Customer Energy Efficiency Program Measurement and Evaluation Program

IMPACT EVALUATION OF PACIFIC GAS & ELECTRIC COMPANY'S 1996 RESIDENTIAL NEW CONSTRUCTION PROGRAM PG&E Study ID Number: 386 March 1, 1998

Measurement and Evaluation Customer Energy Efficiency Policy & Evaluation Section Pacific Gas and Electric Company San Francisco, California

Disclaimer of Warranties and Limitation of Liabilities

As part of its Customer Energy Efficiency Programs, Pacific Gas and Electric Company (PG&E) has engaged consultants to conduct a series of studies designed to increase the certainty of and confidence in the energy savings delivered by the programs. This report describes one of those studies. It represents the findings and views of the consultant employed to conduct the study and not of PG&E itself.

Furthermore, the results of the study may be applicable only to the unique geographic, meteorological, cultural, and social circumstances existing within PG&E's service area during the time frame of the study. PG&E and its employees expressly disclaim any responsibility or liability for any use of the report or any information, method, process, results or similar item contained in the report for any circumstances other than the unique circumstances existing in PG&E's service area and any other circumstances described within the parameters of the study.

All inquiries should be directed to:

Lisa K. Lieu Revenue Requirements Pacific Gas and Electric Company P. O. Box 770000, Mail Code B9A San Francisco, CA 94177

Copyright © 1998 Pacific Gas and Electric Company. All rights reserved.

Reproduction or distribution of the whole, or any part of the contents of, this document without written permission of PG&E is prohibited. The document was prepared by PG&E for the exclusive use of its employees and its contractors. Neither PG&E nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, information, method, product or process disclosed in this document, or represents that its use will not infringe any privately-owned rights, including but not limited to, patents, trademarks or copyrights.

IMPACT EVALUATION OF PACIFIC GAS & ELECTRIC COMPANY'S 1996 RESIDENTIAL NEW CONSTRUCTION PROGRAM

PG&E Study ID Number: 386

Purpose of Study

This study was conducted in compliance with the requirements specified in "Protocols and Procedures for the Verification of Costs, Benefits, and Shareholders Earnings from Demand-Side Management Programs," as adopted by California Public Utilities Commission Decision 93-05-063, revised January, 1997, pursuant to Decisions 94-05-063, 94-10-059, 94-12-021, 95-12-054, and 96-12-079.

This study measured the gross and net energy savings at the whole building level for a total of 3,960 homes who qualified for rebates in 1996 under the shared savings portion of the PG&E Residential New Construction Program, also referred to as the Comfort Home Program.

Methodology

On-site surveys were conducted for 155 participant and 160 nonparticipant homes to collect information about the structure and factors affecting end use energy consumption. Duct tests were conducted on a subset of 158 sites to provide data on the efficiency of the air distribution systems. Builders associated with the surveyed homes were then interviewed via the telephone to collect information about their building practices and the effect of the PG&E Program on their installations of efficient technologies.

An engineering analysis utilizing on-site survey data was used to develop initial estimates of as-built and reference energy consumption (defined as energy use at Title 24 compliance efficiencies) for each home in the study. Micropas building simulations were used to develop the space conditioning loads. Non-space-conditioning algorithms, based on customer appliance holdings and reported usage levels, were used to develop loads for other end uses.

Next, statistical models were used to calibrate engineering results to customer bills and develop gross savings estimates. These models, referred to as SAE (Statistically Adjusted Engineering) models, use regression equations to relate actual billed consumption to engineering estimates of consumption. Weather variables are included in the equations to account for differences between bill energy use that relates to actual weather and engineering estimates that rely on normal weather.

Net Program savings were developed using three different approaches: statistical modeling, simple comparisons of participants and nonparticipants, and builder self-report data. The statistical model, referred to as an efficiency choice model, was used only for the space conditioning end use. In this approach, differences in site energy efficiency are

related to Program participation, site characteristics and builder characteristics. The model isolates the component of energy efficiency that is attributable to the Program while controlling for other. Final net savings estimates were based on: (1) the efficiency choice analysis for the heating and cooling end uses, and (2) builder self-report data for the cooking and clothes drying end uses.

Study Results

The results of the evaluation are summarized in the following table.

	Gross Savings	Gross Realization Rate	Net-to-Gross Ratio ¹	Net Savings	Net Realization Rate
	Savings		NTE	Net Savings	Nate
]	
kW	2,952		0.93	2,760	
kWh	4,736,338		0.85	4,021,958	
Therms	76,757		1.34	103,087	
		EX F	OST		
kW	2,546	0.86	1.07	2,718	0.98
kWh	4,265,650	0.90	0.74	3,169,694	0.79
Therms	-41,576	-0.54	-1.34	55,882	0.54

¹ The net-to-gross method used for this study did not separate out free-ridership and spillover.

Regulatory Waivers and Filing Variances

No regulatory waivers filed. There were no E-Table variances.

IMPACT EVALUATION OF PACIFIC GAS AND ELECTRIC COMPANY'S 1996 RESIDENTIAL NEW CONSTRUCTION PROGRAM

PG&E STUDY ID NUMBER: 386

Final Report

Prepared for

Pacific Gas and Electric Company San Francisco, California

Prepared by

XENERGY Inc. Oakland, California

and

Eley Associates San Francisco, California

March 1, 1998

SECTION 1	EXE	CUTIVE SUMMARY1-1
	1.1	Program Description1-1
	1.2	Evaluation Approach1-2
	1.3	Key Findings1-3
SECTION 2	STU	DY DESIGN2-1
	2.1	Overview2-1
	2.2	Methodology2-1
	2.3	Sampling Plan2-2
		2.3.1 Sampling Frames
	2.4	2.3.2 Sample Design
	2.4	Completed Surveys
		2.4.1Coverage of Rebated Measures2-62.4.2Nonparticipant Reassignment2-7
	2.5	Builder Surveys
	2.6	Analysis Sample Sizes
	2.7	Expansion Weights2-9
SECTION 3	DAT	A COLLECTION
SECTION 3	DAT 3.1	A COLLECTION
SECTION 3		
SECTION 3	3.1	Overview
SECTION 3	3.1 3.2	Overview
SECTION 3	3.13.23.3	Overview3-1Program Tracking Data3-1Billing Data3-1
SECTION 3	3.13.23.33.4	Overview3-1Program Tracking Data3-1Billing Data3-1Weather Data3-2
SECTION 3	3.13.23.33.4	Overview3-1Program Tracking Data3-1Billing Data3-1Weather Data3-2On-site Survey Data3-23.5.1Survey Instrument3-33-33.5.2On-site Data Collection
SECTION 3	3.13.23.33.43.5	Overview3-1Program Tracking Data3-1Billing Data3-1Weather Data3-2On-site Survey Data3-23.5.1Survey Instrument3-33.5.2On-site Data Collection3-43.5.3Onsite Survey Results3-5
SECTION 3	3.13.23.33.43.5	Overview3-1Program Tracking Data3-1Billing Data3-1Weather Data3-2On-site Survey Data3-23.5.1Survey Instrument3.5.2On-site Data Collection3.5.3Onsite Survey Results3-5Telephone Survey Data3.61Survey Instrument3.62Survey Pretest3.63Telephone Survey Implementation
SECTION 3	 3.1 3.2 3.3 3.4 3.5 3.6 	Overview3-1Program Tracking Data3-1Billing Data3-1Weather Data3-2On-site Survey Data3-23.5.1Survey Instrument3.5.2On-site Data Collection3.5.3Onsite Survey Results3.5.3Onsite Survey Data3.63.613.6.1Survey Instrument3.6.3Telephone Survey Implementation3.6.4Telephone Survey Results3.73.6.43.6.4Telephone Survey Results

SECTION 4	ENG	SINEERING ANALYSIS	4-1
	4.1	Overview	4-1
	4.2	Space Conditioning Usage	4-1
		 4.2.1 Energy Consumption Calculations 4.2.2 Energy Savings Calculations 4.2.3 Loads Simulation Process 4.2.4 Duct Efficiency Analysis 	4-2 4-3
	4.3	Development of Engineering-based Estimates for Non-Space Conditioning	4-8
		4.3.1 Equivalent kWh Usage for Cooking and Clothes Drying	4-8
	4.4	Time of Use Allocation	4-9
	4.5	Summary of Engineering Results	4-9
		 4.5.1 Title 24 Budget Compliance	-10
SECTION 5	STA	TISTICAL CALIBRATION AND GROSS IMPACTS	
	5.1	Overview	5-1
	5.2	Statistical Calibration of Engineering Results	5-1
		5.2.1 Model Specification5.2.2 SAE Model Results	
	5.3	Calibrated Loads and Gross Impacts	5-6
		 5.3.1 Space Conditioning Impacts	5-8 5-8 5-9
SECTION 6	NET	SAVINGS ANALYSIS	6-1
	6.1	Overview	6-1
	6.2	Self-Report Net-to-Gross Analysis	6-1
		 6.2.1 Free-Ridership Survey Results 6.2.2 Self-Reported Free-Ridership Ratios 6.2.3 Self-Report Results 	6-3
	6.3	Simple Efficiency Comparison	6-4
	6.4	Efficiency Choice Modeling	6-6
	6.5	Net-to-Gross Integration	-10

	6.6	Spillover	6-11
	6.7	Net Program Impacts	6-13
		6.7.1 Space Conditioning Impacts	6-13
		6.7.2 Clothes Drying and Cooking	6-14
		6.7.3 Other End Uses	6-14
		6.7.4 Net Impacts by Costing Period	6-15
		6.7.5 Net Impact Confidence Intervals	
APPENDIX	A SUF	RVEY INSTRUMENTS	A-1
		RVEY INSTRUMENTS	
APPENDIX	B SUR		B-1

LIST OF TABLES

Table 1-1	Measures Installed in Comfort Home Program Homes	1-2
Table 1-2	Summary of Program Impacts	1-3
Table 1-3	HVAC Impacts	1-5
Table 1-4	Gas Clothes Drying Impacts	1-6
Table 1-5	Impacts from Gas Cooking Measures	1-6
Table 2-1	Participant Screening Summary	2-4
Table 2-2	Comparison of Participant Population to Screened Homes, by	
	Program Year	2-4
Table 2-3	Comparison of Participant Population to Screened Homes, by	
	Measures Installed	2-4
Table 2-4	Summary of Targeted and Completed Surveys	2-6
Table 2-5	Rebated Measure Comparison for Population and Surveyed	
	Homes	2-6
Table 2-6	Average Ex Ante Gross Savings Estimates for Population and	
	Surveyed Homes	2-7
Table 2-7	Homes Surveyed and Included in the Analysis	2-8
Table 3-1	Average Annual Energy Consumption	3-2
Table 3-2	Selected Statistics Developed from On-site Survey Data	3-6
Table 3-3	Distribution of Number of Homes Built: 1994-1996	3-7
Table 3-4	Average Number of Homes Built: 1994-1996	3-8
Table 3-5	Distribution of Average Home Prices	3-8
Table 3-6	Types of Homes Built	3-8

Table 3-7	Aware of the PG&E Comfort Home Program?
Table 3-8	First Source of Comfort Home Program Awareness
Table 3-9	Aware of EPA Energy Star New Home Program?
Table 3-10	Daily Usage Factors - Using Loadshape Data
Table 4-1	Duct Efficiency Model Input Parameters4-6
Table 4-2	Duct Cooling Efficiency Regression Parameters4-7
Table 4-3	Duct Heating Efficiency Regression Parameters4-7
Table 4-4	Duct Efficiency Parameters
Table 4-5	Site Factors Influencing End Use Consumption
Table 4-6	Time of Use Allocation Factors - Relative to Annual Usage4-9
Table 4-7	Title 24 Compliance Calculations - kBtu/ft2-yr4-10
Table 4-8	Average per Home Engineering Results (Unweighted) - Space
	Conditioning
Table 4-9	Engineering Estimates of Non-space Conditioning Unit Energy
	Consumption (Unweighted Average of Participants and
	Nonparticipants)4-12
Table 4-10	Gas and Equivalent-electric Cooking and Clothes Drying
	UECs (Unweighted Participant Average)
Table 5-1	Electric SAE Model, Dependent Variable: Billed Consumption5-4
Table 5-2	Gas SAE Model, Dependent Variable: Billed Consumption
Table 5-3	Gross Program HVAC Impacts5-7
Table 5-4	Comparison of Gross HVAC Impacts to PG&E ex ante
	Estimates
Table 5-5	Gross Program Impacts for Gas Clothes Drying and Cooking
	Measures5-8
Table 5-6	Comparison of Gross Clothes Drying and Cooking Impacts to
	PG&E ex ante Estimates
Table 5-7	Savings for Measures Not Evaluated Based on Tracking
	System Data
Table 5-8	Gross Impacts by PG&E Costing Period
Table 5-9	Gross Impact Confidence Intervals
Table 6-1	Source of Builder Information for Efficient Air Conditioners
	and Enhanced Duct Installation6-2
Table 6-2	Ranking of PG&E Rebates Among Reasons for Installing
	Program Measures
Table 6-3	Likelihood of Measure Installation Without Rebates
Table 6-4	Initial Free-ridership Ratio Assignment Based on Stated
	Intentions
Table 6-5	Self-report Consistency Checks
Table 6-6	Self-report Free-ridership and Implied Net-to-Gross Ratios
Table 6-7	Net-to-Gross Ratios Based on Efficiency and Saturation
	Comparisons
Table 6-8	Comparison of Evaluation Gas Saturations to PG&E
	Residential Appliance Saturation Survey (RASS) Results

Participation Decision Model Dependent Variable: Program	
Participation	6-8
Cooling and Heating Efficiency Models Dependent Variable:	
Efficiency Relative to Base Case Usage	6-9
Net-to-Gross Ratios Based on the Efficiency Choice Model	6-10
Summary of Different Net-to-Gross Ratios	6-10
Comparison of Participant and Nonparticipant Home and	
Occupant Attributes	6-11
Final Net-to-Gross Ratios used to Estimate Net Savings	6-11
Average Program-related Efficiency Improvement in	
Nonprogram Homes	6-12
Revised Simple-Comparison Net-to-Gross Ratios	
Incorporating Nonparticipant Spillover	6-13
Net Program HVAC Impacts	6-13
Comparison of Net HVAC Impacts to PG&E ex ante	
Estimates	6-14
Net Program Impacts for Gas Clothes Drying and Cooking	
Measures	6-14
Comparison of Net Clothes Drying and Cooking Impacts to	
PG&E ex ante Estimates	6-14
Net Savings for Measures Not Evaluated	6-15
Net Impacts by PG&E Costing Period	6-15
Net Impact Confidence Intervals	6-16
	Participation Cooling and Heating Efficiency Models Dependent Variable: Efficiency Relative to Base Case Usage Net-to-Gross Ratios Based on the Efficiency Choice Model Summary of Different Net-to-Gross Ratios Comparison of Participant and Nonparticipant Home and Occupant Attributes Final Net-to-Gross Ratios used to Estimate Net Savings Average Program-related Efficiency Improvement in Nonprogram Homes Revised Simple-Comparison Net-to-Gross Ratios Incorporating Nonparticipant Spillover Net Program HVAC Impacts to PG&E ex ante Estimates Net Program Impacts for Gas Clothes Drying and Cooking Measures

LIST OF FIGURES

Distribution of Evaluation Net kWh savings	1-4
Evaluation Net Therm Savings	1-4
New Construction Evaluation Project Overview	2-2
Air Conditioning Load Shapes	
Clothes Drying Load Shapes	
Cooking Load Shapes	3-11
	Evaluation Net Therm Savings New Construction Evaluation Project Overview Air Conditioning Load Shapes Clothes Drying Load Shapes

This report presents final impact evaluation results for the PG&E 1996 Residential New Construction Program. Both gross and net Program impacts were developed for electric consumption (kWh), electric demand (kW) and natural gas consumption (therms). The evaluation approach was designed to meet the requirements of the Measurement and Evaluation Protocols. Engineering estimates of energy impacts for a sample of Program participants and a nonparticipant control group were statistically calibrated to billed energy use, and then were compared against each other to provide estimates of net Program Savings.

1.1 PROGRAM DESCRIPTION

The PG&E Residential New Construction Program, referred to as the PG&E Comfort Home Program, provides financial incentives to builders who construct energy-efficient homes that exceed Title 24 standards. Energy efficiency measures addressed in this evaluation were installed in Program years 1993 through 1996 and were rebated in calendar year 1996 under the shared savings portion of the Program. The Program focuses on homes built in California Energy Commission (CEC) climate zones 11, 12, and 13 and on four key energy efficiency measures (in addition to Title 24 compliance):

- high efficiency air conditioning (11.5 SEER or better);
- efficient duct systems installed to PG&E's Program standards;
- natural gas cooking; and
- natural gas dryer stubs.

A total of 3,960 homes qualified for rebates in 1996 under the shared savings portion of the Program. These homes cover Comfort Home program years 1993 through 1996. For 1993 and 1994, builders could choose which measures to install in their homes and were rebated accordingly. For 1995 and 1996, installation of all four key measures by the builder of a development was a mandatory condition for Program participation. Table 1-1 shows the frequency of measure installations in the 3,960 qualifying homes. As the table indicates, all four of the key measures are installed in the vast majority of Program homes. Measures for the lighting and water heating end uses represent a very small portion of Program accomplishments and are carry-overs from the 1993 program year.

For the 3,960 shared savings homes rebated in 1996, PG&E had initially estimated net first year savings to be: 4.1 GWh, 2.7 MW, and 0.1 million therms.

Measures Installed	Frequency	Percent
Efficient AC	3,893	98.3
Enhanced duct installations	3,551	89.7
Code enforcement	3,694	93.3
Gas cooking	3,417	86.3
Gas drying	3,304	83.4
CFLs	296	7.5
Efficient Furnaces	203	5.1
Efficient Water Heaters	66	1.7

Table 1-1Measures Installed in Comfort Home Program Homes

1.2 EVALUATION APPROACH

The primary objectives of the residential new construction impact evaluation project were to:

- assess the gross annual energy and demand savings for installed program measures; and
- assess the net energy impacts due to the Program;

Secondary objectives were to:

- analyze differences between evaluation results and PG&E-estimated impacts;
- investigate, explain, and estimate market spillover effects.

The impact evaluation utilized multiple approaches to assess both gross and net impacts. The methodology provides impact results that are consistent with the Measurement and Evaluation (M&E) Protocols (Protocols). Key components of the evaluation include:

- development of sample design used to select 155 homes built by Program builders and an additional sample of 160 nonparticipating homes for the study;
- data collection involving on-site surveys of homes and telephone surveys of builders;
- engineering analysis of home energy consumption at the end use level, including the use of Micropas simulations to determine estimates of space conditioning usage;
- statistical calibration of initial engineering estimates to customer bills using an SAE (Statistically Adjusted Engineering) approach; and
- a free-ridership analysis that analyzed participant and nonparticipant energy efficiency using three alternative methods: (1) a simple comparison of energy efficiency in participant and nonparticipant homes; (2) a decision analysis model that compares participants and nonparticipants while controlling for nonprogram factors; and (3) a self report free-ridership analysis that gauges what portion of increased participant efficiency is attributable to the Program.

Program tracking data and PG&E billing data were utilized to develop a sample frame of participant homes with adequate billing histories to support the statistical billing analysis used in the study. A comparable group of nonparticipants was developed using the PG&E billing system, including information on meter set dates and dates when the customer was first served at a given residential premise.

On-site surveys were then conducted for a sample of selected homes to collect detailed structure, equipment, and operations data. Duct blaster tests were performed at a subset of 158 sites to provide data on the efficiency of the air distribution systems for use in analyzing savings attributable to enhanced duct installation procedures. Builders associated with the surveyed homes were then interviewed to collect information about the effect of the PG&E Program on their building practices.

Engineering analysis and simulations were conducted to determine energy impacts relative to a baseline (set at Title 24 compliance levels) for both participant and nonparticipant homes. After statistical calibration of engineering results to bills using a regression approach, participant and nonparticipant efficiencies were compared to arrive at net Program Savings. Builder-reported data was also used to assess what action may have been taken in the absence of the Program.

1.3 Key Findings

Evaluation estimates of Program Impacts, relative to PG&E's initial estimates, are summarized in Table 1-2. Overall, the Program is estimated to be saving 2,718 kW, 3,196,694 kWh, and 55,882 therms on an annual basis. Approximately 99% of PG&E ex ante kW savings, 79% of the ex ante kWh savings and 54% of the ex ante therm savings are being realized. Ninetypercent confidence intervals are \pm 27% for net kW impacts, \pm 44% for net kWh impacts, and \pm 21% for net therm impacts.

Summing of Frequences							
	Gross Savings	Gross Realization Rate	Net-to-Gross Ratio ¹	Net Savings	Net Realization Rate		
		EX A	NTE				
kW	2,952		0.93	2,760			
kWh	4,736,338		0.85	4,021,958			
Therms	76,757		1.34	103,087			
	EX POST						
kW	2,546	0.86	1.07	2,718	0.98		
kWh	4,265,650	0.90	0.74	3,169,694	0.79		
Therms	-41,576	-0.54	-1.34	55,882	0.54		

Table 1-2
Summary of Program Impacts

¹ The net-to-gross method used for this study did not separate out free-ridership and spillover.

In order to gain an additional understanding of Program performance, end use level impacts are discussed next. As Figures 1-1 and 1-2 show, the HVAC end use comprises the largest

component of Net Program Savings. Cooling savings, due primarily to installation of efficient air conditioners and enhanced duct installation, comprises almost two-thirds of Program electric savings. Heating savings, from enhanced duct installations and a combination of other measures including code enforcement, accounts for essentially all of the positive gas savings.

Figure 1-2

HVAC

Heating and cooling impacts are presented and compared to PG&E estimates in Table 1-3. As the table indicates, evaluation net impacts are just over 70% of PG&E estimates for energy consumption (kWh and therms) 103% of the PG&E estimate for peak demand (kW). Gross HVAC impacts for the evaluation are generally lower than PG&E estimates, offset somewhat by

oa:wpge33:report:final:1execsum

higher evaluation net-to-gross ratios. In general, impacts for the enhanced duct installation measures fall short of expectations for both cooling and heating. A primary factor driving this result is the relatively high level of nonparticipant duct efficiency. This factor may be driven by Program spillover as there is some evidence that more builders are utilizing improved duct installation procedures. The other main HVAC measure, high efficiency air conditioners, is achieving expected savings.

Evaluation net-to-gross ratios are based on the results of an efficiency choice model that compares participant efficiency against nonparticipant efficiency while factoring out the affects of nonprogram factors (such as house size, number of levels in the home, and type of home – production or custom). The evaluation net-to-gross ratios exceed one, providing evidence of Program spillover.

	Gross Savings	Gross Realization Rate	Net-to-Gross Ratio	Net Savings	Net Realization Rate	
		EX A	NTE			
kW	2,595		0.98	2,534		
kWh	2,790,174		0.98	2,723,813		
Therms	156,968		0.99	155,371		
	EX POST					
kW	2283	0.88	1.14	2,597	1.03	
kWh	1,781,809	0.64	1.14	2,026,661	0.74	
Therms	75,202	0.48	1.44	108,663	0.70	

Table 1-3HVAC Impacts

Clothes Drying

Impacts of the gas clothes drying element of the program are presented in Table 1-4. A major reason gross impacts from the evaluation are high relative to ex ante levels is that PG&E discounts gross impacts to reflect the fact that only a fraction of homeowners install gas dryers despite the availability of gas dryer plugs in the laundry area. The evaluation found that 52% of participant homes had gas drying versus the PG&E estimate of 35%. The other major difference in gross savings is a higher evaluation estimate of clothes dryer energy consumption.

The low evaluation net-to-gross ratios result because only 46% of surveyed builders indicate that they would not have installed gas dryer plugs without the program. Overall, evaluation results for this measure exceed PG&E *ex ante* estimates.

	Gross Savings	Gross Realization Rate	Net-to-Gross Ratio	Net Savings	Net Realization Rate
		EX A	NTE		
kW	38		0.74	28	
kWh	693,840		0.74	513,442	
Therms	-23,128		0.74	-17,115	
		EX P	POST		
kW	175	4.64	0.46	81	2.91
kWh	1,636,285	2.36	0.46	759,237	1.48
Therms	-62,749	2.71	0.46	-29,115	1.70

Table 1-4Gas Clothes Drying Impacts

Gas Cooking

Table 1-5 presents gas cooking measure impacts. Lower than expected net energy impacts are based on two factors: a lower estimated net-to-gross ratio for the evaluation and different assumptions about the efficiency of gas cooking relative to electric cooking that lower the electric cooking impacts. Net-to-gross ratios, based on builder-reported data are significantly lower than the PG&E assumption. In addition, PG&E's assumed gas-to-electric conversion factors are much larger that those used in the evaluation. Evaluation impacts are based on a relative gas efficiency/electric efficiency ratio of 0.51, derived from U.S. Department of Energy cooking efficiency estimates published in the E-SOURCE Residential Appliances Technology Atlas.

Table 1-5Impacts from Gas Cooking Measures

	Gross Savings	Gross Realization Rate	Net-to-Gross Ratio	Net Savings	Net Realization Rate
		EX A	NTE		
kW	318		0.62	197	
kWh	1,230,580		0.62	762,959	
Therms	-58,319		0.62	-36,158	
		EX P	OST		
kW	87	0.27	0.45	39	0.20
kWh	825,812	0.67	0.45	367,488	0.48
Therms	-55,265	0.95	0.45	-24,593	0.68

2.1 OVERVIEW

This section presents an overview of the evaluation analysis method used for this project and a description of the sample design. The study methodology is discussed in more detail in succeeding sections of this report.

2.2 METHODOLOGY

Figure 2-1 provides an overview of the evaluation project design. To begin the project, a sample of participant homes was extracted from the PG&E Program tracking system. A matching nonparticipant sample was then extracted from the PG&E billing system.

On-site surveys were conducted for 155 participant and 160 nonparticipant homes to collect information about the structure and factors affecting end use energy consumption. Duct tests were conducted on a subset of 158 sites to provide data on the efficiency of the air distribution systems. Builders associated with the surveyed homes were then interviewed via the telephone to collect information about their building practices and the effect of the PG&E Program on their installations of efficient technologies.

An engineering analysis utilizing on-site survey data was used to develop initial estimates of asbuilt and reference energy consumption (defined as energy use at Title 24 compliance efficiencies) for each home in the study. Micropas building simulations were used to develop the space conditioning loads. Non-space-conditioning algorithms, based on customer appliance holdings and reported usage levels, were used to develop loads for other end uses.

Next, statistical models were used to calibrate engineering results to customer bills and develop gross savings estimates. These models, referred to as SAE (Statistically Adjusted Engineering) models, use regression equations to relate actual billed consumption to engineering estimates of consumption. Weather variables are included in the equations to account for differences between bill energy use that relates to actual weather and engineering estimates that rely on normal weather.

Finally, net Program savings were developed using three different approaches: statistical modeling, simple comparisons of participants and nonparticipants, and builder self-report data. The statistical model, referred to as an efficiency choice model, was used only for the space conditioning end use. In this approach, differences in site energy efficiency are related to Program participation, site characteristics and builder characteristics. The model isolates the component of energy efficiency that is attributable to the Program while controlling for other

oa:wpge33:report:final:2study

STUDY DESIGN

Figure 2-1 New Construction Evaluation Project Overview

factors. Net savings results from each approach were carefully reviewed and integrated to provide the most appropriate measure of net savings.

2.3 SAMPLING PLAN

This section presents the sampling plan used to select homes for inclusion in the impact evaluation study group. The goals of the sample design are:

oa:wpge33:report:final:2study

- 1. to provide a representative sample of participating homes and a comparable sample of nonparticipating homes for inclusion in the engineering and statistical impact analyses; and
- 2. to comply with the sample size and relative precision requirements of the M&E Protocols.

Because calibration to billing data is an important component of the analysis, all customers were screened for adequate billing histories before inclusion in the study. The remainder of this section describes the screening of customers for data adequacy and the development of the sample.

2.3.1 Sampling Frames

Initial sampling frames for participants and nonparticipants are as follows:

- participant homes: homes that were built under the Program and were rebated in 1996 under the shared savings option; this group contains homes that were included in Program applications during program years 1993, 1994, 1995, and 1996, a total of 3,960 homes;
- nonparticipant homes: single family homes with meter set dates after December 31, 1994, located in the same PG&E meter route areas as participating homes.

Before the sample was developed, customers identified above were screened for data adequacy. This screening process is discussed below.

Participant Screening

The following process was used to screen participating homes:

- 1. all Program homes under the shared savings option with incentive payment dates in 1996 were selected from the tracking system;
- 2. a limited number of homes identified as multifamily homes were excluded;
- 3. remaining homes were matched to the PG&E billing system data using the PG&E Control number;
- 4. home addresses in the tracking system were matched against service addresses from the billing system and homes with matched addresses were retained;
- 5. homes were screened for adequate billing data (consistent read dates, billed usage greater than zero, and meter reads dating back to at least November 1996), and "good" homes were retained;
- 6. finally, homes identified as "multifamily" in the PG&E billing system were dropped.

The participant screening process is summarized in Table 2-1. Overall, 2,506 homes with adequate billing data were available after the screening process.

	Remaining Homes	Screened Homes
Total homes with 1996 Shared Savings rebates	3,960	
Single family homes, per tracking system	3,928	32
Homes matched to the billing system	3,844	84
Tracking system address, service address match	3,596	248
Homes with adequate billing data	2,558	1,038
Single family homes, per billing system	2,506	52

Table 2-1Participant Screening Summary

To facilitate the on-site surveys, several remote areas with limited program activity were dropped from the study. These areas included: cities north of Chico, the areas around Grass Valley, Auburn, Lincoln, Dinuba, and Madera. After exclusion of these areas, 2,402 homes remained available for on-site surveys.

Tables 2-2 and 2-3 compare the 3,690 homes that received rebates in 1996 with the screened homes available for on-site surveys. As Table 2-2 shows, the distributions of homes across Program application year are similar, with the exception of 1996. This can be expected as 1996 year homes were more likely to be screened out due to insufficient billing data. Table 2-3 shows that measure distributions in the screened homes are very similar to the population.

Table 2-2Comparison of Participant Population to Screened Homes, by Program Year

	All Homes		Screen Homes	
Program Year	Frequency Percent		Frequency	Percent
1993	223	5.6	97	4.0
1994	2,522	63.7	1,709	70.8
1995	608	15.4	379	15.7
1996	607	15.3	228	9.4
Total	3,960	100.0	2,402	100.0

Table 2-3

Comparison of Participant Population to Screened Homes, by Measures Installed

	All He	omes	Screene	d Homes
Measures Installed	Frequency	Percent	Frequency	Percent
Efficient AC	3,893	98.3	2,402	100.0
Improved ducts	3,551	89.7	2,149	89.5
Code enforcement	3,694	93.3	2,274	94.7
Gas cooking	3,417	86.3	2,140	89.1
Gas drying	3,304	83.4	1,984	82.6
CFLs	296	7.5	210	8.7
Other	203	5.1	88	3.7

Nonparticipant Screening

Nonparticipant screening was conducted using the PG&E billing system as follows:

- 1. all identified participants were screened out (using the PG&E Control number);
- 2. all homes with meter-set-dates and dates-on-premise prior to 1995 were screened out;
- 3. all single-family, individually-metered homes located on the same PG&E meter route (first 5 characters of the PG&E account number) were retained; and
- 4. remaining sites were screened for adequacy of billing data.

Using this screening process, 4,923 nonparticipant homes were selected. After additional geographical screening (similar to the participants) and further matching of nonparticipants to participants by PG&E meter route, a total of 2,057 nonparticipant homes remained available for on-site surveys.

2.3.2 Sample Design

To comply with the M&E Protocols, studies utilizing on-site data collection require minimum participant and nonparticipant sample sizes of 150 each. For this study, sample size goals of 159 participants and 159 nonparticipant were established to allow for some attrition due to factors such as problematic billing data and contradictory or incomplete survey results.

In addition, the project design called for "duct blaster" duct testing at 150 sites. We targeted duct testing for 60 participant sites (slightly over one third of the participant sample) and 106 nonparticipant sites (two thirds of the nonparticipant sample). Fewer duct tests were specified for participant homes than nonparticipant homes due to an expected higher variation in duct efficiency among nonparticipant homes.

A cluster sampling technique was chosen as the most efficient technique for the on-site surveys. This technique ensures that sampled sites are "clustered" in areas that are scheduled for surveys by the same surveyor on a given day. The geographically diverse sample segmentation used in the cluster approach also ensured that the final sample of surveyed homes contained variation by builder, home type, and home size.

To implement the sample design, using the cluster sampling technique, the available homes were divided into geographical nodes (areas that could be reached by a single surveyor in a given day). In several cities, initial nodes were further disaggregated by PG&E meter route in order to better match participant and nonparticipant homes. Next, a random sample of 53 participants was drawn. This sample of participants determined how many surveys would be conducted in a given node. For each participant selected in a node, a total of six surveys would be conducted (3 participant and 3 nonparticipant). Overall, 34 nodes were target for surveys, providing a random and diverse sample.

oa:wpge33:report:final:2study

2.4 COMPLETED SURVEYS

Table 2-4 shows the distribution of available sites, targeted surveys, and completed surveys by CEC climate zone. As the table indicates, completed surveys match up reasonably well with initial targets. In limited cases, targets were adjusted to facilitate the survey schedule. The nonparticipant sample was matched relatively closely with the participants. Sample disposition reports are provided in Appendix B.

Participants							
		Survey Duct		Test			
CEC Climate Zone	Population	Available	Target	Complete	Target	Complete	
11	658	368	24	28	10	11	
12	2,296	1,317	84	81	32	33	
13	1,006	717	51	46	18	15	
Total	3,960	2,402	159	155	60	59	
		Nonparti	cipants				
			Su	rvey	Duct	Test	
CEC Climate Zone		Available	Target	Complete	Target	Complete	
11		274	24	29	16	14	
12		1,001	84	86	56	55	
13		782	51	45	34	30	
Total		2,057	159	160	106	99	

Table 2-4
Summary of Targeted and Completed Surveys

2.4.1 Coverage of Rebated Measures

Table 2-5 compares rebated program measures in the survey group with measures in the program population. Overall, the sample mirrors the population reasonably well in terms of rebated measures. Given the limited penetration of measures in the water heating and lighting end uses, these end uses were not focused on for the evaluation.

	Population		Surveyed Homes	
	# Homes	Percent	# Homes	Percent
Efficient AC	3,893	98%	155	100%
Improved Ducts	3,551	90%	140	90%
Code Enforcement	3,694	93%	146	94%
Efficient Furnaces	203	5%	7	5%
Gas Cooking	3,417	86%	131	85%
Gas Dryer Stubs	3,304	83%	127	82%
CFLs	296	7%	14	9%
Efficient Water Heaters	66	2%	0	0%

 Table 2-5

 Rebated Measure Comparison for Population and Surveyed Homes

Table 2-6 compares average ex ante estimates for the population and the sample of surveyed homes. As the table shows, average impacts are similar for most measures; however, average cooking savings estimates for the sample are somewhat larger that for the population.

	Population		Surveyed Homes	
	kWh	Therms	kWh	Therms
Efficient AC	343	-	338	-
Improved Ducts	364	33	369	32.8
Code Enforcement	44	8.8	44	8.4
Efficient Furnaces	-	33.6	-	25.2
Gas Cooking	360	-17.1	402	-20.3
Gas Dryer Plugs	210	-7	212	-7.1
CFLs	74	-	78	-
Efficient Water Heaters	-	18.7	-	-

Table 2-6 Average Ex Ante Gross Savings Estimates for Population and Surveyed Homes

2.4.2 Nonparticipant Reassignment

Based on results of the on-site survey, it was determined that a number of homes classified as nonparticipants had actually participated in the Program in other years that were not covered by the evaluation. Although the nonparticipant screening process was designed to eliminate participant homes before selection of the available nonparticipant group, it became clear that homes that had participated in past program years were not removed from the nonparticipant pool.

Using information from the on-site survey, the builder survey, and Program tracking for 1994 and 1995, an analysis was performed to reassign affected nonparticipants into a third sample category of prior Program participants. First, a "nonparticipant" dataset was developed that was comprised of the following:

- any surveyed home where the owner believed they lived in a Comfort Home (61 homes),
- any home where the PG&E Control number matched a Control number in prior-year tracking dataset (32),
- and homes associated with one particular builder who claimed to have built only Comfort Homes over the past three years and another particular builder who identified two nonparticipant homes as Comfort Homes (a total of 4 homes).

Second, this group, comprised of 71 homes (after netting out overlap from the three screening methods), was reviewed in light of energy efficiency installations. Six homes that were identified by homeowners as being Comfort Homes were determined to be nonparticipants. Overall, 65 homes were reassigned into the prior-participant group, leaving a final sample of 95 nonparticipants.

For the evaluation analysis, all three customer groups (participants, nonparticipants, and priorparticipants) were included in the engineering and SAE analyses to provide the maximum number of observations for the calibration of engineering results to customer bills. The priorparticipant group was excluded from the net-to-gross analysis, because this group would confound efficiency comparisons between participants and true nonparticipants.

2.5 BUILDER SURVEYS

Interviews were targeted towards builders of all homes that received on-site surveys. For participating homes, the PG&E tracking data provided information about who built the home and the appropriate contact person. For nonparticipants, builders were identified using information provided by the homeowner and information provided by PG&E new construction representatives. Overall, 61 builder surveys were completed, accounting for 219 of the 315 homes that received on-site surveys. A sample disposition report is provided in Appendix B.

2.6 ANALYSIS SAMPLE SIZES

A summary of the number of homes available for surveys and included in the various stages of the project analysis is provided in Table 2-6. Gas model sample size was limited because customers without gas bills (electric-only customers) were not screened out of the participant sample frame; otherwise, excluding electric-only customers may have introduced bias into the study. Efficiency choice model sample sizes and self-report sample sizes were limited by the availability of builder surveys.

	Participants	Prior Participants	Nonparticipants	Total
Participant Population	3960			
Screened Sites Available for Surveys	2,402	2,0)57	4,459
On-site Surveys	155	65	95	315
Duct Tests	155	65	95	315
Builder Surveys ¹	110 (39)	53 (27)	56 (22)	219 (61)
Electric SAE Model	155	65	95	315
Gas SAE Model	137	57	88	282
Electric Efficiency Choice Model	110		56	166
Gas Efficiency Choice Model	96		54	150
Self Report NTG Analysis	105			105

 Table 2-7

 Homes Surveyed and Included in the Analysis

¹ Number of builders are included in parentheses. Builder counts do not sum to total because of overlap of builders in the three categories.

2.7 EXPANSION WEIGHTS

In order to generalize study impacts to the Program population, expansion weights were developed using ex ante impact estimates from the Program tracking system. Weights were calculated by CEC climate zone (z), fuel type (f), and end use (e) as follows:

$$Weight_{z,f,e} = \frac{\sum_{n} Impacts_{z,f,e}}{\sum_{n} Impacts_{z,f,e}}$$

where N indicates all homes in the participant population, and n indicates homes in the study.

DATA COLLECTION

3.1 OVERVIEW

The data requirements for the new construction evaluation and sources of data are discussed in this section. Key data elements used in the impact analysis include the following:

- program tracking data,
- billing data,
- weather data,
- on-site survey data,
- telephone builder survey data, and
- secondary source data.

3.2 PROGRAM TRACKING DATA

Program data was provided by PG&E in electronic format. A number of data elements useful for the evaluation were included in the datasets, including:

- identification of rebated homes,
- Program measures installed in those homes and the expected savings, and
- builders associated with each home.

The tracking data matched up well with the PG&E filed savings in terms of number of units and net-therm savings. Electric savings (kW and kWh) varied slightly from reported figures.

3.3 BILLING DATA

Billing data for the statistical impact analysis was pulled from the PG&E mainframe during the second half of November 1997. The datasets used for the analysis are the "Elec Fix" and "Gas Fix" datasets maintained by PG&E's rate department. For each home, data are available for the last 12 read cycles for the following key billing analysis components:

- energy use (kWh, therms),
- meter read dates, and
- the number of days in the read cycle.

Additional billing system data (from the "Demog" file) used in the sample design and on-site recruitment process included:

- customer account number,
- customer name,

oa:wpge33:report:final:3data

- service address, and
- residential class (single family vs. multifamily, individual meter vs. master meter).

Billing system data were linked to tracking data using the PG&E Control number identifier.

Table 3-1 summarized collected billing data by key participation group. As the table indicates, the nonparticipants tend to use more energy than the participants. (However, as shown below in Table 3-2, nonparticipants also tend to live in larger homes.)

	-		—
	Participants	Prior Participants	Nonparticipants
kWh	7,906	7,969	8,774
Therms	453	432	517

Table 3-1Average Annual Energy Consumption

3.4 WEATHER DATA

Two weather data sources were used for the study:

- *average year* weather data for each of the three CEC climate zones in the study (zones 11, 12, and 13) that comes from typical meteorological year (TMY) data developed by the CEC for Title 24 compliance use; and
- *actual weather* data that comes from a PG&E weather database containing 30-minute temperature and humidity data for 25 locations in the PG&E service area. This data goes back to 1983.

3.5 ON-SITE SURVEY DATA

On-site surveys of 315 new homes provide the primary data used for the study. The surveys support the building simulation, engineering, and statistical analyses that were used to develop gross kW, kWh and therm savings estimates for the Program. In addition, on-site data was used in the net-to-gross analysis, when combined with data from the telephone builders survey.

Data collected in the on-site survey include building shell data, equipment/appliance data, customer demographic data, and equipment usage patterns. Several questions were included in the survey to address customer awareness of energy efficiency and awareness of the PG&E energy efficiency programs. For 158 of the surveyed sites, "duct blaster" duct testing was conducted. These tests measure the efficiency of a home's ducts with respect to leakage. The equipment used for this study was the Minneapolis Duct Blaster Systems' Series B units with DG-3 digital gauges.

3.5.1 Survey Instrument

The on-site survey instrument was developed to capture both detailed engineering *and* household behavior information for all major end uses. Capturing discretionary customer behavior patterns (e.g., for thermostat setpoints and schedules, showers/week, meals/week, laundry loads/week, etc.) is important to developing accurate end use consumption estimates and related program measure impacts. The on-site survey instrument for this project was designed to address each of the key issues listed below.

1) The instrument had to enable the collection of all data necessary to perform the specific analyses required. For this project, the key analytic considerations were:

- Data were required provide evidence and documentation of as-built energy efficiency levels. In particular, it was necessary to collect equipment nameplate data, building shell characteristics (insulation R-values, infiltration levels, window characteristics, etc.), and duct characteristics.
- Data were required to provide all of the necessary inputs for the Micropas building simulation analyses, which in addition to the elements noted above included building geometry, shading, zoning, internal loads, equipment schedules, and construction characteristics.
- Data were required to support the non-space conditioning engineering algorithms for lighting, refrigerators, dishwashing, water heating, cooking, clothes drying, spas, pools, etc. In addition to the equipment data noted above, these algorithms required occupant behavior information such as number of showers, meals, loads of laundry, etc., per week.
- Data were required to support the net-to-gross and spillover analyses, including customer awareness of energy efficiency and increased efficiency practices at the home not directly related to the Program (that may have been instituted after the homeowner moved in and contributed to lower bills).

2) The survey instrument was designed for ease and efficiency of use by the surveyor. This promoted completeness, reduced potential errors, and maximized the cost-effectiveness of the data collection tasks.

3) The survey instrument was designed with an understanding of how the data would be entered into the survey database and how it would be used for the subsequent analyses.

4) The survey was designed with the homeowner in mind. It maintained an order and structure that helped the homeowner respond accurately to the questions, and it was designed to be as expeditious as possible to reduce the burden on the homeowner's time (maximum of 20 minutes for the homeowner questionnaire portion of the survey).

A copy of the on-site survey instrument is provided in Appendix A.

oa:wpge33:report:final:3data

3.5.2 On-site Data Collection

The on-site data collection portion of the project consisted of a number of steps: survey instrument pre-testing, surveyor training, customer recruitment, and survey implementation (including survey database development). These steps are discussed below.

Survey Instrument Pre-Test

To ensure the survey instrument was easy to use and was providing the required data, the instrument was pretested by senior surveyors at three homes. No major modifications were made to the instrument. However, the allotted time for each survey was extended somewhat to allow for adequate on-site survey time.

Surveyor Training

Surveyor training was conducted in a three-level training session. Level one training consisted of a classroom session focusing on equipment and structure identification techniques and familiarization with the survey instrument. Level two consisted of a session on customer relations, interpersonal communication skills, and client sensitivity. Level three entailed in-field training.

Homeowner Recruitment and Incentives

Recruitment consisted of two activities. The first activity involved sending a project introduction letter to all potential homes for the survey. The letter helped the recruiting team establish credibility with the homeowner. The next activity involved contacting the homeowner by telephone to obtain general information and to schedule a convenient time for the survey. At this time we ensured that we have contacted the correct home and that the home had been built in the past few years. The telephone recruitment process included: (1) a brief project introduction (including reiteration of participation incentives discussed below), (2) obtaining general information about the home and occupants, (3) scheduling an appointment for the survey, and (4) providing a description of the type of information that would be gathered and the estimated survey duration.

A PC-based project tracking and reporting system was used in the field management of this project. Priority action notification, various sort filters, notation fields, and other mechanisms provided immediate and complete reports on the customer recruitment, surveying, and data management status by customer site and sample cell.

To facilitate customer participation in the projects, homeowners were offered cash incentives: \$25 for a standard survey and \$50 for a survey that included duct testing.

On-site Implementation

The data collection process will followed seven key steps: (1) collecting general building and dwelling type characteristics, (2) conducting a homeowner interview (collecting occupancy, thermostat/ equipment schedules, net-to-gross and spillover information), (3) collecting

oa:wpge33:report:final:3data

equipment, appliance, duct, and building shell data, (4) conducting a first-cut quality assessment (5) conducting a technical quality assessment, (6) performing accurate data entry, and (7) implementing statistical quality control checks.

Step one was performed when the homeowner was recruited for the survey. Basic information was collected on the dwelling type (i.e., standard tract, custom tract, or custom), approximate size of the home, number of stories, number of occupants, and the name of the survey contact. The recruiter also prepared the homeowner for the type of information to be collected.

Step two was performed at the customer's home. General information on the building was obtained from the homeowner and occupancy and energy usage schedules were gathered. Step three was to collect a thorough inventory of the building shell, duct, HVAC, and other appliances and equipment at the home. Other data that were then collected include building envelope characteristics (construction type, % glazing, shading, and fenestration levels), duct conditions (signs of leakage, gaps, general installation quality, length of ducts, insulation levels), appliance inventory, and miscellaneous loads such as spas or pools.

The next four steps of the data collection process insure high-quality data. Step four, the first-cut quality assessment phase involved a review of the completed survey to insure that the forms are filled out correctly and completely. Surveys that do not pass this process were returned to the surveyor for correction. Step five was a technical review of the survey data by a XENERGY engineer. During this review, the responses were checked for technical reasonableness. Step six consisted of accurate data entry, and in step seven, final quality control activity involved a data validation assessment of the collected and entered data using statistical procedures.

Nested Duct Blaster Tests

For a subsample of 158 homes, a "duct blaster" duct test was performed. For this test, the home's duct system was sealed off and the system was pressurized to 25 pascals. Reads from the duct blaster equipment indicate how much air leakage there is in the duct system.

The results of the duct blaster tests were used to develop duct efficiency estimates for the Program and non-Program homes.

3.5.3 Onsite Survey Results

Table 3-2 presents selected statistics developed from the on-site survey data. As the tables indicates nonparticipant homes tend to be somewhat larger and more expensive than participant homes. As expected, participant homes are more efficient. Participant homeowners earn slightly lower income than nonparticipants and were more interested in buying an energy efficient home. Awareness of the U.S. Environmental Protection Agency's The Energy Star New Home Program is generally low.

	Participants	Prior Participants	Nonparticipants
Average House Price	\$179,968	\$154,846	\$206,842
Part of a Subdivision	92.3%	90.8%	89.5%
Conditioned Square Footage	1,949	1,814	2,110
Number of Stories	1.4	1.3	1.4
Number of Rooms	6.5	6.5	6.7
Window-Floor Area Ratio	0.149	0.158	0.148
Ceiling R-value	34.9	35.1	32.0
Duct Leakage Flow CFM	144	141	187
AC SEER	12.35	12.91	11.00
Furnace AFUE	82.9	85.0	80.7
Number of Occupants	3.1	3.1	3.1
Average Annual Income	\$68,010	\$63,962	\$72,863
Have College Degree	58.1%	43.1%	55.8%
Energy Effic. Important for Purchase	67.1%	72.3%	54.7%
Aware of Energy Star Program	2.6%	0.0%	1.1%

 Table 3-2

 Selected Statistics Developed from On-site Survey Data

3.6 TELEPHONE SURVEY DATA

A survey of Program and non-Program builders was used to support the net-to-gross and spillover analyses. The survey was targeted to the builders of homes that received on-site surveys.

3.6.1 Survey Instrument

The survey instrument was designed to collect basic information about the builders, such as the size of their operations, the fraction of their homes that are built under the Program, the HVAC contractors they use, and the factors motivating them to build certain types of homes (energy efficient, low cost, customer comfort, etc.). Other key issues addressed in the survey instrument are determination of:

- the Program effect on measures installed by participants,
- the Program effect on measures installed in nonparticipant homes (nonparticipant spillover),
- spillover of non-Comfort Home measures within participant homes,
- changes in builders' awareness of measures, changes in builders' knowledge of measures, changes in builders' decision-making processes, etc., and
- effects on code compliance.

A copy of the telephone survey instrument is provided in Appendix A.

3.6.2 Survey Pretest

The builder survey instrument was pretested to ensure that it is understandable by the respondent and that it is providing the right data for the analyses. Three pretests were conducted by XENERGY analysts and the ordering of the participant self-report net-to-gross questions was revised to make the survey flow better.

3.6.3 Telephone Survey Implementation

Locating and contacting the appropriate builder decision maker was a significant component of the survey. There was often only one person who was qualified to complete the survey in each builder office, and more often than not, this person was seldom around. Once the builder was contacted, it was important to maintain their interest in the survey in order to get a complete set of responses. Use of analysts who were familiar with the PG&E Program and residential building practices improved the survey response rates and the quality of the collected data.

3.6.4 Telephone Survey Results

Tables 3-3 through 3-9 present selected results from the telephone survey of builders. Key findings include:

- the sample of builders was fairly evenly split between small builders and large builders;
- on average, participant builders were smaller;
- most builders average home selling price in under \$200,000;
- most builders concentrate on building entry-level and mid-range homes;
- almost all builders were aware of the Comfort Home Program;
- PG&E was the primary source of their awareness; and
- less than 20% of the builders knew of the Environmental Protection Agency's Energy Star New Home Program - only one builder indicated that they currently plan to participate in the program.

	Number of Builders	Percent of Builders
Under 100	15	25%
100-199	9	15%
200-299	7	11%
300-499	4	7%
500-999	15	25%
1000 or more	11	18%

Table 3-3Distribution of Number of Homes Built: 1994-1996

Average Number of Homes Built: 1994-1996				
		Average Number of Homes		
	Builders of Participant Homes	589		
	Builders of Nonparticipant Homes	1,105		

Table 3-4Average Number of Homes Built: 1994-1996

Table 3-5Distribution of Average Home Prices

Price Range	Percent of Builders
Under \$125,000	12%
\$125,000-149,999	17%
\$150,000-174,999	20%
\$175,000-199,999	14%
\$200,000-249,999	12%
\$250,000-299,999	3%
\$300,000-499,999	14%
\$500,000 or higher	8%

Table 3-6Types of Homes Built

	Percent of Builders
Entry Level	56%
Mid Level	82%
Luxury	20%

Does not sum to 100% due to overlap

Table 3-7 Aware of the PG&E Comfort Home Program?

	Percent of Builders
Yes	95%
No	5%
	Percent of Builders
-----------------------------	------------------------
Approached by PG&E	57%
Saw PG&E Literature	7%
Other Builder/Subcontractor	12%
General Knowledge	12%
Don't Recall	12%

Table 3-8First Source of Comfort Home Program Awareness

Table 3-9				
Aware of EPA Energy Star New Home Program?				

	Percent of Builders
Yes	18%
No	82%

3.7 SECONDARY SOURCE DATA

Secondary source data used for the study mainly consisted of load shape data, PG&E appliance saturation data, and equipment efficiency data.

3.7.1 Load Shape Data

The primary use of load shape data was to disaggregate energy savings into time-of-use impacts. Data for this analysis came from two sources:

- 1. PG&E's ongoing end-use research projects (for cooking and clothes drying); and
- 2. air conditioner metering data from the previous new construction program evaluation (data collected from June through October of 1993).

Figures 3-1 through 3-3 present the load shapes used for the analysis.

In addition to time-of-day fractions shown in Figures 3-1 through 3-3, the load shape was used to develop allocation factors to separate average daily usage into weekday, weekend, and peak day usage. The type-of-day distinction was required to provide impact estimates by PG&E costing period. Daily usage factors are presented in Table 3-10.

Figure 3-1 **Air Conditioning Load Shapes**

Figure 3-2 **Clothes Drying Load Shapes**

Figure 3-3 Cooking Load Shapes

Table 3-10Daily Usage Factors - Using Loadshape Data

	Daily kWh from Load Shape Data	Fraction of Average Daily Use
Cooling		
Summer Weekday	5.192	0.927
Summer Weekend	6.620	1.182
Summer Peak Day ¹	17.426	3.112
Clothes Drying		-
Summer Weekday	1.535	0.935
Summer Weekend	1.909	1.163
Winter Weekday	1.939	0.918
Winter Weekday	2.546	1.205
Cooking		
Summer Weekday	0.736	0.961
Summer Weekend	0.839	1.097
Winter Weekday	0.887	0.939
Winter Weekday	1.088	1.152

¹ Based on an average of the 5 peak usage weekdays covered by the load shape data.

3.7.2 Other Data

Other secondary source data that was used in the project include: (1) the most recent PG&E residential appliance saturation survey (RASS) to assess the reasonableness of net impacts calculated for gas cooking and gas clothes drying measures, and (2) various equipment literature and efficiency databases that were used to identify the energy efficiency ratings of key appliances.

4

ENGINEERING ANALYSIS

4.1 OVERVIEW

Engineering calculations utilize the information about the homes gathered during the on-site survey to calculate end-use energy consumption. Estimates of end-use energy consumption were calculated for all buildings in the study under two scenarios: as-built and reference. The reference case calculations were used to calculate gross energy savings relative to a fixed reference point (Title 24 standards) for both program participant and nonparticipant buildings.

In order to develop site-by-site savings estimates for each program component, the following two types of engineering analyses were employed:

- 1. building simulation modeling and associated analysis for space conditioning measures; and
- 2. engineering equations for non-space conditioning measures.

In addition, an analysis of secondary source data was utilized to develop allocation factors to assign impacts to the appropriate time-of-use periods. A description of each approach is presented below, followed by a section presenting engineering analysis results.

4.2 SPACE CONDITIONING USAGE

Site-specific building simulations were utilized to develop estimates of space cooling and space heating energy usage for both as-built and reference scenarios. The Micropas building simulation model was used for the analysis. Micropas is one of the most popular methods used to assess Title 24 compliance in new residential homes, and therefore, this approach is consistent with the requirements of the M&E Protocols (Table C-7) that call for use of a "Building Simulation Model approved by the CEC to set Title 24 building standards."

One of the major elements of the PG&E Program being evaluated involved enhanced duct installation procedures. The analysis of duct impacts was developed outside the Micropas model using the ASHRAE Standard 152P: Method. Duct analysis results (in the form of distribution system efficiency) were then combined with Micropas load calculations and system efficiency parameters to develop space conditioning energy usage estimates for each home in the study. An overview of the energy consumption calculation and energy savings approach are presented next, followed by a description of the load simulation process and the duct efficiency analysis.

4.2.1 Energy Consumption Calculations

Because Micropas does not internally model cooling, heating, and duct system efficiencies, energy usage for cooling and heating was calculated externally for each site as follows:

(1)

$$Energy_{i} = \frac{load_{i}}{systeff_{i} \times ducteff_{i}} \times conv_{i}$$

where:

<i>Energy</i> _i	=	energy (kWh or therms) for end use i (cooling or heating)
<i>load</i> _i	=	Micropas load estimate in kBtus for cooling or heating
systeff _i	=	system efficiency for cooling (SEER) or heating (AFUE)
$ducteff_i$	=	duct efficiency (fraction between 0.0 and 1.0)
$conv_i$	=	conversion factor to translate from kBtu to kWh or therms

System efficiencies were obtained from the on-site survey

4.2.2 Energy Savings Calculations

The engineering estimates of energy savings, above the Title 24 reference, were determined by subtracting "as-built" energy usage from reference energy usage. Using Equation 1 above, as-built energy usage reflects the as-built loads from Micropas, the actual system efficiencies (SEER and AFUE), and the calculated duct efficiencies. Reference energy use reflects the Micropas reference loads, standard system efficiencies (10 SEER and 0.78 AFUE), and reference duct efficiencies (based on the nonparticipant average for cooling and heating). Given the parameters of Equation 1, HVAC savings can be broken out into duct savings, air conditioner savings, and other savings.

Recent studies have shown that the default duct efficiencies applied external to load calculations in Micropas (and also published in the CEC compliance manual) tend to overstate actual duct efficiency. The effect of this overstatement may be that both participant and nonparticipant "asbuilt" duct systems show lower efficiencies than the default Micropas efficiencies. This effect may lower gross Program savings relative to an artificially efficient reference case (although net impacts that rely on differences between participants and nonparticipants will not be affected). In lieu of this problem, the "reference" duct efficiencies for heating and cooling (shown in Table 4-4).

Two sets of Micropas simulations were developed for the analysis, one set using compliance thermostat schedules and another set using customer-reported thermostat schedules.

Customer-reported schedule loads were used:

- 1. in the SAE analysis to develop calibration coefficients for the engineering results, and
- 2. in the gross savings analysis for development of gross measure impacts.

Compliance schedule loads were used:

1. to assess compliance with Title 24 energy budgets, and

oa:wpge33:report:final:4eng

2. in the net savings analysis to determine net impacts through a comparison of participant and nonparticipant efficiencies.

The compliance schedule loads were used in the net savings analysis because they eliminated behavioral differences between participants and nonparticipants, therefore, enhancing the effectiveness of the nonparticipants as a control group for the participants.

4.2.3 Loads Simulation Process

Building geometry information from the on-site surveys were used to create computer simulation models of every home in the study. These Micropas simulations yielded the heating and cooling load estimates for the homes that were later used to calculate total energy use. This section describes the process taken to obtain the heating and cooling loads.

The first step was to review the paper surveys and the electronic survey database. This database includes such survey information as the heating and cooling thermostat setpoints and the location of the home. The paper surveys show physical dimensions of structure.

Next, a new database was created and populated with takeoffs from the survey drawings of the areas of walls, floors, ceilings, windows, and skylights. Other site data taken from the surveys includes the building orientation (azimuth), the climate zone, and the attributes for each of the construction types. These attributes describe the building element with u-value, mass properties, and shading coefficient.

A VisualBasic program was written to pull this geometric data out of the new database and the thermostat setpoint data from the initial survey database to create four Micropas input files for each site, referred to as cases A through D:

- A. actual geometry with actual schedules
- B. actual geometry with compliance schedules
- C. standard geometry with actual schedules
- D. standard geometry with compliance schedules

For each simulation of the A and B cases, Micropas generates a reference input file that has a standard geometry. This file is normally used for determining compliance. In this case, the standard geometry section created by Micropas is copied into the A and B files to create the C and D cases.

The monthly heating and cooling loads are extracted from the Micropas output files. The load data are then used to calculate energy consumption.

4.2.4 Duct Efficiency Analysis

The Micropas model does not specifically address duct efficiency. Rather, default efficiencies, reflecting CEC and ASHRAE assumptions, are assigned to a home based on home type (single-story vs. Multi-story) and duct location (attic, crawlspace). The same duct efficiencies are used for "proposed design" and compliance scenarios.

To assess duct efficiency for the evaluation, a separate duct efficiency model based on the ASHRAE 152 Forced Air Calculation was used. The model was developed by Ian Walker and Mark Modera of LBL to better determine actual duct efficiencies utilizing site-specific data. Inputs to the model include:

- duct insulation levels;
- duct blaster test results;
- house size; and
- duct dimensions and locations.

Duct Blaster Basics

Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice to place such duct systems outside the conditioned space, typically in attics, crawlspaces and garages. This results in the loss of energy by air leakage and conduction. In cases where the ducts are located in the conditioned space, air lost from the ducts helps condition the space, so it is not a loss.

There are several diagnostic procedures, which are used to perform quantitative leakage measurements. The most often recommended method is the "Duct Blaster Method". The procedure is performed using a calibrated air flow measurement system called a "duct blaster". It consists of the following major components: a fan, a digital pressure measurement gauge, a fan speed controller and a flexible extension duct. The duct blaster system chosen for the study is manufactured by the Energy Conservatory in Minneapolis, and meets the flow calibration specifications of the standards. It is capable of moving up to 1,350 CFM against 50 Pa of back pressure and has a flow accuracy of $\pm -3\%$.

Pressurization Test Procedure

Duct leakage is measured by first connecting the duct blaster system to the ducts at either a central return grill or at the air handler access door. After sealing off all the supply and return registers, and combustion or ventilation air inlets, the duct blaster is used to pressurize the entire duct system to a standard testing pressure. The duct pressure at which the test is conducted is representative of the average actual duct operating pressure and is typically predetermined by the program test protocol (e.g. 25 Pa or 50 Pa). The air flow needed to generate the test duct pressure (reference pressure) is measured by a calibrated pressure gauge connected to the fan. Once the reference pressure is established and maintained, it is then possible to measure the fan pressure needed to pressurize the duct system to the reference pressure. This pressure reading is converted to CFM and represents the measurement of total duct leakage (in CFM) at the duct

reference pressure. The total duct leakage value consists of leakage to the outside of the conditioned space plus leakage to the inside.

Duct Leakage Results Utilization

Once the total duct leakage is recorded it is possible to utilize the "ASHRAE Standard 152P: Method of Test for Determining the Design and Seasonal Efficiency of Residential Thermal Distribution Systems 1997" to provide an estimate of the efficiency of thermal distribution systems. The calculation procedure requires inputs, which include information about the supply and the return duct location, the ambient conditions, duct surface area, duct insulation level, heating and cooling system capacities and system fan flow. The results provide seasonal thermal distribution system efficiencies for both heating and cooling systems that are used in computing energy consumption.

Duct Efficiency Modeling Assumptions

To determine the efficiency of the studied residential thermal distribution systems, XENERGY used a spreadsheet-based computer program developed by the Lawrence Berkeley National Laboratory (LBNL). The program is based entirely on the most recent version of ASHRAE Standard 152P: Method of Test For Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems, August 1997.

The spreadsheet is split into INPUT data, CALCULATED parameters and the OUTPUT Parameters. The INPUT data is the data required to perform the calculations. These data come from measurements and observations in actual buildings, building plans and default values. The CALCULATED parameters are calculated from the INPUT data and represent intermediate information required to determine the duct efficiencies. The OUTPUT Parameters are Delivery Effectiveness and Distribution System Efficiency and are given for heating and cooling, under both design and seasonal conditions.

Input Parameters

A host of input data are required for the LBNL duct model. Some data were collected during the on-site surveys while others were calculated based on surveyed data or assumed from standard practice and ASHRAE protocols. In addition, standard CEC climate data are utilized for weather-related inputs. The following table lists each input and its source. For a more detailed explanation of each input, see Appendix C.

Parameter	Surveyed	Calculated or Lookup ¹	Assumed
Conditioned Floor Area, and House Volume	1		
Supply & Return Duct Surface Areas		1	
Fraction of Ducts in Conditioned Space			1
Supply & Return Duct R-values	✓		
Thermostat Setpoint, Heating & Cooling	1		
Heating & Cooling Design Temperatures		1	
Design Wetbulb Temperature		✓	
Indoor Wetbulb Temperature		1	
Attic Solar Gain Reduction [y/n]	1		
Equipment Heating & Cooling Capacity	✓		
Heating & Cooling Fan Flow		1	
Heating & Cooling Supply & Return Duct Leakages	✓		
Duct Thermal Mass Correction	✓		
Equipment Efficiency Correction	✓		
Is The Attic Vented?	✓		
Is There A Thermostatic Expansion Valve?		✓	
Is Heating System A Heat Pump?	1		

 Table 4-1

 Duct Efficiency Model Input Parameters

¹Calculated values are based on survey data or lookup part numbers in Manufacturer's literature.

Duct Efficiencies for Non-tested Homes

Since duct test results are available for only about half of the homes included in the study, efficiency estimates were required for the remaining homes. For the homes with duct tests, efficiency results were correlated to factors such as house size and dimensions, duct characteristics, and program participation using regression analysis. The duct leakage variable from the duct tests was deliberately left out of the equations, because this variable was not available for the remaining homes that duct efficiency estimates were required for. The regression equations were used to impute duct efficiencies for homes without duct test results. Equations for cooling-related efficiencies are presented in Table 4-2, and equations for heating-related efficiencies are presented in Table 4-3. Separate equations were developed for the participant, prior-participant, and nonparticipant groups. Overall, the statistical properties of the regression equations are marginal (modest R^2 and t-statistics below 2.0); however, the estimated parameters appear to be reasonable. Since the regression equations are essentially used to adjust the average duct efficiencies to reflect physical attributes that vary by home, it was determined that use of the equations to estimate duct efficiencies for site without duct tests was preferable to applying simple averages across participant groups.

	Partic	ipants	Prior Participants		Nonparticipants	
Variable	Parameter	t-statistic	Parameter	t-statistic	Parameter	t-statistic
Intercept	0.7524	32.3	0.7429	22.7	0.7562	26.2
Number of levels in home	0.0308	2.8	0.0037	0.3	0.0206	1.7
Insulation above standard	0.0270	1.2	-0.0018	0.0	0.0600	2.5
Number of rooms in home	-0.0063	-1.5	-0.0018	-0.4	-0.0061	-1.3
Return duct in conditioned space	0.0552	2.3	0.0370	1.4	0.0235	0.8
Climate zone 11 indicator	-0.0094	-0.7	0.0232	1.5	-0.0106	-0.5
Climate zone 12 indicator	0.0196	1.8	0.0359	2.6	-0.0072	-0.6
Number of observations	56		39		57	
Adjusted R ²	0.3379		0.2059		0.1494	

 Table 4-2

 Duct Cooling Efficiency Regression Parameters

Table 4-3
Duct Heating Efficiency Regression Parameters

	Participants		Prior Participants		Nonparticipants	
Variable	Parameter	t-statistic	Parameter	t-statistic	Parameter	t-statistic
Intercept	0.7832	22.5	0.7558	21.5	0.7882	21.5
Number of levels in home	0.0407	2.5	0.0103	0.7	0.0079	0.5
Insulation above standard	0.0372	1.1	0.0199	0.5	0.0774	2.5
Number of rooms in home	-0.0086	-1.4	0.0010	0.2	-0.0042	-0.7
Return duct in conditioned space	0.0695	2.0	0.0290	1.0	0.0279	0.7
Climate zone 11 indicator	-0.0272	-1.4	-0.0162	-1.0	-0.0155	-0.6
Climate zone 12 indicator	0.0156	1.0	0.0166	1.1	-0.0278	-1.9
Number of observations	56		39		56	
Adjusted R ²	0.2484		0.1966		0.1081	

Average duct leakage and duct efficiency estimates are presented in Table 4-4. As the table indicates, the participants performed better than the nonparticipants both in terms of duct leakage (lower) and duct efficiency (higher). Duct efficiency differences between participants and nonparticipants were statistically significant at the 99% confidence level. Duct efficiencies for the prior participant group were similar to the participant efficiencies (and not statistically different at the 90% confidence level). As expected, the average duct efficiencies were lower than the efficiencies used in the compliance model.

Table 4-4Duct Efficiency Parameters

	Participants	Prior Participants	Nonparticipants	Average	Compliance Value
Duct leakage, cfm	144	141	187		
Duct leakage, cfm/sf	0.081	0.074	0.100		
Cooling efficiency	0.768	0.762	0.741	0.759	0.860
Heating efficiency	0.794	0.786	0.756	0.781	0.873

4.3 DEVELOPMENT OF ENGINEERING-BASED ESTIMATES FOR NON-SPACE CONDITIONING

Building simulation models do not generally provide any advantageous capabilities in modeling non-space conditioning end uses such as refrigeration, water heating, cooking, clothes drying, spas, and pools. As a result, it is more efficient to determine the reference and as-built consumption of these other end uses using stand alone engineering models that can be calculated directly off of the customer survey data. The key to accurate estimation of the non-space conditioning end uses is capturing customer behavior. Water heating, cooking, dryer, spa, and pool usage are all driven by occupant behavior. We will use the customer survey data to develop unique non-space conditioning end use estimates for each home in the study. These estimates will then enter the statistical model in the same manner as the building simulation results. Table 4-5 shows some of the site-specific factors that affect key end uses.

End Use	Influencing Factors
Refrigerators/Freezers	Type, Size, Age, Location
Television	Number of Sets, Hours of Use
Cooking	Number of Residents, Number of Meals, Microwave Use
Lighting	Number of Residents, Square Footage, Number of Rooms
Laundry	Number of Residents, Number of Loads
Water Heating	Number of: Residents, Showers, Meals, Wash Loads
Pool/Spa	Pump Size, Reported Usage, Use of Heaters

Table 4-5Site Factors Influencing End Use Consumption

4.3.1 Equivalent kWh Usage for Cooking and Clothes Drying

In addition to direct engineering calculations of electric usage for cooking and clothes drying for use in the SAE analysis, equivalent cooking and clothes drying estimates were developed from gas usage estimates using the following conversions:

$$Equivalent_kWh = Therms \times \frac{100,000}{3,413} \times \frac{GasEfficiency}{ElectricEfficiency}$$
(2)

Where relative gas-efficiency-to-electric-efficiency ratios of 0.51 for cooking and 0.89 for clothes dryer were developed from U.S. Department of Energy information provided in the E-SOURCE Residential Appliances Technology Atlas, October 1994 Edition.

The equivalent kWh usage estimates (after SAE calibration) are used for calculation of Program electric impacts due to the installation of gas cooking and clothes drying measures. For these measures that influenced the installation of gas appliances instead of electric appliances, electric savings impacts are positive while gas savings impacts are negative (reflecting a reduction in electric use and an increase in gas use). This approach of using equivalent kWh usage estimates was taken so that Program impacts would reflect behavioral patterns associated with the impacted homes.

4.4 TIME OF USE ALLOCATION

Allocation factors were developed to assign annual energy savings to PG&E cost periods using the load shapes discussed in Section 3 together with monthly space conditioning usage profiles from the Micropas simulation analysis. Allocation factors, expressed as a percent of annual energy use, are presented in Table 4-6.

_							
		Summer Peak	Summer Partial Peak	Summer Off Peak	Winter Partial Peak	Winter Off Peak	
Cooling	Peak kW	0.001282	0.001848	0.000893	0.000000	0.000000	
	kWh	0.3128	0.2383	0.4402	0.0048	0.0039	
Heating	Therms		0.0126		0.98	374	
Cooking	Peak kW	0.000105	0.000391	0.000065	0.000446	0.000044	
	kWh	0.1187	0.1423	0.1901	0.3082	0.2407	
	Therms		0.4511		0.54	489	
Clothes Drying	Peak kW	0.00011	0.00013	0.00013	0.00020	0.00002	
	kWh	0.0938	0.1340	0.2130	0.2888	0.2705	
	Therms	0.4	407		0.5	593	

 Table 4-6

 Time of Use Allocation Factors - Relative to Annual Usage

4.5 SUMMARY OF ENGINEERING RESULTS

Results of the engineering analysis are summarized in this subsection. First, compliance with Title 24 allowance budgets are addressed. Next, space conditioning energy usage and energy efficiency impacts are presented. Finally, unit energy consumption (UEC) values developed from the on-site survey and the non-space conditioning algorithms are shown.

4.5.1 Title 24 Budget Compliance

Table 4-3 presents Title 24 compliance calculation averages based on the Micropas simulation results that utilized compliance thermostat schedules and duct efficiencies. For participants and prior participants, the air conditioner SEER level was set to 10 in order to approximate budget compliance prior to Program effects. As the table indicates, participants were below budget by 2.3% on average, prior to accounting for the effects of increased air conditioner efficiencies. The table also shows that nonparticipants were, on average, lower than the Title 24 budgets by about 4.3%. For all groups, budget compliance is realized primarily through the water heating end use. This is not surprising, given an almost negligible cost different between efficient and standard water heaters (0.60+ EF water heaters versus 0.54 EF water heaters).

	-			•
	End Use	As-built	Budget	Difference
Participants	Space Heating	12.05	12.00	-0.05
@ SEER=10	Space Cooling	11.22	10.22	-1.00
	Water Heating	10.62	12.47	1.85
	Total	33.89	34.69	0.80
Prior Participants	Space Heating	13.04	12.53	-0.51
@ SEER=10	Space Cooling	11.60	10.20	-1.40
	Water Heating	11.21	13.09	1.88
	Total	35.85	35.82	-0.03
Nonparticipants	Space Heating	12.25	12.12	-0.13
@ Actual	Space Cooling	10.10	10.09	-0.01
	Water Heating	10.46	12.08	1.62
	Total	32.81	34.29	1.48

Table 4-7Title 24 Compliance Calculations - kBtu/ft2-yr

4.5.2 Space Conditioning

Average space conditioning consumption and impacts, based on the engineering analysis, are presented in Table 4-8. For comparison purposes, usage based on Micropas compliance schedules are presented alongside usage based on customer-reported schedules. Nonparticipant results are also shown. Results are unweighted simple averages of study sites. Key findings include:

- average results using compliance schedules differ somewhat from results using reported schedules, especially for space heating; also, variation across homes is much greater when using the reported schedules;
- engineering estimates of gross savings for space conditioning are 284 kWh and 18.3 therms;
- "as-built" usage for nonparticipants is not much lower than baseline usage;
- duct savings for nonparticipants are, by design, near zero;
- positive participant savings for ducts and air conditioning are somewhat offset by negative savings in other areas primarily involving the building envelope;
- nonparticipants also show negative "other" savings;
- negative "other" savings are consistent with budget compliance results shown in Table 4-7, where participants exceed the cooling budget before factoring efficient air conditioning and nonparticipant just meet budget despite averaging a SEER of 11;
- negative "other" savings for space heating is partially compensated for by increased furnace efficiency.

oa:wpge33:report:final:4eng

	Complianc	e Schedules	Reported	Schedules
	Participants	Nonparticipants	Participants	Nonparticipants
		Cooling - I	⟨Wh/year	
Baseline Cooling	2,162	2,283	2,105	2,300
As-built Cooling	1,867	2,257	1,820	2,271
Total Savings	296	26	284	29
Duct Savings	77	-4	76	-11
AC Savings	450	223	429	217
Other Savings	-232	-193	-220	-177
		Heating - Therr	ms/year	
Baseline Heating	267.1	281.5	342.6	371.5
As-built Heating	251.7	282.6	324.3	371.9
Total Savings	15.4	-1.1	18.3	-0.4
Duct Savings	13.5	-1.9	15.7	-4.3
Furnace Savings	16.9	9.6	23.1	12.7
Other Savings	-14.9	-8.7	-20.5	-8.8

 Table 4-8

 Average per Home Engineering Results (Unweighted) - Space Conditioning

4.5.3 Other End Uses

Engineering estimates of UECs (unit energy consumption) for non-space conditioning end uses is presented in Table 4-9. Results are simple unweighted averages of study sites. Appliance saturations are also presented to provide an indication of how many homes the UEC estimates are based on. In general, the UECs appear reasonable in light of other published usage estimates.

	-	
Electric End Uses	kWh/year	Saturation
Water Heating	2,077	0.003
Refrigeration	1,078	1.000
Freezers	744	0.184
Televisions	425	1.000
Stovetops	283	0.197
Ovens	205	0.460
Microwave Ovens	150	0.981
Lighting	1,365	1.000
Clothes Drying	958	0.540
Clothes Washing	109	0.994
Dish Washing	155	0.962
Pools	1,670	0.152
Spas	1,952	0.124
Miscellaneous	1,424	1.000
Gas End Uses	Therms/year	Saturation
Water Heating	184	0.990
Stovetops	20	0.800
Ovens	19	0.540
Clothes Drying	39	0.451
Pool Heating	212	0.025
Spa Heating	134	0.044
Gas Fireplace	12	0.444

Table 4-9 Engineering Estimates of Non-space Conditioning Unit Energy Consumption (Unweighted Average of Participants and Nonparticipants)

As discussed in Section 4.3, Program electric impacts for cooking and clothes drying are imputed from participant gas usage estimates using appropriate conversion factors. Table 4-10 shows gas UECs and the associated equivalent-electric UECs for the participants. These results are simple unweighted averages before applying the SAE adjustments discussed in the next section of this report. As Table 4-10 shows, the participants tend to use their cooking and clothes drying equipment somewhat less than average.

Table 4-10
Gas and Equivalent-electric Cooking and Clothes Drying UECs
(Unweighted Participant Average)

End Uses	Therms/year	Equivalent kWh/year
Stovetops	19.8	296
Ovens	13.6	203
Clothes Drying	36.4	950

5.1 OVERVIEW

This section presents the method used to statistically calibrate engineering usage and savings estimates to customer bills. Model results, including calibration coefficients and their statistical precision, are presented. Application of the calibration coefficients to engineering savings estimates is also shown, and calibrated estimates of gross program savings are presented.

5.2 STATISTICAL CALIBRATION OF ENGINEERING RESULTS

For the statistical analysis portion of this project, an SAE (statistically adjusted engineering) approach was utilized. Regression models were specified using engineering estimates of end-use energy consumption (discussed in Section 4) to estimate monthly energy usage (from bills) for the surveyed sample of homes.

The SAE modeling approach has some distinct advantages over simpler conditional demand models that use binary end use and program indicator variables interacted with other survey data. The SAE models impose an engineering-based structure to the regression model, making it easier to delineate energy usage among the various end uses. This structure is especially important for addressing multicollinearity among gas space heating and water heating that occurs because almost all homes utilize gas for both of these end uses. In addition, by providing engineering structure to program savings estimates, the SAE models are better able to identify measure savings that can get lost in the "noise" of purely statistical models.

Key SAE model inputs include billing data, weather data, and end-use consumption estimates (UECs) from the engineering analysis portion of the project (all developed on a monthly basis and expressed in use per day). The key outputs are calibration coefficients that can be applied to the engineering results to provide realized usage and savings estimates. The adjustment coefficients are often referred to as realization rates because they relate realized usage and savings to the initial engineering savings estimates.

5.2.1 Model Specification

The SAE model is based on the fact that the total energy use in a home is equal to the sum of energy use across all of the end uses. The basic form of the SAE model is:

$$Energy_{it} = \sum_{j=1}^{n} (\beta_j \times AB_ENGIN_{jit}) + \varepsilon_{it}$$
⁽²⁾

Where:

Energy	Billed electric or gas use for custome	r i , in period t
AB_ENGIN	As-built engineering estimates of ene in period <i>t</i>	rgy use for end-use j , for customer i ,
β ε	Estimated adjustment parameters Error term	

If the *AB_ENGIN* values are perfectly accurate, all of the parameters β would be equal to one and the error term would be zero. If a parameter value is greater than one, this implies that the engineering estimates are too low on average. The engineering estimates are too high on average if the parameter value is less than one. The further the parameter estimate is from one, the larger the error in the engineering estimate

Next, for the end uses of interest, the basic SAE model can be modified, by decomposing the engineering estimates into two components, base case use (*BASE_ENGIN*) and the difference between base-case use and as-built use (*BASE_ENGIN* - *AB_ENGIN*):

$$Energy_{it} = \sum_{j=1}^{n} [\alpha_{j} \times BASE_ENG_{jtt} - \beta_{j} \times (BASE_ENGIN - AB_ENGIN)_{jtt} + \varepsilon_{it}]$$
(3)

As it applies to this evaluation *BASE_ENGIN* is energy use under Title 24 standards and (*BASE_ENGIN - AB_ENGIN*) represents energy savings over the standards that occur for both participants and nonparticipants. The addition of the term α in equation (3) indicates that the adjustment parameters can be allowed to vary between the base-case usage estimate (adjustment parameter α) and the energy savings estimate (adjustment parameter β). Using this equation, realized savings are estimated as:

Realized Gross Savings_{jit} =
$$\beta_j \times (BASE_ENGIN_{jit} - AB_ENGIN_{jit})$$
 (4)

 β_j in equation (4) is referred to as the realization rate, the fraction of gross engineering savings realized in customer bills. Sometimes modeling limitations preclude the estimation of separate adjustment for savings and base-case usage. This is especially true when savings are small relative to total end-use consumption or when savings are highly correlated with total end-use consumption. In these instances equation (2) is utilized instead of equation (3) and the same realization rate parameter is estimated for both the base case usage and the savings.

Cooking and Clothes Drying Impacts

In addition to the development of realized savings for HVAC measures that are determined by the difference between baseline and as-built use, the evaluation also requires impact estimates for measures promoting gas cooking and gas clothes drying. For these end uses, separate realization rates were developed in the gas SAE model. These realization rates are then applied to engineering estimates of gas cooking and clothes drying consumption to determine realized gross impacts. As discussed in Section 4, equivalent electric impacts are then derived from the gas impact estimates.

5.2.2 SAE Model Results

Specific variables that were used in the electric and gas SAE models are presented next, along with the estimated equations.

Electric Model

In specifying the electric SAE model, monthly electric usage (expressed on a kWh per day basis) was modeled as a function of the following variables (developed from the engineering analysis and also expressed on a kWh per day basis):

- 1. base-case cooling usage (reflecting Title 24 compliance usage, 10 SEER air conditioner efficiency, and average nonparticipant duct efficiency of 0.741);
- 2. high efficiency air conditioner savings due to increased efficiency above 10 SEER;
- 3. duct savings based on the difference between site duct efficiency and the nonparticipant average of 0.741)
- 4. other cooling savings based on differences between compliance and as-built envelope construction;
- 5. pool and spa electric usage; and
- 6. electric usage from all other end uses.

All space cooling variables were interacted with the ratio of actual-to-normal cooling degree days (65 degree base) to account for differences between billed consumption that reflect actual weather and the engineering cooling estimates that reflect normal weather. When developing realized impact estimates, the actual-to-normal degree day ratios are set to one, thereby providing impact under normal weather conditions. Finally, the coefficient for the air conditioner savings variable was restricted to be equal, but in the opposite direction, to the base cooling usage estimate [i.e., AC-parameter = - (base-cooling-parameter]. This restriction was made for two reasons: first, savings for air conditioner efficiency improvements should be proportional to loads; and second, there was a high degree of multicollinearity between the base usage estimate and the air conditioner savings estimate making it difficult to get an accurate estimate for the air conditioner adjustment coefficient.

The electric model was estimated using a generalized least squares procedure to correct for autocorrelation (the correlation of model residuals over time for each home). Autocorrelation is a typical problem in time-series analyses, and its presence was confirmed by the examination of site-specific Durbin-Watson statistics that were generally outside the acceptable range. Eighteen outlier observations (with studentized t-statistic greater than 4 in absolute value) were removed from the final model.

The electric model results are presented in Table 5-1. As the table indicates, all variables have the appropriate signs (savings variables have negative coefficients indicating a reduction in usage) and are statistically significant at very high confidence levels. The adjusted R^2 is reasonable for these types of models. The coefficients for base-case cooling and efficient AC

variables indicate that engineering results for these components are, on average, somewhat high. The duct savings coefficient of -2.094 indicates the engineering estimate of duct savings is only about half of the realized estimate. "Other" cooling savings appear to be significantly overestimated in the engineering analysis as demonstrated by the low realization coefficient of -0.276. Realization rates for the other end uses are close to 1.0, indicating at good fit between the engineering estimates and billed usage.

Variable	Parameter Estimate	t-statistic
Base case cooling use	0.842	60.8
Efficient AC savings	-0.842	-60.8
Duct savings	-2.094	-9.7
Other cooling savings	-0.276	-6.1
Pool/Spa use	1.019	22.5
Other end use consumption	1.059	78.3
Number of observations	3,762	
Adjusted R ²	0.7634	

Table 5-1
Electric SAE Model, Dependent Variable: Billed Consumption

Possible explanations of the low "other" savings parameter were developed from a review of the building simulation results. Recall from Section 4 that other cooling savings were negative, indicating that building envelopes tended to be less efficient that Title 24 reference values. Key factors that were likely to lead to an underestimate of building envelope efficiency include the window and wall insulation levels:

- Windows: assumed U-values for the study are the CEC defaults for reported construction types (as defined in the Title 24 compliance manual); a limited comparison of assumed U-values against values contained in PG&E program files indicated that the assumed U-values may exceed actual U-values by 10%-15%. Based on builder survey results that indicate no major differences in window installation practices between participants and nonparticipants, this effect can probably be assumed to be systematic across all study sites.
- Walls: in many cases, reported wall insulation R-values were below the Title 24 standard and experience has indicated that surveyors often underestimate wall insulation levels due to the difficulty of examining installed construction material without damaging the structure or alarming the occupant.

Also note for the "other" cooling savings coefficient that despite its low value, it still has the appropriate sign and is statistically significant. This fact means that although, on average, the engineering analysis may have overestimated the difference between as-built and reference building envelope efficiency, it is still likely that as-built envelopes are less efficient than the Title 24 reference values.

Gas Model

The gas SAE model specification is similar to the electric model. Monthly gas consumption, on a therm per day basis, is modeled as a function of:

- 1. base case heating usage (reflecting Title 24 compliance usage, 0.78 AFUE furnace efficiency, and average nonparticipant duct heating efficiency of 0.756);
- 2. high efficiency furnace savings due to increased efficiency above 0.78 AFUE;
- 3. duct savings based on the difference between site duct efficiency and the nonparticipant average of 0.756);
- 4. other heating savings based on differences between compliance and as-built envelope construction;
- 5. cooking gas usage;
- 6. clothes drying gas usage; and
- 7. gas usage from all other end uses.

All space heating variables were interacted with the ratio of actual-to-normal heating degree days (65 degree base), and similar to the electric model, the coefficient for the furnace savings variable was restricted to be equal, but in the opposite direction, to the base heating usage estimate. The gas model was also estimated using a generalized least squares procedure to correct for autocorrelation. As with the electric model outlier observations were examined; however, no outliers were removed from the final model. The model that excluded outliers had coefficients for cooking and clothes drying that increased substantially (to the 1.5 range), returning cooking and clothes drying usage estimates that were deemed less reasonable than the model with all observations. Multicollinearity between the cooking, clothes drying, and other end use-variables was detected and could lead to the instability of the cooking and clothes drying parameter estimates.

The gas model results are presented in Table 5-2. All variables have the appropriate signs and are statistically significant at high confidence levels. The adjusted R^2 is similar to that of the electric model. The coefficients for base case heating and efficient furnace variables indicate that engineering results for these components require an adjustment to 88% of the original engineering estimate. The duct savings coefficient of -0.54 and the "other" heating savings coefficient of -0.49 indicate the engineering estimates are about twice as high as the realized estimates. The engineering-based cooking estimate is adjusted downward by about 30% and the clothes drying estimate is adjusted upward by about 15%. The lower t-statistics for the cooking and clothes drying variables may be partially due to the multicollinearity discussed above.

Variable	Parameter Estimate	t-statistic
Vallable	Estimate	เริงเล่นระบบ
Base case heating use	0.881	79.4
Efficient furnace savings	-0.881	-79.4
Duct savings	-0.542	-3.4
Other savings	-0.491	-5.8
Cooking use	0.708	2.3
Clothes drying use	1.148	3.7
Other end use consumption	0.950	24.5
Number of observations	3,377	
Adjusted R ²	0.7477	

Table 5-2Gas SAE Model, Dependent Variable: Billed Consumption

5.3 CALIBRATED LOADS AND GROSS IMPACTS

Program level gross impacts are calculated by applying the SAE adjustments to site-level engineering estimates of usage and savings and then weighting up participant site-level results to Program totals using the expansion weights discussed in Section 2. Gross impact results are discussed next.

5.3.1 Space Conditioning Impacts

Gross impacts for the space conditioning end uses are presented in Table 5-3. All impacts are measured relative to Title 24 standards. Cooling impacts are estimated to be 450 kWh per home and 1,781,809 kWh for the Program. Heating impacts are estimated to be 19.0 therms per home and 75,202 therms for the Program. Note for space heating, the furnace savings include impacts for all furnaces with efficiencies above 0.78 AFUE. In many cases, increased furnace efficiency may be used by builders to offset deficiencies in building envelop efficiency (as noted by the negative "other" heating savings).

Cooling	Average kWh	Total kWh
Baseline Cooling	1,720	
	·····	
As-built Cooling	1,270	
Total Savings	450	1,781,809
Duct Savings	166	657,839
AC Savings	347	1,374,791
Other Savings	-63	-250,821
Heating	Therms/home	Total therms
Baseline Heating	305.9	
As-built Heating	286.9	
Total Savings	19.0	75,202
Duct Savings	8.4	33,236
Furnace Savings	20.7	82,148
Other Savings	-10.1	-40,182

Table 5-3Gross Program HVAC Impacts

Table 5-4 compares evaluation gross impacts with PG&E *ex ante* estimates. In general evaluation results are lower than PG&E estimates. In reviewing results, one should keep in mind that a comparison of gross impacts is not always very useful, especially when reviewing the results for "code enforcement" and "other" savings. The key to evaluating these types of measures is to compare participant impacts relative to nonparticipants. Such a comparison is really only meaningful at the end use level since there are trade-offs among measures in complying with Title 24 and in constructing a home that is energy efficient. Nonetheless, a few observations can be made concerning gross impacts: first, the air conditioner measure is achieving what is expected in terms of gross impacts; and second, the duct efficiency measures are not producing expected savings either for cooling or heating. Nonparticipant duct efficiencies are not that much lower than participant efficiencies.

	Evaluation	PG&E ex ante	Realization Rate
Cooling	kWh/ye	ear	
Total Savings	1,781,809	2,790,174	0.64
Duct Savings	657,839	1,293,369	0.51
AC Savings	1,374,791	1,334,996	1.03
Code Enforcement		161,809	
Other Savings	-250,821		
Heating	Therms/year		
Total Savings	75,202	156,968	0.48
Duct Savings	33,236	115,198	0.29
Furnace Savings	82,148	6,814	
Code Enforcement		32,357	
Other Savings	-40,182	2,599	

Table 5-4
Comparison of Gross HVAC Impacts to PG&E ex ante Estimates

5.3.2 Clothes Drying and Cooking

Cooking and clothes drying impacts are presented in Table 5-5. These impacts are the calibrated gas usage estimates and equivalent electric usage estimates for homes in the sample that received rebates for gas cooking and clothes drying measures. Results are weighted to the participant population using the expansion weights described in Section 2. Average savings differ from UECs reported at the end of Section 4 because impacts are weighted averaged over all participant homes.

	Ave	rage	Total		
	Therms kWh		Therms	kWh	
Clothes Drying	-15.8	413	-62,749	1,636,285	
Stovetop	-9.2	138	-36,580	546,604	
Oven	-4.7	71	-18,685	279,209	
Cooking Total	-13.9	209	-55,265	825,813	

Table 5-5Gross Program Impacts for Gas Clothes Drying and Cooking Measures

Evaluation gas clothes drying and cooking impacts are compared to PG&E estimates in Table 5-6. Evaluation clothes dryer impacts are much higher than PG&E estimates. This reflects the relatively high penetration of gas dryers in rebated participant homes in the study (52%). PG&E rebates builders who install gas dryer stubs in the wash area but assumes only a fraction of the homeowners (35%) will install gas dryers. These impacts are incorporated into the tracking system as lower gross impacts rather than through a lower net-to-gross ratio. Evaluation cooking therm impacts are similar to PG&E's estimates; however, evaluation kWh impacts are much lower. For both clothes drying and cooking, it appears that PG&E is assuming different gas-toelectric conversion factors than those determined by the evaluation (and based on efficiency comparisons from the E-SOURCE Appliance Technology Atlas).

 Table 5-6

 Comparison of Gross Clothes Drying and Cooking Impacts to PG&E ex ante Estimates

	Evaluation		PG&E	PG&E ex ante		Realization Rate	
	Therms	kWh	Therms	kWh	Therms	kWh	
Clothes Drying	-62,749	1,636,285	-23,128	693,840	2.71	2.36	
Cooking	-55,265	825,813	-58,319	1,230,580	0.95	0.67	

5.3.3 Other End Uses

Two end uses covered by the Program were not included in the evaluation: water heating and lighting. Impacts for these end uses were small. For these end uses, the Program tracking estimate for savings was assumed to be correct.

ings for measures i		i Dascu oli 11	acking byster	
	kWh	kW	Therms	
Lighting	21,744	1.057	-	
Water Heating	-	-	1,236	

 Table 5-7

 Savings for Measures Not Evaluated Based on Tracking System Data

5.3.4 Gross Impacts by Costing Period

Using the allocation factors developed from load shape data and discussed in Section 4, impacts were calculated for the PG&E costing periods. Results are presented in Table 5-8.

		P	G&E Costing Perio	od		
	Summer Peak	Summer Partial Peak	Summer Off Peak	Winter Partial Peak	Winter Off Peak	
kWh Impacts				·		
Cooling	557,418	424,529	784,347	8,480	7,034	
Clothes Drying	153,428	219,224	348,525	472,496	442,612	
Cooking	98042	117533	156956	254540	198741	
Lighting	4,136	3,940	6,550	3,785	3,332	
Total	813,024	765,226	1,296,378	739,301	651,719	
kW Impacts						
Cooling	2283.4	3292.9	1590.6	0	0	
Clothes Drying	175.1	215.0	216.1	332.7	32.7	
Cooking	86.7	322.5	53.9	368.6	36.3	
Lighting	1.1	1.7	0.7	0.5	0.1	
Total	2,546.3	3,832.1	1,861.3	701.8	69.1	
Therm Impacts						
Heating	949			74,	253	
Clothes Drying	-27,656			-35,093		
Cooking	-24,931			-30,334		
Water Heating		618			618	
Total		-51,020		9,	444	

Table 5-8Gross Impacts by PG&E Costing Period

5.3.5 Gross Impact Confidence Intervals

Using statistical output from the SAE models, confidence intervals were developed by end use. Program-level confidence intervals are calculated as the sum of the end use intervals. Results are shown in Table 5-9.

	90% Confidence Interval			80%	Interval		
	Point Estimate	Percent	Lower bound	Upper bound	Percent	Lower bound	Upper bound
kWh Impacts						-	-
Cooling	1,781,809	±19%	1,440,986	2,122,632	±15%	1,516,610	2,047,008
Clothes Drying	1,636,285	±44%	908,802	2,363,768	±35%	1,070,219	2,202,351
Cooking	825,812	±72%	235,177	1,416,447	±56%	366,230	1,285,394
Lighting	21,744	±0%	21,744	21,744	±0%	21,744	21,744
Total	4,265,650	±39%	2,606,709	5,924,591	±30%	2,974,802	5,556,498
Peak kW Impacts						-	-
Cooling	2,283.4	±19%	1,846.6	2,720.2	±15%	1,943.5	2,623.3
Clothes Drying	175.1	±44%	97.3	252.9	±35%	114.5	235.7
Cooking	86.7	±72%	24.7	148.7	±56%	38.4	135
Lighting	1.1	±0%	1.1	1.1	±0%	1.1	1.1
Total	2,546.3	±23%	1,969.6	3,122.9	±18%	2,097.6	2,994.9
Therm Impacts							
Heating	75,202	±43%	42,647	107,757	±34%	49,871	100,533
Clothes Drying	-62,749	±44%	-34,851	-90,647	±35%	-41,041	-84,457
Cooking	-55,265	±72%	-15,739	-94,791	±56%	-24,509	-86,021
Water Heating	1,236	±0%	1,236	1,236	±0%	1,236	1,236
Total	-41,576	±84%	-6,706	-76,446	±65%	-14,443	-68,709

Table 5-9Gross Impact Confidence Intervals

6.1 OVERVIEW

The calculation of net savings involves determining the portion of realized gross savings that is attributable to the Program. In this study, three approaches to estimating net savings were investigated and integrated to provide the most appropriate estimate of net savings for the Program. The three approaches are:

NET SAVINGS ANALYSIS

- 1. Self-report estimates based on participant builder survey data of what they would have done in the absence of the Program;
- 2. A simple comparison of participant and nonparticipant efficiency levels; and
- 3. An efficiency choice model-based comparison of participant and nonparticipant efficiencies to correct for endogeneity of savings and program participation.

A discussion of each of the net savings approaches is provided next followed by a summary of the results. Then the issue of program spillover is addressed. Findings from the builder survey regarding spillover are presented and impacts on net savings are discussed. Finally, program net savings are presented and compared to PG&E ex ante estimates.

6.2 SELF-REPORT NET-TO-GROSS ANALYSIS

The self-report net-to-gross analysis was used to estimate free-ridership ratios based on builder responses to survey questions. Following is a brief review of the survey questions used to assess free-ridership, followed by a description of the free-ridership ratio assignment.

6.2.1 Free-Ridership Survey Results

Three key survey questions were used in the assignment of free-ridership. Tables 6-1 through 6-3 tabulate builder responses to these questions.

Table 6-1 shows the results of the questions about how the builders first learned about high efficiency air conditioning and enhanced duct installation procedures. The table shows that a large fraction of builders (42%) were introduced to efficient air conditioning by PG&E, and over 70% learned about enhanced duct installation from PG&E.

Source of Information	Efficient AC	Enhanced Duct Installation Procedures
From PG&E representative	36%	64%
From PG&E Literature	6%	7%
From other builders or sub-contractors	34%	18%
From architect or designer	2%	0%
From manufacturers' rep or literature	2%	2%
From trade literature	9%	2%
Other	11%	7%

 Table 6-1

 Source of Builder Information for Efficient Air Conditioners and Enhanced Duct Installation

* Results do not include missing responses

Table 6-2 presents the ranking of PG&E rebates among various factors influencing the builder to install program measures. Other factors included in the importance ranking were: information from program literature, past experience with the measures, information from vendors or designers, home buyers' request for measures, and meeting Title 24 compliance budgets. As the table indicates, PG&E rebates were important factors for the efficient air conditioner and enhanced duct efficiency measures, but less important for the gas appliance measures.

Table 6-2Ranking of PG&E Rebates Among Reasons for Installing Program Measures

		Program Measure				
	High SEEREnhanced DuctGas CookingACInstallationGas Cooking					
Rebates ranked first	56%	54%	34%	38%		
Rebates ranked second	5%	5%	18%	18%		
Rebates ranked third	5%	5%	7%	7%		
Not ranked 1st, 2nd or 3rd	34%	36%	41%	38%		

Table 6-3 shows a tabulation of builder responses regarding likely measure installation practices without the rebates. The responses show that most builders say that they would not have installed the HVAC measures but would have still included the gas appliance measures.

Table 6-3Likelihood of Measure Installation Without Rebates

	Program Measure				
	High Efficiency Enhanced Duct Gas Gas AC System Installation Cooking S				
Definitely would have done it anyway	2%	7%	40%	31%	
Probably would have done it anyway	21%	7%	36%	38%	
Probably would not have done it anyway	43%	33%	12%	17%	
Definitely would not have done it anyway	29%	48%	5%	7%	
Don't Know	5%	5%	7%	7%	

6.2.2 Self-Reported Free-Ridership Ratios

Using the survey results described above, free-ridership ratios were calculated. The approach is described below, followed by the free-ridership results.

Self-Reported Free-Ridership Ratios

First, initial free-ridership ratios were developed based on builders' stated intentions about what they would have done in the absence of the Program rebates. Table 6-4 shows the ratio assignment used for this study.

Install Measures Without Program?	Free-Ridership Ratio
Definitely would install anyway	1.00
Probably would install anyway	0.67
Probably would not install anyway	0.33
Definitely would not install anyway	0.00

 Table 6-4

 Initial Free-ridership Ratio Assignment Based on Stated Intentions

Next, a set of consistency checks were implemented to adjust the initial free-ridership ratio based on questions regarding the source of the builders' knowledge of efficiency measures and the builders' importance ranking of the rebate in their decision to install measures. The consistency checks are important because simple self-report net-to-gross studies tend to produce biased results; respondents often give themselves credit for installing program measures despite being significantly influenced by the Program. The consistency checks used for this study are shown in Table 6-5.

Table 6-5Self-report Consistency Checks

	Assigned Free-ridership
Consistency Check	Probability Limit
If customer first heard of efficient AC and ducts from PG&E	Maximum of 50%
If PG&E rebates were most important reason for installing Program measures	Maximum of 33%
If PG&E rebates were not one of the top three reasons for installing Program measures	Minimum of 67%

6.2.3 Self-Report Results

Using the approach outlined above, free-ridership ratios were assigned to each participant builder who responded to the survey. Weighted averages of the results were then developed and are presented in Table 6-6. Weights were based on the number of homes associated with each builder, estimated savings for each home, and the site expansion weights (described in Section 2). Implied net-to-gross ratios (*NTGR*s) are calculated as one minus the free-ridership ratio.

	Without Consis	stency Checks	With Consistency Checks		
	Free-Ridership Implied		Free-Ridership	Implied	
Measure	Ratio	NTGR	Ratio	NTGR	
Efficient AC	0.292	0.708	0.266	0.734	
Enhanced Ducts	0.269	0.731	0.218	0.782	
Gas Cooking	0.667	0.333	0.555	0.445	
Gas Dryer Stubs	0.631	0.369	0.536	0.464	

 Table 6-6

 Self-report Free-ridership and Implied Net-to-Gross Ratios

As Table 6-6 shows free-ridership is lowest and implied *NTGR*s are highest for the air conditioner and duct measures. Free-ridership ratios decrease somewhat, and implied *NTGR*s increase somewhat, when the consistency checks are included. The result is due to a number of builders (between 5 and 10, depending on the measure) indicating that they would probably have installed the measure without the rebate but also stated that the rebate is the most important factor influencing their decision to install the measure. For these builders, the free-ridership ratio was adjusted downward from 0.67 to 0.33. One builder indicated that they would probably not install measures without the rebate, but did not rank rebates as an important installation factor. The free-ridership ratios were increased from 0.33 to 0.67 for this builder.

6.3 SIMPLE EFFICIENCY COMPARISON

The first step in the efficiency comparison analysis is to define energy efficiency improvements for participants and nonparticipants using components of the gross savings developed in Section 5 of this report. For this analysis, efficiency improvements are defined as realized savings divided by calibrated base case usage. Using the impacts developed in the engineering analysis (using compliance thermostat schedules) and the calibration coefficients developed in the SAE analysis cooling and heating efficiencies are calculated for each home in the study as follows:

$$CoolingEfficiency = \frac{0.842 \times ACSavings + 2.094 \times DuctSavings + 0.276 \times OtherSavings}{0.842 \times BaseCoolingUse}$$
(1)

$$Heating Efficiency = \frac{0.881 \times FurnaceSavings + 0.542 \times DuctSavings + .491 \times OtherSavings}{0.881 \times BaseHeatingUse}$$
(2)

Next a comparison of participant and nonparticipant efficiency improvements is used to calculate net-to-gross ratios (*NTGR*s) as follows:

$$NTGR_{Cooling,Heating} = \frac{(Participant_Efficiency - Nonparticipant_Efficiency)}{Participant_Efficiency}$$
(3)

The *NTGR* then can be multiplied by the gross realized savings to provide estimates of net savings.

For the clothes drying and cooking measures, efficiency changes are not the major focus. Instead, increases in the penetration of gas appliances is the major target of the program. For these measures, the *NTGR* is developed by comparing appliance saturations for participants (who received rebates for cooking and drying) and nonparticipants as follows:

 $NTGR_{Drying,Cooking} = \frac{(Participant_Gas_Saturation - Nonparticipant_Gas_Saturation)}{Participant_Gas_Saturation}$ (4)

*NTGR*s based on the simple comparisons are presented in Table 6-7. The space conditioning *NTGR*s are in the 0.75 - 0.80 range while the gas appliance *NTGR*s are very low. Further investigation of these ratios indicates than the low values are primarily due to the rather high saturation of gas appliances in the nonparticipant sample.

	Participant Efficiency	Nonparticipant Efficiency	Difference	NTGR
Cooling	0.26170	0.06580	0.19590	0.749
Heating	0.06300	0.01260	0.05040	0.800
	Participant Saturation	Nonparticipant Saturation	Difference	NTGR
Clothes Drying	0.5238	0.4737	0.0501	0.096
Stovetop	0.8986	0.7368	0.1617	0.180
Oven	0.6304	0.4947	0.1357	0.215

 Table 6-7

 Net-to-Gross Ratios Based on Efficiency and Saturation Comparisons

Table 6-8 compares evaluation gas saturations with comparable numbers from PG&E's most recent Residential Appliance Saturation Survey. As the table indicates, both participant *and* nonparticipant homes in this study show much higher penetrations of gas appliances versus other groups.

 Table 6-8

 Comparison of Evaluation Gas Saturations to PG&E Residential Appliance Saturation

 Survey (RASS) Results

	Current Study		Comparable RASS Numbers - After Adjusting Out Other Fuels				
			Single	Newest	Central	Elec & Gas	
End Use	Participants	Nonparticipants	Family	Homes	Valley	Areas	
Clothes Drying	0.524	0.474	0.331	0.302	0.190	0.375	
Stovetop	0.899	0.737	0.414	0.498	0.364	0.439	
Oven	0.630	0.495	0.352	0.379	0.331	0.385	

One factor that may contribute to the relatively high nonparticipant gas saturations is that the nonparticipant homes are generally larger and more expensive than the participant homes (see Section 3, Table 3-3). Since gas cooking and the availability gas dryer stubs are considered premium features in a home, the inadvertent selection of a higher-end nonparticipant group for the study may bias the gas measure *NTGRs* downwards.

Another factor that could be contributing to the higher nonparticipant saturations is spillover. The RASS estimates shown in Table 6-8 reflect, for the most part, data collected prior to the implementation of the gas appliance portion of the Program (the Newest Homes category reflects homes built between 1989 and 1994). Part of the increase in gas saturations between the RASS period and the current Program period may reflect a general change in builder practices as a result of Program influences.

The simple comparison approach outline above is consistent with the Protocols in that it utilizes differences between participants and nonparticipants to develop net savings. To the extent that the nonparticipant sample group provides a good control group for the participants, this approach will provide a fairly accurate estimate of net savings. However, variations in the groups can introduce bias.

6.4 EFFICIENCY CHOICE MODELING

There are a number of reasons why participants and nonparticipants may differ, thus limiting the accuracy of the simple comparison technique described above. Differences may be due to:

- random effects, such as the size of the homes included in the sample (in square footage) or the number of stories in the home (as discussed above);
- systematic effects, such as the tendency of the program to focus marketing efforts on certain types of builders; and
- self-selection bias resulting from participating builders self selecting themselves into the program.

The efficiency choice modeling approach can help to correct for differences between participants and nonparticipants in the calculation of net savings. This approach uses data collected for the engineering and load impact regression models and additional data collected during the survey of participant and nonparticipant builders to estimate a multi-equation efficiency choice (decision analysis) model.

The efficiency choice model is estimated using two types of equations: a binary discrete choice equation of program participation, and a regression equation to explain efficiency improvement. The general form of these equations is:

$$Participation = f_1(Efficiency, INC, MKT, DEC, SITE)$$
(5)

$$Efficiency = f_2(Participation, INC, MKT, DEC, SITE)$$
(6)

where

Efficiency	= efficiency improvements as calculated in equations (1) and (2) above
Participation	= a binary variable indicating program participation
INC	= a variable representing the incentive rate facing builders

MKT	= a set of market conditions facing builders
DEC	= a set of features relating to decision-making at the site
SITE	= a set of site characteristics

As the above equations (5) and (6) indicate, there is an endogeneity problem as both *Participation* and *Efficiency* enter into both equations. Program participation is expected to affect home efficiency but, in addition, builders who are likely to increase their homes' efficiency are also more likely to participate in the program.

The general approach to estimating the above system of equations is to use a two-stage process. First, a participation decision model is estimated using only the exogenous variables (excluding the *Efficiency* variable). Second, results of the participation model are included in the *Efficiency* regression model to help correct for self-selection bias. For this study, selectivity correction terms, known as Mills ratios, that are a function of the estimated probability of participation are included as explanatory variables in equation (6) in addition to the binary *Participation* variable.

The discrete choice participation model for this project is specified as a logit model with the following functional form:

$$Prob[Part] = \frac{e^{\beta z}}{(1+e^{\beta z})}$$
(7)

where:

Prob[Part]= probability that a customer participates in the Programz= vector of independent variables explaining customer
participation β = vector of parameters

The dependent variable in the estimated equation takes on the value of "1" for participant homes and "0" otherwise. The model is estimated using Maximum Likelihood Estimation (MLE). Table 6-9 presents results of the participation model. Most of the variables in the model are reasonably significant (t-statistics close to 2.0 or more in absolute terms) and the log likelihood ratio is fairly high for this type of model.

oa:wpge33:report:final:6net_sav

	Parameter	
Variable	Estimate	t-statistic
Intercept	2.335	1.7
Number of residents in home	-0.336	-1.6
Homeowner has a college education	0.700	1.5
Energy efficiency was an important home purchase factor	0.716	1.6
Builder only builds production homes	1.109	2.0
Builder only builds custom homes	-2.002	-1.9
Energy efficiency ranked 1st or 2nd in construction approach	2.346	2.6
Quality ranked 1st in construction approach	-0.595	-1.3
Builder constructs luxury homes	-0.951	-1.8
Builder believes buyers are willing to pay for energy efficiency	-1.984	-3.1
Builder believes energy efficiency improves home salability	2.087	3.3
Number of homes builder built in 1994-96 period	-0.119	-4.1
Climate zone 11 indicator	-0.617	-0.9
Climate zone 12 indicator	0.696	1.3
Number of observations	166	
Log likelihood ratio	0.3399	

Table 6-9Participation Decision ModelDependent Variable: Program Participation

Using the results of the participation decision model, two Mills ratios are calculated using the following formulas:

Mills Ratio one (MR1): For participan

ts: MR1 =
$$-\left[\frac{(1-P) \times \ln(1-P)}{P} + \ln(P)\right]$$

For nonparticipants:
$$MR1 = \frac{P \times \ln(P)}{1 - P} + \ln(1 - P)$$
 (8)

Mills Ratio two (MR2): $MR2 = MR1 \times Part$

Where P equals the estimated participation probability and *Part* is a binary variable equal to 1.0 for participants and 0.0 for nonparticipants.

The Mills ratios are then included in the efficiency regression model to control for self selection bias. The cooling and heating efficiency models are presented in Table 6-10.

(9)

	Cooling Efficiency		Heating Efficiency	
Variable	Parameter		Parameter	
	Estimate	t-statistic	Estimate	t-statistic
Intercept	-0.089766	-1.56	-0.024414	-0.68
Participation indicator	0.311329	8.26	0.090874	4.07
Mills Ratio 1	-0.040178	-2.37	-0.011407	-1.14
Mills Ratio 2	-0.000571	-0.02	-0.005590	-0.30
Home size (sq. ft.)	0.000027	1.19	0.000012	0.85
Number of levels in home	0.095792	3.52	0.027883	1.67
Home not part of a subdivision	0.049693	1.27	0.010429	0.44
Number of residents in home	-0.005896	-0.60	-0.008271	-1.39
Energy efficiency ranked 1st or 2nd in construction factors	-0.090452	-2.50	-0.060194	-2.20
Builder only builds production homes	-0.035403	-1.37	-0.000027	0.00
Climate zone 11 indicator	-0.126062	-3.66	0.013101	0.60
Climate zone 12 indicator	-0.065411	-2.24	-0.053793	-2.90
Number of observations	166		150	
Adjusted R2	0.4611		0.1969	

Table 6-10Cooling and Heating Efficiency ModelsDependent Variable: Efficiency Relative to Base Case Usage

Once the efficiency choice model was estimated, it was used to estimate what the participant comparison efficiency improvement should be for the net-to-gross calculations (assuming absence of the program) by simulating the *Efficiency* equation, Equation (6) and Table 6-10, over participants while setting the value of the *Participation* variable to zero. Setting the participation to zero impacts the Participation indicator and Mills Ratio 2 variables shown in Table 6-10.

The modified net-to-gross calculation is [see Equation (3) for the simple calculation]:

$$NTGR = \frac{(Participant_Efficiency - Participant_Base_Efficiency)}{Participant_Efficiency}$$
(10)

where the Participant_Base_Efficiency variable is the estimated value from Equation (6) after removing the effects of program participation.

The *NTGR*s are calculated and applied to gross savings estimates on a site-specific basis to determine net savings for each participant home. Results are then weighted up to population totals to provide estimates of net Program savings for the space conditioning end use. Program *NTGR*s for space conditioning are calculated by dividing net savings by gross savings.

Results of the efficiency choice modeling effort are summarized in Table 6-11.

			-	
		Adjusted		
	Participant	Participant		
	Efficiency	Efficiency	Difference	NTGR
Cooling	0.26170	-0.03596	0.29766	1.137
Heating	0.06300	-0.02803	0.09103	1.445

 Table 6-11

 Net-to-Gross Ratios Based on the Efficiency Choice Model

Since the estimation of Equations (5) and (6) utilizes differences between participants and nonparticipants, in addition to the impacts of Program participation, to quantify changes in efficiency improvements, the efficiency choice approach is entirely consistent with the M&E Protocols.

6.5 NET-TO-GROSS INTEGRATION

Results of the three net savings approaches implemented above are summarized by end use in Table 6-12. A comparison of the methods reveals:

- Cooling and heating *NTGRs* from the efficiency choice model are higher than the *NTGRs* from the self report and simple comparison methods, which are similar. The efficiency choice model accounts for differences between the participants and nonparticipants, adjusts for self-selection bias, and is more likely to incorporate spillover effects than either of the other two methods.
- Clothes drying and cooking *NTGR*s from self reports are much higher than *NTGR*s from the simple comparison method.
- It is quite possible that differences between the participant and nonparticipant groups may result in a downward bias in the simple comparison results, relative to the self report and efficiency choice methods as discussed below.

	NTGR by Analysis Method			
	Simple		Efficiency	
	Self Report	Comparison	Choice Model	
Cooling	0.750	0.749	1.137	
Heating	0.782	0.800	1.445	
Clothes Drying	0.464	0.096	-	
Cooking	0.445	0.191	-	

Table 6-12Summary of Different Net-to-Gross Ratios

Table 6-13 presents a comparison of average house price, house size, and annual income for participants and nonparticipants. Nonparticipants tend to have higher income and live in larger, more expensive homes. These factors tend to offset some of the effects of the Program when viewed from the perspective of the simple comparison net-to-gross analysis:

• the more expensive homes can be associated with higher quality construction, leading to higher levels of energy efficiency for cooling and heating;
- additional home features such as gas cooking and the presence of gas dryer stubs are more likely to be seen in higher priced homes; and
- homeowners with higher incomes are probably more likely to purchase gas dryers as the first cost hurdle for gas is not as important.

Because of these factors, cooling and heating *NTGR*s from the efficiency choice model and clothes drying and cooking *NTGR*s from the self report method were deemed most appropriate to use in computing net savings for the program. The final *NTGR*s used in developing net Program savings are summarized in Table 6-14.

 Table 6-13

 Comparison of Participant and Nonparticipant Home and Occupant Attributes

	Participants	Nonparticipants	% Difference
Average House Price	\$179,968	\$206,842	15%
Conditioned Square Footage	1,949	2,110	8%
Average Annual Income of Occupants	\$68,010	\$72,863	7%

Table 6-14
Final Net-to-Gross Ratios used to Estimate Net Savings

	Final NTGR
Cooling	1.137
Heating	1.445
Clothes Drying	0.464
Cooking	0.445

6.6 SPILLOVER

Both the simple efficiency comparison and the efficiency choice modeling approaches discussed above account for participant spillover because total end savings (Program-related and otherwise) are included in the analysis. However, nonparticipant spillover (where the Program has induced builders to install efficiency measures in nonparticipant homes) is not captured, particularly in the simple comparison analysis. In fact, nonparticipant spillover counts against the Program by narrowing the efficiency difference between participants and nonparticipants.

As part of the builder survey, spillover issues were explored. Eighteen of the 38 builders who had built homes outside of the Comfort Home Program during the 1994-1996 period indicated that the Program influenced their decision to install energy efficiency measures outside of the Program. Half of these builders claimed the Program had a significant influence on their decisions, while the remainder indicated the Program had influenced their decision "somewhat."

Using builder-supplied data, nonparticipant spillover was quantified use the following equation:

 $NPSpillover = \% Affected \times \% Homes \times \% Savings \times ProgEffect$ (11)

where:

oa:wpge33:report:final:6net_sav

=	Percent of builders who built homes outside of the Program and who said the Program influenced their decision to improve efficiency in nonprogram homes
=	Percent of nonprogram homes in which they stated that measures were installed
=	Percent savings for each measure
=	1.0 if the Program significantly influence their decision and 0.5 otherwise
	=

As part of the survey, builders provided two types of efficiency improvement information regarding nonprogram homes: (1) the percent of homes in which they installed specific measures, and (2) the average improvement above Title 24 that they built to.

Using this data, two separate approaches were used to quantify spillover effects. First, a bottomup estimate was developed on a measure-specific basis, using builder-supplied data on percent of nonprogram homes in which measures were installed and a percent savings estimate for each measure. Savings percents used are as follows:

- Efficient air conditioning: 17% (increase from 10 SEER to 12 SEER);
- Duct improvement: 10% for air conditioning, 3% for heating (based on the realized gross participant savings estimates shown in Section 5);
- Increased ceiling insulation: 9% for air conditioning, 6% for heating (based on an increase from R-38 to R-49 levels and Micropas analysis); and
- Premium efficiency windows: 1% for air conditioning, 12% for heating (based on a decrease in U-values from 0.65 to 0.52 and Micropas analysis);

A second approach combined the *%Homes* and *%Savings* terms in Equation (11) into a single estimate: the average percent improvement in efficiency (above Title 24) that nonprogram homes were built to. This estimate was supplied by builders as part of the survey.

Results from Equation (11) were applied to the specific nonparticipant homes in the study to determine the average improvement in nonparticipant efficiency attributable to the Program. Results are presented in Table 6-15.

		Program-related
Spillover quantification approach	Enduse	efficiency improvement
Measure specific	Cooling	0.0076
	Heating	0.0024
Improvement over Title 24	Cooling	0.0106

Heating

 Table 6-15

 Average Program-related Efficiency Improvement in Nonprogram Homes

0.0106

To integrate the spillover estimates into the net-to-gross analysis, the simple participantnonparticipant comparison equation [Equation (3)] was modified as follows:

 $NTGR'_{Cooling,Heating} = \frac{Participant_Efficiency - (Nonparticipant_Efficiency - NPSpillover) + NPSpillover}{Participant_Efficiency}$ (12)

Now, instead of counting against the Program *NTGR*, nonparticipant spillover contributes to it. The overall effect is twice the estimate of spillover. Table 6-16 presents revised simple-comparison *NTGRs*, for the two sets of nonparticipant spillover estimates shown in Table 6-15. The limited use of spillover estimates causes the simple-comparison *NTGRs* to move towards the estimated developed in the efficiency choice model.

 Table 6-16

 Revised Simple-Comparison Net-to-Gross Ratios Incorporating Nonparticipant Spillover

	а	b	С	(a-b)/a	(a-b+2c)/a
	Participant	Nonparticipant		Initial	Revised
	Efficiency	Efficiency	NP Spillover	NTGR	NTGR
	Measure-s	pecific Nonpartio	cipant Spillover (Calculation	
Cooling	0.26170	0.06580	0.0076	0.749	0.807
Heating	0.06300	0.01260	0.0024	0.800	0.876
Improvement over Title 24 Nonparticipant Spillover Calculation					
Cooling	0.26170	0.06580	0.0106	0.749	0.830
Heating	0.06300	0.01260	0.0106	0.800	1.137

6.7 NET PROGRAM IMPACTS

For space conditioning end uses, net impacts are calculated on a site-specific basis, then are expanded up to Program totals using the appropriate expansion weights. For the clothes drying and cooking end uses, the self-report *NTGR*s are applied to the Program-level gross impacts identified in Section 5 of this report. Net impact results are discussed next.

6.7.1 Space Conditioning Impacts

Net impacts for the space conditioning end uses are presented in Table 6-17. All impacts are calculated on a site-specific base, then weighted up to Program totals. Net cooling impacts are estimated to be 512 kWh per participating home and 2,026,661 kWh for the Program. Heating impacts are estimated to be 27.4 therms per home and 108,663 therms for the Program.

Net I logi		10
	Average	Total
Cooling Savings - kWh/year	512	2,026,661
Heating Savings - Therms/year	27.4	108,663

Table 6-17Net Program HVAC Impacts

Table 6-18 compares evaluation net impacts with PG&E *ex ante* estimates. The evaluation results are lower that PG&E estimates. However, the net realization rates are higher than the comparable gross realization rates (see Table 5-4) because the evaluation *NTGRs* exceed 1.0, while the PG&E *NTGRs* are just below 1.0 (0.99 for cooling and 0.98 for heating).

 Table 6-18

 Comparison of Net HVAC Impacts to PG&E ex ante Estimates

	Evaluation	PG&E ex ante	Realization Rate
Cooling Savings - kWh/year	2,026,661	2,723,813	0.74
Heating Savings - Therms/year	108,663	155,371	0.70

6.7.2 Clothes Drying and Cooking

Cooking and clothes drying impacts are presented in Table 6-19. These impacts are derived by applying the appropriate *NTGRs* from Table 6-14 to gross impacts (see Table 5-5).

Table 6-19Net Program Impacts for Gas Clothes Drying and Cooking Measures

	Per Home		Total		
	Therms	kWh	Therms	kWh	
Clothes Drying	-7.4	192	-29,115	759,236	
Cooking	-6.2	93	-24,593	367,488	

Evaluation clothes drying and cooking impacts are compared to PG&E estimates in Table 6-20. Net realization rates for these end uses are lower than comparable gross realization rates because the evaluation *NTGRs* (0.46 for clothes drying and 0.45 for cooking) are lower than the PG&E estimates (0.74 for clothes drying and 0.62 for cooking). Overall, net evaluation savings exceed PG&E estimates for clothes drying but are lower for cooking.

 Table 6-20

 Comparison of Net Clothes Drying and Cooking Impacts to PG&E ex ante Estimates

	Evalu	ation	PG&E ex ante		Realization Rate	
	Therms	kWh	Therms	kWh	Therms	kWh
Clothes Drying	-29,115	759,236	-17,115	513,442	1.70	1.48
Cooking	-24,593	367,488	-36,158	762,959	0.68	0.48

6.7.3 Other End Uses

For end uses not evaluated - water heating and lighting, default *NTGR*s of 0.75 were used, based on the default NTGR assumption in the M&E Protocols for miscellaneous program activity. Program impacts are summarized in Table 6-21.

	-		
	Total kWh	Total kW	Therms
Lighting	16,308	0.825	-
Water heating	-	-	927

Table 6-21
Net Savings for Measures Not Evaluated

6.7.4 Net Impacts by Costing Period

Using the allocation factors developed from load shape data and discussed in Section 4, net impacts were calculated for the PG&E costing periods. Results are presented in Table 6-22.

	PG&E Costing Period						
	Summer Peak	Summer Partial Peak	Summer Off Peak	Winter Partial Peak	Winter Off Peak		
kWh Impacts							
Cooling	634,017	482,867	892,130	9,646	8,001		
Clothes Drying	71,191	101,720	161,716	219,238	205,372		
Cooking	43,629	52,302	69,846	113,271	88,440		
Lighting	3,856	3,336	5,737	1,797	1,580		
Total	752,693	640,225	1,129,429	343,952	303,393		
kW Impacts							
Cooling	2,597.2	3,745.4	1,809.2	0.0	0.0		
Clothes Drying	81.3	99.7	100.3	154.4	15.2		
Cooking	38.6	143.5	24.0	164.0	16.1		
Lighting	0.8	1.2	0.5	0.2	0.0		
Total	2,717.9	3,989.8	1,934.0	318.6	31.3		
Therm Impacts							
Heating	1,371			107,2	292		
Clothes Drying	-12,832			-16,283			
Cooking	-11,094			-13,4	499		
Water Heating	463				464		
Total		-22,092	77,	974			

Table 6-22Net Impacts by PG&E Costing Period

6.7.5 Net Impact Confidence Intervals

Net impact confidence intervals are provided in Table 6-23. Space cooling and heating confidence intervals are derived from the statistical output of the efficiency choice model. Confidence intervals for clothes drying and cooking are based on the estimated variance for gross impacts combined with the estimated variance for the estimated *NTGR*s. Program-level confidence intervals are calculated as the sum of the end use intervals.

		90% Confidence Interval			80% (Confidence I	nterval
	Point Estimate	Percent	Lower bound	Upper bound	Percent	Lower bound	Upper bound
kWh Impacts							
Cooling	2,026,661	±24%	1,536,388	2,516,934	±19%	1,645,172	2,408,150
Clothes Drying	759,237	±66%	259,659	1,258,815	±51%	370,508	1,147,966
Cooking	367,488	±110%	-35,524	770,500	±85%	53,898	681,078
Lighting	16,308	±0%	16,308	16,308	±0%	16,308	16,308
Total	3,169,694	±44%	1,776,831	4,562,557	±34%	2,085,886	4,253,502
Peak kW Impacts							
Cooling	2,597.2	±24%	1,968.9	3,225.5	±19%	2,108.3	3,086.1
Clothes Drying	81.3	±66%	27.8	134.8	±51%	39.7	122.9
Cooking	38.6	±110%	-3.7	80.9	±85%	5.7	71.5
Lighting	0.8	±0%	0.8	0.8	±0%	0.8	0.8
Total	2,717.9	±27%	1,993.8	3,442.0	±21%	2,154.5	3,281.3
Therm Impacts							
Heating	108,663	±53%	51,002	166,324	±41%	63,796	153,530
Clothes Drying	-29,115	±66%	-9,957	-48,273	±51%	-14,208	-44,022
Cooking	-24,593	±110%	2,377	-51,563	±85%	-3,607	-45,579
Water Heating	927	±0%	927	927	±0%	927	927
Total	55,882	±21%	44,349	67,415	±16%	46,908	64,856

Table 6-23Net Impact Confidence Intervals

This appendix contains the survey instruments used for project data collection:

- 1. the onsite home survey; and
- 2. the telephone builder survey.

Onsite Home Survey

PG&E Residential New Construction Evaluation - On-site Survey

Confidential: All data collected on this form is confidential and may only be used for PG&E studies.

Home ID#	CNTL			
Surveyor	AUDNAME		Date	APPTDATE
Customer Name	CUSNAME			
Address	SERADDR			
City	SERCITY		Zip Code	SERZIP
Phone Number 1	PHONE1	(W) (H)		
Phone Number 2	PHONE 2	(W) (H)		

Notes: Notes

Dwelling Characteristics

Dwelling Type	
DWLTYPE	
Age of Home	
HSAGE	LI
Number of Levels	
NUMLVL	
Estimated Conditioned Area, SF	
SFCON	
Estimated Unconditioned Area, SF	
SFUNCON	
Number of Bedrooms	
BEDROOM	
Total Number of Rooms (excluding hallways,	
bathrooms, basements, closets, and any rooms not	
used as living space)	
NUMROOM	
Weather-stripping around doors? (Y/N)	
WTRSTDR	

Dwelling Type Codes	
1. Single-Family Stand Alone	4. Mobile Home
2. Single-Family Attached	5. Other
3. Multi-Family	DWL5DESC

W	alls
---	------

Wall Reference Number	WL1	B1	WL2	B2	WL3	B3	WL4	B4
WLREF Wall Construction Code								
WLCNSTR1 Wall Siding Type Code								
WLSDTYP1 Percent Wall Below Grade								
WLPCBGD1 Wall Thickness, inches								
WLTHCK1 Wall Insulation R-value								
WLINSR1 Wall Percent Insulated								
WLPCINS1 WALL COLOR CODE	_							
(1-DARK, 2-MEDIUM, 3-LIGHT)								

WLCOLOR1

Wall Construction Type Codes	Wall Siding Type Codes
1. No Exterior	1. Wood Siding
2. 2"X4" Wood Frame	2. Masonary Siding
3. 2"X4" Wood Frame w/ insul. sheet	3. Stucco\ Plaster
4. 2"X6" Wood Frame	4. Combination Wood / Masonary
5. 2"X4" Metal Frame	5. Metal Siding
6. 2"X6" Metal Frame	6. Vinyl
7. Concrete block	7. Other
8. Brick wall	
9. Other	WLCNTS9D

dows				
Window System Type	G 1	G 2	G 3	G
WDREF1 Window Type Code				
WDTYP1 Number of Panes				
WDPAN1 FRAME TYPE CODE				
WDFRM1 Glazing Type Code	,	,	,	,
Window NFRC ID # ²				
OVERHANG TYPE ³				
WDOVR1 Interior Shading Code				
WDINSHD1 EXTERIOR SHADING CODE				
WDEXSHD1 Describe Ext. Shading (sunscreens, WDSHDD1	adjacent buildings, tr	ees, etc.)		

Notes: 1. It is possible to enter a combination of glazing types.

- Sample: [2,3] means tinted glass with low-e coating.
- 2. Located on the glazing (if available).
- 3. Code indicated on the overhang sketch.
- 4. Describe Ext. Shading, including dimensions and distance from the window.

Window Type Codes	Glazing Type Codes	Frame Type Codes	Interior Shading	Exterior Shading
			Codes	Codes
1. Fixed	1.Clear Glass	1. Wood	0. None	0. None
2. Double Hung	2.Tinted Glass	2. Metal	1. Drapes	1.Building Structure
3. Casement	3.Reflective Glass/Film	3. Vinyl	2. Blinds	2.Tree(s) / Foliage
4. Sliding Pane	4.Low-E		3. Shutters	3. Fence
5. Skylight	5.Opaque		4. Roller shade	4. Other
6.Other (describe)	6.Gas-Filled		5. Other	

dows				
Window System Type	G 5	G 6	G 7	G
WDREF5 Window Type Code				
WDTYP5 Number of Panes				
WDPAN5 FRAME TYPE CODE				
WDFRM5 Glazing Type Code	,	,	,	,
Window NFRC ID # ²				
OVERHANG TYPE ³				
wDOVR5 Interior Shading Code				
WDINSHD5 EXTERIOR SHADING CODE				
WDEXSHD5 Describe Ext. Shading (sunscreens, WDSHDD2	adjacent buildings, tr	ees, etc.)		

Notes: 1. It is possible to enter a combination of glazing types.

- Sample: [2,3] means tinted glass with low-e coating.
- 2. Located on the glazing (if available).
- 3. Code indicated on the overhang sketch.
- 4. Describe Ext. Shading, including dimensions and distance from the window.

Window Type Codes	Glazing Type Codes	Frame Type Codes	Interior Shading	Exterior Shading
			Codes	Codes
1. Fixed	1.Clear Glass	1. Wood	0. None	0. None
2. Double Hung	2.Tinted Glass	2. Metal	1. Drapes	1.Building Structure
3. Casement	3.Reflective Glass/Film	3. Vinyl	2. Blinds	2.Tree(s) / Foliage
4. Sliding Pane	4.Low-E		3. Shutters	3. Fence
5. Skylight	5.Opaque		4. Roller shade	4. Other
6.Other (describe)	6.Gas-Filled		5. Other	

Ceilings ¹			
Ceiling Reference Code	C1	C2	C3
CEREF1			
Estimated Ceiling Area, SF			
CESQFT1			
Description			
CEDESC1			
Insulation	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·
Insulation Type Code			
CEINSTY1			<u> </u>
Insulation R-value			
CEINSRV1			
Insulation Thickness, inches			
CEINSTK1 Percent Insulated, %			
CEINSPC1			
Describe Insulation Condition			
CEINSCN1			[]
Roof Exterior Color			
CERFCLR1			
Skylights (Y/N)			
CESKYLG1			
Window System Type			

CEWWDSYS1

Notes: 1. Draw the ceiling outlines on the floor plan (pages8, 9) and identify with a proper code (e.g. C1, C2..).

Roof

RFSLOPE

Roof Slope

- 1. Almost Flat
- 2. Average Incline
- 3. Very Steep

Roof Insulation Type Codes								
1. Mineral Wool/Fiber (batt)								
2. Expanded Polystyrene								
3. Expanded Polyurethane								
4. Preformed Insulation								
5. Other								
CEINOTR1								

Floor Reference Code	F1	F2	F3
FLREF1	· · · · · · · · · · · · · · · · · · ·	F F F F F F F F F F	· · · · · · · · · · · · · · · · · · ·
Estimated Floor Area, SF			
FLSOFT1			
Floor Type Code			
FLTYP1			
Insulation R-Value			
FLINSRV1 Raised Floor Only			
Crawl Space Height (ft.)			
FLRSHT1			
Crawl Space Wall			
FLRSTYP1			
Is Crawl Space Vented (Y/N)			
FLRSVNT1		· · · · · · ·	· · · · · · · · ·
Crawl Space Wall Insulation			
FLRSWIN1			
Percent of the Floor Tiled or Vinyl			
FLTILPC1			
Percent of the Floor Carpeted			
FLCPTPC1			

Basement

BSMTCDTN

Is Basement Conditioned (Y/N)

Notes: 1. Draw the floor outlines on the floor plan (pages 8, 9) and identify with a proper code (e.g. F1, F2..).

Crawl Space Wall	Floor Type Code
Construction Type Codes	
1. Framed	1. Raised floor
2. Concrete	2. Slab-on-grade
3. Other	3. Floor over Basement
FLRST51	4. Floor over Other Uncond. Spaces

Floor Plan Sketch

Notes: 1) Sketch the plan of each floor separately. 2) Include a Wall Reference Number for each wall. Example: [# B1]. (The Reference Number will be one and the same for the walls with one and the same construction characteristics). 2) Include the outer length of each wall. 3) Indicate North direction. 4) Draw the ceiling outlines with a red pencil and identify with a proper code. Example: [# C1]. 5) Draw the floor outlines with a green pencil and identify with a proper code. Example: [# F1].

First Floor

Second Floor

500	ond .	1 100	/1												

Floor Plan Sketch (cont.)

Notes: 1) Sketch the plan of each floor separately. 2) Include a Wall Reference Number for each wall. Example: [# B1]. (The Reference Number will be one and the same for the walls with one and the same construction characteristics). 2) Include the outer length of each wall. 3) Indicate North direction. 4) Draw the ceiling outlines with a red pencil and identify with a proper code. Example: [# C1]. 5) Draw the floor outlines with a green pencil and identify with a proper code. Example: [# F1].

Basement

Elevations Plan Sketch

Notes: 1) Sketch each elevation separately. 2) Mark Wall Reference Numbers as the walls appear on the elevation. Example: # B1. (The Reference Number will be one and the same for the walls with one and the same construction characteristics). 2) Include the wall height. 3) For each elevation show the windows location and mark the Window System Type (from p.12 Window System Sketch) and number of windows. Example: [(3) G1] means "three windows type G1".

Front

Back

Elevations Plan Sketch, (cont.)

Notes: 1) Sketch each elevation separately. 2) Mark Wall Reference Numbers as the walls appear on the elevation. Example: # B1. (The Reference Number will be one and the same for the walls with one and the same construction characteristics). 2) Include the wall height. 3) For each elevation show the windows location and mark the Window System Type (from p.12 Window System Sketch) and number of windows. Example: [(3) G1] means "three windows type G1".

<u>Right</u>

Left

Window System Sketch

Notes: 1) Sketch each different window system separately. 2) Show the dimensions including the frame.

Window System Type G1 Window System Type G2 Image: System Type G1 Image: Image: System Type G1</td

Window System Type G3

Window System Type G4

VV III	uuw	/ Sy:	SICII.	<u>i i y</u>	pe G	<u>13</u>					VV 111	uuw	/ Sy	stem	LТУ	pe G	r 4		
<u> </u>							 	 	 	 	 							 	
<u> </u>							 		 	 									
<u> </u>							 		 	 									
<u> </u>							 	 	 	 	 							 	

Window System Sketch, (cont.)

Notes: 1) Sketch each different window system separately. 2) Show the dimensions including the frame.

Window System Type G5

Window System Type G6

_	 	 ,	_							~ / -				
		 			 								 	 <u> </u>

Window System Type G7

Window System Type G8

Overhang Sketch

Notes: 1) Show the dimensions A, B and C on sketches.

Overhang Type S1

Overhang Type S2

Overhang Type S3

Overhang Type S4

Overhang Sketch (cont.)

Notes: 1) Show the dimensions A, B and C on sketches.

Overhang Type S5

Overhang Type S6

Overhang Type S7

Overhang Type S8

Heating Systems

ficating bystems	System #1	System #2
System Type Code ¹		
HTSYS1		
Fuel Code		
HTFUEL1		
Quantity		
HTQTY1		
Use Code		
HTUSE1		
Age		
HTAGE1		
Programmable Thermostat (Y / N)		
HTPGTHM1		
Equipment Location Code		
HTLOCN1		
Manufacturer		
HTMANU1	 	
Model #		
HTMODL1		
Serial #		
HTSERL1		
Output (Btu)		
Input (Btu) HTIBTU1		
Input (kW)		
Volts/ Phase/ Rated Amps (RLA)		
HTRLA1		
Auxiliary Heat, kW		
HTAUX1		
AFUE or HSPF or COP (circle one)		
HTTYP1		
Area serving (1 st floor, 2 nd floor, etc.)		
HTAREA	· ·	

Notes: 1) If System Type Code is 8, explain the usage pattern. Example: Gas furnace rarely used, fireplace - 4hr/day, portable electric heaters - 2 hr/day.

,	System Type Codes		
1.	DX Heat Pump	5.	Central Forced Air Packaged Unit Gas Pack
2.	Central Forced Air Furnace	6.	Portable Heaters
3.	Electric Resistance Baseboard	7.	Fireplace/Wood Burning Stove
4.	Radiant Heater	8.	Combination/Addition of a secondary system

E =	Electric	P = LPG	1. Often
1. C	onditioned Space	3. Unconditioned Basement	5. Outside

HVAC SYSTEM

Cooling Systems

	System #1	System #2
System Type Code		
CLSYS1		
Quantity		
CLQTY1		
Use Code		
CLUSE1		
Age		
CLAGE1		
Programmable Thermostat (Y / N)		
CLPGTHM1		
Outdoor Unit:		
Manufacturer		
CLOMANU		
Model #		
CLOMODL1		
Serial #		
CLOSERL1		
Indoor Fan Coil (if accessible):		
Manufacturer		
CLIMANU1		
Model #		
CLIMODL1		
Output (Btuh)		
CLOBTU1		
Input (kW)		
CLIKW1		
VOLTS/ PHASE/ RATED AMPS (I		
CLRLA1		
SEER or		
EER or		
CLEER1 COP		
CLCOP1	L	

CLNOTES

	System Type Codes
1.	Central Forced Air SystemAC only
2.	Central Forced Air Packaged UnitGas Pack
3.	Heat Pump
4.	Window or Wall AC unit
5.	Central Evaporative Cooler
6.	Other

Fuel Codes		Usage Codes
E = Electric	P = LPG	1. Often
G = Natural Gas	O = Oil	2. Supplemental
W = Wood	S = Steam	3. Rarely Used
C = Coal	M = Other	4. Never Used

Ducts

DUCT TYPE	
(0-none, 1-flexed, 2-sheet metal, 3-other)	
DCTTYP	
Duct Insulation R-value	
DCTINSRV	
Describe Duct Insulation Condition	
(1- good, 2-fair, 3-poor)	
DCTINSCN	
Return air	
(1- bend only, 2-ducted return, 3-none)	
DUCTRTAIR Duct Location	
Code and % of total duct surface area	— , —
DCTLOC1 DCTPCT1	
Code and % of total duct surface area	,
DCTLOC2 DCTPCT2	
Code and % of total duct surface area	,
DCTLOC3 DCTPCT3	
Return duct located in conditioned space, %	
DCTRTCP	
Describe Duct Header (connection to AC unit)	
DCTHDDS	

Du	Duct Location Codes		
1.	Conditioned space		
2.	Vented attic space		
3.	Vented crawl space		
4.	Open space (or garage)		
5.	Controlled ventilation crawl space		
6.	Slab-on-grade		

HVAC SYSTEM

APPLIANCES

Refrigerators

Type codes:
1. Auto Defrost Side by Side
2. Auto Defrost Top / Bottom
3. Auto Defrost Single Door
4. Manaul Defrost Single Door

Freezers

Cooking

Television

Number of televisions	TVNUM	
Number of TV set hours per day $(\# TV *$	# Hours) TVHRS	

Dishwasher

Use Electric Dishwasher (Y/N)	DSHELEC	
Uses energy saving cycle (Y/N)	DSHENRG	
Total loads per week	DSHTTLLD	
Number of loads weekdays between 10am - 6pm	DSHLDWKD	

Indoor Lighting

Total Number of Bulbs (including Fluorescent bulbs)	IBLBNUM	Ind
Number of Compact Fluorescent Bulbs (CFL)		
CFL hardwired	ICFLHARD	
CFL screw-in	ICFLSCRW	
Number of Fluorescent Tubes	IFLRNUM	

Outdoor Lighting

		Number	Operation, hr/day- bulb
Incandescent Bulbs	EINCNUM	EINCUSE	
Compact Fluorescent Bulbs (CFL)	ECFLNUM	ECFLUSE	
Security Lamps (Metal Halide/Mercury Vapor)	ESMHNUM	ESMHUSE	

Number CFLs that were installed when you move in ?

CFL hardwired	PCFLHARD	
CFL screw-in	PCFLSCRW	

APPLIANCES

Hot Water Heating

Make/Model	WHMODL			
Fuel Code	WHFUEL	Is Water Heater Located in conditioned	WHCONSP	
Tank Capacity	WHCAP	Input Rating (kW or kBtuh)	WHINP	
Temperature Setting	WHTEMP	Insulation Blanket (Y/N)	WHBLKT	
Is there a Timeclock (Y/N)	WHTIME	Are the visible portion of the pipes wrapped w\ insulation (Y/N)	WHPIPE	

Laundry

Use Clothes Washer (Y/N)	CW	
Number of hot / warm water loads	CWHTWM	
Use Clothes Dryer (Y/N)	CD	
Clothes Dryer Fuel Code	CDFUEL	
Is Dryer/Washer located in Cond.	CDCONSP	
Number of dryer loads per week	CDLOAD	
Gas Plug in Laundry Area (Y/N)	CDGAS	

Fuel	Codes
E =	Electric
G =	Natural Gas
P =	LPG
S =	Solar
M =	Other

٦

APPLIANCES

Pool		
Swimming Pool (Y/N)	PL	
Filter Pump		
Filter on timer (Y/N)	PLFPTIME	
Filter hours per day (summer)	PLFPSHR	
Filter hours per day (winter)	PLFPWHR	
Filter pump size (kW) or (HP)	PLFPSZKW	kW HP plfpszhp
Pool Heater		
Heater Fuel Type Code ¹	PLHTFL1	, PLHTFL2
Heater Capacity (kW) or (HP)	PLHTCPKW	kW HP plhtcphp
Heater Use (1-never, 2-seldom,	PLHTUSE	
3-a lot, 4-always)		
Note: ¹ Indicate combination of fuel type	s. Sample: (G,S) 1	neans Gas and Solar. Describe the percent use

allocated to each fuel type.

Fuel Codes	
E = Electric	P = LPG
G = Natural Gas	O = Oil
W = Wood	S = Steam
C = Coal	M = Other

A.1 RESIDENT QUESTIONNAIRE

1. Which of the following equipment or services are used in this home?

		Yes	No	(If Yes) How	v Equipm	ent
				Many	Use, hr/v	veek
Home Office Equipment						
Personal computer	PC			PCNUM	PCUSE	
Computer printer	PRN			PRNNUM	PRNUSE	
Fax machine	FAX			FAXNUM	FAXUSE	
Copier (other than fax)	CPR			CPRNUM	CPRUSE	
Miscellaneous						
Heated H ₂ O Bed	Н2О			H2ONUM	H2OUSE	
Small Kitchen Appliances	SKT			SKTNUM	SKTUSE	
Gas Fireplace	GFP			GFPNUM	GFPUSE	
Kiln	KLN			KLNNUM	KLNUSE	
Welding Equipment	WLD			WLDNUM	WLDUSE	
Medical Equipment	MED			MEDNUM	MEDUSE	
Well Pump	WLP			WLPNUM	WLPUSE	
Other (list)	OTR1			OTR1NUM	OTRIUSE	
Other (list)	OTR2			OTR2NUM	OTR2USE	
2. Fan Uses in Summer?						
		Don	't Have	Rarely So	ometimes	Often
Portable Fans	PORTFAN					
Ceiling Fans	CEILFAN					
Attic Fan	ATTCFAN					
Whole House Fan	WHHSFAN					

3. <u>How many</u> people, including yourself, live in this home?

OCCUP

4. How many people living in your home are:

		<u>Number</u>	
(under 6)	PRESCHL		
(6-17)	SCHOOL		
18-34	ADLT18		
35-59	ADLT35		
60-74	ADLT60		
Over 74	ADLT74		
	(6-17) 18-34 35-59 60-74	(dilder 0) SCHOOL (6-17) SCHOOL 18-34 ADLT18 35-59 ADLT35 60-74 ADLT60	(under 6) PRESCHL (6-17) SCHOOL 18-34 ADLT18 35-59 ADLT35 60-74 ADLT60

5. How many people occupy the home from 10 a.m. to 6 p.m. on typical weekdays?

		<u>Number</u>	
Winter (Dec - Feb)	OCCWN		
Spring (Mar-May)	OCCSP		
Summer (Jun-Aug)	OCCSM		
Fall (Sep-Nov)	OCCFL		

- 6.
 Is your home used as a primary work location?
 1.
 Yes

 HOMEOFFC
 2.
 No
- 7. Does someone occupy the home at least 10 months per year? YRRESID
- Did you vacation away from home at least one week this summer?
 VACATION
- 9. Is the home part of a subdivision?
 1. Yes

 SUBDVSN
 2. No
- 10. Name of the builder/developer who constructed the home: BUILDER

1. Yes

2. No

1. Yes

2. No

11. Do you own or rent?

1. Own 2. Rent

If you RENT then skip to Question 27

12. Approximate purchase price of home:

PRCPRICE Under \$100,000 1 \$100,000-\$149,999 2 \$150,000-\$199,999 3 \$200,000-\$249,999 4 \$250,000-\$299,999 5 \$300,000-\$349,999 6 \$350,000-\$399,999 7 \$400,000 or more 8

13. Please rank the following factors important in the decision to buy your home, with 1 for the most important to 7 for the least important:

14. Was energy efficiency an important consideration in your home purchase decision?

Yes	
No	

1.

2.

Is your home a PG&E Comfort Home?	1. Yes	
CMFTHOME	2. No	
	3. Don't Know	

15.
If Question 15 is answered YES, then answer Questions 16 and 17:

16.	What features of your home are energy efficient?		
17.	Were you specifically looking to purchase a PG&E Comfort Home?	1. Yes	
17.	CHWANT	1. Tes 2. No	
If Question	15 is answered NO , then answer Question 18 :		
18.	Are you aware of PG&E's California Comfort Home program that promotes energy efficient new homes?	1. Yes	
	CHAWARE	2. No	

If Question **15** or Question **18** is answered **YES** (i.e., you are aware of PG&E Comfort Homes) then answer Question **19**:

19. How did you first learn about the PG&E Comfort Home?

PG&E	CHLEARN1	
Builder	CHLEARN2	
Realtor	CHLEARN3	
Advertisements	CHLEARN4	
Word-of-mouth5	CHLEARN5	
Other (list)	CHLEARN6	
CHLEARND		

20. Would you be willing to pay more for a new home with cost effective energy efficient features? (Cost effective energy efficient features usually produce savings on your energy bill that over time will pay for the higher costs of the home.)

1.	Yes	
2.	No	

1. Yes

1. Yes

1. Yes

2. No

2. No

2. No

21. IF YES: How much more would you be willing to pay for a new home with cost effective energy efficient features?

PAYMORE1

PAYMORE

\$01	
\$0-5002	
\$501-1000	
\$1001-20004	
\$2001-30005	
\$3001-50006	
\$5001-10,0007	
Other (list)8	
PAYMORED	

22. Did you use any special energy efficient related loan packages to help with the financing of your new home?

EELOAN

- 23. IF YES: What type of package did you use? ______
- 24. IF NO: Were you aware that energy efficient loan packages were available? EELNAVLB
- 25. During your efforts to purchase a new home, were you aware that some homes are built more energy efficient than others?

EEMORE

26. IF YES: From what source did you learn about the different levels of energy efficiency in new homes?

Realtor	EEMRLRN1	
PG&E	EEMRLRN2	
New Home Advertising (Newspaper, Site Brochure)	EEMRLRN3	
Financial Institution	EEMRLRN4	
Other (list)	EEMRLRN5	

27. Have you used PG&E rebate coupons in the purchase of any of the following:

27A. Natural gas clothes dryer	Yes	
REBCD 2.	No	
27B. Energy efficient clothes washer	Yes	
REBCW 2.	No	
27C. Energy efficient refrigerator1.	Yes	
REBRF 2.	No	

28. What is the highest education level for the head of the household:

EDUC

Some high school1	
High school graduate2	
Some college/Junior college graduate3	
College graduate4	
Graduate degree5	

29. Approximate household income category:

INCOME

Under \$25,0001	
\$25,000-\$49,9992	
\$50,000-\$74,9993	
\$75,000-\$99,9994	
\$100,000-\$149,9995	
\$150,000 or more	

30.	Have you heard of the Energy Star New Homes Program that is being through the U. S. Environmental Protection Agency?	provided	1. Yes 2. No	
	ESTAR			
	31. IF YES: From what source did you learn about the different levels energy efficiency in new homes?	of		
	Realtor	ESLRN1		
	New Home Advertising (Newspaper, Site Brochure)	ESLRN2		
	Financial Institution	ESLRN3		
	Other (list)	ESLRN4		

32. IF YES: Please describe what you know about this program: $_{\tt ESDESC}$

END OF INTERVIEW, THANK YOU FOR PARTICIPATING

DUCT PRESSURE TESTING

Date	
Work Crew Names	
Address	

Fan Connection Location	ΔP_{duct}	Ring Number	Duct Leakage Flow, cfm
DPFANLCN	DPDELTAP	DPRING	DPLEAK

Air Handler Location (closet, attic, crawlspace, garage, etc.)	DPAHLOCN
Number of Supply Registers	DPSOPREG
Number of Return Registers	DPRETREG

Notes:

Telephone Builder Survey

Hello, my name is _____. I am calling on behalf of Pacific Gas & Electric as part of a research project. I have nothing to sell and will not ask for money. May speak with (INSERT NAME IF AVAILABLE)?

Hello, my name is _____. I am calling on behalf of Pacific Gas & Electric as part of a research project involving energy efficiency in newly constructed homes, including homes that were built under the PG&E Comfort Home Program. I have nothing to sell and will not ask for money. We would like to ask you a few questions about your company's knowledge and participation in the program and your company's use of building practices promoted by the program.

0.	Am I speaking to the person who would make major construction decisions,	0
	including the decision to participate in PG&E's program?	

(If "NO") May I speak to that person? *If contact is not available, get name and phone number for callback.*

(If "YES) Record name and number and continue with survey.

0a.	Name:
0b.	Position:
0c.	Phone Number:

This survey will take approximately 10-15 minutes.

A.2 HOME CONFIRMATION:

Our records indicate that you built homes at the following addresses under the Comfort Home Program during the past few years. Can you confirm this?

ID #	Project Name - PARTICIPANT HOMES	Yes	No	DK

Our records (also) indicate that you built homes at the following addresses during the past few years, and that these homes were <u>not</u> part of the Comfort Home Program. Can you confirm this?

ID #	Project Name - NON-PARTICIPANT HOMES	Yes	No	DK

A.3 BUILDER FIRMOGRAPHICS

1.	How many residential development projects did you build between 1994 and 1996?	1.
2.	In those developments, how many homes did you build (total, over 3 years)?	2.
3.	Of those homes, how may were single family and how many were multi family? (NUMBER OR PERCENT) - (<i>Indicate percent with a "%"</i> .)	
	Single Family	3a.
	Multi Family	3b.
4.	Of those homes, how many were custom homes and how many were production homes? (NUMBER OR PERCENT) - (<i>Indicate percent with a "%"</i> .)	
	Custom (one-of-a- kind)	4a.
	Production (multiple, with std., designs)	4b.
5.	What is the average price of the homes that you sell? 5.	
6.	What type of home buyers are your homes generally targeted towards?	
	First time buyers/entry level homes	ба.
	"Move-up" buyers/mid level homes	6b.
	Luxury home buyers/high end homes	6с.
	Other; specify	6d.

A.4 COMFORT HOME PROGRAM

FOR BUILDERS WITH PARTICIPANT HOMES: ask 7a-7c and then skip to 8:

7a.	Of the dwelling units that you built between 1994 and 1996, what percentage made use of the Comfort Home Program?	7a.	
7b.	Did you make use of the Comfort Home program prior to 1994?	7b.	Y N
7c.	Did you make use of the Comfort Home program this year, 1997?	7c.	Y N

SKIP TO Question 8

37

N DV

FOR BUILDERS WITH ONLY NON-PARTICIPANT HOMES LISTED: ask 7d-7g:

		1	1 N	DK
7d. Prior to this phone call, did you know about the Comfort Home Program?	7d.			
If $7d = yes$, CONTINUE, OTHERWISE SKIP TO Q9 7e. Have you ever participated in the Comfort Home Program	7e.	Y	N	DK
<i>If 7e = yes, CONTINUE, OTHERWISE SKIP TO Q8</i> 7f. Did you participate in the Program between 1994 and 1996?	7f.	Y	N	DK
 <i>If 7f = yes, CONTINUE, OTHERWISE SKIP TO Q8</i> 7g. What percentage of the dwelling units that you built between 1994 and 1996, made use of the Comfort Home Program? 	7g.			

FOR ALL BUILDERS WITH PARTICIPANT HOMES <u>AND</u> FOR ALL BUILDERS AWARE OF THE COMFORT HOME PROGRAM (question 7d = yes):

8.	How did you first hear about the Comfort Home Program?		 _
	Approached by PG&E directly	8a.	
	Saw PG&E literature	8b.	
	Heard about program from other builder or sub contractor	8c.	
	Heard about program from architect or designer	8d.	
	Other	8e.	

A.5 NON COMFORT HOME ENERGY EFFICIENCY

FOR PARTICIPANTS AND NON-PARTICIPANTS:

9.	Excluding homes built through the Comfort Home Program, what best describes the homes you build relative to Title 24 Standards? READ LIST		
	Homes met standards	9a.	
	Homes exceeded Standards by about 5 to 10%	9b.	
	Homes exceeded Standards by 10 to 20%	9c.	
	Homes exceeded Standards by greater than 20%	9d.	
	Don't know, Refused, or Not Applicable (DON'T READ)	9e.	

FOR BUILDERS WHO HAVE <u>EVER</u> PARTICIPATED IN THE COMFORT HOME PROGRAM (all participants, and any nonparticipants who answered yes to question 7e):

10.	Which of the following statements best describes the homes you build outside of the Comfort Home Program? READ FIRST TWO LINES OF LIST		
	They contain HVAC equipment and construction characteristics similar to those in homes built under the Comfort Home Program.	10a.	
	They contain HVAC equipment and construction characteristics chosen to comply with the Title 24 standards and nothing more	10b.	
	Don't know / Not applicable (DON'T READ).	10c.	

I am going to ask you some questions about your use of specific energy efficiency measures over time.

For the following time periods, what percentage of the homes you built - *outside of the PG&E Comfort Home Program* - included the following high efficiency measures? (**QUERY AND FILL IN CHART**)

Q#		а	b	С	d	е	f
	Year	with Title 24	Utilized enhanced HVAC duct installation	Installed gas	Installed gas cook top and/or	Included insulation above that used to comply with Title	Installed premium efficiency
11.	1997	Standards	procedures	dryer stub	range	24 Standards	windows
12.	1994-96						
13.	1991-93						

FOR BUILDERS WHO HAVE <u>EVER</u> PARTICIPATED IN THE COMFORT HOME PROGRAM (all participants, and any nonparticipants who answered yes to question 7e):

14a. Did your participation in the Comfort Home Program influence your decision to install the energy efficiency measures in homes built *outside* of the Program?

Influenced decision significantly	14a1	
Influenced decision somewhat	14a2	
No significant influence	14a3	

If answer to question 14a is "no significant influence" then ask:

14b. What caused you to install the additional energy efficiency measures?

FOR BUILDERS WHO HAVE EVER PARTICIPATED IN THE COMFORT HOME PROGRAM (all participants, and any nonparticipants who answered yes to question 7e):

15a. For homes built under the Comfort Home Program, did you install additional energy efficiency measures not covered under the Program above those required to comply with Title 24 standards? If so, what measures were installed?

Premium efficiency windows (above standard double paned windows)	15a1	
Insulation levels above Title 24 compliance levels	15a2	
High efficiency furnaces	15a3	
High efficiency water heaters	15a4	
Efficient lighting technologies (T-8's, Hardwired CFLs, etc.)	15a5	
Other, specify:	15a6	

15b. Did your participation in the Comfort Home Program influence your decision to install the additional energy efficiency measures in the Program homes?

Influenced decision significantly	15b1	
Influenced decision somewhat	15b2	
No significant influence	15b3	

If question 15b answer is "no significant influence" then ask:

15c. What caused you to install the additional energy efficiency measures?

FOR PARTICIPANT AND NON-PARTICIPANTS:

			Y	Ν
16a.	Do you think home buyers are generally willing to pay more for homes that are more energy efficient than Title 24 Standards?	16a		
			Y	Ν
16b.	Do you think home energy efficiency is an important feature that makes it easier to sell homes?	16b		
17.	I am going to read of list of factors that can affect new home construction and design. Please tell me which of these is most important from your experience (#1)? Least important (#6)? Next most important (#2)?			
	Construction costs	17a1	l	
	Energy efficiency	17a2	2	
	Visual appearance of home	17a3	3	
	Occupant comfort	17a4	1	
	Quality of construction	17a5	5	
	Appropriateness of design for a given location	17a6	5	

A.6 PARTICIPANT BUILDER INFORMATION

<u>ONLY</u> FOR BUILDERS WITH PARTICIPATING HOMES <u>IN THE SAMPLE</u>, ask Questions 18, 19, 20, and 21 for applicable efficiency measures:

How did you learn about HE Equipment?

18a.	How did you first learn about AC units with SEER levels above Title 24 Standards?		
	From PG&E representative	18a1	
	From PG&E literature	18a2	
	From other builders or sub contractors	18a3	
	From architect or designer	18a4	
	From manufacturers' literature or reps	18a5	
	From trade literature	18a6	
	Other	18a7	

18b. How did you first learn about duct testing and enhanced installation procedures?

From PG&E representative	18b1	
From PG&E literature	18b2	
From other builders or sub contractors	18b3	
From architect or designer	18b4	
From manufacturers' literature or reps	18b5	
From trade literature	18b6	
Other	18b7	

Decision Influences

19a.	From the following list, please rank the three most important reasons you installed the
	higher efficiency AC Systems, with 1 being the most important and 3 the third most
	important. (READ LIST)

PG&E Rebates	19a1	
PG&E advice or recommendations	19a2	
Equipment literature	19a3	
Past experience with energy efficiency equipment	19a4	
Information from vendors or designers	19a5	
Home buyers request high efficiency equipment	19a6	
Meeting the Title 24 energy budget	19a7	
Other	19a8	
Information from vendors or designers Home buyers request high efficiency equipment	19a5 19a6 19a7	

19b. From the following list, please rank the three most important reasons you used enhanced duct installation procedures, with 1 being the most important and 3 the third most important. (**READ LIST**)

PG&E Rebates	19b1	
PG&E advice or recommendations	19b2	
Equipment literature	19b3	
Past experience with energy efficiency equipment	19b4	
Information from vendors or designers	19b5	
Home buyers request high efficiency equipment	19b6	
Other	19b7	

19c. From the following list, please rank the three most important reasons you installed gas cooking equipment in your Comfort Homes, with 1 being the most important and 3 the third most important. (**READ LIST**)

PG&E Rebates	19c1	
PG&E advice or recommendations	19c2	
Equipment literature	19c3	
Past experience installing gas cooking equipment	19c4	
Information from vendors or designers	19c5	
Home buyers' request for gas cooking equipment	19c6	
Other	19c7	

19d. From the following list, please rank the three most important reasons you installed gas dryer stubs in your Comfort Homes, with 1 being the most important and 3 the third most important. (**READ LIST**)

PG&E Rebates	19d1	
PG&E advice or recommendations	19d2	
Equipment literature	19d3	
Past experience with gas installations	19d4	
Information from vendors or designers	19d5	
Home buyers' request for gas drying capabilities	19d6	
Other	19d7	

Importance of Rebates

20a.	If the rebate had not been available, how likely is it that you would have installed the higher efficiency AC systems?		
	Definitely would have done it anyway	20a1	
	Probably would have done it	20a2	
	Probably would not have done it	20a3	
	Definitely would not have done it	20a4	
	Don't know	20a5	
20b.	If the rebate had not been available, how likely is it that you would have conducted duct testing ?		
	Definitely would have done it anyway	20b1	
	Probably would have done it	20b2	
	Probably would not have done it	20b3	
	Definitely would not have done it	20b4	
	Don't know	20b5	
20c.	If the rebate had not been available, how likely is it that you would have conducted enhanced duct installation procedures ?		
	Definitely would have done it anyway	20c1	
	Probably would have done it	20c2	
	Probably would not have done it	20c3	
	Definitely would not have done it	20c4	
	Don't know	20c5	
20d.	If the rebate had not been available, how likely is it that you would have installed gas cooking in the same number of Comfort Homes?		
	Definitely would have done it anyway	20d1	
	Probably would have done it	20d2	
	Probably would not have done it	20d3	
	Definitely would not have done it	20d4	
	Don't know	20d5	

г

Г

20e.	If the rebate had not been available, how likely is it that you would have installed the
	dryer stubs?

Definitely would have done it anyway	20e1	
Probably would have done it	20e2	
Probably would not have done it	20e3	
Definitely would not have done it	20e4	
Don't know	20e5	

If Rebates are Discontinued

21a.	If the rebates are discontinued, how likely is it that you will install higher efficiency
	AC systems in the future?

Definitely would	21a1	
Probably would	21a2	
Probably would not	21a3	
Definitely would not	21a4	
Don't know	21a5	

21b. If the rebates are discontinued, how likely is it that you will conduct duct **testing** in the future?

De	finitely would	21b1	
Pro	bably would	21b2	
Pro	bably would not	21b3	
De	finitely would not	21b4	
Do	n't know	21b5	

21c. If the rebates are discontinued, how likely is it that you will conduct **enhanced duct installations** in the future?

lations in the future?						
Definitely would	21c1					
Probably would	21c2					
Probably would not	21c3					
Definitely would not	21c4					
Don't know	21c5					

21d.	If the rebates are discontinued, how likely is it that you will continue to install a gas cooking in the same percent of homes you build?	
	Definitely would	21d1
	Probably would	21d2
	Probably would not	21d3
	Definitely would not	21d4
	Don't know	21d5
21e.	If the rebates are discontinued, how likely is it that you will continue to install the same amount of gas dryer stubs?	
	Definitely would	21e1
	Probably would	21e2
	Probably would not	21e3
	Definitely would not	21e4
	Don't know	21e5
A.7	HVAC SUB CONTRACTORS	
22a.	Do you work with a HVAC sub-contractor?	Y N 22a
If	yes. Would you tell us who it is?	
2	2b. Company Name:	_
2	2c. Contact:	
2	2d. Phone Number:	_
23.	Who does your HVAC duct work?	
	We do our own work	23a
	We use the sub contractor mentioned above	23b
	We use a different sub contractor - get name and phone number	23c
	Don't know/ Won't say	23e
If	Question 23 indicates "different sub contractor" for duct work:	
2	24a. Company Name:	
2	Ab. Contact:	
2	4c. Phone Number:	_

A.8 ENERGY STAR PROGRAM

	lave you heard of the Energy Star New Homes Program that is being provided nrough the U. S. Environmental Protection Agency?	25a	Y	N	
25b.	<i>If 25a = Yes</i> : Do you know the requirements for participating in the Energy Star Program?	25b	Y	N	
25c. 250	 <i>If 25a = Yes</i>: Do you plan to participate in the Program? <i>If 25c = No</i>: Why not? 	Y	N	DK	

THIS CONCLUDES THE SURVEY. THANK YOU FOR YOUR TIME.

SURVEY DISPOSITION REPORTS

On-Site Survey Final Sample Disposition Report

	Total Sa	mple
	Frequency	Percent of Sample
		Contacted
NonParticipants		
Not Contacted	991	
Call Back	61	5.72%
Cancelled	37	3.47%
Not Qualified	25	2.35%
Refused	115	10.79%
Rescheduled	0	0.00%
Surveyed	160	15.01%
Unscheduled In Progress	426	39.96%
Wrong Number	242	22.70%
Total Contacted	1066	100.00%
Participants		
Not Contacted	1502	
Call Back	40	4.44%
Cancelled	20	2.22%
Not Qualified	6	0.67%
Refused	77	8.56%
Reschedule	1	0.11%
Surveyed	155	17.22%
Unscheduled In Progress	394	43.78%
Wrong Number	207	23.00%
Total Contacted	900	
Average Number of Calls Per Site	1.5	
NonParticipant	1.6	
Participant	1.4	

Builder Telephone Survey Disposition Report

Total completes:	61
No telephone numbers available:	20
No response to calls:	11
Rejections	3
No answer	3
Subtotal:	17
Total:	98

The following assumptions were used in the ASHRAE Standard 152P: Method duct efficiency calculations.

Duct Model Input Parameters and Assumptions

Conditioned Floor Area, (ft^2) The surveyor's estimate of the total conditioned floor area.

Supply Duct Surface Area, (ft^2)

The total surface area of the supply ductwork is determined based on the conditioned floor area of the building, using the following equation (ASHRAE 152P, eqn. 6.4):

 $A_{s, total} = 0.27 A_{floor}$

Return Duct Surface Area, (ft^2)

The total surface area of the return ductwork is determined based on the actual return duct surface area indicated on the survey form. In the cases when this survey datum is not available, the area is determined based on the conditioned floor area of the building using the following equation (ASHRAE 152P, eqn. 6.5):

Ar, total = 0.05 NreturnsAfloor

where

 $N_{returns}$ is the number of return registers, A_{floor} is the conditioned floor area.

Fractional supply/return duct location

This is the amount of the duct system in a given location expressed as a fraction of the total. The total includes interior ducts. For each of the supply and return, the sum of the fractions entered plus the fractions of the duct inside the conditioned space (which is not entered) must add to 1. The supply duct location options are: in attic, in garage, in unvented & uninsulated crawlspace, in unvented crawlspace with insulated building floor and crawlspace walls, in unvented crawlspace with insulated building floor, in vented & uninsulated crawlspace, in vented crawlspace with insulated building floor, in vented walls, in vented crawlspace with insulated building floor, in uninsulated building floor, in uninsulated walls, in basement with insulated ceiling, duct under slab and in exterior walls.

The fractional supply/return duct locations used in the models reflect the actual observations collected during the on-site survey. In the case of two-story houses, the duct location was assumed to be 70% in the attic and 30% in the conditioned space (ASHRAE 152P, table 6.1). In cases where there are no return ducts, the duct location for the return is entered the same as for the supply. This is necessary in order to calculate the appropriate thermal regain factor, because the thermal regain factor for the system is computed as an average of supply and return thermal regain factors.

Supply & Return Duct R values (hft²F/Btu)

The models use the measured supply and return duct insulation R-values from the survey form.

Indoor Temperature, heating (F)

The surveyed heating system thermostat setting for December and January from the survey form.

Indoor Temperature, cooling (F) The surveyed cooling system thermostat setting for July and August from the survey form.

Heating Design temperature at 97.5% *and Cooling Design Temperature at* 2.5%, *ASHRAE*, (*F*) These site-specific values are taken from ASHRAE publication SPCDX, Climatic Data for Region X, Arizona, California, Hawaii and Nevada, 1982.

T wetbulb design, (*F*)

This value for the specific site location is taken from ASHRAE publication SPCDX, Climatic Data for Region X, Arizona, California, Hawaii and Nevada, 1982.

T wetbulb indoor, (*F*)

Determined from the psychometric chart, based on the cooling system thermostat setpoint.

Is there solar gain reduction in the attic? [Y/N]

Solar gain reduction is described in detail in (ASHRAE 152P, eqn. 6.4): If there is an appropriately installed radiant barrier, or a high reflectivity roof coating, or a barrel tiled roof, then these attics qualify for the solar gain reduction credit. The models use on-site data from the survey forms.

House Volume, (ft^3)

The total building volume is determined based on the conditioned floor area of the building and the measured ceiling height:

 $V_{total} = height * A_{floor}$

Equipment Heating/Cooling Capacity, [Btu/hour]

The single speed equipment capacity or the higher capacity for two speed equipment; these are separate numbers for heating and cooling. The value is provided from the equipment name plate or from the manufacturers specification based on the model data. For cooling equipment, the convention is to enter values as negative.

Equipment Heating/Cooling Capacity, [Btu/hour], LOW

The lower capacity for two speed equipment. The value is provided from the equipment name plate or from the manufacturers specification based on the model data. Again, cooling is entered as a negative number.

Heating Fan Flow, (cfm)

oa:wpge33:report:final:cduct

The single speed heating fan flow or the higher heating fan flow for two speed equipment. The value is provided from the manufacturers specification of design fan system flow or is assumed equal to the calculated cooling fan flow. When using manufacturers rating, the 15% reduction indicated in the standard is applied.

Cooling Fan Flow, (cfm)

The single speed cooling fan flow or the higher cooling fan flow for two speed equipment. The value is calculated as a function of the cooling capacity of the system, (340 cfm per ton of cooling capacity).

 $Q_{ecool} = CoolCap / 12000 * 340$

where

Q_{ecool} is the cooling fan flow, (cfm): *CoolCap* is the cooling capacity, Btu/h.

Heating Supply and Return Duct Leakages (cfm)

Assumed to be equal to the cooling supply and return duct leakages (cfm).

Cooling Supply duct leakage (cfm)

Duct leakage flow measured at the higher fan flow for two speed equipment is entered. Since this value represents the duct leakage flow to outside at operating conditions, it is assumed that 75% (a recommended value) of the measured leakage flow is lost to outside.

Cooling Return duct leakage (cfm)

Duct leakage flow calculated at the higher fan flow for two speed equipment is entered. If a return duct exists, it is assumed that 10% (a recommended value) of the measured total flow is lost to outside from the return ductwork.

Heating/Cooling Fan Flow, (cfm), LOW SPEED

The lower heating and cooling fan flows for two speed equipment. These values are calculated by prorating the design fan system flows using the ratio of capacities between lower and higher speeds.

Heating Supply/Return Duct Leakages (cfm), LOW SPEED

Assumed to be equal to the cooling supply and return duct leakages (cfm), LOW SPEED.

Cooling Supply duct leakage (cfm), LOW SPEED

Duct leakage flow measured at the higher fan flow for two speed equipment multiplied by the capacity ratio is entered. Since this value represents the duct leakage flow to outside at operating conditions, it is assumed that 75% (a recommended value) of the actually measured flow is lost to outside.

Cooling Return duct leakage (cfm), LOW SPEED

oa:wpge33:report:final:cduct

Duct leakage flow calculated at the higher fan flow for two speed equipment multiplied by the capacity ratio is entered. It a return duct exists, it is assumed that 10% (a recommended value) of the actually measured total flow is lost to outside from the return ductwork.

For Duct Thermal Mass Correction, enter F for flex duct or duct board, M for sheet metal. The actual duct construction is taken from the survey form.

For equipment efficiency correction, Enter 1 for ACCA manual D design, 2 without Manual D design. A value of 2 is always entered for no Manual D based design.

Enter 1 for single speed cooling/heating equipment, 2 for multispeed cooling/heating equipment. The actual cooling and heating equipment speed indices is entered.

For attics, enter V for vented, U for unvented. Actual observation is entered.

For cooling systems, Enter T for TXV control, O for other control. For cooling system control, a TXV is a thermostatic expansion valve. The other method of control is usually a simple orifice. These control systems differ in their ability to control the operation of the refrigerant cooling systems at different flows across the coil. The manufacturer's literature usually specifies which control method is used.

For heating systems, enter H for heat pump, O for other system. The observed system type is indicated.

Supply plenum dry bulb temperature for cooling systems, [F]. Since no flow temperature measurements were performed, the recommended value of 55F was assumed.

This appendix presents the CPUC Protocols: Table 6 and Table 7.

Table 6

M&E PROTOCOLS TABLE 6

Residential New Construction Program

Designated Unit of Measurement: Home ENDUSE: Whole Building

1. Average Participant (Group and Average Comaprison Group	Participant	Comparison								
A. Pre-install usage:	Pre-install kW	na	na	I							
	Pre-install kWh	na	na	ĺ							
	Pre-install Therms	na	na	Ī							
	Base kW	na	na	Ī							
	Base kWh	na	na	1							
	Base Therms	na	na	Ī							
	Base kW/ designated unit of measurement	na	na	İ							
	Base kWh/ designated unit of measurement	na	na	Î							
	Base Therms/ designated unit of measurement	na	na	Ī							
B. Impact year usage:	Impact Yr k	na	na	İ							
	Impact Yr kWh	1,225,43	833,53	İ							
	Impact Yr Therms	70,215	49,115	İ							
	Impact Yr kW/designated unit	na	na	İ							
	Impact Yr kWh/designated unit	7,906	8,774		5. A. 90% CONF	FIDENCE LEVEL		ſ	5. B. 80% CON	FIDENCE LEVEL	
	Impact Yr Therms/designated unit	453	517	LOWER BND	UPPER BND	LOWER BND	UPPER BND	LOWER BND	UPPER BND	LOWER BND	UPPER BND
2 Average Net and Gro	ss End Use Load Impact	AVG GROSS	AVG NET	AVG GROSS	AVG GROSS	AVG NET	AVG NET	AVG GROSS	AVG GROSS	AVG NET	AVG NET
2. Average her and ere	A. i. Load Impacts - kW	2,546.3	2,717.9	1,969.6	3,122.9	1,993.8	3,442.0	2,097.6	2,994.9	2,154.5	3,281.3
	A. ii. Load Impacts - kWh	4,265,65	3,169,69	2,606,70	5,924,59	1,776,83	4,562,55	2,974,80	5,556,49	2,085,88	4,253,50
	A. iii. Load Impacts - Therms	-41,57	55,882	-6,706	-76,44	44,349	67,415	-14,44	-68,70	46,908	64.856
	B. i. Load Impacts/designated unit - k	0.64	0.69	0.50	0.79	0.50	07,415	0.53	0.76	0.54	0.83
	B. ii. Load Impacts/designated unit - kWh	1.077	800	658	1,496	449	1,152	751	1,403	527	1.074
	B. iii. Load Impacts/designated unit - Therms	-10.5	14.1	-1.7	-19.3	11.2	1,152	-3.6	-17.4	11.8	1,074
	C. i. a. % change in usage - Part Grp - k	-10.5 na	na	na	-19.3 na	na	na	-3.0 na	-17.4 na	na	na
	C. i. b. % change in usage - Part Grp - kWh	na	na	na	na	na	na	na	na	na	na
	C. i. c. % change in usage - Part Grp - Kwn C. i. c. % change in usage - Part Grp - Therms	na na	na na	na na	na na	na na	na na	na na	na na	na	na
	C. ii. a. % change in usage - Comp Grp - k	na	na	na	na	na	na	na	na	na	na
					na						
	C. ii. b. % change in usage - Comp Grp - kWh C. ii. c. % change in usage - Comp Grp - Therms	na	na	na		na	na	na	na	na	na
D. Dealization Data:	D.A. i. Load Impacts - kW, realization rat	na 0.86	na	na 0.67	na 1.06	na 0.68	na 1.17	na 0.71	na	na	na 1.11
D. Realization Rate:			0.98			0.68			1.01	0.73	0.90
	D.A. ii. Load Impacts - kWh, realization rate	0.90	0.79	0.55	1.25		0.96	0.63	1.17		
	D.A. iii. Load Impacts - Therms, realization rat	-0.54	0.54	-0.09	-1.00	0.58	0.88	-0.19	-0.90	0.61	0.84
	D.B. i. Load Impacts/designated unit - kW, real rat	0.86	0.98	0.67	1.06	0.68	1.17	0.71	1.01	0.73	1.11
-	D.B. ii. Load Impacts/designated unit - kWh, real rate	0.90	0.79	0.55	1.25	0.38	0.96	0.63	1.17	0.44	0.90
	D.B. iii. Load Impacts/designated unit - Therms, real rat	-0.54	0.54	-0.09	-1.00	0.58	0.88	-0.19	-0.90	0.61	0.84
3. Net-to-Gross Ratios		RATIO		RATIO	RATIO			RATIO	RATIO		
	A. i. Average Load Impacts - k	1.07		na	na			na	na		
	A. ii. Average Load Impacts - kWh	0.74		na	na			na	na		
	A. iii. Average Load Impacts - Therms	-1.34		na	na	1		na	na		
L	B. i. Avg Load Impacts/designated unit of measurement - k	1.07		na	na	1		na	na		
	B. ii. Avg Load Impacts/designated unit of measurement - kWh	0.74		na	na			na	na		
	B. iii. Avg Load Impacts/designated unit of measurement - Therms	-1.34		na	na			na	na		
	C. i. Avg Load Impacts based on % chg in usage in Impact year relativ										
	to Base usage in Impact year - k	na		na	na			na	na		
	C. ii. Avg Load Impacts based on % chg in usage in Impact year relativ										
	to Base usage in Impact year - kWh	na		na	na			na	na		
	C. iii. Avg Load Impacts based on % chg in usage in Impact year relativ										
	to Base usage in Impact year - Thms	na		na	na			na	na		
4. Designated Unit Inter	mediate Dat			PART GRP	PART GRP			PART GRP	PART GRP		
	A. Pre-install average valu	na		na	na]		na	na	I	
	B. Post-install average valu	na		na	na	1		na	na		
6. Measure Count Data		NUMBER								-	
	A. Number of measures installed by participants in Part Grou	See next page									
	B. Number of measures installed by all program participants in the 12										
	months of the program year	See next page									
	C. Number of measures installed by Comp Grou	na									
7. Market Segment Data											
	A. Distribution by CEC climate zone	See next page									
		2 So nom page									
L											

M&E PROTOCOLS TABLE 6 (CONTINUED)

6A/6B Measure Count Data								
	Participant Group		All Program Participants					
Measure	# Homes	Percent	# Homes	Percent				
Efficient AC	155	100%	3,893	98%				
Improved Ducts	140	90%	3,551	90%				
Code Enforcement	146	94%	3,694	93%				
Efficient Furnaces	7	5%	203	5%				
Gas Cooking	138	89%	3,553	90%				
Gas Dryer Plugs	127	82%	3,304	83%				
CFLs	14	9%	296	7%				
Effic Water Heaters	0	0%	66	2%				
All Measures	155		3,960					

7A. Market Segment Data - Distribution by CEC Climate Zone								
	Participa	int Group	All Program Participants					
Measure	# Homes	Percent	# Homes	Percent				
Climate Zone 11	28	18%	658	17%				
Climate Zone 12	81	52%	2,296	58%				
Climate Zone 13	46	30%	1,006	25%				
All Climate Zones	155		3,960					

Table 7

D.1 OVERVIEW INFORMATION

D.1.1 Study Title and Study ID Number

Study Title: Impact Evaluation of Pacific Gas and Electric Company's 1996 Residential New Construction Program

Study ID No: 386

D.1.2 Program Year and Program Description

Program year: 1996

Program description: The PG&E Residential New Construction Program, referred to as the PG&E Comfort Home Program, provides financial incentives to builders who construct energyefficient homes that exceed Title 24 standards. Energy efficiency measures addressed in this evaluation were installed in Program years 1993 through 1996 and were rebated in calendar year 1996 under the shared savings portion of the Program. The Program focuses on homes built in California Energy Commission (CEC) climate zones 11, 12, and 13 and on four key energy efficiency measures (in addition to Title 24 compliance): high efficiency air conditioning; enhance duct installations; natural gas cooking; and natural gas dryer stubs. A total of 3,960 homes qualified for rebates in 1996 under the shared savings portion of the Program.

D.1.3 End Uses Covered

Whole building

D.1.4 Methods and Models Used

To develop gross impacts, engineering estimates of impacts were first developed. The Micropas building simulation model was used to develop impacts for space conditioning and other engineering algorithms were used to estimate impacts for cooking and clothes drying. For space conditioning, impacts were defined as the difference between Title 24 compliance loads and asbuild loads. For cooking and clothes drying, impacts were defined as total end use energy consumption for rebated homes.

Engineering results were calibrated to customer bills using an SAE (Statistically Adjusted Engineering) approach. For this approach, billed consumption was regressed against energy consumption for all end uses. The model's regression coefficients are interpreted as calibration factors because they are used to calibrate the engineering results to the customer bills.

For space conditioning, the calibrated engineering estimates of impacts for participants and nonparticipants were then compared using an efficiency choice model. In this model, efficiency (defined as the percent improvement above Title 24 compliance energy consumption) is modeled

(using an econometric approach) as a function of program participation and other variables such as house size and builder characteristics. The model provides estimates of efficiency improvement attributable to the Program while factoring out confounding effects of other factors. The results of the efficiency choice model is an estimate of net savings.

For the cooking and clothes drying end uses, a self report approach was used to develop net savings using the results of a builder survey in which respondents were asked if they would have installed measures in the absence of the Program. Net-to-gross ratios developed from the self-report analysis were applied to gross savings in order to determine net savings.

D.1.5 Participant and Comparison Group Definition

- Participant group: homes built by participant builders that were rebated in 1996.
- Nonparticipant comparison group: single family homes that were built in the 1994-1996 period and were located in the same geographical area as the participant homes.

D.1.6 Analysis Sample Size

The analysis sample size was originally designed to be 155 participants and 160 nonparticipants. Initial analysis of survey results indicated that a number of nonparticipants were actually Program participants from prior Program years. After accounting for these prior participants final sample sizes were: 155 participants, 95 true nonparticipants, and 65 prior participants. All 315 sample points were used in the SAE analysis to develop calibration coefficients for the engineering impacts used for gross savings. Only the participants and true nonparticipants were used in the efficiency choice modeling to develop net savings.

The following tables summarizes the number of homes used in various stages of the analysis. Also note, monthly data was used in the SAE models - 3,762 observations were included in the electric model and 3,377 observations were included in the gas model.

		Prior		
	Participants	Participants	Nonparticipants	Total
Participant Population	3960			
Screened Sites Available for Surveys	2,402	2,057		4,459
On-site Surveys	155	65	95	315
Duct Tests	155	65	95	315
Builder Surveys ¹	110 (39)	53 (27)	56 (22)	219 (61)
Electric SAE Model	155	65	95	315
Gas SAE Model	137	57	88	282
Electric Efficiency Choice Model	110		56	166
Gas Efficiency Choice Model	96		54	150
Self Report NTG Analysis	105			105

¹ Number of builders are included in parentheses. Builder counts do not sum to total because of overlap of builders in the three categories.

D.2.1 Flow Chart

The flow chart is presented in the following figure.

Data Flow Chart

D.2.2 Specific Data Sources

PG&E rebate tracking data:

PDETAIL.SD2	Measure level savings for each home
PDETAIL.SD2	Savings summarized to the home level
PGENTG.SD2	Assumed net-to-gross ratios by measure
VHOME96.SD2	List of addresses for 1996 participating homes
ELEYPGE.SD2	Additional participant data from hardcopy files

PG&E billing/weather data:

EBILL65.SD2	Electric billing data and matched weather data
GBILL65.SD2	Gas billing data and matched weather data

On-site survey data:	
CLNSURV.SD2	Onsite survey dataset (see Appendix A survey instrument for variable
	descriptions)
BLDGEOM.XLS	Onsite survey data regarding building geometry, input by modelers;
	variable descriptions in GEOM-DB.DOC
Builder survey data:	
BLDSRV.SD2	Survey data for each respondent
BLDID.SD2	File linking builder ID to home ID (the PG&E Control number)
Other data:	
LSPGE.SD2:	PG&E cooking and clothes drying load shapes
CECZONE.SD2	CEC climate zone indicator for each home
Micropas input files (each	file begins with the 7 digit ID number):
A.M45	Type A simulations, as built, customer reported schedules
B.M45	Type B simulations, as built, compliance schedules
C.M45	Type C simulations, compliance, customer reported schedules
D.M45	Type D simulations, compliance, compliance schedules
ASHRAE Standard 152 D	ouct Efficiency Calculations (each file begins with the 7 digit ID):
.XLS	the Effective y culculations (cach the begins with the 7 digit iD).
Other created datasets:	
NSENG.SD2	Non-space-conditioning engineering estimates of energy usage
DUCTEFF.SD2	Estimated duct efficiencies for homes with duct tests
DCLEFF.SD2	Cooling duct efficiencies for all homes
DHTEFF.SD2	Heating duct efficiencies for all homes
BLDSIM.SD2	Micropas simulation results
ENGIMPCS.SD2	Engineering energy usage using compliance schedules
ENGIMPRS.SD2	Engineering energy usage using reported schedules
ADJSAV.SD2	Adjusted engineering results using reported schedules
NETSAMP.SD2	List of final sites in the efficiency choice model

WEIGHT2.SD2 Site expansion weights

Analysis programs:	
ENGMOD.SAS	Non-space-conditioning engineering module
NSPCENG.SAS	Runs ENGMOD.SAS for different daytypes a retains results
DUCTMODL.SAS	Develops regression equations to estimate duct efficiencies for all sites
BLDSIM.SAS	Combines Micropas results with duct and system efficiencies
ENGRSLT.SAS	Prints out selected results of BLDSIM.SAS calculations
ELESAE.SAS	Electric SAE model
GASSAE.SAS	Gas SAE model
WEIGHTS.SAS	Calculates site expansion weights
NTGSR.SAS	Self-report net-to-gross analysis
NTGMOD.SAS	Efficiency choice model and calculation of net impacts
LDSHAPE.SAS	Develops and applies allocation factors to provide impacts by cost
	period
SPILLOVR.SAS	Calculation of nonparticipant spillover from builder survey data

D.2.3 Data Attrition

The initial participant and nonparticipant screening described is in the following table.

	Remaining Homes	Screened Homes
Particiapnts	Heinee	Homoo
Total homes with 1996 Shared Savings rebates	3,960	
Single family homes, per tracking system	3,928	32
Homes matched to the billing system	3,844	84
Tracking system address, service address match	3,596	248
Homes with adequate billing data	2,558	1,038
Single family homes, per billing system	2,506	52
Homes after removing several remote areas	2,402	104
Nonparticpants		
Homes with adequate bills, matched to participants by meter route	4,923	
Homes after additional geographical/proportional matching to participants	2,057	2,866

	Frequency	% of Sample Contacted
Participants		
Not Contacted	1,502	
Call Back	40	4.4%
Cancelled	20	2.2%
Not Qualified	6	0.7%
Refused	77	8.6%
Reschedule	1	0.1%
Surveyed	155	17.2%
Unscheduled In Progress	394	43.8%
Wrong Number	207	23.0%
Total Contacted	900	100.0%
NonParticipants		
Not Contacted	991	
Call Back	61	5.7%
Cancelled	37	3.5%
Not Qualified	25	2.4%
Refused	115	10.8%
Rescheduled	0	0.0%
Surveyed	160	15.0%
Unscheduled In Progress	426	40.0%
Wrong Number	242	22.7%
Total Contacted	1,066	100.0%

A sample disposition report for the on-site survey is presented in the following table.

The sample disposition report for the builder survey is presented in the following table.

Total completes:	61
No telephone numbers available:	20
No response to calls:	11
Rejections	3
No answer	3
Subtotal - unsurveyed, with phone number:	17
Total:	98

D.2.4 Data Quality

PG&E tracking and billing audit data were matched using the PG&E Control number, a fixed number uniquely corresponding to a PG&E account. After matching, addresses from the tracking system were match against addresses from the billing system. A total of 248 sites were dropped from the study because the address did not match.

Each on-site survey was tracked using the PG&E Control number. During the on-site survey recruitment process, home occupants were asked if they lived in a new home; those who didn't were disqualified from the study. During the on-site survey, both participant and nonparticipant customers were asked if they lived Program homes. This information was used to reassign a number of initial nonparticipants into a prior-participant category.

Builders were associated with each survey by Control number. Weather data was assigned, based on CEC climate zone.

D.2.5 Data Collected Specifically for the Analysis but not Used

NA

D.3 SAMPLING

D.3.1 Sampling Procedures and Protocols

To comply with the M&E Protocols, studies utilizing on-site data collection require minimum participant and nonparticipant sample sizes of 150 each. For this study, sample size goals of 159 participants and 159 nonparticipant were established to allow for some attrition due to factors such as problematic billing data and contradictory or incomplete survey results.

It was decided that a cluster sampling technique would be most efficient for the on-site surveys. This technique ensures that sampled sites are "clustered" in areas that are scheduled for surveys by the same surveyor on a given day. The geographically diverse sample segmentation used in the cluster approach also will ensure that final sample of surveyed homes will contain variation by builder, home type, and home size.

To implement the sample design, using the cluster sampling technique, the available homes were divided into geographical nodes - areas that could be reached by a single surveyor in a given day. In several cities, initial nodes were further disaggregated by PG&E meter route in order to better match participant and nonparticipant homes. Next, a random sample of 53 participants was drawn. This sample of participants determined how many surveys would be conducted in a given node. For each participant selected in a node, a total of six surveys would be conducted (3 participant and 3 nonparticipant). Overall, 34 nodes were target for surveys, providing a random and diverse sample.

D.3.2 Survey Information

Survey instruments are presented in Appendix A of the report. See section B3 for response rates. Non-response bias was not addressed.

D.3.3 Statistical Descriptions

Descriptive statistics for key model variables are provided in the following tables.

Group	Variable	Ν	Mean	Std Dev	Minimum	Maximum
Nonparticipants	kWh	1140	24.0317	14.0893	0.2903	94.3793
	Base case cooling use	1140	7.4267	10.0965	0.0000	60.3412
	Efficent AC savings	1140	0.6953	1.4784	0.0000	13.0478
	Duct savings	1140	-0.0329	0.5311	-5.2230	2.6887
	Other savings	1140	-0.6175	2.6160	-13.1172	12.0080
	Pool/Spa use	1140	1.7781	4.5235	0.0000	27.8501
	Other end use consumption	1140	15.7669	4.8426	6.9106	88.7447
Prior participants	kWh	780	21.8368	10.5289	2.5556	92.3793
	Base case cooling use	780	7.3145	9.7190	0.0000	45.8417
	Efficent AC savings	780	1.6142	2.3682	0.0000	16.9215
	Duct savings	780	0.1765	0.6895	-7.7478	3.1535
	Other savings	780	-0.7252	2.5694	-11.3996	6.6675
	Pool/Spa use	780	1.3581	2.8460	0.0000	13.4280
	Other end use consumption	780	15.2196	5.0453	6.8449	34.2159
Participants	kWh	1860	21.6607	11.4982	0.0313	75.4138
·	Base case cooling use	1860	6.8082	8.7131	0.0000	37.9008
	Efficent AC savings	1860	1.3961	1.9818	0.0000	15.1555
	Duct savings	1860	0.2529	0.6415	-2.7888	6.4685
	Other savings	1860	-0.7768	2.6181	-18.3503	6.6785
	Pool/Spa use	1860	1.0648	2.9515	0.0000	23.4990
	Other end use consumption	1860	15.4308	4.2721	7.5508	38.7626

Electric SAE Model

Group	Variable	Ν	Mean	Std Dev	Minimum	Maximum
Nonparticipants	Therms	1053	1.4130	1.2591	0.0303	8.6667
	Base case heating use	1053	0.8057	1.1716	0.0000	7.5810
	Efficent furnace savings	1053	0.0275	0.0453	0.0000	0.5237
	Duct savings	1053	-0.0091	0.0638	-0.6593	0.3085
	Other savings	1053	-0.0209	0.1793	-0.9018	1.0566
	Clothes drying use	1053	0.0702	0.0584	0.0000	0.2912
	Other end use consumption	1053	0.0513	0.0674	0.0000	0.3374
	Cooking use	1053	0.5851	0.3609	0.1268	3.9636
Prior participants	Therms	683	1.1807	0.9549	0.0625	5.9677
	Base case heating use	683	0.6295	0.9972	0.0000	8.0128
	Efficent furnace savings	683	0.0522	0.0973	0.0000	0.6679
	Duct savings	683	0.0231	0.0565	-0.1222	0.3753
	Other savings	683	-0.0218	0.1401	-1.1610	0.4781
	Clothes drying use	683	0.0795	0.0647	0.0000	0.3257
	Other end use consumption	683	0.0376	0.0584	0.0000	0.2441
	Cooking use	683	0.5238	0.2374	0.1125	1.1473
Participants	Therms	1641	1.2364	1.0468	0.0333	9.5484
	Base case heating use	1641	0.7449	1.0250	0.0000	5.7413
	Efficent furnace savings	1641	0.0496	0.1076	0.0000	0.7301
	Duct savings	1641	0.0358	0.0927	-0.4402	0.9138
	Other savings	1641	-0.0464	0.1350	-0.9968	0.6565
	Clothes drying use	1641	0.0676	0.0412	0.0000	0.1724
	Other end use consumption	1641	0.0385	0.0597	0.0000	0.3230
	Cooking use	1641	0.5279	0.2516	0.1230	2.0114

Gas SAE Model

Group	Variable	Ν	Mean	Std Dev	Minimum	Maximum
Nonparticipants	Number of residents in home	56	3.27	1.21	1.00	7.00
	Homeowner has a college education	56	0.55	0.50	0.00	1.00
	Energy efficiency was an important home	56	0.50	0.50	0.00	1.00
	purchase factor					
	Builder only builds production homes	56	0.68	0.47	0.00	1.00
	Builder only builds custom homes	56	0.11	0.31	0.00	1.00
	Energy efficiency ranked 1st or 2nd in	56	0.04	0.19	0.00	1.00
	construction approach					
	Quality ranked 1st in construction approach	56	0.55	0.50	0.00	1.00
	Builder constructs luxury homes	56	0.38	0.49	0.00	1.00
	Builder believes buyers are willing to pay for	56	0.38	0.49	0.00	1.00
	energy efficiency					
	Builder believes energy efficiency improves	56	0.73	0.45	0.00	1.00
	home salability					
	Number of homes builder built in 1994-96	56	29.89	14.67	4.47	54.77
	period					
	Climate zone 11 indicator	56		0.39		
	Climate zone 12 indicator	56	0.54	0.50	0.00	1.00
Participants	Number of residents in home	110	3.05	1.12	1.00	5.00
	Homeowner has a college education	110	0.65	0.48	0.00	1.00
	Energy efficiency was an important home purchase factor	110	0.65	0.48	0.00	1.00
	Builder only builds production homes	110	0.82	0.39	0.00	1.00
	Builder only builds custom homes	110	0.04	0.19	0.00	1.00
	Energy efficiency ranked 1st or 2nd in construction approach	110	0.16	0.37	0.00	1.00
	Quality ranked 1st in construction approach	110	0.37	0.49	0.00	1.00
	Builder constructs luxury homes	110	0.14	0.34	0.00	1.00
	Builder believes buyers are willing to pay for energy efficiency	110	0.38	0.49	0.00	1.00
	Builder believes energy efficiency improves home salability	110	0.87	0.33	0.00	1.00
	Number of homes builder built in 1994-96 period	110	21.93	10.41	1.00	48.99
	Climate zone 11 indicator	110	0.15	0.35	0.00	1.00
	Climate zone 12 indicator	110	0.58	0.50		

Participation Decision Model

Group	Variable	Ν	Mean	Std Dev	Minimum	Maximum
Nonparticipants	Cooling Efficiency	56	0.0491	0.1852	-0.3293	0.4654
	Participation indicator	56	0.0000	0.0000	0.0000	0.0000
	Mills Ratio 1	56	-1.2771	1.0817	-5.5901	-0.0725
	Mills Ratio 2	56	0.0000	0.0000	0.0000	0.0000
	Home size (sq. ft.)	56	1927.0500	581.6472	892.0000	4116.0000
	Number of levels in home	56	1.4107	0.4964	1.0000	2.0000
	Home not part of a subdivision	56	0.1071	0.3121	0.0000	1.0000
	Number of residents in home	56	3.2679	1.2134	1.0000	7.0000
	Energy efficiency ranked 1st or 2nd in construction factors	56	0.0357	0.1873	0.0000	1.0000
	Builder only builds production homes	56	0.6786	0.4713	0.0000	1.0000
	Climate zone 11 indicator	56	0.1786	0.3865	0.0000	1.0000
	Climate zone 12 indicator	56	0.5357	0.5032	0.0000	1.0000
Participants	Cooling Efficiency	110	0.2723	0.1235	-0.0300	0.6425
	Participation indicator	110	1.0000	0.0000	1.0000	1.0000
	Mills Ratio 1	110	0.6208	0.5334	0.0092	2.5691
	Mills Ratio 2	110	0.6208	0.5334	0.0092	2.5691
	Home size (sq. ft.)	110	2011.2600	530.5300	1205.0000	3626.0000
	Number of levels in home	110	1.4364	0.5163	1.0000	3.0000
	Home not part of a subdivision	110	0.0636	0.2452	0.0000	1.0000
	Number of residents in home	110	3.0455	1.1202	1.0000	5.0000
	Energy efficiency ranked 1st or 2nd in construction factors	110	0.1636	0.3716	0.0000	1.0000
	Builder only builds production homes	110	0.8182	0.3875	0.0000	1.0000
	Climate zone 11 indicator	110	0.1455	0.3542	0.0000	1.0000
	Climate zone 12 indicator	110	0.5818	0.4955	0.0000	1.0000

Electric Efficiency Model

Group	Variable	Ν	Mean	Std Dev	Minimum	Maximum
Nonparticipants	Heating Efficiency	5	4 -0.0023	0.0822	-0.2035	0.1325
	Participation indicator	5	4 0.0000	0.0000	0.0000	0.0000
	Mills Ratio 1	5	4 -1.2951	1.0976	-5.5901	-0.0725
	Mills Ratio 2	5	4 0.0000	0.0000	0.0000	0.0000
	Home size (sq. ft.)	5	4 1915.3500	587.5621	892.0000	4116.0000
	Number of levels in home	5	4 1.4259	0.4991	1.0000	2.0000
	Home not part of a subdivision	5	4 0.1111	0.3172	0.0000	1.0000
	Number of residents in home	5	4 3.2593	1.2314	1.0000	7.0000
	Energy efficiency ranked 1st or 2nd in construction factors	5	4 0.0370	0.1906	0.0000	1.0000
	Builder only builds production homes	5	4 0.7037	0.4609	0.0000	1.0000
	Climate zone 11 indicator	5	4 0.1852	0.3921	0.0000	1.0000
	Climate zone 12 indicator	5	4 0.5556	0.5016	0.0000	1.0000
Participants	Heating Efficiency	9	6 0.0593	0.0817	-0.0916	0.2836
	Participation indicator	9	6 1.0000	0.0000	1.0000	1.0000
	Mills Ratio 1	9	6 0.6283	0.5291	0.0233	2.5691
	Mills Ratio 2	9	6 0.6283	0.5291	0.0233	2.5691
	Home size (sq. ft.)	9	6 2034.4000	506.4268	1205.0000	3626.0000
	Number of levels in home	9	6 1.4792	0.5022	1.0000	2.0000
	Home not part of a subdivision	9	6 0.0625	0.2433	0.0000	1.0000
	Number of residents in home	9	6 3.0521	1.1459	1.0000	5.0000
	Energy efficiency ranked 1st or 2nd in construction factors	9	6 0.0833	0.2778	0.0000	1.0000
	Builder only builds production homes	9	6 0.8125	0.3924	0.0000	1.0000
	Climate zone 11 indicator	9	6 0.1667	0.3746	0.0000	1.0000
	Climate zone 12 indicator	9	6 0.6458	0.4808	0.0000	1.0000

Gas Efficiency Model

D.4 DATA SCREENING AND ANALYSIS

D.4.1 Outliers, Missing Data Points and Weather Adjustment

Outliers: Eighteen outlier observations, with studentized residuals greater that 4 in absolute value were removed from the electric SAE model. For the gas model, the same outlier screening was conducted, but no outliers were removed. The gas model that excluded outliers had coefficients for cooking and clothes drying that increased substantially (to the 1.5 range), returning cooking and clothes drying usage estimates that were deemed less reasonable than the model with all observations.

Missing data points: Sites with missing builder survey data were excluded from the efficiency choice model.

Weather adjustment: All space cooling variables in the electric SAE model were interacted with the ratio of actual-to-normal cooling degree days (65 degree base) to account for differences between billed consumption that reflect actual weather and the engineering cooling estimates that reflect normal weather. The same approach was used for space heating variables in the gas SAE model, but a heating degree day ratio was applied.

D.4.2 Control for the Effects of Background Variables

For the SAE models, engineering equations that incorporated customer behavior as well as site characteristics were used to control for differences between participants and nonparticipants. For the efficiency choice models, site-specific and builder-specific variables were included to account for factors that could lead to differences in energy efficiency in addition to Program participation.

D.4.3 Screening Data

See the database management and attrition discussion above.

D.4.4 Regression Statistics

Regression statistics are provided in the following tables.

	Parameter		
Variable	Estimate	t-statistic	
Base case cooling use	0.842	60.8	
Efficient AC savings	-0.842	-60.8	
Duct savings	-2.094	-9.7	
Other cooling savings	-0.276	-6.1	
Pool/Spa use	1.019	22.5	
Other end use consumption	1.059	78.3	
Number of observations	3,762		
Adjusted R ²	0.7634		

Electric SAE Model, Dependent Variable: Billed Consumption

Gas SAE Model, Dependent Variable: Billed Consumption

	Parameter	
Variable	Estimate	t-statistic
Base case heating use	0.881	79.4
Efficient furnace savings	-0.881	-79.4
Duct savings	-0.542	-3.4
Other savings	-0.491	-5.8
Cooking use	0.708	2.3
Clothes drying use	1.148	3.7
Other end use consumption	0.950	24.5
Number of observations	3,377	
Adjusted R ²	0.7477	

	Parameter	
Variable	Estimate	t-statistic
Intercept	2.335	1.7
Number of residents in home	-0.336	-1.6
Homeowner has a college education	0.700	1.5
Energy efficiency was an important home purchase factor	0.716	1.6
Builder only builds production homes	1.109	2.0
Builder only builds custom homes	-2.002	-1.9
Energy efficiency ranked 1st or 2nd in construction approach	2.346	2.6
Quality ranked 1st in construction approach	-0.595	-1.3
Builder constructs luxury homes	-0.951	-1.8
Builder believes buyers are willing to pay for energy efficiency	-1.984	-3.1
Builder believes energy efficiency improves home salability	2.087	3.3
Number of homes builder built in 1994-96 period	-0.119	-4.1
Climate zone 11 indicator	-0.617	-0.9
Climate zone 12 indicator	0.696	1.3
Number of observations	166	
Log likelihood ratio	0.3399	

Participation Decision Model Dependent Variable: Program Participation

Cooling and Heating Efficiency Models Dependent Variable: Efficiency Relative to Base Case Usage

	Cooling Efficiency		Heating Efficiency	
	Parameter		Parameter	
Variable	Estimate	t-statistic	Estimate	t-statistic
Intercept	-0.089766	-1.56	-0.024414	-0.68
Participation indicator	0.311329	8.26	0.090874	4.07
Mills Ratio 1	-0.040178	-2.37	-0.011407	-1.14
Mills Ratio 2	-0.000571	-0.02	-0.005590	-0.30
Home size (sq. ft.)	0.000027	1.19	0.000012	0.85
Number of levels in home	0.095792	3.52	0.027883	1.67
Home not part of a subdivision	0.049693	1.27	0.010429	0.44
Number of residents in home	-0.005896	-0.60	-0.008271	-1.39
Energy efficiency ranked 1st or 2nd in construction factors	-0.090452	-2.50	-0.060194	-2.20
Builder only builds production homes	-0.035403	-1.37	-0.000027	0.00
Climate zone 11 indicator	-0.126062	-3.66	0.013101	0.60
Climate zone 12 indicator	-0.065411	-2.24	-0.053793	-2.90
Number of observations	166		150	
Adjusted R ²	0.4611		0.1969	

D.4.5 Specification

See Section 5.2 of the report for a discussion of the SAE model. See 6.4 of the report for a discussion of the efficiency choice model.

Heterogeneity

Variations in energy use across customers was addressed through the use of engineering algorithms that took into account customer behavior as well as site characteristics.

Changes

Weather variables were included in the model as well as engineering usage estimates that contained seasonal variation.

Self-Selection

The efficiency choice model utilized participation decision equation to estimate the probability of participation as a function of site and builder variables. Mills ratio variables were developed from the predicted probability of participation and included in the cooling and heating efficiency models to account for self selection. bias.

Omitted Factors

NA

Interpretation as Net Impacts

In the efficiency choice model, participant and nonparticipant efficiency improvements over Title 24 compliance energy consumption are modeled as a function of program participation and other variables such as house size and builder characteristics. Differences between participant and nonparticipant efficiencies are captured in the program participation variable that is included in the model. The coefficient on this variable is the amount of efficiency improvement attributable to the Program. Thus, the result of the efficiency choice model is an estimate of net savings.

Other factors that can also cause differences in site-level efficiency are also included as model variables in order to factor out their confounding effects on the estimate of efficiency improvement due to the Program.

Since the estimation of efficiency choice model utilizes differences between participants and nonparticipants to quantify the impacts of Program participation on efficiency improvements, the efficiency choice approach is entirely consistent with Table 5 net impact guidelines in the M&E Protocols.

D.4.6 Error in Measuring Variables

Surveyor training and quality control procedures were utilized to minimize measurement error in on-site data collection.

D.4.7 Autocorrelation

For the SAE models, a generalized least squares procedure was used mitigate the effects of autocorrelation.

D.4.8 Heteroskedasticity

The SAE models were estimated on a use-per-day basis to mitigate the effects of varying billing cycles. No other attempt was made to address heteroskedasticity which usually not considered a problem in these types of residential analysis.

D.4.9 Collinearity

Multicollinearity between regression variables was reviewed using standard statistical output. For the gas SAE model, multicollinearity between the cooking, clothes drying, and other end usevariables was detected. Concerns about the impacts of multicollinearity influenced the choice not to remove outliers from the gas model. See Section D.1. above.

D.4.10Influential Data Points

Studentized residuals were reviewed. Models were run without the largest outliers. Outliers were removed from the electric SAE model but not from the gas SAE model. See Sections D.1. and D.9. above.

D.4.11 Missing Data

See Section D.1.

D.4.12Precision

Gross savings precision was based on standard errors of the regression parameters of the energy savings variables in the SAE models. For heating and cooling, net savings precision was based on the standard error of the regression parameters for the program savings variables in the electric and gas components of the efficiency choice model. For cooking and clothes drying, standard errors for the gas cooking and clothes drying variables in the SAE model were combined with standard errors of the self-report net-to-gross ratios to develop net saving precision.

D.5 DATA INTERPRETATION AND APPLICATION

D.5.1 Net Impacts

For space cooling and space heating the methods used in this study provide net impacts according to method 1a of Section E of Table 7. For cooking and clothes drying end uses net impacts were derived using method 1b of Section E of Table 7.

D.5.2 Rationale

See Sections 5 and 6 of the report for the rationale for the approach taken. Section 5.2 outlines the reason for using an SAE model to develop gross impacts. Section 6.4 presents the rationale for using an efficiency choice model to develop net impacts for cooling and heating. Section 6.5

presents rationale for the choice of a self-report net-to-gross method do determine net impacts of cooking and clothes drying.

