-variance model of equation (17). The task is
to estimate the customer-specific eror-variance o (assumed, in the study, to be unknown) which can form the

basis for an application of weighted leasi-squares. This can be accomplished by obtaining adequate estimates of

PThin ix in secordance with the protecaly Table Gl
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ihe disturbance terms £, that are common to equations (15} and (24). While for thiz purpose either of the
equations (18) and (24} could be estimated using ordinary least-squares, a third regression equation was defined:

KWhy, =By +Beg{CTTDY | +Besf(s)] 44
This regression equation can be viewed as the 5-CDA equation (24) in its completely unconstrained form, In light
of the ermor-variance model of equation (19), the ordinary least-sguares estimator will be unbiased and efficient if
-aﬁpﬁdwmﬂumﬂ}mmﬁ regression equation, and the resulfing mean squared error constitutes a consistent
estimator for the customer-specific ermor-varance ﬂ;;ﬂtmvﬂﬂﬂilmsthMmmtbzhﬂﬂsﬂnrw
apphication of weighted leasi-squares to equation (18}, the C-CDA equation. This lwlu-phas: least-squanes
technique was the fundamental technique that was adopted within the stedy.

Mareover, given the coding conventions of the S4S procedure FROC GLM, the estimation of the 3-CDA
equation (24) is nearly ag simple. After defining a customer indicator variable "CUST," the single line of
programming code that defines the regression equation (24) within FROC GLM is,

MODEL KWH = CUST CUST*CLTD D*HOURS*SQFTAFF ;

where the vasiable names in the above piece of code have an obwious relationship to the variables in equation (24)
(c.g., HOURS = b, /12,000). The "CUST" and "CUST*" pieces of the code tell the program to estimate a separaie
miercept By ; for each customer and a separate weather cozfficient i, for each customer, respectively. However,
since the third térm in this expression ("D*HOURS*SQFTAFF™) does not contain an element "CUST®," the
coefficient on this term (B, is ined 2 :

the previous paragraph was used here as well.)

Figure 9 gives some of the most important results of the simmlation study. The weighfed feast-squares
estimates of the lighting savings parameter i (the gross impact of the single lighting measue), for the C-CDA
equation (18) and the $-CDA equation (24), are given for 1 000 simulation computer runs. Figure 9 shows that
both estimators are cbviously (not surprisingly) unbizsed, since each distribution has 3 mean estimate for i, of -
1.84 watts, Morc important, Figure 9 shows, given the distribution of the estimated values for [, that the two
estimators for i, arc exaremely close in terms of accuracy; the two distributions are virtually congruent, although
the tails of the S-CDA distribution are skightly more proncunced (in fact, the standard deviation of the C-CDA
distribution (0.011) is 0% of the standard deviation of the 5-CDA distribution (0.014)). This is a remarkable
result in light of the fact that the 5-CDA estimator does not depend on the significant data elements (25); square
footage of the building, the number of building occupants, equipment inventories, and cooking data. In other
words, the added accuracy that would, in practice, be associated with the data elements (25) is minimal Moreover,
this small degree of added accuracy is predicated on the dats-collection accuracy of the data elements (25) (e.g.
Can the squars footage of a building be consistently and accurately measuredT), and the exact mathematical
specification of the of the C-CDA equation (18), It is the purpose of the next gection to describe the basic

Rezplts
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properties of the two competing estimators under conditions of data-collection errors and modeling
nusspecification.

Figure 9
The Distribution of Results (1,000 iterations)
Over the Estimated Change in Energy Usage
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The Properties of the C-CDA and S-CDA Estimators Under Mere Realistic Conditions

Of great concern is the performance of the C-CDA and 5-CDA estimators under more realistic conditions.
As already mentioned, the 5-CDA framework is theorstically more robust in cases where data are collected with
errors, and when the regression model in equation (18) is misspecified by the analyst It is the purpose of this
section to presant the simulation results that support this.

Errors-in-Variables Bigs

It is well known that when regression models contain regressors for which data are collected with errors,
the resulling errors-in-variables bias (see Judge, 19835, pp. 532-535) will impact the estimation process, and that
parameter estimates will tsnd 1o be biased toward zero. Figure 10 shows the results for the C-CDA and 5-CDA
models in a simulated case af errors-in-variahles bizs, These results are based on the case where the regressor,

FT; = (1-+uf0£0.2)) H{SQI’TU}

Resnlts
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is substituted, during the estimation phase, for SQFT, in equation (18). (This structure for SQFT; implics that the
building square footage on average will be recorded correctly, but in any one instance will be recorded with emror
by as much as £20%.) Figure 10 shows the dramatic errors-in-variables bias that is associated with the C-CDA
estimator in this case, as well as a dramatic decrease in accuracy. The resulting estimates are clearly biased woward
zero away from the troe valve for the measure savings parameter fi, (-1.84 watts). Moreover, since equation (24)
_dqmmtdﬁp:ndmmm,dwﬂmﬂmhmndﬂh:qmiw{ﬂ}isuuaﬂﬂtdb}'thnmnﬁ{ﬁgun::lﬂ
also shows 5-CDA results for an additional 1,000 iterations). These resulis support the notion that the cost of
estimating the individual end-use clements that are contained in equation (18) will most likely be a substantial
errors-in-variables bias and a significant decreass in accuracy.

Figure 10

Errors in Data Collection: Square-Footfage Under/Over Estimated by 0-20%
The Distribution of Results (1,000 iterations)
Over the Estimated Change in Energy Usage

[nloflpoonenoe  can -

2074 1594 1.014 1834 -1.754 -1.57% 1554 A1.514 1,434
Estimated Changs in Watts por Squars Foot {target: -1.84)

Misspecification of the Regression Equation

Problems can also occur when the regression equation is mathematically misspecified (see Pindyck &
Rubinfeld, 1981). Figure 11 shows the results of omitting the "cooking” end-use (2,000 K'Wh per month) from the
C-CDA regression equation {18) doring the estimation phase. The variance of the C-CDA estimator is clearly
dramatically increased (most Tikely due to the fact thar the misspecifcation of the regresston equation tends to
impact the error term in the equation), although the associated bias is not conspieuous (undoubtedly due 1o the

Rasuwles
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Figure 11
Misspecification Errars: A Minor End-Use is Omitted from the Model
The Distribution of Results (1,000 iterations)
Over the Estimated Change in Energy Usage

! 1 1
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small consamption that is associated with this end-use). Since equation (24) dees not dzpend on the cocking
indicator d5™*, the S-CDA model in equation (24) is unaffected by the misspecification (Figure 11 also shows
S-CDA resulis for an additional 1,000 iterations), These results show that the accuracy of C-CDA is significantly
impacted by misspecifeation error.

Analysis of Net-to-Gross/Net Impact

At this point, consider the issue of net impact, The fundamental task is to compare the protocols’
approach—that of equation (2}—-with the approach that is advocated in the Appendix Z filing—that of using $-CDA
in conjunction with Discrete Choice Analysis. However, rather than considering the net impact alone, the
net-to-gross ratio (the ratio of the net impact of the program to the gross impact) will be considered first. This will
be useful in that the net-to-gross ratho is a unit free number that can be readily explained and understood. In
addition, under the Appendix Z filing the net-to-gross Tatio is estimated separately from the gross impact, using
Discrete Choice Analysis (while this is not the case under the protocols’ framework). This implies that it will be
walaable to consider the properties of Discrete Choice Analysis on their own.

In order to derive the net-to-gross ratio note that within the context of the simulation study, B¢ of
equation (18) is the gross savings for the measure (1.84 watts per square foot of affected lighted space). For N
participants the expected gross impact of the program (in watts) is (suppressing the iteration subscript i),

Respits
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(30) (Nomparticipant Group Load Impact) = 3 (32 (sqrr2™= / Y (sqFr™=)

RO | CoeDl)
(In line with the protocols’ Table C4, the parameter [ is eslimated separately for participants and nonparthcipants,
using the C-CDA cquation (18) and the least-squares procedure that has already been deseribed.) The first term
should equal approccimately 60% of 1.84 watts, while the second term should equal approsiemately 30% of
184 watts. The estimated net-to-gross ratio is then

lpe=Ysarr™=) /¥ (B )sarr™)
T Sk ¥ (sqFT; ™)
e CorD} jaf AerE}

an [—M‘ ]
LE; T —

which should also (as in the case of Discrete Choice Analysis) be very close to ane-half (1={_3/.6)).

Essimation Retuls: Net-to-Uross Ratio

Figure 12 gives the main results for comparing the altemative estimators for the net-to-gross ratio. {The
underlying assumplions are those of perfect data collection and model specification, as in the case of Figure 9.)
The means of the distributions are 0.47 and 0.48 for the Discrere Choice Analysis (with marimum likelikood
estimation) and the protocols’ methods, respectively. With respect to accuracy, the results show that under the best
conditions the two estimators are comparable, with there being some evidence of 2 wider distribution for the
protocals’ method: the standard deviation of the distribution for the protocels’ method (.071) is approximately 50%
higher than that of the Discrete Cholee Analysis method ((048), This is most likely aitributable to the fact that the
estimate of the net-to-gross ratio in equation (31) depends on the twp C-CDA estimates of load impact J2™™" and
B This tends to add more variation to the estimate since the estimation technigue does not directly address the
issue of imvestment decisions; rather, it approaches the net impact issue indirectly, through the energy consumption
portion of the model and the twofold application of C-CDA.

Figure 13 gives results that are related to Figure 10 (where building square footage on average was
recorded comrectly, but in any one instance was be recorded with error by as much as #20% ). Note that the bias
that is evident in the protocols’ estimator for the gross impact (see Figure 10) is not apparent in Figure 13,
although the increase in variation is still conspicuous. This is not surprising since the calcalation in equation (31)
will cause the bias that is in both fi2™" and ™ to cancel. In fact, the mean for the distribution in Figuse 13 for
the protocals” estimator is 0.4%, 35 in Figure 12. However, in Figure 13, the standard deviation of the protocol's
estimator is twice that for the Discrete Choice Analysis method, so that still follows that the errors-in-variables
impact on the aceuracy of the protocols® estimator is still very significant.

Analysis of Net-fo-GrossMet impact 37
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Estimarion Resulte: Net Impact
Equations (26) and (27) provide the basis for estimating net load impact per square footage of affected
lightsd space under the Appendix Z filing (with fi; estimated using 5-CDA):

{m{ 3 ol 259)50F) = 3ol o Ysarr=)
jefhacE} ol Ao ]

¥ (saFr;™)

e{AarB}

The true value for this parameter was calculated using the actual valucs for the Investment Decision Function and
realized valoes for the square footape of affected lighted space over a large mumber of customers in groaps A and
B, with the result being -0.52 watts. In turn, equations (29) and (30) provide the basis for estimating Net Load
Impact (per square footage of affected lighted space) under the protocols (with (§; estimated using C-CDA on
participants and nonpariicipanis).

(B lsor™=) (=) X{sarn ™)
T k™) Slse)

ol AoB} e[ Cae}

(32}

Earlier in this report, when the C-CDA and 5-CDA. gross-impaet estimators were being compared, it was
noted that the 5-CDA estimator had a slightly higher standard deviation (2s evidenced by Figure 9). However,
Figure 12 showed that the net-to-gross estimator from the protocols has a larger variance, due to the two-fold
application of C-CD'A. This alerts us to the fact that either of the estimators for net impact may end up with a
higher degree of variation.

The results given in Figure 14 address this issuc. There it is obvious that the net-impact estimator from
the protocels has a higher standard deviation (L098) relative o that of the Appendix Z estimator (0.067), by 50%.
This implies a greater degree of accuracy on the part of the Appendix £ estimator for the Net Load Impact.

Summary of Results

One of the main issues in SDGEE's Appendix Z filing has been addressed in Figure 9. There it is clear
that when site-specific data are collected accurately and when the mathematics of the C-CDA regression are
correctly specified (which implics that the S-CDA regression equation is correctly specified), the two estimators for
the pross impact of the measre--C-CDA and 5-CDA-—-are comparable in terme of accuracy. However, Figures 10
and 11 show that when site-specific data are collected with ermor or when the mathematics of the C-CDA

Rasufs
Summany of Resulls 33
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regression are misspecified, the 5-CDA estimator for the gross impact of the DEM measure greatly outperforms the
C-CDA estimator in terms of accuracy. This is an important although predictable result, since the 5-CDA
egtimaior is not heavily dependent on those data which are extremely expensive to collect and which are very
difficalt to collect with accuracy.

Om the isgae of net impact, Figure 12 points oot that the Discrete Choice Analysis approach 1o estimating
the net-to-gross ratio is somewhat more accurate than the protocols’ approach, due 1o the fact that Discrete Choice
Analysis approaches the issue of net impact directly, while the protocols’ approach is an indirect one where the
C-CDA estimator is applied twice during the net impact calculation. In addition, Figure 13 indicates that the
relative inacouracy of the protocols’ approach is increased further when site-specific data are collected with error.

Most importart, Figure 14 shows that when S-CDA and Discrete Choice Analysis=--the two techmigoes
that are advanced in the Appendix Z filing—are used jointly, the final result is a more accurate estimate of Net
Load Impact.

Surnmary of Resulls 19
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Figure 12
The Distribution of Results (1,000 iterations)
Over the Estimated Net-to-Gross Ratio
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Figure 13
Errors in Data Collection: Square-Footage Under/Over Estimated by 0-20%
The Disiribution of Results (1,000 iterations)
Over the Estimated Net-to-Gross Ratio
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Figure 14
The Distribution of Results (1,000 iterations)
Over the Estimated Net Change in Energy Usage
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SAS Code for Simulation Study!?

SLET I¥_EUN= 100;
DATATART;
Dol KRAT=1 TO &N _RUH;
N=30; W = NUMEEFR OF CUSTOMERS IN EACH GROUT,
DO F_NP=1 TO X
DO HCUST=1 TOM;
CUST_CHNT+;
IF CUST_CNT=1 THEN GROUP+1;
IF CUST CNT=INT{N100}+1 THEN CUST_CNT=0;
CUST=(P_WP-IP*H+KCLET;
HOATR S =ROAT D2 S00+1 000 *UMTFCR M),
[FF_NP=1 THEN AWARE_YN="VEST,
IF F_NP=2 THEN AWARE_YM=T10
* IF AWARE_TN="NC THEN WT_CATM=1;
* ELSE WT_CATM=0;
WT_CATM=1;
IF AWARE WN=YES THEM SUBSIDY=2403;
ELSE SUBSIDNW =0
PAYBACE={1-SUBSIDN "4 0 "HOURS " 123/1 000},
PATBACE=ROUMND{F AVBACK=100) 100
O1=4,1773;
Oz=3.7617;
LOGIT=1{ 1+ EXNGI+HGX* FAYBACKTE
IF UNIFORM{0rLOOIT THEN ADRFT_YH="YES; ELSE
ADOPT =100
BOFT=ROUN DT 5000075+ S LI IFOERM):
BOFT_AFF=ROUND{{0 090 INIFORM{OY *SQFT)
SOFT_DUM=SQFT*{1+{2/5LINIFORM(0-0.51%
EQFT_AFX=SQFT_AFF. * LINE ADDED 0672293 ;
IF ADOPT_¥W=140° THEM S0FT_AFF=0:
SAVINGS=2 0*SOFT_AFF*123/184;
IF UM IFORMN 0.6 THEN QOOK_Y19=1; ELSE
COOK_YH=0;
1F COOE_¥H=1 AMD UNTFORMII <08 THEN
COOK_YHD=1;
ELSE Q00K _YHD=0;
CHITFUT;
BNk
EHD;
ENIR

FROC SOBT DATA=FART,
BY KRN AWARE ¥ ADOFT_¥H,

FROD MEAMS NOPRINT DATA-PART;
VAR SQFT_APX:

U Thiz pode may comtain partions that ase sbaolee

S8
49
0
5

AEIHZ2ERZRCROR2EBRIR

2233

EEREERUARBREBBEE

BRSER

100
101

BY XRUN AWARE YN ADOPFT VM,
OUTFUT GUT=80FT1 SUM=50FT1 |
FROC MEANE NOFRINT DATA=FART,
VAR SQFT_AFK,

BY XEUN AWARE ¥ 5

OUTPUT OUT=80FT2 SUM=80FT2 ;

DATA COMPLETE:
D0 XRUN=1 T &N _RUN;
DO NP=1 TO &
SQFT1=0;
T Wit=i THEN DO,
AWARE YN=HOY ADDPT_YMN=MO ", END;
IF MP=3 THEN DO,
AWARE YN=M0' ADOFT_YN~YES: END:;
IF NP=3 THEN D:;
AWARE_THN=YES, ADDFT_YH=10" ENIX
IF WP=4 THEN Di;,
AWARE_YN=YES; ADOPT_YN="YES; ENIY,
OUTPUT;
END;
ENIx,
DROP HE

DATASQFTE:
MERGE COMPLETE SOFTL;
BY NEUM AWARE_YH ADOFT_YH;

DATA WEGFT:

MEROE SQFT] SOFT (KEEP=NRUN AWARE_YN SOFT2);

BY XHIIN AWARE Y-

IF AWARE YN=N0' AND ADOPT_VYHN=NO' THEN
DELETE;

IF AWARE_YN=TES AND ADOPT_YN=WO' THEN
DELETE;

SOFTI=LAG{SQFTLY SOFTa=LAGSOFTIE

IF AWARE_YN=NO* AND ADOFT_YN="YES THEN
DELETE;

WROFT={30F T3 S0FT4yB0FTLECFTIE

KEEF XRAUN WEQFT;

FROC DATASETS;
DELETE S(FT1 SQFTI COMPLETE;

PROC FREQ DATA=PART;

BY XRU;

TABLES AWARE_YN*ADOPT YN/ OUT=COUNT
NOFRINT,

PROC TRANSPOSE PREFIX=N DATA=COUNT
OUT=COUNT:

VAR COUNT:

BY XELIN AWARE_YH;

SAS Code for Simutation Stedy
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HOFROFILE

DATA COUNT:
SET COUNT:

N_YES=NL N_NO=N1;
DROF_LABEL__NAME_NI NI

DATA SAVSQFT.

SET PART:

KEEP XRUM AWARE_YN ADOPT_YN CUST SQFT_AFF
HOURS COOK_YN COOK_YNI:

FROGC BORT DATA=BAVEOFT,
B XRLUN AWARE YN CUSST;

FROC S0RT DATA = FART,
BY MHLM,

FROC CATMOD

RESPONSE LOGITAOUTEST-CMPARMS;

DIRECT PAYBACK:

MODEL ADOPT_YN-PAYBACK' ROPARM NOTTER
NODESION NOGLS

ML EPSILON=000005;

BY XRLN,

WEIGHT WT_CATM;

TITLED PROC CATMOD ON DATA=PART:

DATA CMFARMS;
SET CMPARMS.
IF_TYPE =PARME,

DATAPART NG:

MERGE PART CMPARMS;

BY XEUN;

IF AWARE_YN=VEF,
PBECK,_NOS=£4i 0 HOURE"123/1000);
PRCK_NOSSROUNINPBCE_NOS* 1001100,

* LOGIT FOR PARTICIPANTS WITH SUBSISDY
EVALUATED AT ZERD (ESTIMATED);
LOT_NOS=Li{1+EXP(B1+BI*FBCK_NOS)k

* LOGIT FOR PARTICIPANTS WITH SUBSISDY
EVALUATED AT ZERD (ACTUAL)
LGT_NOSA=1{(1+EXP(01+G2"PECK_NOS))
PHCE_NOX=(1-FUBSIDY 441009 HOURS" LT3/ 000},
PECK_NON=ROUND(PECK_NOX™1 00100,
LGT_NOX=111+EXPBI+BIPBCE_NOX:
DROP_TYPE_ _MAME_N RUNMNF NP,

FROC SUMMARY DATA=PART Wi
VAR LOT_NOE LGT_NOSA LOT_WO0;
BY XELUN;

= WEIGHT SAVINGS;

WEIIHT SQFT_AFF;

QUTEUT OUT=HET_G MEAN=

222232520 R2838RARG

ZE2RdEGE

CERREpE 222 RNREBEnE

DATA NET_G;

SETNET_O:
NO_REL~{I-LOT_NOS){1-LOT_NOSAJ

* NG_AFPZ={I-LOT_NOSW1-LGT_NOSAX
NG_APPT= 1-{LOT_NOSLGT_NOX)
DROP_TYFE__FREQ ;

DATA PART:
SET PART:
N OCCU =R O L3 64U IR R ) 23 4 S0
Tk
H_EQUIP-ROUNDIUNIFORMI N _OCCUR);
INSTALLD=ROURND{ I3+ 11 UNIFORM{0):
DMENIHIEE=d;
[F UNTEORM(D) LE .4 THEN DMENDUSE~N_OOCUT;
" IF AWARE YN=T90 OR ADOPT_YN~YES:
DO YEAR=1 TO 3;
DO MONTH=1 TO 1%
M_COUNT={YEAR-11"I2+MONTH;

IF MOMTH= 1 THEN
D=1 CER0 (L B0 LINIFORMOT

IF MOMTH= 2 THEN
COH=TIEI0"(0.8+0.4* UNIFORMO);

[F MOMTI=3 THEN
CDH=1 Fa30%(0.8+ 04 UNIFORM{O});

IF MOMTH= 4 THEW
D=0 105 (0. 8+ 4 UM b0

IF MONTH= 5 THEN
COH=2 175040 8+ 0 L UIFORM{EN);

IF MONTH= 6 THEN
COH=Z1470%(0, §+0 L TNIFORM{IN),

IF MONTH=7 THEN
COFH=Z17507(0.8+0. 4 UINIFORMT):

IF MOINTH= § THEN
COR=203 1070, 5+ S RIIFORM{:

IF MONTH= 9 THEN
COM= 14070 S0 4R IIFORMTI:

IF MONTH=10 THEN
COH=13E30%(0 840 AU RTTFORRMT)E

IF MONTH=11 THEN
COH=10230%05+1 4" URIFORM{F;

IF MONTH=12 THEN CDH=
BTHOLEHDATUMIFORMIO) S

TAU_IT=g:IF INSTALLD LE M_COUNT THEN TAU_IT-1;

IF ADOPT_YN="%0 THEN TAU IT=0 :
*AC REGRESSORS:

XAC_1~S0FTCIR/1 000;

XAC | D=SQFT_DATW*CDH/1000:
XAC_2=SQFT*{HOURSIZN1000;

KAC 2=N_OCCUPE=30/1000;

XAC $=N_BQUIP*E*3VI000;
XAC_S=S0FT_AFF(HOURS/IZFTALL_TT 1000,

EAF Code For Simulation Study
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BAC_1=0.197/%:
BAC_2=3 412°(29);
BAC_4=430/%;
BAC,_ 5= 800/,
BAC_6={3. 4121231 84)"2;
EXF_Y=
BAC_I"XAC 1+
BAC 2°XAC 3+
BALC_4"XAC 4+
HAC S"XAC $+
BAC §°XAC_6;
“LIGHTING REGRESSORS:
XLT_1=SQF T{HOURSL2 )1 000
XLT_1_D=SQFT_DUMHOURSTIV1000;
XLT_2=8QFT_AFF(HOURS 2" TAL_IT/1000;
BLT_1=2;
BLT_2={123184)"Z;
EXP Y=EXP Y+BLT_I"XLT |<BLT 2°XLT 2
BOOOK=2000;
EXP_Y=EXF Y+DOOOK*COOK TM;

CHITILUTS
EMEx ElNIX

FROC SORT DATA=PART OUT=PART,
BY XEUN AWARE YN CUST;

PROC SURBLARY DATA=FART:

VAR EXF_Y,

BY XFLN AWARE YN CUST:

OUTPUT OUT=GET _MEAN MEAN=AYE KWHL:

DATA GET_MEAN;

SET OET_MEAN:
SE_SCALE={1-UNIFORM{0})*0. 1+ UNIFORM{DY*0.30;
GAMMA=I;

SE_SCALE=GAMMA®EE_SCALE;

DATA FART,

MERGE PART GET_MEAN:

BY XRUMN AWARE YN CUST;
EWH_M=EXP_Y-+AVG_KWHMSE_SCALERI*0, 5)%UNIFO
RM(0R0. 5

DROP

H_EUN N P_NF SUBSIDY FPAYBACK G 02 LOGIT

BAC_] BAC_4-BAC ¢ BLT_1 BLT_Z_TYFPE__FREQ

PROC SORT DATA=PART OUT=PART;
Y RN CUST AWARE YN ADOFT_YN;
PROC BEG DATA=FARET CUTEST=FARAMS MOFRINT;
BY XELN CLURT AWARE. YN ADNGPT_VT;
MODEL KWH _M=CDH XLT 2
OUTPUT OUT=PART R=EHAT ITR;

33
56
aT
a8
59

FdJJ2eRgRcnoR2e

TITLE: FROC REG OF DATA=FART:
g
DATA PART:SET PART;
EHAT_2<EHAT_ITR™Z;
DROP EHAT_ITR:
e,
PROC SUMMARY DATA=PART:
VAR EHAT 2
BY XRUN CUST AWARE_YN ADOPT_YM:
OUTPUT CUT=SI0MA_2 MEAN=SI02 RC;

DATA SIGMA_Z:

SET SIOMA,_2;

IF 5802_RC GT .5 THEN WTEACTOR=LSI02_RC; ELSE
WTFACTOR=;

KEEF XRUM CUST AWARE_YN ADOPT_YN WIFACTOR:

DATA PARAME:
SET PARAMS;
KEEP XRUN AWARE YN ADOFT_YN CUST XLT_2;
REMAME MLT _2=BXLT_3;
b
PROC SORT DATA=SAVEQFT OUT=SAVEQET:
BY XELMN CLUST AWARE YH ADOFT YH:
ETL R l.'
DATA PARAMS;
MERGE PARAMS SAVEQFT:
BY XERUN CUST AWARE_YN ADOPT YN,
IF ADOPT_YN="H0f THEN BXLT_2=0;
by
PROC SORT DATA=PARAMS OUT=FARAMS;
BY XRUN AWARE_YN ADCET_YN;
TEFER ]
FROC SUMMARY DATA=PARAMS;
VAR BXLT 2
BY XRUN AWARE_YK ADOPT_YN;
OUTPUT OUT=RES3_20 MEAN=5AV_EQFT:
WESGHT SQFT_AFF,
e
DATARESI_20:
SET RES3_20:
IF ADOPT_YN=NC¥ THEN SAV_SOFT-0;
KEEP XRIN AWARE_YN ADOFT_YM SAY_EQFT;
weies,
DATA PART:
MERGE PART SE0MA_2
BY XRUN CUST AWARE_YN ADOPT_YN;
FROC SORT DATA=PART OUT=PARTZ;
BY XEUN AWARE_ YN,

PROC REG DATA-FART2 OUTES T=0NE HOPRINT,

SAS Code for Simulation Study
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MODEL KWH_M =XAC_| XAC 4XAC S XLT 1 XLT 2
PCAINT:

* MODEL KX'WH_M = XAC_1 XAC 4 XAC SXLT_1XLT 2

COOK_YN  /MNOINT,

* MODEL KEWH_M = XAC 1 MAC 4 XAC SXLT 130T 2

COOE_YND /MNOINT:

* MODEL KWH_M=XAC 1 DXAC 4XAC SXLT 1 D
XLT 2 COOK_YN /NOINT;

WEIGHT WTFACTOR;

TBY XEUN AWARE_YH;

TITLE PROC REQ ON DATA=PARTY,

DATA DELTA;

MERGE OME COUNT;

BY XEUN AWARE_YN:

IF AWARE_YN="YES THEN DELTA=XLT 2;
ELSE DELTA=(N_YES(N_NO+N_YES)'XLT 2,

IF AWARE YHN=YES THENIIT 1 P=NILT I;
IF AWARE YMoM(r THEN XLT 2 MNP=20.T_I;

DATA DELTA:
MERGE DELTA WHIFT:
By KRR

DATA &

SET DELTA;

IFXLT 2 PNE .

KEEPXRUN XLT 2_F;

DATA B;

SET DELTA:

KEEP XRUM XLT_2 NP WSQFT;
IFXLT 3 NPNE.;

DATA A: MERGE A B; BY XRUN,
NG_PROTO=1-(XLT 2 NIMXLT 2 Py*WSQFT;

PROC TRANSPOSE DATA=DELTA PREFIX=DELTA
OUT=DELT A;

BY KELN;

VAR DELTA:

DATA DELTA:

SET DELTA;

DLTA_AWN=DELTAL;
DLTA_AWY=DELTAZ:
NTG_PROT=1{DLTA_AWNDLTA_AWYE
DROP DELTAL DELTA2 _NAME ;

DATANET &

MERGE NET G DELTA A

BY MR

MG _KEL_P=NWTG _PROT1-LGT_NOSARL

DATA FARTY

55
56
57
58
59
G
il
6
63
64
(%]

SET PARTZ;

IF AWARE_YN="YES AND ADOPT_YN="YES"
HOURS=HOURSAT*1000)

LAST REG-SQFT_AFF*HOURS*TALL_IT:

PROC GLM DATA=FARTI NOPRINT;
CLASS CUST:

MIODEL KWH_M=

CUST

CUST*CDH

SQFT_AFF*HOURS*TAL IT

MNOINT SOLLUTION,

BY MHUN;

WEIGHT WTFACTOR:

OUTPUT OUT=FARTTWO P<KWH_MHAT;
TITLE? FROC GLM ON DATA=PARTZS

PROC SOHT DATA=PARTTWO,
BY XELMW CLIST:

DATA ALT: *THIS MINT DATA SET SELECTS THE FIRST
CUSTOMER OF EACH XRLTS;

SET FARTTWCE

BY KRN

[F FIRST. ARG

WEEF XEUM CUST;

DATA PARTTWO:,

MERGE FPARTTYWO ALTE (T=AT
BY XRELIN CUST;

IF A

PROC REG DATA=PARTTWO BROFRINT
OUTEST=RESULTS;

MODEL EWH_MHAT=CDH LAST REG,

BY XRLUM ;

" WEIGHT WTFACTOR;

TITLE2 TROC REQ ON FREDICTED VALUES FROM FROC
GLA,

DATA REFULTE,

MERGE RESULTS NET_G;

BY XELMN;

KEEP

MG _APPZ LAST REG MLT I _P MG FROTO

S45 Code for Simplation Strdy
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Addendum

Purpose of the Addendum

The purpase of the Aupusl addendum 1o the July 1993 repor is threefold, First, some minor corrections

and enhancements have been made to the 1ext and equations of the Jaly 1993 report.!® Sacond, afier interested
parties had read the July 1993 version of this report, reqoests were made to make additional simulation runs.
-m'mmammwmwmmurmﬂmMmm,mMmmm
the 5-CDA model could be used 10 construct==using the framework of the protocols—-an estimate of Net Load
Impact, provided that nonparticipants adopd the DEM measure in significant quantities.

With respect to the second purpose of the Addendum (as just descobed above), the main issue that led to
requests for additional simolation muns is that of the impact of changes in energy consumption other than the
change that is associated with the DEM measure. This issoe has to do with whether the C-CDA and S5-CDA
frameworks can be appropriately adapted when, for example, a customer who adopts a DSM lighting measure alse
adopts (perhaps outside the DEM programs of the utility) a cooking or space-cooling measure as well, Whileitisa
fact (as the mathematics surrounding equation (23) implies) that the 5-CDA framework—like the C-CDA
framework--can readily be adapted given these soris of changes, SDG&E has agreed to make the additional
simmlation mns g5 that this fact would be manifest. Among the overall simulation results that will be presented,
two sets of results (one for cooking and one for space cooling) pertain to adapting the C-CDA and 5-CDA
frameworks 1o the sorts of changes that have just been described, assuming the collection of appropriate
site-gpecific data 12 Two additional sets of results are presented which compare the properties of the C-CDA and
S-CDA estimators in the case where the changes that have just been described are not accounied for in the
modeling and data-collection process.

Summary of Results

As already stated, this Addendum is designed to address the issue of changes in encrgy consumption other
than those that are associated with the DSM lighting measure that is the focus of the main body of results. When
other changes in energy consumption occur, they may be cormrectly accounted for in the modeling and
data-collection process, or they may be wrongly omitted [rom consideration. The fundamental issue is the impact
on the C-CDA and 5-CDA estimators of the gross impact of the DEM liphting measure in each of these instances.

Based on the evidence that will follow, it can be concluded that the C-CDA and 5-CDA estimators
perform comparably in the caze where the changes in encrgy consumplion are correctly accoanted for in the

”mwmmumm The enly nolsble changes were porrecisoes bo the sertion of the Jaly 1993 report entiticd Eatimarion
Raxxlts: Myt frapact, wherem the eonseplus] errors were ofgmally moade concerming the el kaad inspact for the program.
um%mmmhpﬂﬂm&ﬂhh““ﬁqﬁmﬂﬂlﬁnﬁhﬂnﬁmﬂuﬁﬂwﬂﬂ
especially thoss da2a which periain 1o changes in snergy sonsempiion. spart from DEM program changes. Sev the pestian ol thes sepert entltled
Prescripiive Elements of the Protocols: The “Bese Urage™ Irsue (unchanped since the July 1993 version of this reper) for o description of the
Compamy's position om s issne
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modeling and data-collection process, with the C-CDA cstimator showing a slightly greater degres of accuracy (as
was the case in Figure 9, where the two estimators were companed in the absence of other changes in energy
consumption). In addition, the C-CDA and S-CDA estimators are affected in duplicate fashion, when the changes
in enerEy consumption ane wrongly omitied from consideration, In summary, the C-CDA and 5-CDA estimeitors
perform comparably with respect to the issue of other changes in energy consumption,

Furthermore, the study results show that the 5-CDA model can indeed be applied to nonparticipants
(provided that they adopt the measure in significant numbers), 5o that an estimate of Net Load Impact can be
derived in line with the protocals,

Changes in Consumption for Other End-Uses: C-CDA versus 5-CDA

As already mentioned, the general 5-CDA equation (23) is certainly capable of accommodating changes
in energy consumption other than thoss that are associated with DSM programs. This will be demonstrated using
two specific cases:

Case 1; Among these customers who have energy consumplion for cooking, 20% will have {af some
point in time) a change in cooking consumption from 2,000 kWh per month to 1,200 kWh per month.

Cage 20 15% of all customers will have (af some point in time) a change in space-cooling consumption.
The change will be a 20% reduction in cooling-related consumption (a 20% gain in efficiency).

Ag will be shown, while the C-CDA model can easilv be modified to handle Cases 1 and 2, the task is nearly a5
gimple for the 5-CDVA model.

A Change in Cooking Consumption (Case I)

Modifiing the C-CDA R son Equati

Recalling that the basic maodel is 3 36-month model, and designating the change in cooking consumption
as occurring (for the 20% of cooking customers who have changes) during one of those monthe, the revised
C-CDA equation is,

KWhys = ﬂ][[ = ::lm T:u::i ]]+ Bs [UEE‘-TFJ‘\NTEJ.J]+$3[EQUIP“]

M
+ﬂ;:[d].;'f"':'k]+ Ay [[dﬁmk ]{ r.:]':"t}] + ﬁj[[ﬂLm:l“fIEE ]].,. Bs [dﬁli = ::nﬂu S?Z:': +Eijt
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where, By = 2,000 kWh, AB, =1, 200— 2,000 =-800 kWh, and,

L'E:“k=1 b g b s it (d‘i‘}“"“ =1} and ther has been 3 change in cooking

0K _ o otherwiae
1t

Th::bﬁudﬁmhﬂﬂmnphﬁl}m:::f:'k is zero: (@) throughout time, for those customers who do not have
cooking, (b) throughout time, for thess customers who have coskang but where no change has occurred, and {¢) for
the time period before the cooking-usage change, for those customers with cooking who have had a change.

Modifying the 5-CDAR son Tawt
For Case 1, the approprate S-CDUA regression equalion is,

he Y SQFT
S—— I R

whese,

IO (G|

"This specification allows the cooking coefficient ﬂﬂ41ijmhc:ﬂinﬁtcﬂfnr each customer j {which allows for more
flexdbility, across customers, in the parameter Afl4), so that the specification does not depend on the data element

a9 or

i mhﬁtgaﬂimﬁmﬁ:mnﬂ:ﬁmﬂmij = [ moust be imposed (the associsted regressor muost be

omitted) for thos: | whene xfj':"’k-u fior all © (where there s 0o cookang, or when cooking does nol changz).
Beanles for Case I (Cooking Changes) When There Arg No Specification er Date Errors

Figure 15 shows that the 5-CDA estimator is comparable, n terms of accuracy, to the C-CDA estimator in
that the two distributions are virually congruent.’ This implies that data on the timing of the change leads to

3 Adthough the distributiors are, by inspection, virtually congnesnt, the standard deviatbssral the S-CThA davslanion is 0101 (doe i the fact that o
sl fractiee of the results wese fiirdy flor from the mesn), while the standand devistion of te distribution fer the C-CDA estlmator f 0001 1.
Although the sissdard dewiation for e 520004 estinalor s masch Tigher, i should bhe noted that 90% of e romuliy for the 5<CT0A entmmator were
within 3 S-S0 slandard devigtions of tse C=CDA mzan, and 53% of the resalis for the S-CIMA, extaior were within #2% C-CDA sandsrd
devaalvonss of the C-CDA mesn. Tt wmpilies thas the Lo digtribabion e virtuaTly congroen, except fer 5% (or Jean) o the §-CDW, sexnlte, amd that,
i iz case, the stamdard deviation is not & good indicator of the troe breadih of the S-COA dissrifsation. 1n fect, remorving the oo larges cotliers from
e S DA results (=8 755 and -3, 00 watis) canses the slandend devistson for the B2CDA Jestrlatien tn doop fom 0,100 10 0024
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virtually the same level of accuracy, compared to the case where a formal mathematical model is built around the
exact siructure of the changs. This certainly is a very useful result.

Along these lines, in viewing the results of Figure 15, it is important to note that equation (33) is actually
a conservative version of the 5-CDA regression equation, in that the potential accuracy of the S-CDWA estimator is
understated (most likely by only 2 small amount). Equation (33) dots not imposs A across customers, in spite of

the fact that the data-collection efforts that are associated with z'i’jtmt might well allow thiz. That is, cquation (34)
could be substituted into equation (33), in which case Afl, could be imposad as a regression cosfficient that is
constant across customers; the cormesponding regression variable would be (Izink]{du} Exploiting this

straciare would add some accuracy 1o the S-COA framework.

A Change in Space Cooling Congumption (Caze 2):

Modifying the C-CDA Repression Eguation

Designating the change in space cooling consumption as occurring (for the 15% of customers who have
changes) during one of the 36 months of the model, the revised C-CDA equation is,

e = o s e

ﬁs[[er%J}ﬂﬁ{[:;”Iﬁ;“ %}]appﬁ fdij,,{ DI b +E5

12 moniks § 1,000

where,
. ()2

:_ﬁ[tmi =] if there has beca a change in cooling

:t{".:nt=[l athorwia

The above definition implies that x%':ul is zero throughout time for thoss customers who have not had a change in

cooling, and during the time period before the cosling-weage change for those costomers who have had a change.
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Modifiing the 5-CDA R iom Equati
For Case 2, the appropriate 5-CDA regression equation is,

b EQFI'.‘."

——raaf evol || Froroel 2
t"’ﬂ'l-ij[:p‘ﬂ,ij"’ﬂfr,ij[ﬂ*mn ]*ﬂﬂﬁ.tj[{‘m ]{cm"-tm ]]*FE {‘*i‘{mﬁ o ||

where,

35)  APsy =ﬂﬁs[ “]

1,000

Of course, during estimation the constraint aﬂ5‘5j=u must be imposed (the associated regressor must be omutted)

for those j where -_.;Eitl:rul =0 forall t. (This specification allows the cooling cosfficient Afls ;; to be estimated for

each costomer j, which allows for more flexibility, across customers, in the parameter Afs .}

s for Case 2 (Space-Copling Chanpes) When There Are No Specification or Duta Errer;

Figure 16 shows that, in terms of accuracy, the S-CDA estimator for the gross impact of the measire is
again compasable 1o that of the C-CDA estimator in that the two distributions are virtually congruent (the standard
deviation of the distribution for the S-CDA estimator is 0.013, while that of the distribution for the C-CDA
estimator is 0.011). (Mote once again that the full structure of equation (35) is not exploited in the specification of

the §-CDA regression equation, since collecting data on :r:":l':":':I may also allow for the collection of square footage
data, in which case the cocfficient APis could be constrained across customers. This would lead to some increass
in the accuracy of the $-CDA estimator, most likely by a small amount. )

C-CDA and 5-CDA When Changes in Other End-Uses are Not Accounted For

Figares 17 and 18 show the relative accoracy of the 5-CDA and C-CDA estimators when the non-lighting
changes in energy consumption {previously described as Cases 1 and 2) are not aceounted for in the modeling and
data-collection process. (Specifically, the premise is that, with respect 1o model estimation, the C-CDA and
S-CDA regression equations contain no clements related 1o the changes, and they are estimated according to
equations (18) and (24) a5 found in the body of this report.) Figure 17 contains results for Case 1, which involves a
change in cooking consumption. Although each of the estimators appears to involve a small bias (the means of the
distributions are -1.856 and -1.851 for 5-CDA and C-CDA, respectively), the distributions seem to have widened
comparably (the standard deviations of the distributions are 0.021 and 0.019 for S-CDA and C-CDA, respectively),

Addendum
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relative to thase of Figure 9 . The conclusion would seem to be that the two aliemative estimators saffer equally
when a mizspecification of this sort occurs.
Similarly, Figure 18 containg results for Case 2, which involves a change i space-cooling consumplion,

Each of the estimators again appears to involve a small biag (the means of the distributions are -1.875 and -1.866,
for 5-CDA and C-CDA, respectively), and the distributions seem to have again widened comparably (the standard
deviations of the distributions are 0,029 and 0.033 for 5-CDA and C-CDA, respectively). Onoce again, the evidence
.pt;Ent.E i.u'll.l.t conclusion that the two alternative estimators saffer equally when a misspecification of this sort
OCCUTS,

Applying S-CDA Within the Net Load Impact Calculation of the Protocols

The §-CDA model can certainly be employed in the Net Load Impact equation (32), in place of the
C-CDA model, and results similar to those of Figure 14 can be constrocted. Figure 19 gives results in the case
where both the C-CDA and S=CDA estimators ans applied wo the Net Load Impact equation (32), The distribotions
of the estimated Wet Load Tmpact are virtually identical {each with a mean of <0.52 and a standard deviation of
0.0.98), implying that in the 5-CDA model can be used effectively in the case where the protocols version of the
Het Load Impact calculation is otilized.

Avdamdurmy
Appling 5-COA Within the Met [oad Impee! Caleulaliog of fie Profacols 53



szmm
Comparizon of Aflemabiee el for Meazwing e Gross aod Med Eneny bacts of Demand-Sises Maragemant Programs [wilh dodesdem)

Figure 15
Results with Other Change in Operation: Cooking Usage Changes
The Distribution of Results (1,000 iterations)
Over the Estimated Change in Energy Usage
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Figure 16
Results with Other Change in Operation: Cooling Usage Changes
The Distribution of Results (1,000 iterations)
Over the Estimated Change in Energy Usage
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Figure 17
Results with Other Change in Operation: Change in Cooking Not Accounted For
The Distribution of Results (1,000 iteratlons)
Over the Estimated Change in Energy Usage
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Figure 18
Results with Other Change in Operation: Change in Cooling Not Accounted For
The Distribution of Results (1,000 iterations)
Over the Estimated Change in Energy Usage

I

0 |||||‘ :

-1 -LETS g L Lol -LTET L8
Elmtrh-mh'ﬂ'lhwmhdm =1 )

120 ~

55




a
ﬂwzmamny
Comaanzon of Alomalieo Moffod's & Mosswing B Oroas sed Mel Erengy bogacts o Derranct Shok Bimagamal Programa fun Socaodun)

Figure 19
The Distribution of Resulfs (1,000 iterations)
Over the Estimated Net Change in Energy Usage
as Estimated Under the Protocols
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