Customer Energy Efficiency Program Measurement and Evaluation Program

EVALUATION OF PACIFIC GAS & ELECTRIC COMPANY'S 1995 NONRESIDENTIAL ENERGY EFFICIENCY INCENTIVES PROGRAM FOR COMMERCIAL SECTOR REFRIGERATION TECHNOLOGIES APPENDICES

PG&E Study ID number: 330

March 1, 1997

Measurement and Evaluation Customer Energy Efficiency Policy & Evaluation Section Pacific Gas and Electric Company San Francisco, California

Disclaimer of Warranties and Limitation of Liabilities

As part of its Customer Energy Efficiency Programs, Pacific Gas and Electric Company (PG&E) has engaged consultants to conduct a series of studies designed to increase the certainty of and confidence in the energy savings delivered by the programs. This report describes one of those studies. It represents the findings and views of the consultant employed to conduct the study and not of PG&E itself.

Furthermore, the results of the study may be applicable only to the unique geographic, meteorological, cultural, and social circumstances existing within PG&E's service area during the time frame of the study. PG&E and its employees expressly disclaim any responsibility or liability for any use of the report or any information, method, process, results or similar item contained in the report for any circumstances other than the unique circumstances existing in PG&E's service area and any other circumstances described within the parameters of the study.

All inquiries should be directed to:

Lisa K. Lieu Revenue Requirements Pacific Gas and Electric Company P. O. Box 770000, Mail Code B9A San Francisco, CA 94177

EVALUATION OF PG&E'S 1995 NONRESIDENTIAL ENERGY EFFICIENCY INCENTIVES PROGRAM FOR COMMERCIAL SECTOR REFRIGERATION TECHNOLOGIES

PG&E STUDY ID#: 330

VOLUME I: ANALYSIS APPENDICES

March 1, 1997

Submitted to

Mary O'Drain Market Planning and Research Pacific Gas & Electric Co. 123 Mission Street, Room 2365 San Francisco, CA 94177

Prepared by

QUANTUM CONSULTING INC. 2030 Addison Street Berkeley, CA 94704

APPENDICES TABLE OF CONTENTS

Appendix		Page
A	Sample Design	A-1
В	Engineering Detailed Computational Methods	B-1
С	Billing Regression Analysis	C-1
D	Net-to-Gross Method	D-1
E	Results Tables	E-1
F	Summary of Gross Program Impacts by Costing Period	F-1
G	Final Refrigeration Waiver	G-1
н	Protocol Tables 6 & 7	H-1

Appendix A Sample Design

•

A. SAMPLE DESIGN

This appendix presents the sample design for the evaluation of Pacific Gas and Electric Company's (PG&E's) 1995 Nonresidential Energy Efficiency Incentive (EEI) Programs, Commercial Sector (the Commercial program). An integrated sample design was implemented for the Lighting, HVAC, and Refrigeration end uses. First, the sample design approach and resulting sample allocation are presented. This appendix then concludes with a discussion of the California Public Utilities Commission (CPUC) Evaluation and Measurement Protocols (the Protocols) requirements.

A.1 EXISTING DATA SOURCES FOR SAMPLE DESIGN

The participant tracking system for the Retrofit Express (RE), Retrofit Efficiency Options (REO), and Customized Incentives Programs is maintained as part of the PG&E Management Decision Support System (MDSS). Henceforth, the RE and REO program components are referred to as simply Retrofit. The MDSS contains program application, rebate, and technical information regarding installed measures, including measure descriptions, quantities, rebate amounts, and ex ante demand, energy and therm saving estimates. The MDSS extract used in this evaluation is consistent with data used in the PG&E Annual Earning Assessment Proceedings (AEAP) Report.

For the Retrofit and Customized Incentives programs, participation was tracked at both application and measure levels. They are linked by application code and program year. Each application can cover multiple measures and accounts, and each measure is linked to a PG&E electrical or gas service location where the measures are supposed to be installed. The account location is identified by its account number, or a unique seven-digit identification number (PG&E's control number). Unlike customer accounts, control numbers are used to identify service locations and serve as stable identifiers for linking datasets.

QC's existing PG&E commercial population files, assembled in support of prior evaluations, cover the period from January 1992 to September 1995. The billing series for October 1995 through September 1996 were extended only for customers in the analysis dataset. PG&E's billing data contain monthly energy-consumption as well as other customer information, such as customer name, service location, rate schedule, and Standard Industrial Classification (SIC) code.

A.2 SAMPLE DESIGN OVERVIEW

The objectives of the sample design were to

- Determine the optimal sample allocation for first-year gross impact analysis, based upon sample size and evaluation accuracy requirements of the Protocols and available project resources.
- Allocate sufficient sample points to meet net-to-gross (NTG) objectives.
- Reallocate available resources, wherever feasible, to focus on measures and/or program features deemed most important by PG&E staff for future program design while not compromising the overall accuracy of the evaluation.

The sample design is based upon a nested sample design approach. This approach consists of nesting samples of customer data so that the most expensive and detailed primary data can be leveraged to the population. The largest customer group includes all of the commercial customers with monthly PG&E billing data and participant tracking data who were rebated for eligible

lighting, HVAC and refrigeration technologies in 1995 (the "participant population"). The smallest group is the metered (TOU loggered or end-use metered) participants, who have the most comprehensive information available. These participants have lighting logger (for the Lighting end use) or end-use metering (for the HVAC end use) data, on-site audit data, telephone survey data, participant tracking data, and billing data.

The advantage of a nested sample design is that the overlapping samples of primary data can be used to improve the accuracy of the engineering and statistical analysis for the population, rather than just for the customers for which the data are available. For example, logger and metered data are used to establish accurate measures of operating hours by key business types that are then used to improve the reliability of estimates for all customers in the survey sample.

A.3 SAMPLE SEGMENTATION

Evaluation of the Commercial program at the participant segment level allows more precise, and insightful, analyses than those undertaken at the aggregate PG&E system level. The program segmentation consists of two components: participant segmentation and technology segmentation. A key feature of the sample design is that the sampling unit is a unique customer site. Significant effort was undertaken to aggregate billing and participation records to this level.

The first step in the participant segmentation process grouped firms by business type, as defined in the MDSS. There are a total of 12 business types and 34 technology groups, as defined below. Exhibit A-1 presents the distribution of unique customer sites across the business type and technology group segmentation.

Annual energy consumption values were used to group customers into five usage/size strata based upon a Dalenius-Hodges procedure. The comparison group customers are then selected to mirror the underlying distribution of the participant target population by size and business type. (For the customers in the largest size strata, a census was attempted both for among participants and nonparticipants.)

Exhibit A-1 1995 Commercial Segmentation and Distribution of Unique Participant Sites

	Business Type	Commercial												
rechnology		Office	Retail	College/Univ	School	Gracery	Keslaurant	Health Care	Hotel/Matel	Warehouse	Personal Serv.	Camm. Serv.	Mixc.	Total
ndoor	Halogen	47	46	8	17	2	26	10	16	9	4	24	6	- 2
Lighting	Compact Fluorescent Lamps	323	106	19	175	38	136	107	136	36	31	156	39	1,30
	Incandescent to Fluorescent Fixture	14	2	2	16	0	12	2	7	2	0	10		
	Exit Signs	175	60	10	107	16	80	35		11	9	73	10	5
	Efficient Ballasts Changeouts	33	20	6	26	17	6	10	3	10	2	18	5	1
	TB Lamps and Electronic Balfasts	728	620	33	345	229	194	187	41	135	152	271	126	3,0
	Delamp Fluorescent Fixtures	280	155	14	106	58	80	42	9	42	39	48	26	8
	High Intensity Discharge	40	42	4	30	11	2	1	2	67	14	34	82	3
	Reduced Wattage Lighting	2	- 1	0	- 1	0	0	0	0	1	T	11	्व	
	Controls	113	48	15	80	10	12	29	18	25	12	52	28	4
	Customized Lighting Measures	7	1	1	0	42	0	0	0	6	0	6	1	
	Indoor Lighting End Use Total	890	726	43	401	294	260	215	158	208	183	379	222	3,9
TVAC	Central A/C	179	65	3	49	13	38	66	7	31	25	11	14	5
	Adjustable Speed Drives	35	27	2	2	12	0	2	2	1	9	2	2	
	Package Terminal A/C	1	- 1	2	8	0	2	2	42	1	0	2	0	
	Set-Back Thermostat	90	32	2	24	3	18	19	3	16	12	39	12	2
	Reflective Window Film	90	23	6	5	11	9	33	5	22	20	25	13	2
	Water Chillers	6	4	0	1	0	0	- 4	0	0	0	3	0	
	Customized EMS	10	0	2	30	5	0	7	2	1	1	0	0	
	Customized Controls	3	0	1	1	0	0)	0	0	1	2	0	
	Chiller Optimization	1	0	0	0	0	0	1	0	0	0	0	0	
	Convert to VAV	3	0	0	1	0	0	2	0	0	0	0	0	
	Other Customized Equipment	- 31	0	0	0	0	0	5	0	T	0	0	0	
	Other HVAC Technologies	19	2	0	10	3	3	6	1	3		4	1	
	HVAC End Use Total	354	123	17	114	43	53	123	59	59	\$7	116	34	1,1
tefrigeration		1	0	0	0	61	0	0		1	-		5	
	Standardized Measures	- 11	75	3	4	193	208	2	6	TO		18	12	5
	Refrigeration End Use Total	14	75	3	4	253	208	2	6	11	1	18	17	6
Aisc.	Outdoor Lighting	87	47	12	101	19	22	- 35	30	35	16		42	5
	Energy Efficient Motors	19	4	4	2	3	0	9	1	6	3	6	23	
	Heat Recovery & Hot Water	0	0	1	0	1	1	Ó	1	0	1	2	0	
	AG Pumping	1	0	0	0	0	0	0	0	0	2	1	13	
	AG Other	0	0	ō	0	0	0	0	0	1	0	0	1	
	Cooking Equipment	4	2	0	12	29	50	1	4	2	0	3	0	1
	Non-Process Boilers	0	0	1	0	0	0	2	0		0	2	0	
	Process Boilers	0	0	0	0	0	1	0	0			1	0	
	Process	2	0	0	0	0	0	0	0	2	2	2	15	
	Misc. End Uses Total	113	53	15	112	52	73	46	36	46	23	88	90	7.
	Program Total	1,231	869	61	518	544	558	336	218	289	239	528	321	5,6

Data Source: 1995 PG&E Frozen MDSS Database Received on July 25 1996.

A.4 TECHNOLOGY SEGMENTATION

Program measures are classified into technology groups through combining technologies with similar energy reduction characteristics. This grouping strengthens the analysis by creating homogenous analysis segments in terms of electricity use. The three elements of the technology segmentation are as follows:

Technology Groups consist of those measures that comprise, in the case of the Lighting end use, those specific measures that are expected to have similar energy saving characteristics. For example, all T12 to T8 retrofit measures are grouped together. The projected energy savings differences will be accounted for in the engineering estimates, yielding similar per-unit estimates.

Measure Group, the second level of segmentation, groups measures by the PG&E program measure description.

Measure, the highest level of segmentation presented, is the actual measure offered by the PG&E program.

The technology segmentation presented in Exhibit A-1 shows the highest level of segmentation, at the measure level for all end uses in the commercial sector. While the engineering analysis was

conducted at the measure level, the statistical billing data analysis was conducted at a much coarser level, that is, at the technology-group level or at an even higher level of aggregation.

A.5 SAMPLE FRAME

The first step in sample design is to determine the sampling frame. In general, the sampling frame includes only those customers who are program participants, or likely targets of the program, rather than all customers in the population. It sets the stage for all data collection activities that follow, and determines the availability of billing data for the remainder of the analysis.

In this evaluation, different analyses (e.g., impact analysis, free-rider analysis, and spillover analysis) use different sampling frames, which are defined by analyzing what possible actions a customer in PG&E's service territory could have taken during the study period. This classification provides the basis for the sample design. Without this kind of control, the Statistically Adjusted Engineering (SAE) analysis change model cannot be estimated, since nonprogram-induced changes cannot be separated from changes between periods attributable to other factors, such as weather and economic trends.

A.6 PARTICIPANT SAMPLE FRAME

This section details the reduction of the eligible participant population to a sample frame suitable for impact analysis. None of the criteria used to screen the sample are believed to have adverse impacts on the sample representativeness; therefore, the screening criteria preserve the transferability of the impact results to the population.

The final participant sample frame for the Lighting and HVAC end uses consists of 2,560 commercial customers drawn from the eligible population of 5,694 program participants paid in 1995. In addition, there were 322 pretest and 78 multisite participants that were added to the 2,560 unique sites to form the final fielding sample frame. Criteria considered in the assessment of the quality of participant account billing data are as follows:

Presence of a billing rate schedule for the customer: Customers are required to have a rate schedule code for all years spanned by the billing data.

Quality of usage readings for the customer for the period of January 1993 through September 1995: Customers are required to have non-missing, non-zero usage values for all months spanned by the billing data. Customers are also required to have realistic PG&E revenues for the period. Realistic revenues are defined as revenues of at least \$0.03 per kWh, but no greater than \$0.25 per kWh.

Cohesion of billing data across years: The original billing data was received by year, i.e., the billing data for each calendar year was stored on a separate data tape. Data from different billing tapes was checked to ensure that the first month on each tape was immediately after the last month of the previous year's tape.

PG&E division representative deletion requests: Lists of customers in the sample frame were sent to the appropriate PG&E division representative for approval. Based upon responses from the representatives, some customers were deleted from the sample frame.

Reasonable usage across years and populated telephone numbers: Accounts are screened to ensure that the mean usage on the account for 1994 and 1995 is no more than twice (or less than half) the mean usage on the account for 1993 and 1994, respectively. Accounts are also screened to ensure they have reasonable phone numbers, and any accounts with no telephone number, or zeros in place of a number, are rejected from the sample frame.

For the Refrigeration end use, the entire participant sample was drawn for the sample frame because only 612 participant sites were available.

A.7 COMPARISON GROUP SAMPLE FRAME

The comparison group sample frame consists of 4,153 commercial customers drawn from the eligible population of 801,561 nonparticipants (Lighting and HVAC end uses) in the Commercial program. Since comparison group surveys were conducted only for customers in the commercial sector, the first step in creation of the sample frame is to limit eligibility to only those accounts having SIC codes representing commercial business activities. Note that similar screen criteria were used:

- Excessive changes in usage between 1993 and 1994 billing years: Accounts are screened to ensure that the mean usage on the account for 1994 and 1995 is no more than twice (or less than half) the mean usage on the account for 1993 and 1994, respectively.
- Geographic location of customers: Accounts are screened to insure that they fall within the geographic regions targeted for comparison group telephone survey and on-site survey data collection.

In drawing the sample frame, targets are established for each business type and usage segment, so that the sample frame distribution, by business type and usage segment, is the same as that of the surveyed program participant population. The drawing is conducted in this manner to ensure sufficient representation of each business type/usage segment combination in the sample frame and allow survey data collection in accordance with the sample design.

For the Refrigeration end use, a supplemental nonparticipant sample frame consisting 836 customers divided among small grocery (574), supermarkets (154), agricultural preparation (65), and refrigerated warehouses (43) was drawn to supplement the Lighting and HVAC comparison group.

Finally, the canvass survey sample frame of 6,000 is drawn randomly from a frame of 172,354 customers based upon geographic targets for this survey.

A.8 SAMPLE ALLOCATION APPROACH

The sample design complies with the Protocols and meets the program evaluation objectives. In this evaluation, the sampling unit is a customer site, which defines a unique service address. Applications in the MDSS database can cover more than one control number.

The final sample sizes for the telephone, on-site, lighting logger, and end-use metering are summarized in Exhibit A-2 by end-use element.

Exhibit A-2
Data Collected by Program and End Use

Commercial							
Program	End Use	Telephone Surveys	On-Site Audits	End-Use Metering	Time-of-Use (TOU) Loggers	Combination	
	Lighting	18	1	0	0	0	
Custom	HVAC	58	32	0	0	0	
	Refrigeration	7	16	0	1	1	
	Lighting	600	227	5	108	112	
Retrofit	HVAC	434	107	20	13	31	
	Refrigeration	235	16	0	1	1	
	Lighting	614	228	5	108	112	
Total	HVAC	487	137	20	13	31	
	Refrigeration	241	18	0	2	2	
Total Participants (Unique Sites) 1,217 380 20				108	126		
Total Nonparticipants (Unique Sites) 808 36 0 0				0			
Total (Unique	Sites)	2,025	416	20	108	126	

Telephone Survey Sample - For each segment, the retrofit program sample design allocated the sample in proportion to the program-avoided cost by segment. This sample design concentrates sample points to segments that represent highest impact, in order to obtain the best estimate of impact for the largest portion of the population. In addition, a census was attempted for the largest customers. This sample allocation, combined with the random sampling techniques within each segment, produces a stratified random telephone survey sample representing the program-participant population (paid in 1995). A nonparticipant sample is developed based upon on the business type and usage strata distribution resulting from the participant sample allocation.

Telephone surveys were collected for a total of 2,025 customers, 1,217 of which are participants, and the remaining 808 are in the comparison group (451 as the original lighting and HVAC comparison group, 201 as the supplemental refrigeration comparison group, and 156 outside the program retrofitters found through the canvass survey).

On-site Audit Sample - Similar to the telephone survey sample, this sample was also structured to be approximately proportional to the program segment-level avoided cost estimates. A total of 416 on-site surveys were conducted for the commercial sector, with 380 participants and 36 comparison group customers.

Lighting Logger and End-Use Metering - This sample is not intended to be a random sample, nor strictly proportional to the program-avoided cost. The sample allocations were manipulated in order to assure adequate sample sizes for calibration of engineering models. A total of 108 and 20 participant sites were loggered or end-use metered.

A.9 **RELATIVE PRECISION**

Given a sample design, the relative precision, based upon total annual energy use, reflects the uncertainty regarding the extent to which the allocated sample sizes are large enough to control for the population variance in terms of annual energy usage. Precision for the telephone sample is

Quantum Consulting Inc.

calculated using the following procedure. First, the 1994 annual energy consumption is computed for all participants in the analysis dataset.

Next, five strata are constructed based on customers' annual usage using the Delanius-Hodges procedure. Exhibit A-3 presents the stratum-level sample size, sample weight, sample mean, and estimated standard errors for each end-use element. Note that since a census was attempted for the largest customers, participants with consumption greater than 10,000,000 kWh were excluded from this step. Overall, there were 73 participants in the population with usage at or above this level; 37 were successfully surveyed and included in the analysis dataset. (If these 37 were included in the variance calculation—using the surveyed sample—the oversampling of large customers would explode the variance far beyond that of the true variance in the population.)

Then, the program level mean and standard error are calculated using classic stratified sample techniques. ¹ Finally, the relative precision at 90 percent confidence level is calculated as a two-tailed test.

By end-use element, the following relative precisions were achieved:

- For indoor lighting, the relative precision is 4.7 percent based upon a survey sample of 592. For the largest customers, 22 surveys were completed out of a participant population of 49.
- For HVAC, the relative precision is 6.0 percent based upon a survey sample of 473. For the largest customers, 14 surveys were completed out of a participant population of 21.
- For refrigeration, the relative precision is 4.6 percent based upon a survey sample of 240. For the largest customers, 1 survey was completed out of a participant population of 3.

¹ Cochran, W.G., Sampling Techniques, Third Edition, John Wiley & Sons, 1977. pp 91-95.

Exhibit A-3 Telephone Sample Relative Precision Levels

	LIGHTING										
Weight	n	mean	Standard Error	Relative Prec.							
52.8%	205	60,757	4,746	12.8%							
24.5%	153	218,522	6,452	4.9%							
11.5%	99	575,245	20,564	5.9%							
6.9%	78	1,586,348	58,156	6.0%							
4.3%	57	4,918,699	287,212	9.6%							
100.0%											
TOTAL	592	471,990	13,460	4.7%							
Usage > 10	,000,000 k	Wh in 1994	49								
Surveyed			22								
TOTAL Surv	veyed = 61	4									

REFRIGERATION

n	mean	Standard Error	Relative Prec.							
168	45,814	2,759	9.9%							
41	227,111	13,980	10.1%							
13	631,164	50,908	13.3%							
12	1,533,060	55,581	6.0%							
6	4,068,986	339,006	13.7%							
240	372,375	10,401	4.6%							
,000,000 k	Wh in 1994	3								
		1								
eyed = 24	1									
	168 41 13 12 6 240 ,000,000 k	nmean16845,81441227,11113631,164121,533,06064,068,986	n mean Standard Error 168 45,814 2,759 41 227,111 13,980 13 631,164 50,908 12 1,533,060 55,581 6 4,068,986 339,006 240 372,375 10,401 ,000,000 kWh in 1994 3 1							

	HVAC										
Weight	n	mean	Standard Error	Relative Prec.							
53.9%	231	51,141	3,357	10.8%							
19.5%	96	211,135	8,474	6.6%							
10.7%	58	610,891	28,876	7.8%							
10.1%	51	1,654,388	79,836	7.9%							
5.7%	37	4,660,035	327,280	11.6%							
100.0%	_										
TOTAL	473	566,376	20,647	6.0%							
Usage > 10	,000,000 k	Wh in 1994	21								
Surveyed			14								
TOTAL Surv	/eyed = 48	7									

It follows that the 808 surveys that comprise the comparison group sample yield a relative precision of at least that obtained by the corresponding participant samples. Since the expected precision is based upon the annual energy usage, this does not imply that these levels of precision can be obtained for the impact analysis.

Quantum Consulting Inc.

A.10 DEMONSTRATION OF PROTOCOL COMPLIANCE

A.10.1 Sampling Procedures Adopted

The sample design follows the rules established by the CPUC in the January 1995 revisions to the "Protocols and Procedures for the Verification of Costs, Benefits and Shareholder Earning from Demand Side Management Programs." Recent revisions to the Protocols—a draft dated 6/27/95—were incorporated wherever appropriate. The purpose of this section of the report is to identify compliance with these Protocols, with respect to the 1995 Commercial Sector Program Evaluation activities.

A.10.2 Sample Definitions

The following definitions are provided to introduce the primary segments targeted—both a participant sample and a comparison group—to ensure experiment control:

Participants - According to Table 5, part C, paragraph 1 of the Protocols, participants are defined as "those who received utility financial assistance to install a measure or group of measures during the program year."

Comparison Group - A control group is defined as a group of customers that represents what would have happened in the absence of the program. According to Table 5, part D, paragraphs 3 & 4, the comparison groups include both "customers who installed applicable measures" and "customers who did not install applicable measures," with no preference for either group (i.e., random or stratified random sample). This sample is therefore representative of the population, excluding only program participants during the evaluation year.

A.10.3 Overall Sampling Procedures

The commercial customer samples are driven by a primary data collection activity; in this case, the telephone surveys serve as the primary site-specific data collection elements that contribute to the analysis dataset. The commercial telephone sample was drawn to achieve a stratified random sample and optimally distribute the allocated sample points.

A.10.4 Detailed Protocol Sample Requirement

The commercial participant and comparison group samples are designed to meet the Protocol requirements in terms of analysis dataset sample size, precision of the results, availability of preand post-billing data contributing to the analysis dataset, and in ensuring cost-effective use of measured data.

Analysis Dataset Sample for Commercial Participants: The Protocols require that a program with more than 450 participants has a randomly drawn sample sufficiently large to achieve minimum energy use precision of ± 10 percent at the 90 percent confidence level, and at least 450 contributing points in the analysis dataset. (This was the requirement at the time of the sample design; this requirement was relaxed to 350 subsequent to the completion of the data collection activities conducted for this evaluation.)

Data collection protocols are met regarding minimum analysis dataset size, if primary site-specific data are collected on-site, as per Table 5, part C, paragraph 4 of the Protocols. Data collection efforts are further strengthened during on-site activities through the installation of lighting loggers. These devices record specific fixture operating profiles during the monitoring period, and serve to calibrate self-reported lighting operating schedules. Data collected in this way follows the participant protocol recommendations set forth in Table C-4, paragraph 1 of the Protocols.

As discussed earlier, the sample collected for the commercial section, all end uses achieve a relative precision of at least 6 percent at a 90 percent confidence level, well below the 10 percent required by the Protocols, Table 5, part C, paragraph 4. Each participant chosen for the telephone sample is required to have at least nine months of post-installation billing data, and 12 months of pre-installation data, as per the Protocols, Table 5, part D, paragraphs 2 and 1, respectively.

Analysis Dataset Sample for Commercial Comparison Group - The Protocols require that the comparison group sample "be drawn using the same criteria for participants," as per Table 5, part C, paragraph 6.

The analysis dataset meets the sample size requirement in Table 5, part C, paragraph 3. The calculated relative precision meets the precision requirement in Table 5, part C, paragraph 4. The commercial comparison group telephone sample is drawn based upon the similar distribution of participant sample, in terms of their business types and annual usage.

To ensure compliance with comparison group protocols, the telephone survey sample frame is drawn to meet the billing data requirements of Table 5, part D, paragraphs 3 and 4 of the Protocols. All customers in the analysis dataset have billing data from January 1991 to September 1996, which ensures an adequate pre- and post-installation billing periods for customers who installed applicable measures between 1993 and 1995.

Appendix B Engineering Detailed Computational Methods

B. ENGINEERING DETAILED COMPUTATIONAL METHODS

The technical approach and engineering results that support realized gross impacts in the evaluation of Pacific Gas and Electric Company's (PG&E's) 1995 Commercial Refrigeration Program are presented in this appendix. The purpose of a presentation of the engineering computations is to provide detailed intermediate results that either verify or contradict the methods used to generate program design demand and energy impact estimates. Results are presented to ensure that future program design and evaluation activities will benefit from the engineering parameters generated during the 1995 program evaluation effort.

B.1 APPENDIX B STRUCTURE

The appendix is structured as follows:

First, an overview of the evaluation approach is presented.

Then, the methods used and the engineering estimates developed for refrigeration measures covered by the Retrofit Express (RE) Program are discussed.

Next, the methods used and the engineering estimates developed for the Customized Incentives Program are summarized.

The final two sections of the appendix contain detailed calculations, assumptions, and analyses used in the development of engineering estimates for the RE and the Customized Incentives programs.

B.2 OVERVIEW OF THE EVALUATION APPROACH

The Commercial Refrigeration Evaluation consisted of the analysis of two separate PG&E programs, RE and Customized Incentives. The level of analysis for each program was tailored to its relative importance in generating program impacts.

For each of the RE measures which had paid incentives in 1995, a detailed review was performed of the algorithms and assumptions used to develop ex ante impacts.

Customized Incentive participants accounted for 82 percent and 73 percent of the gross ex ante energy and demand savings calculated for this program, respectively (see Exhibit B-1). For this reason, a detailed review of each application submitted by a Customized Incentives participants was performed. Thirty-nine of the 53 applications submitted for the Customized Incentives Program are from a single supermarket chain, with seven additional applications from other supermarkets that had retrofit work completed. The remaining seven applications are from various sites, including refrigerated warehouses, shipping facilities, and crop cold storage facilities.

	Percentage of Total Gross Ex Ante Impacts			
PG&E Refrigeration Program	Demand	Energy		
Retrofit Express	27%	18%		
Customized Incentives	73%	82%		

Exhibit B-1 Distribution of Commercial Refrigeration Impacts by Program

B.3 EVALUATION APPROACH, RETROFIT EXPRESS

The engineering algorithms used by PG&E to develop ex ante impacts for RE measures were reviewed thoroughly (algorithms were taken from the 1995 Advice Filing¹). The aim of the evaluation was to either confirm or correct the methods and inputs used in the ex ante estimates. For each measure, the following analysis steps were performed:

First, ex ante impacts were re-calculated using methods and inputs listed in the Advice Filing.

Then, evaluation impacts were developed using revised methods and inputs when applicable. When possible, inputs and methods were verified using either sources referenced in the Advice Filing or alternate sources, including the following references:

- ASHRAE Handbooks, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA
 - Refrigeration Systems and Applications, 1994
 - Fundamentals, 1989
 - HVAC Systems and Applications, 1992
- EPRI Report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs" Volume 1; Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA
- Foster Miller, 1989 "Supermarket Refrigeration Modeling and Field Demonstration" EPRI Report CU-6268, Waltham, MA, 1989
- Shepherd, Michael, Amory Lovins, et al. 1990 "The State of the Art: Appliances" Competitek, Rocky Mountain Institute, Snowmass, CO
- Usibelli, A. et al. Commercial Sector Conservation Technologies Lawrence Berkeley Laboratory, LBL 18543, Berkeley CA, 1985

Section B.5 contains detailed information regarding the development of impacts for each RE measure. Exhibit B-2 provides a summary of the per-unit impacts developed for each RE measure.

Quantum Consulting Inc.

¹ PG&E 1995 Customer Energy Efficiency Programs Advice Letter No. 1867-G/1481-E, filed October 1994.

					Evaluation Impacts					
PG&E Measure	Measure Code Description	Unit of Impact	Advice Filing Impacts		Recalculated Advice Filing Impacts		Evaluation Impacts		Final Impacts Used to Develop Estimates	
Code			kWh/yr	kW	kWh/yr	kW	kWh/yr	kW	kWh/yr	kW
R1	A (1995). Night Cover for Display Case	Linear Feet	136.6	0	136.6	0			136.6	0
R2	B (1995). Strip Curtains for Walk-in	Square Feet	37	0.0035	37	0.0035	386	0.0441	386	0.0441
R3	C (1995), Glass or Acrylic Doors (Low Temperature Case)	Linear Feet	894	0.0846	894	0.0848	1473	0.168	1473	0,168
R4	D (1995). New Refrigeration Case with Doors (Low-Temperature Case)	Linear Feet	894	0.0846	894	0.0848	1473	0.168	1473	0,168
R5	E (1995). New Refrigeration Case with Doors (Medium-Temperature Case)	Linear Feet	345	0.0326	347	0.0328	403	0.0460	403	0.046
R6	F (1995). Low Heat/No Heat Refrigeration Case Door	Linear Feet	312.8	0.0146	312.9	0.0146	181	0.0206	181	0.0206
R7	G (1995). Humidistat Control	Linear Feet	280.5	0.0184	280.5	0.0184	389	0.0449	389	0.0449
R10	H (1995). Case Lighting Electronic Ballast	Lamp(s)	87.5	0.0072	87.5	0.0072	102	0.0125	102	0.0125
R11	I (1995). Insulate Bare Suction Line	Linear Feet	16.02	0	16.67	0	16.31	0.00186	16.31	0.0018
R12	J (1995). Mutilplex Compressor System	Tons	1516.1	0.3754	1516	0.375	1404	0.16	1404	0.16
R20	K (1995). Electronic Adjustable Speed Compressor	hp	462.5	0	462.5	0	514	0.0587	514	0.0587
R14	M (1995). Mechanical Subcooler	THR*	589.7	0.3288	589.7	0.3288			589.7	0.3288
R19	N (1995). Floating Head Pressure Controller	Tons	548.22	0	548.22	0			548.22	0
R50	O (1995). Cooler or Freezer Door Gasket	Gasket(s)	1035	0.097	1032	0.097	2091	0.239	2091	0.239
R51	P (1995). Auto-Closer for Cooler or Freezer	Closer(s)	2304	0.65	2304	0.65	3535	0.57	3535	0.57
R52	Q (1995). Cooler or Freezer with Non- Electric Condensate Evaporator	Refrigeration Unit(s)	1681	0.102	1681	0.102		0.188	1681	0.188
R15	1994. High Capacity Oversized Condenser, Air-Cooled	THR•-∆F	71.38	0.0078	71.38	0.0078		0.0081	71.38	0.0081
	1994. High Capacity Oversized Condenser, Evaporative-Cooled (Ammonia)	THR*	28.19	0.0051	28.19	0.0051	28.23	0.0032	28.23	0.0032
R8	1993. Energy Efficienct Evaporator Motor, Display	Linear Feet	121.22	0.00475	121.22	0.00475		0.0138	121.22	0.0138
R9	1993. Energy Efficienct Evaporator Motor, Walk-in	hp	8355	0.368	8355	0.368		0.954	8355	0.954

Exhibit B-2 Summary of Per-Unit Impacts for Retrofit Express Measures

B.4 EVALUATION APPROACH, CUSTOMIZED INCENTIVES

Each application filed for the Customized Incentives Program was thoroughly reviewed. The analysis methods used for each review varied from application to application, depending on the measures covered, additional data gathered, and the application calculations submitted. However, the following analyses were performed for each application:

Application Review – The methods and inputs used to derive impacts for each application were reviewed.

Billing Data Review – Impacts claimed by applicants were compared with billing data to verify that the impacts were reasonable. For example, impacts greater than 30 percent of the total energy usage of the premise were noted as "suspect."

On-Site Audit -- Whenever possible, an on-site audit was performed in order to verify installed measures and to gather detailed engineering data. A single grocery chain that represented 39 of the 53 Customized Incentives applications refused to participate in these on-site investigations. According to ex post evaluation results, this customer accounted for 61 percent of gross energy impacts within the refrigeration end-use and 30 percent of demand. Of the remaining 14 participants, 13 on-site audits were completed.

In addition to the analysis methods described above, some or all of the following were performed for selected applications:

Monitoring Records -- On-site monitoring records were often collected and reviewed. Examples of these records include measured fan loads, condensate temperatures, and energy management system (EMS) downloads.

Billing Comparisons – Pre- and post-retrofit billing data were analyzed to substantiate claimed energy or demand savings.

Estimate Revisions -- If necessary, impact estimates that were derived in each application were revised using updated assumptions and/or methods.

Section B.6 contains detailed information regarding the development of impacts for each Customized Incentives participant. Exhibit B-3 provides a summary of the premise-specific impacts developed for the Customized Incentives Program.

Exhibit B-3 Summary of Per-Site Impacts for Customized Incentives Participants

	Gross Ener	gy Impacts	Gross Demand Impacts		
Site ID	Ex Ante Impacts (kWh)	Ex Post Unadjusted Impacts (kWh)	Ex Ante Impacts (kW)	Ex Post Unadjusted Impacts (kW)	
3110	75, 78 1	82,660	0.00	8.65	
3103	264,878	264,878	0.00	8.65	
2862	903,671	903,671	268.00	186.00	
2909	213,119	175,202	9.20	79.94	
396	244,994	244,994	24.70	24.70	
390	188,633	188,633	0.94	0.94	
5499	213,981	213,981	10.20	10.20	
3970	107,048	147,887	0.00	0.00	
4519	527,473	527,473	61.00	61.00	
2888	369,200	0	101.00	0.00	
657	900,322	0	24.00	0.00	
3946	484,156	484,156	0.00	0.00	
4521	165,042	165,042	0.00	0.00	
2396	85,673	85,673	0.00	0.00	
Large Supermarket Chaint	13,830,203	14,683,233	605.80	505.98	
Total	18,574,174	18,167,483	1104.84	886.06	
Realization Rate		98%		80%	

+ One supermarket chain contributed of 39 distinct applications that were paid in 1995.

For details surrounding the large supermarket chain impacts, refer to Section B.4.1 and supporting calculations in B.6.1 and B.6.2. For other Site ID records, refer to Sections B.4.2 and B.6.3.

B.4.1 Customized Incentives Program—Supermarket Refrigeration

Thirty-nine Customized Incentives applications were submitted for refrigeration retrofit measures installed within one large supermarket chain. The total savings claimed for this chain made up 40 percent of the gross demand² and 61 percent of the gross energy savings claimed under the refrigeration end use.

Application review has shown that HVAC and lighting retrofits were also performed at these sites and were often submitted as part of a refrigeration measure in the MDSS.

- All such lighting savings were recorded in the MDSS under a refrigeration classification.
- Eight of the applications had HVAC records in the MDSS for Variable Speed Drive (VSD) installations, while 30 applications claimed these savings under a refrigeration end-use classification. One site did not install a VSD.

All claimed Customized Incentives refrigeration retrofits are evaluated in this section of the appendix.

Each application contained spreadsheet models that simulate the primary end uses at each site. Applications were reviewed in detail, and impact results (by measure and refrigeration component affected) and related engineering parameters were entered into a database. This database contains information for the following store systems:

- HVAC systems including fans, compressors, and condensers
- Lighting systems including outdoor, overhead, and refrigerated case lights
- Refrigeration end-uses including refrigerated cases and anti-sweat devices
- Refrigeration compressors and condensers

The development of this database provided a means for assessing the accuracy of each application record. Impacts were calculated, where possible, using models already developed for the HVAC and lighting retrofits. Revised impact estimates are presented for each of the following components:

- VSD Impacts
- Lighting Impacts
- Refrigeration Impacts

The following were assessed:

MDSS records accuracy—whether or not application records were appropriately transferred to the MDSS.

Application results accuracy—results summarized within the application were checked against aggregate intermediate results for both the appropriate end-use classification and the accuracy of the application-level record keeping.

Exhibit B-4 illustrates the result of this accuracy check. Clearly, the MDSS records mis-appropriate other end-use impacts within the refrigeration records for this grocery chain. Also, detailed intermediate results were often aggregated incorrectly, especially by end-use category.

 $^{^2}$ Summer On-Peak demand impacts are defined for weekdays during the hour 3:00 PM - 4:00 PM, May 1 - October 31.

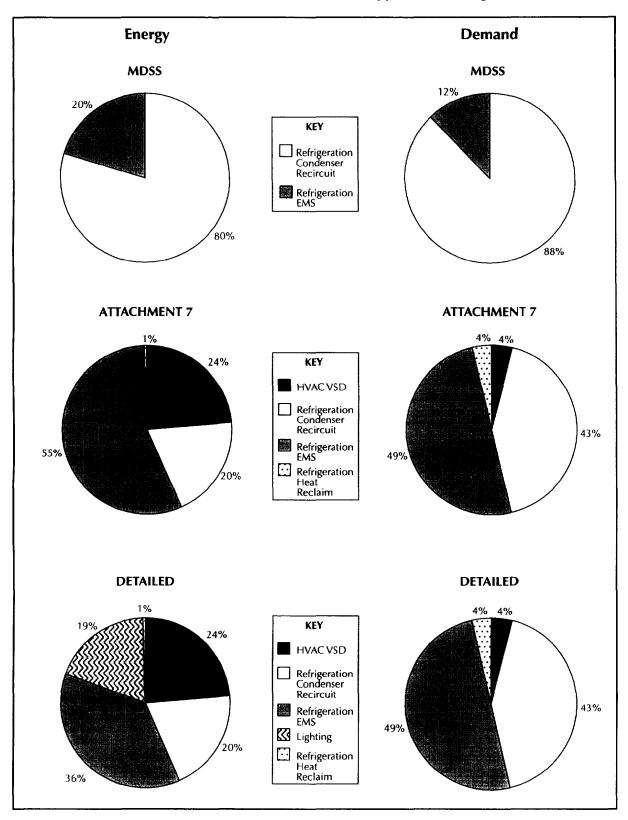


Exhibit B-4 MDSS, Attachment 7, and Detailed Application Savings

Additionally, other numeric errors were detected within the application records. Analyses were conducted to evaluate the accuracy of the detailed calculation methodologies applied and the impacts derived. Those analyses follow in the remainder of this section.

Exhibit B-5 identifies the sites where extra demand impacts were claimed. In these instances, demand impacts claimed for a particular measure are not documented in the detailed calculations. In several cases these demand impacts were claimed in Attachment 7 of the PG&E application and then input into the MDSS. In some instances demand impacts were not claimed directly, but careful inspection of the forms revealed that demand impacts summarized for VSDs were rolled over to either the condenser recircuit or EMS measure. Calculations detailing these errors can be found in *Section B.6.1*.

Demand Impacts Claimed for VSD								
Site ID	Check Number	Extra Demand Impacts (kW)						
3367	62761	2						
3388	62526	2						
3407	61756	12						
5687	63889	5						
Ex	tra Demand Impact	ts Claimed						
3357	63778	3						
3366	61063	6						
3381	60593	7						
3402	61060	8						
3413	60724	5						
3414	63776	5						
3415	61066	9						

Exhibit B-5 Extra Demand Savings Claimed in Attachment 7

Although the ex post impact methodology for many of the Customized Incentives applications made use of the impact calculation found in each application, the errors detected within this large supermarket chain required that the majority of the evaluation be based upon entirely revised methods. The evaluation approach is presented next -- first VSD methods are provided, then indoor lighting measures, followed by refrigeration measures (including one heat reclaim measure).

Variable Speed Drive Measure

VSDs were installed at all but one of the 39 grocery sites. The retrofit was performed to reduce constant volume supply fan loads. These fans were modeled in each application, assuming a continuous load.

Savings calculated in the applications demonstrated an overall annual kWh reduction of over 80 percent. Based on analysis of VSD savings for the RE program, these application savings estimates were higher than expected. In contrast, evaluation estimates using DOE-2 models have shown savings over baseline that are closer in magnitude to 50 percent.

Exhibit B-6 illustrates the site-by-site kWh savings claimed for VSD retrofits. Six sites are excluded from this table because either detailed calculations or actual applications were unavailable.

The methods used to assess these VSD supply air fan savings are consistent with the approach presented in the 1995 HVAC end-use evaluation (Study id # 326).

Site ID	Application Check Number	Supply Fan Horsepower	Baseline Fan kWh per year	Ex Ante Savings kWh	Percent Savings (Ex Ante)	Ex-Post Savings (kWh)	Percent Savings (Ex Post)
3357	63626	25	150,754	125,022	83%	79,307	53%
3361	61063	25	150,516	118,459	79%	74,875	50%
3364	60590	30	181,008	143,917	80%	89,850	50%
3366	62985	20	120,672	97,467	81%	59,900	50%
3367	62761	20	120,603	93,908	78%	63,446	53%
3368	63776	20	123,283	103,208	84%	63,446	51%
3372	60724	25	150,840	115,799	77%	74,875	50%
3373	61060	20	90,504	72,969	81%	59,900	66%
3374	61067	30	123,283	101,799	83%	95,168	77%
3381	61070	25	150,840	129,919	86%	78,606	52%
3388	62526	20	120,603	102,767	85%	63,446	53%
3389	63624	20	120,413	90,698	75%	59,900	50%
3391	62986	15	90,310	66,797	74%	44,925	50%
3394	63625	20	120,672	91,915	76%	63,446	53%
3400	63775	30	180,905	152,227	84%	95,168	53%
3401	61061	25	150,840	114,384	76%	79,307	53%
3402	61069	25	150,840	119,242	79%	74,875	50%
3403	63621	30	180,905	99,023	55%	95,168	53%
3405	61066	30	181,008	147,871	82%	89,850	50%
3409	61058	25	150,516	117,940	78%	74,875	50%
3411	61068	20	120,603	99,023	82%	65,844	55%
3413	60960	20	120,672	93,739	78%	59,900	50%
3414	62390	25	150,840	115,078	76%	79,307	53%
3415	62391	25	150,840	119,782	79%	74,875	50%
3416	63619	25	150,840	123,047	82%	74,875	50%
5687	63889	25	150,754	127,327	84%	79,307	53%
3407	60593	30	Missing	Missing	N/A	98767	N/A
3359	63217	Missing	Missing	Missing	N/A	74,563	N/A
3371	61065	Missing	Missing	Missing	N/A	74,563	N/A
3386	61057	Missing	Missing	Missing	N/A	74,563	N/A

Exhibit B-6 Ex Ante and Ex Post VSD Energy Savings

Evaluation VSD demand impacts were set to zero (several ex ante VSD application records claimed demand impacts) and energy savings were computed as follows:

VSD Model -- VSD modeling methods used to evaluate VSD impacts recorded under the HVAC end use (See Study 326) were used to calculate impacts. This method used DOE-2 models to simulate hourly per-horsepower savings by climate zone.

VSD Schedule -- Savings for all of these sites were based on a 24 hour per day supply fan operating schedule, according to application-based assumptions.

Mean Results -- Where fan horsepower was not available, savings for the site were set equal to the mean savings for all other stores.

Indoor Lighting Measure

The lighting savings are due to energy management system control of overhead lights (to shut off a portion of the lights for several hours during the night). Over half of the floor lights are shut down for approximately 6 hours per night. Outdoor lighting and office lighting were rarely affected.

Average energy savings amounted to 15.8 percent of the annual lighting use (based on application records), and no demand savings were claimed. These figures are acceptable, assuming that 92 percent of the lighting connected load is floor lighting, and 66 percent of these lights are shut off for 6 hours per day. (See Exhibit B-7). Because telephone surveys and on-site audits were rejected by this particular customer, these assumptions could not be directly verified.

Application estimates were adopted from each application for this particular measure.

Application			Evaluation			
Lighting Connected Load	1,807	kW	Lighting Connected Load		1,807	kW
Pre-Retrofit Lighting Post-Retrofit Lighting	15,202,161 - 12,797,683	kWh kWh	Percent Controlled	×	61%	
			Lighting Connected Load Controlled Hours off/year (6 hours per day x 365 days)	×	1,098 21 <u>90</u>	kW
Annual Savings	2,404,478	kWh	Annual Savings	2	2,404,485	kWh

Exhibit B-7 Indoor Lighting Impacts

Refrigeration Measures

There were three modifications to the refrigeration systems that were analyzed for demand and energy impacts. These measures impacted energy consumption as follows:

Recircuit Condenser -- The Recircuit Condenser measure improves compressor efficiency (due to floating head pressure controls), and therefore reduces condenser loads.

EMS – The EMS control of lights and anti-sweat door heaters results in reduced lighting load due to reduced operating hours, reduced anti-sweat load due to reduced operating hours, and reduced refrigerated case load as a result of lower gains from lights and door heaters.

Heat Reclaim – The Heat Reclaim measure uses refrigerator waste heat to heat water, thereby eliminating the water heating load entirely (electric heating element is removed).

Recircuit Condensers

This retrofit was performed on refrigerated cases and on the air conditioning systems.

Within the original savings calculations, bin models were used to estimate the refrigerator and air conditioner energy consumption both pre- and post-retrofit. The models incorporated changes in the condensing temperature and corresponding efficiency improvements to the compressors.

The methodology used in each application to calculate the reduction in refrigeration energy usage was determined to be reasonable. There were, however, several inconsistencies identified including erroneous changes in load from the pre- to post-retrofit condition. In several cases application records applied savings calculated for VSDs within the Condenser Recircuit measure.

Savings for this measure were calculated as follows:

First, a random sample of 10 sites (26 percent of the applications submitted) were analyzed in detail. A bin model spreadsheet (used in each application) was recreated using pre-retrofit refrigeration and air conditioning loads from the applications. Bin hours, condensing temperatures and efficiencies were also taken from the applications. See *Section B.6.2* for the bin model calculations.

Then, a ratio of savings to maximum refrigeration plant load (total Btuh capacity for air conditioning and refrigerated cases) was created for peak demand and annual kWh impacts. Exhibit B-8 illustrates the results of this assessment.

	7	Y				
					Demand Impact Ratio	Energy Impact Ratio
	1	Maximum			(Demand Impact /	
	Check	Refrigeration Plant	Ex-Post Demand	Ex-Post Energy	Refrigeration Load) x	Energy Impact /
Site ID	Number	Load (Btuh)	Impacts (kW)	Impacts (kWh)	1,000,000	Refrigeration Load
3402	61060	1,114,540	-2.18	57,576	-1.954	0.052
3372	61061	1,226,259	9.23	134,621	7.527	0.110
3361	61067	894;449	1.80	66,399	2.015	0.074
3409	61068	1,467,973	5.39	182,491	3.675	0.124
3391	61069	1,218,793	7.32	112,366	6.004	0.092
3373	61070	1,023,750	1.48	33,106	1.445	0.032
3364	62985	1,176,645	0.04	30,865	0.033	0.026
3401	63621	1,209,900	8.38	59,058	6.923	0.049
3368	63624	845,679	2.13	145,754	2.523	0.172
3374	63625	893,034	5.01	142,215	5.609	0.159
				Average Ratio	3.380	0.089

Exhibit B-8 Bin Model Results

Lastly, maximum refrigeration plant load for all remaining sites, and the average savings ratio shown in Exhibit B-8, were used to leverage savings on a site-by-site basis. Where plant load from the applications was unavailable a mean savings was applied. Exhibit B-9 illustrates the savings determined for all sites.

	······	A fourier and		
	Check	Maximum Refrigeration Plant	Ex-Post Demand	Ex-Post Energy
Site ID	Number	Load (Btuh)	Impacts (kW)	Impacts (kWh)
3357	63778	922,192	3.12	82,183
3359	63217		2.14	56,317
3361	61067	<u>631,950</u> 1,300,000	1.80	66,399
3363	63619	1,300,000	4.73	124,579
3364	62985	1,500,000	0.04	30,865
3366			5.74	
	61063	1,698,920		151,402
3367	63889	785,807	2.66	70,028
3368	63624	2,552,000	2.13	
3371	61065	Missing	3.97	80,039
3372	61061	1,917,000	9.23	134,621
3373	61070	1,150,000	1.48	33,106
3374	63625	2,552,000	5.01	142,215
3378	62526	813,000	2.75	72,452
3379	61064	1,616,460	5.46	144,053
3381	60593	1,895,360	6.41	168,908
	63218	1,059,449	3.58	94,415
3386	61057	Missing	3.97	80,039
3388	63627	819,100	2.77	72,995
3389	60590	843,810	2.85	75,198
3391	61069	2,425,000	7.32	112,366
3394	63775	1,001,162	3.38	89,220
3395	62761	890,570	3.01	79,365
3399	63216	1,086,600	3.67	96,834
3400	62391	1,019,261	3.45	90,833
3401	63621	1,764,000	8.38	59,058
3402	61060	1,984,500	-2.18	57,576
3403	62390	1,099,662	3.72	97,998
3404	62759	1,658,140	5.60	147,768
3405	61058	1,698,920	5.74	151,402
3407	61756	1,413,333	4.78	125,951
3408	62987	Missing	3.97	80,039
3409	61068	2,425,000	5.39	182,491
3411	60960	1,335,331	4.51	119,000
3412	62986	1,032,700	3.49	92,031
3413	60724	1,774,031	6.00	158,096
3414	63776	1,239,950	4.19	110,500
3415	61066	1,221,500	4.13	108,856
3416	62098	1,916,150	6.48	170,761
5687	63626	1,461,448	4.94	130,239

Exhibit B-9 Refrigerated Case Load to Demand and Energy Impacts

EMS Control of Refrigerated Case Lights and Anti-Sweat Door Heaters

The Energy Management Systems cycle the anti-sweat heaters and shut off the lighting in the refrigerated case displays during selected periods. This had the effect of directly reducing the energy consumption of the controlled technology, and secondarily reducing the refrigerated case cooling load. Each of these components were calculated in detail.

Case Lights -- Refrigeration case lights were cycled off for 6 to 8 hours per night. This results in an energy savings, although no demand savings can be claimed since all the impacts occur during near-peak or off-peak periods. The connected load for refrigerator case lighting was estimated using applications records for each site. Savings were calculated assuming 7 hours per night reduction in run time. Applications for 3 sites were not available, and therefore these sites were assigned the mean impact from all other stores.

Anti-sweat loads – Anti-sweat heaters are cycled off 50 percent of the time, where anti-sweat heater connected loads are based upon application records for each site. Energy savings were calculated using 12 hours of full load operation per day reduction (i.e., demand savings were determined based on continuous operation at 50 percent of the total connected load). Applications for 3 sites were not available, and therefore these sites were assigned the mean impact from all other stores.

Exhibit B-10 illustrates savings calculated for the EMS control of case lighting and anti-sweat heaters.

1		Casa Lighting	Constituting	Deer Hesters	Door Heaters
	Check	Case Lighting Demand	Case Lighting Energy Impacts	Door Heaters Demand Impacts	Energy Impacts
Site ID	Number	Impacts (kW)	(kWh)	(kW)	(kWh)
60590	3389	0	45,990	5.5	48,180
60593	3381	0	48,545	2.5	21,900
60724	3413	0	48,545	6.0	52,560
60960	3411	0	91,980	11.0	96,360
61058	3405	0	127,750	7.5	65,700
61060	3402	0	66,430	4.5	39,420
61061	3372	0	33,215	7.0	61,320
61063	3366	0	28,105	5.5	48,180
61064	3379	0	99,645	2.0	17,520
61066	3415	0	104,755	11.0	96,360
61067	3361	0	38,325	9.0	78,840
61068	3409	0	102,200	10.5	91,980
61069	3391	0	91,214	5.0	43,800
61070	3373	0	66,430	4.5	39,420
61756	3407	0	94,535	13.0	113,880
62098	3416	0	79,205	10.0	87,600
62390	3403	0	38,325	7.0	61,320
62391	3400	0	28,105	7.5	65,700
62526	3378	0	63,875	4.0	35,040
62759	3404	0	22,995	7.5	65,700
62761	3395	0	43,435	1.5	13,140
62985	3364	0	51,100	8.5	74,460
62986	3412	0	84,315	9.5	83,220
63216	3399	0	48,545	14.5	127,020
63217	3359	0	15,151	3.0	26,280
63218	3384	0	63,875	5.5	48,180
63619	3363	0	132,860	6.0	52,560
63621	3401	0	71,540	8.0	70,080
63624	3368	0	22,995	4.6	40,296
63625	3374	0	22,995	3.9	34,164
63626	5687	0	38,325	9.5	83,220
63627	3388	0	33,215	8.0	70,080
63775	3394	0	56,210	4.0	35,040
63776	3414	0	86,870	11.0	96,360
63778	3357	0	28,105	9.5	83,220
63889	3367	0	22,995	4.0	35,040
62987	3408	0	59,519	7.0	61,198
61065	3371	0	59,519	7.0	61,198
61057	3386	0	59,519	7.0	61,198
		· · · · · · · · · · · · · · · · · · ·			
	Totals	0	2,321,258	272	2,386,735

Exhibit B-10 Refrigerator EMS Energy and Demand Savings

Indirect Cooling Savings -- The reduction of lighting and anti-sweat loads, within the refrigerated display cases, has an indirect effect of reducing compressor and condenser energy usage. The reduction in gains for both of these heat sources were calculated separately.

• To calculate refrigerated case impacts (due to refrigerated case lighting controls), the following assumptions were made:

All energy serving the lights is assumed to dissipate in the form of heat -- thus the reduction of lighting energy relates directly to a reduction in refrigerated case load.

Cycling of display lights at night has no impact on peak demand savings.

Lighting energy savings in kW were converted to BTU when determining the reduction in refrigerated case loads.

• To calculate refrigerated case impacts (due to refrigerated case anti-sweat controls), the following assumptions were made:

It was assumed that fifty percent of the anti-sweat gains are dissipated into the store and the other fifty percent to the refrigerated case. Thus reduced heat load resulting from anti-sweat cycling contributes only half of that heat for secondary load reduction in compressor and condenser energy usage.

In contrast to application records (where anti-sweat heater cycling only contributes to energy savings), ex post demand savings were also calculated.

The savings due to the reduction in the refrigeration load were determined by computing the level of energy and demand associated with the refrigeration load (Btuh) at each of ten sites. As illustrated in Exhibit B-11 the ten sites previously analyzed in the Condenser Recircuit measure were used to determine a ratio of refrigerator load to kW demand, and to annual kWh use. This ratio was applied to the reduced load for each site in order to determine the reduction in energy and demand. Energy impacts were calculated using the combined load reduction for heaters and lighting. Demand impacts were calculated using the load reduction for heaters only.

Site	Maximum Refrigeration Plant Load (<i>Btuh</i>)	Maximum AC Load (Btuh)	Refrigeration Load (Cooling Load - AC Load)	Refrigeration Demand (kW)	Refrigeration Energy (kWh/year)	Demand Fraction (kW per Btuh)	Energy Fraction (kWh per Btuh)
3402	1,114,540	37	670,540	86	458,947	0.0001276	0.684443
3372	1,226,259	40	746,259	97	519,727	0.0001300	0.696444
3361	894,449	30	534,449	61	356,563	0.0001150	0.667160
3409	1,467,973	40	987,973	123	668,919	0.0001244	0.677062
3391	1,218,793	40	738,793	86	450,145	0.0001164	0.609297
3373	1,023,750	30	663,750	102	613,255	0.0001538	0.923925
3364	1,176,645	40	696,645	101	548,749	0.0001457	0.787703
3401	1,209,900	40	729,900	89	466,761	0.0001226	0.639486
3368	845,679	20	605,679	103	460,705	0.0001706	0.760643
3374	893,034	2.0	653,034	113	425,451	0.0001738	0.651499
		Total	7,027,022	963	4,969,223	0.0001370	0.707159

Exhibit B-11 Refrigeration Load vs. Demand and Energy

Heat Reclaim

One site claimed savings for a heat reclaim retrofit. Waste heat from the refrigerators are used to heat water, where the water heater element has been disconnected. Energy savings for this retrofit represented an annual operating factor of 50 percent. Given that no telephone or on-site audit

data were gathered for this customer, this figure was determined to be acceptable. Demand savings claimed in the application were equivalent to the connected load of the equipment. This was not consistent with a 50 percent operating factor, and therefore savings were adjusted downward by this ratio.

Supermarket Refrigeration Summary of Findings

Total evaluation impacts for each retrofit measure installed at these supermarkets are illustrated in Exhibit B-12. Evaluation energy impacts were 6 percent higher than those claimed in the MDSS, while evaluation demand impacts were 17 percent lower than claimed in the MDSS. A portion of the demand impacts claimed in the application were dismissed due to errors in the calculation or summary. Evaluation demand savings included anti-sweat heater EMS impacts which were not claimed in the application.

Energy Demand MDSS MDSS 12% 20% KEY Refrigeration Condenser Recircuit Refrigeration EMS 80% 88% DETAILED DETAILED 1% 4% 4% KEY 19% 24% HVAC VSD Refrigeration Condenser Recircuit 43% Refrigeration EMS 100 49% Lighting 20% · · · Rerigeration Heat Reclaim 36% KEY **EVALUATION EVALUATION** HVAC VSD 6% 1% 2% Refrigeration Condenser \Box 13% 15% Recircuit 16% 55 Lighting EMS 32% Refrigerated Case Lighting EMS \square Refrigeration Anti-Sweat Heater EMS 16% Indirect Refrigeration Savings EMS 27% 53% Refrigeration Heat Reclaim \Box 19%

Exhibit B-12 MDSS, Detailed Application, and Evaluation Savings

Exhibit B-13 details the overall MDSS record versus the gross unadjusted evaluation impacts by action code.

Action Code	MDSS Demand (kW)	Evaluation Demand (kW)	MDSS Energy (kWh)	Evaluation Energy (kWh)
453	74.3	109	2,808,306	2,859,899
489	531.5	397	11,021,897	11,823,334

Exhibit B-13 MDSS vs. Evaluation

B.4.2 Customized Incentives Program—Other Applications

Detailed calculations supporting the remaining 14 applications submitted under the Customized Incentives Program are presented in *Section B.6.3*. The application review and evaluation impact calculations submitted in that section are not intended to be stand-alone documents, but should be reviewed in conjunction with the application records themselves.

B.5 DETAILED METHODS USED TO DEVELOP RETROFIT EXPRESS ENGINEERING ESTIMATES

This section contains detailed information regarding the development of impacts for each RE measure, and is presented according to the following: 1) for each measure, a written summary provides an overview of the algorithm review, and 2) detailed calculations used in the analysis are provided.

B.6 DETAILED METHODS USED TO DEVELOP CUSTOMIZED INCENTIVES ENGINEERING ESTIMATES

This section contains detailed information regarding the development of impacts for each Customized Incentives application, and is presented according to the following: 1) for each application, a written summary provides a synopsis of the application review process, and 2) detailed supporting evaluation calculations are provided.

Appendix B.5 Detailed Standard Measure Engineering Calculations

Measure A: Night Covers for Display Cases

Measure Description:	This measure provides a film or blanket night cover for open vertical or open tub display cases. The target market for this measure is small grocery stores which restock during the day.
Summary of Advice Filing Calculations:	Energy estimates were derived using an Excel spreadsheet that was developed by the PG&E Mechanical and Nuclear Engineering Department. No demand impacts were calculated as the retrofit only affects off-peak hours.
Comments on Advice Filing Calculations:	The cited spreadsheet was not included with the other technical documents, and so the Advice Filing method could not be evaluated.
Comments on Advice Filing Inputs:	Inputs were taken from manufacture's data. There is no reason to doubt the validity of this data.
Evaluation Process:	An Evaluation estimate was not developed.
Additional Notes:	

A) Night Covers for Display Cases

1) Provide film or blanket night covers on open display cases.

The target market for this measure is smaller grocery stores who restock during the day. Eligible units are open vertical stand-up display cases, of the single- or double-air curtain front design, and tub cases

2) Advice Filing Method:

	14/0	bianket	95	3.33
LT Coffin	14%	blanket film	84	1.68 8.93
HT Multideck	8%	film	75	4.50
		blanket	161	28.18
MT Multideck	70%	film	143	75.08
		blanket	370	3.70
LT Multideck	4%	film	329	9.87
	Participation		(kWh/yr-ft)	(kWh/yr-ft)
Case Type	Percent of	Cover Type	Energy Savings	Weighted

No demand impacts are estimated because covers are generally deployed at night, during non-business hours.

3) Evaluation Estimate:

All information used in the calculations are from manufacturer's data. No reason to doubt validity, and unable to locate alternate sources. Recommend using Advice Filing Estimates.

4) Summary of Results:

Impact Type	Imp	Recommended	
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0	NA	Advice Filing
Coinc. Demand (kW)	0	NA	Advice Filing
Annual Energy (kWh)	137	NA	Advice Filing

Measure B: Strip Curtains for Walk-in

Measure Description:	Installation of strip curtains on doorways to walk-in coolers. This reduces infiltration when the door is open.
Summary of Advice Filing Calculations:	Impacts were derived using PG&E Application Note 53-31-81 and some "conservative assumptions". Inputs included air changes per day and the change in enthalpy of the entering air.
Comments on Advice Filing Calculations:	The method used was inconsistent with the impacts developed for other measures that reduce infiltration, such as the Auto-Closer and Door Gasket measures for coolers and freezers. These programs use an ASHRAE method to calculate impacts.
Comments on Advice Filing Inputs:	According to the Advice Filing, the strip curtains were 65% effective in reducing infiltration. ASHRAE methods estimate that strip curtains in good condition are 80% to 95% effective in reducing infiltration.
Evaluation Process:	Energy and demand impacts were developed using the ASHRAE method and modified inputs.
Additional Notes:	The Advice Filing method grossly underestimates the energy and demand impacts of this measure. The Evaluation energy estimate is approximately ten times greater than the Advice Filing estimate.

B) Strip Curtains for Walk-in

1) Install strip curtains for walk-in coolers and refrigerated warehouses.

2) Ex-ante assumptions:

Average EER is 7.0 Door area is 3' x 7' or 21sqft Ave air infiltration rate is 75 cuft/min Volume of walk-in is 1,500 cuft Ave walk-in temp is 30F Ave indoor temp is 75 F Relative humidity is 50% 11 air changes per day Strip curtains assumed to be 65% effective at blocking infiltration.

3) Advice Filing Estimates:

Energy Savings:

Energy Savings.	Advice Filing uses PG&E Application Note 53-31-81 and makes "some conservative assumptions".
	Q = I x H x 365 days/yr
where:	
Q =	loads due to infiltration (kBtu/yr)
I =	volume of infiltrated air (volume x air changes per day)
=	16,500 cuft/day
H =	enthalpy change per cuft of entering air
=	1.39 Btu/cuft
Q =	(16,500 cuft/day) x (1.39 Btu/cuft) x 365 days/yr
=	8,371,275
=	8,371 kBtu/yr
adjust to kWh =	8,371 kBtu/yr x (1/7.0 Btu/Watt)
=	1,196
=	1,196 kWh/yr
Savings due to Curtains:	
=	65% x 1,196 kWh/yr
=	777
=	777 kWh/yr
Adjust to sqft =	(777 kWh/yr)/21 sqft
=	37
=	37 kWh/sqft-yr

Non-coincident Demand Savings:

= (37 kWh/yr-sqft)/(5,708 E	FLH/yr)
= 0.00648	
= 0.00648 kW/sqft	

```
Coincident Demand Savings:
```

= (0.00648 kW/sqft) x 0.54 CDF
= 0.00350
= 0.0035 kW/sqft
Although the advice filing methods apply a diversity factor of 0.54, a more reasonable CDF would be 0.65.
= (5,708 EFLH/yr)/8,760 hrs/yr
= 0.65

4) Evaluation Estimates:

Non-coincident Demand Savings:

```
Infiltration by air exchange, according to ASHRAE* p.26.3.
                      qt = 3,790 x W x H^1.5 x (Q/A) x (1/R) x Dt x Df x (1-E)
                    where:
                       qt = average heat gain in a period (Btu/h)
                      W = door width
                       H = door height
                     Q/A = sensible heat load of infiltration per square foot of doorway
                       R = sensible heat ratio of the infiltration air heat gain
                      Dt = door open time factor
                      Df = door flow factor
                       E = effectiveness of doorway protective device (0 = unobstructed doorway)
                           ASHRAE* assumes that a strip curtain is 80% to 95% effective in reducing infiltration.
                           The cooler impact is initially calculated with the assumption that the door is left open for an entire hour.
                      Dt = 1.0
                      Df = 0.8 flow factor
                       E = 65% according to Advice Filing p. RF-17
                     Q/A = 0.16 tons/sqft according to ASHRAE* Fig. 3, p. 26.4
                       R = 0.59 according to ASHRAE* Table 7, p. 26.4
 Baseline Loads (cooler) = 3,790 x 3ft x (7^1.5ft) x (0.16 tons/sqft) x (1/0.59) x 80% x 1.0 x (1-0)
                         = 45,684
Baseline Demand (cooler) = (45,648 Btuh)*(1ton/12,000 Btuh)*(1.6 kW/ton)
                         = 6.086
                         = 6.086 \text{ kW}
                           This is a theoretical calculation, and assumes that a door would be left open for an entire hour.
  Retrofit Loads (cooler) = 3,790 x 3ft x (7^1.5ft) x (0.16 tons/sqft) x (1/0.59) x (80% flow factor) x (1 - 65%)
                         = 15,989
Retrofit Demand (cooler) = (15,989 Btuh) x (1ton/12,000 Btuh) x (1.6 kW/ton)
                         = 2.132
                         = 2.132 \text{ kW}
```

Again, this impact assumes that the cooler door is left open for an entire hour.

NC Demand Savings (cooler) = 6.086 kW - 2.132 kW = 3.954 = 3.954 kWAgain, this impact assumes that the cooler door is left open for an entire hour. The freezer impact is initially calculated with the assumption that the door is left open for an entire hour. Q/A = 0.61 tons/sqft according to ASHRAE* Fig. 3, p. 26.4 R = 0.63 according to ASHRAE* Table 7, p. 26.4 Baseline Loads (freezer) = 3,790 x 3ft x (7^1.5ft) x (0.61 tons/sqft) x (1/0.63) x 80% x 1.0 x (1-0) = 163,112Baseline Demand (freezer) = (163,112 Btuh)*(1ton/12,000 Btuh)*(2.4 kW/ton) = 32.622= 32.622 kWAgain, this impact assumes that the freezer door is left open for an entire hour. Retrofit Loads (freezer) = 3,790 x 3ft x (7^1.5ft) x (0.61 tons/sqft) x (1/0.63) x 80% x 1.0 x (1-65%) = 57,089Retrofit Demand (freezer) = (57,089 Btuh)*(1ton/12,000 Btuh)*(2.4 kW/ton) = 11.418= 11.418 kWNC Demand Savings (freezer) = 32.622 kW - 11.418 kW = 21.205 = 21.205 kWAgain, this impact assumes that the freezer door is left open for an entire hour. Average NC Demand Savings: $= (3.954 \text{ kW} \times 80\%) + (21.205 \text{ kW} \times 20\%)$ = 7.404 = 7.404 kW/21 sqft = 0.353= 0.353 kW/sqft Energy Savings: Assumptions: 50% of participants are grocery stores, and another 30% are split between warehouse and misc. commercial Business hours are assumed to be 20 hours / day seven days a week Walk-in doors are open 3 hours a day, according to Advice Filing estimates for Auto-Closer on Cooler or Freezer p. RF-76 Annual hours doors purposefully open = 1,095 80% of installations are coolers, 20% freezers, assumption used by Advice Filing estimates for Auto-Closer on Cooler or Freezer p.RF-76 Average Energy Savings = [(3.954 kW x 80%) + (21.205 kW x 20%)] x 1,095 hrs/yr = 8,108 = (8,108 kWh/yr)/(21 sqft) = 386 = 386 kWh/yr-sqft

Coincident Demand Savings:

Assume savings are spread across and entire year.

- = (386 kWh/yr-sqft).8,760 hrs/yr
- = 0.0441
- = 0.0441 kWh/yr-sqft

5) Summary of Results:

Impact Type	Imp	Recommended	
(per square foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0065	0.353	Evaluation
Coinc. Demand (kW)	0.0035	0.0441	Evaluation
Annual Energy (kWh)	37	386	Evaluation

6) Sources:

* ASHRAE Handbook, "Refrigeration Systems and Applications"; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA, 1994

Measure C: Glass or Acrylic Doors (Low Temperature Case)

Measure Description:	Installation of glass or acrylic doors on existing open multideck low temperature refrigeration cases, in order to reduce infiltration.
Summary of Advice Filing Calculations:	Direct energy and demand impacts were calculated using connected load and case load values from Competitek.
Comments on Advice Filing Calculations:	Direct demand savings associated with case load reduction were used with no supporting calculations provided. No indirect impacts were developed.
Comments on Advice Filing Inputs:	While the baseline case load values were verified with alternate sources, the retrofit impacts underestimate potential savings. Additionally, indirect impacts were not estimated.
Evaluation Process:	Direct and indirect impacts were determined using case loads, evaporator fan connected loads, and anti-sweat heater loads.
Additional Notes:	Evaluation results suggest that the Advice Filing methods underestimate the energy and demand impacts for this measure by approximately 65% and 99%, respectively.

C) Glass or Acrylic Doors (Low Temperature Case)

1) Installation of glass or acrylic doors on existing open multideck low temperature refrigeration cases.

2) Ex-ante calculation assumptions:

50% of the replaced systems are multiplex and the other 50% are conventional systems. Low temperature conventional systems will save 3.19 kWh/day-ft of display (35% of baseline). Low temperature multiplex systems will save 1.71 kWh/day-ft of display (27% of baseline). Annual operating hours for a refrigeration system is 5,708 hours/yr. Baseline case load is 1,425 Btuh-ft EER for low temp case is 4.43.

3) Advice Filing Estimates:

Baseline Case Load:

= [(1425	Btu/hr-ft)/(4.43	Btu/W-hr)] x (8,1	760 hrs/yr)	x (1	kW/1,000Watts)
= 2818						
= 2,818	kWh/yr-ft					
Advice	Filing p.RF-8 li	sts 2,820 k	Wh/yr-ft,	assume rou	unding	

Energy Savings:

Average daily savings =	(3.19 kWh/day-ft +1.71 kWh/day-ft)/2
=	2.45
Average annual savings =	(2.45 kWh/day-ft) x (365 days/yr)
=	894.25
=	894 kWh/yr-ft

Case Load Savings:

The following calculation was not done in the Advice Filin	g, but was done in the Evaluation for purposes of
comparison	
= (894 kWh/yr-ft) x 4.43 Btu/Watt-hr	
= 3960.42	
= (3,960 kBtu/yr-ft) x (1 yr/365 days) x (1 day/24 hrs) x	: (1,000 Btu /1 kBtu)
= 452	
= 452 Btu/hr-ft, a 31.7% savings over the baseline	

Non-coincident Demand Savings:

= (894	kWh/yr-ft)/(5,708 full load hours/yr)
= 0.157	
= 0.157	kW/ft

Coincident Demand Savings:

= 0.54 CDF x 0.157 kW/ft = 0.0848

= 0.0848 kW/ft
The Advice Filing lists 0.0846 kW/ft, difference assumed to be rounding.
The Advice Filing uses a CDF of 0.54, which is not appropriate.
A more reasonable value is $(5,708 \text{ EFLH/yr})/(8,760 \text{ hrs/yr}) = 0.65$

4) Evaluation Estimates:

Evaluation Assumptions:

Unless otherwise stated all values taken from EPRI report TR-100984, V1⁺. Baseline design case load is 1,400 Btuh/ft Retrofit design case load is 560 Btuh/ft Average EER for a low temp case is 4.3 Btuh/Watt Baseline anti-sweat energy use is 13 Watts/hr-ft Retrofit anti-sweat energy use is 25 Watts/hr-ft Baseline fan energy use is 70 Watts/hr-ft Retrofit fan energy use is 19 Watts/hr-ft

Baseline Case Load:

- = (1400 Btu/hr-ft)/(4.3 Btu/W-hr)
- = 326
- = (326 Watts/ft) x (24 hr/day) x (365 days/yr) x (1 kW/1,000Watts)
- = 2856
- = 2,856 kWh/yr-ft

Retrofit Case Load:

- = (560 Btu/hr-ft)/(4.3 Btu/W-hr)
- = 130
- = (130 Watts/ft) x (8,760 hrs/yr) x (1 kW/1,000Watts)
- = 1,139
- = 1,139 kWh/yr-ft, case load only

Indirect Case Load:

Anti-sweat Energy Impacts = (13 Watts/hr-ft - 25 Watts/hr-ft)

- = -12
 - = (-12 Watts/hr-ft) x (24 hrs/day) x (365 days/yr) x (1 kW/1,000 Watts) x 1.0 CDF
 - = -105
 - = -105 kWh/yr-ft

Evap. Fan Energy Impacts = (70 Watts/hr-ft - 19 Watts/hr-ft)

- = 51
- = (51 Watts/hr-ft) x (24 hrs/day) x (365 days/yr) x (1 kW/1,000 Watts) x 0.65 CDF
- = 290
- = 290 kWh/yr-ft

	Average case load is stated to be 75% of the design load, according to EPRI report TR-100984, V1†
=	0.75 x [(2,856 kWh/yr-ft) - 1,139 kWh/yr-ft] + [(290 kWh/yr-ft) -(105 kWh/yr-ft)] 1473
=	1,473 kWh/yr-ft This is not comparable to the 204 kW/h covings supported by Advise Filing Methods
	This is not comparable to the 894 kWh savings supported by Advice Filing Methods. Recommend using Evaluation estimate, as indirect impacts are taken into account.
Non-coincident Deman	d Savings:
=	(1,473 kWh/yr-ft)/(5,708 full load hours/yr)
=	0.258
=	0.258 kW/ft
	Recommend using Evaluation estimate, as indirect impacts are taken into account.

Coincident Demand Savings:

Energy savings are assumed to be spread evenly across the entire year.

- = (1,473 kWh/yr-ft)/(8,760 hours/yr)
- = 0.168
- = 0.168 kW/ft

The actual coincident demand can reasonably be assumed to be within the range of 0.258 kW/ft to 0.168 kW/ft, and may be closer to 0.258 kW/ft.

Recommend using Evaluation estimate, as indirect impacts are taken into account.

5) Summary of Results:

Impact Type	Imp	Recommended	
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.157	0.258	Evaluation
Coinc. Demand (kW)	0.0846	0.168	Evaluation
Annual Energy (kWh)	894	1,473	Evaluation

6) Sources:

† EPRI report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs";

Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA, 1992.

Measure D: New Refrigeration Case with Doors (Low Temperature Case)

Measure Description:	Replacement of existing open multideck low temperature refrigeration display cases, with multideck display cases with doors.
Summary of Advice Filing Calculations:	Direct energy and demand impacts were calculated using connected load and case load values from Competitek.
Comments on Advice Filing Calculations:	Direct demand savings associated with case load reduction were used with no supporting calculations provided. No indirect impacts were developed.
Comments on Advice Filing Inputs:	While the baseline case load values were verified with alternate sources, the retrofit impacts underestimate potential savings. Additionally, indirect impacts were not estimated.
Evaluation Process:	Direct and indirect impacts were determined using case loads, evaporator fan connected loads, and anti-sweat heater loads.
Additional Notes:	Evaluation results suggest that the Advice Filing methods underestimate the energy and demand impacts for this measure by approximately 65% and 99%, respectively.

D. New Refrigeration Case with Doors (Low Temperature Case):

1) Replacement of existing open multideck low temperature refrigeration cases.

Retrofits are low temperature case refrigeration with doors.

2) Ex-ante calculation assumptions:

50% of the replaced systems are multiplex and the other 50% are conventional systems. Low temperature conventional systems will save 3.19 kWh/day-ft of display (35% of baseline). Low temperature multiplex systems will save 1.71 kWh/day-ft of display (27% of baseline). Annual operating hours for a refrigeration system is 5,708 hours/yr. Baseline case load is 1,425 Btuh-ft EER for low temp case is 4.43.

3) Advice Filing Estimates:

Baseline Case Load:

= [(1425 Btu/hr-ft)/(4.43 Btu/W-hr)] x (8,760 hrs/yr) x (1 kW/1,000Watts)
= 2818
= 2,818 kWh/yr-ft
Advice Filing p.RF-8 lists 2,820 kWh/yr-ft, assume rounding.

Energy Savings:

Average daily savings	= (3.19 kWh/day-ft +1.71 kWh/day-ft)/2
	= 2.45
Average annual savings	= (2.45 kWh/day-ft) x (365 days/yr)
	= 894.25
	= 894 kWh/yr-ft

Case Load Savings:

The following calculation was not done in the Advice Filing, but was done in the Evaluation for purposes of
comparison
= (894 kWh/yr-ft) x 4.43 Btu/Watt-hr
= 3960.42
= (3,960 kBtu/yr-ft) x (1 yr/365 days) x (1 day/24 hrs) x (1,000 Btu /1 kBtu)
= 452
 = 452 Btu/hr-ft, a 31.7% savings over the baseline

Non-coincident Demand Savings:

= (894	kWh/yr-ft)/(5,708 full load hours/yr)	
= 0.157	7	
= 0.157	/ kW/ft	

Coincident Demand Savings:

= 0.54 CDF x 0.157 kW

	= 0.0848
	= 0.0848 kW/ft
ĺ	The Advice Filing lists 0.0846 kW/ft, difference assumed to be rounding.
	The Advice Filing uses a CDF of 0.54, which is not appropriate.
	A more reasonable value is (5,708 EFLH/vr)/(8,760 hrs/vr) = 0.65

4) Evaluation Estimates:

Evaluation Assumptions:

Unless otherwise stated all values taken from EPRI report TR-100984, V1†. Baseline design case load is 1,400 Btuh/ft Retrofit design case load is 560 Btuh/ft Average EER for a low temp case is 4.3 Btuh/Watt Baseline anti-sweat energy use is 13 Watts/hr-ft Retrofit anti-sweat energy use is 25 Watts/hr-ft Baseline fan energy use is 70 Watts/hr-ft Retrofit fan energy use is 19 Watts/hr-ft

Baseline Case Load:

= (1400 Btu/hr-ft)/(4.3 Btu/W-hr)

= 326

- = (326 Watts/ft) x (24 hr/day) x (365 days/yr) x (1 kW/1,000Watts)
- = 2856
- = 2,856 kWh/yr-ft

Retrofit Case Load:

- = (560 Btu/hr-ft)/(4.3 Btu/W-hr)
- = 130
- = (130 Watts/ft) x (8,760 hrs/yr) x (1 kW/1,000Watts)
- = 1,139
- = 1,139 kWh/yr-ft, case load only

Indirect Case Load:

Anti-sweat Energy Impacts = (13 Watts/hr-ft - 25 Watts/hr-ft) = -12 = (-12 Watts/hr-ft) x (24 hrs/day) x (365 days/yr) x (1 kW/1,000 Watts) x 1.0 CDF = -105= -105 kWh/yr-ft Evap. Fan Energy Impacts = (70 Watts/hr-ft - 19 Watts/hr-ft) = 51 = (51 Watts/hr-ft) x (24 hrs/day) x (365 days/yr) x (1 kW/1,000 Watts) x 0.65 CDF = 290 = 290 kWh/yr-ft

Energy Savings:	A second load is stated to be 75% of the design load, asserting to EBBI report TR 100084. With
	Average case load is stated to be 75% of the design load, according to EPRI report TR-100984, V1 ⁺ .
Total Annual Savings	= 0.75 x [(2,856 kWh/yr-ft) - 1,139 kWh/yr-ft] + [(290 kWh/yr-ft) -(105 kWh/yr-ft)]
	= 1473
	= 1,473 kWh/yr-ft
	This is not comparable to the 894 kWh savings supported by Advice Filing Methods.
	Recommend using Evaluation estimate, as indirect impacts are taken into account.
Non-coincident Demai	nd Savings:
	= (1,473 kWh/yr-ft)/(5,708 full load hours/yr)
	= 0.258
	= 0.258 kW/ft
	Recommend using Evaluation estimate, as indirect impacts are taken into account.
Coincident Demand S	avings:
	Energy savings are assumed to be spread evenly across the entire year.
	= (1,473 kWh/yr-ft)/(8,760 hours/yr)
	= 0.168

= 0.168 kW/ft

The actual coincident demand can reasonably be assumed to be within the range of 0.258 kW/ft to 0.168 kW/ft, and may be closer to 0.258 kW/ft.

Recommend using Evaluation estimate, as indirect impacts are taken into account.

5) Summary of Results:

Impact Type	Imp	act	Recommended
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.157	0.258	Evaluation
Coinc. Demand (kW)	0.0846	0.168	Evaluation
Annual Energy (kWh)	894	1,473	Evaluation

6) Sources:

† EPRI report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs";

Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA, 1992.

Measure E: New Refrigeration Case with Doors (Medium Temperature Case)

Measure Description:	Replacement of existing open multideck medium temperature refrigeration display cases, with multideck display cases with doors.
Summary of Advice Filing Calculations:	Direct energy and demand impacts were calculated using connected load and case load values from Competitek.
Comments on Advice Filing Calculations:	Direct demand savings associated with case load reduction were used with no supporting calculations provided. No indirect impacts were developed.
Comments on Advice Filing Inputs:	While the baseline case load values were verified with alternate sources, the retrofit impacts underestimate potential savings. Additionally, indirect impacts were not estimated.
Evaluation Process:	Direct and indirect impacts were determined using case loads, evaporator fan connected loads, and anti-sweat heater loads.
Additional Notes:	Evaluation results suggest that the Advice Filing methods underestimate the energy and demand impacts for this measure by approximately 17% and 41%, respectively.

E. New Refrigeration Case with Doors (Medium Temperature Case):

1) Replacement of existing open multideck low temperature refrigeration cases. Retrofits are medium temperature case refrigeration with doors.

2) Ex-ante calculation assumptions:

50% of the replaced systems are multiplex and the other 50% are conventional systems. Medium temperature conventional systems will save 1.29 kWh/day-ft of display (35% of baseline). Actual calculation = (1.29 kWh/ft-day)/(4.54 kWh/ft-day) = 28% Medium temperature multiplex systems will save 0.61 kWh/day-ft of display (27% of baseline). Actual calculation = (0.61 kWh/ft-day)/(3.2 kWh/ft-day) = 19% Annual operating hours for a refrigeration system is 5,708 hours/yr. Baseline case load is 1,380 Btuh-ft EER for medium temp case is 8.66

3) Advice Filing Estimates:

Baseline Case Load:

= [(1,380 Btu/hr-ft)/(8.66 Btu	/W-hr)] x (8,760 hrs/yr) x (1 kW/1,000Watts)
= 1,396	
= 1,396 kWh/yr-ft	

Energy Savings:

Average daily savings = (1.29 kWh/d	lay-ft + 0.61 kWh/day-ft)/2
= 0.95	
Advice Filing	lists 0.945 kWh/day-ft which is mathematically incorrect.
Average annual savings = (0.95 kWh/d	ay-ft) x (365 days/yr)
= 346.75	
= 347 kWh/yr	-ft
345 kWh/yr-f	t was calculated in the Advice Filing, (p.RF-26) due to using 0.945 kWh/tt-day as an input

Case Load Savings:

	The following calculation was not done in the Advice Filing, but was done in the Evaluation for purposes of
	comparison
	= (347 kWh/yr-ft) x 8.66 Btu/Watt-hr
	= 3,005
	= (3,005 kBtu/yr-ft) x (1 yr/365 days) x (1 day/24 hrs) x (1,000 Btu /1 kBtu)
	= 343
L	= 343 Btu/hr-ft, a 24.6% savings over the baseline

Non-coincident Demand Savings:

= (347 kWh/yr-ft)/(5,708 full load hours/yr)

= 0.061

= 0.061 kW/ft

Advice Filing estimate is 0.0604 (p.RF-26) due to using 347 kWh/yr-ft as an input.

C	pincident Demand Savings:
	= 0.54 CDF x [(347 kWh/yr-ft)/(5,708 full load hours/year)]
	= 0.0328
	= 0.0328 kW/ft
	Advice Filing estimate is 0.0326 (p.RF-26) due to using 347 kWh/yr-ft as an input.
	The Advice Filing uses a CDF of 0.54, which is not appropriate.
	A more reasonable value is (5,708 EFLH/yr)/(8,760 hrs/yr) = 0.65

4) Evaluation Estimates:

Evaluation Assumptions:

Unless otherwise stated all values taken from EPRI report TR-100984, V1†. Baseline design case load is 1,400 Btuh/ft Retrofit design case load is 550 Btuh/ft Average EER for a med temp case is 8.6 Btuh/Watt Baseline anti-sweat energy use is 0 Watts/hr-ft Retrofit anti-sweat energy use is 23 Watts/hr-ft Baseline fan energy use is 12 Watts/hr-ft Retrofit fan energy use is 20 Watts/hr-ft

Baseline Case Load:

- = (1400 Btu/hr-ft)/(8.6 Btu/W-hr)
- = 163
- = (163 Watts/ft) x (24 hr/day) x (365 days/yr) x (1 kW/1,000Watts)
- = 1428
- = 1,428 kWh/yr-ft

Retrofit Case Load:

- = (550 Btu/hr-ft)/(8.6 Btu/W-hr)
- = 64
- = (64 Watts/ft) x (8,760 hrs/yr) x (1 kW/1,000Watts)
- = 561
- = 561 kWh/yr-ft, case load only

Indirect Case Load:

Anti-sweat Energy Impacts = (0 Watts/hr-ft - 23 Watts/hr-ft)

- = -23
- = (-23 Watts/hr-ft) x (24 hrs/day) x (365 days/yr) x (1 kW/1,000 Watts) x 1.0 CDF
- = -201
- = -201 kWh/yr-ft

Evap. Fan Energy Impacts = (12 Watts/hr-ft - 20 Watts/hr-ft)

- = -8
- = (-8 Watts/hr-ft) x (24 hrs/day) x (365 days/yr) x (1 kW/1,000 Watts) x 0.65 CDF
- = -46

MT New Case

= -46 kWh/yr-ft

Energy Savings: Average case load is stated to be 75% of the design load, according to EPRI report TR-100984, V1†. Total Annual Savings = 0.75 x [(1,428 kWh/yr-ft) - 561 kWh/yr-ft] + [(-201 kWh/yr-ft) -(46 kWh/yr-ft)] = 403

= 403 kWh/yr-ft

This is not comparable to the 345 kWh/yr-ft savings supported by Advice Filing Methods. Recommend using Evaluation estimate, as indirect impacts are taken into account.

Non-coincident Demand Savings:

- = (403 kWh/yr-ft)/(5,708 full load hours/yr)
- = 0.0706
- = 0.0706 kW/ft

Recommend using Evaluation estimate, as indirect impacts are taken into account.

Coincident Demand Savings:

Energy savings are assumed to be spread evenly across the entire year.

- = (403 kWh/yr-ft)/(8,760 hours/yr)
- = 0.0460
- = 0.0460 kW/ft

The actual coincident demand can reasonably be assumed to be within the range of 0.0706 kW/ft to 0.0460 kW/ft, and may be closer to 0.0706 kW/ft.

Recommend using Evaluation estimate, as indirect impacts are taken into account.

5) Summary of Results:

Impact Type	Imp	Recommended	
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0604	0.0706	Evaluation
Coinc. Demand (kW)	0.0326	0.0460	Evaluation
Annual Energy (kWh)	345	403	Evaluation

6) Sources:

+ EPRI report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs";

Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA, 1992.

Measure F: Low Heat/No Heat Refrigeration Case Doors

Measure Description:	Provides an incentive to customers to request energy efficient low heat/no heat case doors when they purchase a new display case.
Summary of Advice Filing Calculations:	Direct and indirect energy impacts were developed using the compressor efficiency and the connected load associated with door heaters.
Comments on Advice Filing Calculations:	The method used to develop indirect impacts is inconsistent with those used for similar measures in the Advice Filing. The Humidistat Control measure, for example, uses an alternate approach (as recommended by LBL following a review of the measure). This recommendation should be adopted across all measures to ensure consistency in the methods applied.
Comments on Advice Filing Inputs:	Inputs are based upon manufactures' data and appear valid.
Evaluation Process:	Direct and indirect impacts were determined. Indirect impacts were estimated using the methods recommended by LBL.
Additional Notes:	The indirect impacts calculated in the Advice Filing were greater than the direct impacts. This result is incorrect.

F) Low Heat/No Heat Refrigeration Case Door

1) Provide incentive to customers to request low heat/no heat doors at time of new display case purchase.

Glass heaters are included on display case doors to eliminate condensation.

Advanced designs incorporate heat-reflective coatings, gas inserted between panes, non-metallic spacers of the panes, and non-metallic frames.

2) Ex-ante assumptions:

Two manufacturers were cited, Anthony (60% of the market) and Ardco (40% of the market).

50% of participation will be with low temperature cases, and the other 50% medium temperature cases.

80% of cases will be equipped with humidistat controls.

Humidistat control will turn off glass heaters 50% of the time.

Compressor efficiency med temp. = 7.5 EER

Compressor efficiency low temp. = 5.0 EER

3) Advice Filing Estimates:

anufacturer = Anthony			emperature Cases		<u> </u>	
	Model 400	Model 1000R	Average (400, 100R)	EE-Model 1200	Base - EE amps/ft	Market Share
Amps	8.235	5.895	7.065	2.948	4.117	60%
Length (ft)	25.2	25.2	25.2	25.2		
amps/ft	0.327	0.234	0.280	0.117	0.163	
lanufacturer = Ardco						
	Model Vanguard	Model Swingline	Average (Vang, Swing)	EE-Model Enertech	Base - EE amps/ft	Market Share
Amps	7.730	5.670	6.7	3.067	3.633	40%
Length (ft)	25	25	25	25		
amps/ft	0.309	0.227	0.268	0.123	0.145	

Advice Filing, p. RF-31

total = 0.156 = 0.156 amps/ft

Low Temperature Cases

Manufacturer = Anthony						
	Model	Model	Average	EE-Model	Base - EE	Market
	600		600	100	amps/ft	Share

Amps	30.893		30.893	22.76	8.133	60%
Length (ft)	25.2		25.2	25		
amps/ft	1.226		1.226	0.910	0.316	
Manufacturer = Ardco						
	Model	Model	Average	EE-Model	Base - EE	Market
	Vanguard	Swingline	(Vang, Swing)	Enertech		Share
Amps	25.600	21.700	23.65	17.100	6.55	40%
Length (ft)	25	25	25	25		
amps/ft	1.024	0.868	0.946	0.684	0.262	ļ

Advice Filing, p. RF-31

total = 0.294

= 0.294 amps/ft

Average for low and medium temperature cases = 0.225

= 0.225 amps/ft

Heat Load in Btuh	for Glass, Door Rail,	and Frame Heaters, a	and Lights

Medium Temp.	Model	Model	Average	EE-Model	Savings
	400	1000R	(400, 100R)	1200	
Btuh	3,103	2,781	2,942	2,030	912
Length (ft)	10.1	10.1	10.1	10.1	
Btuh/ft	307.3	275.3	291.3	201.0	90.3
Low Temp.	Model			EE Model	Savings
	600			100	
Btuh	7,653			3,690	3,963
Length (ft)	10.1			10.0	
Btuh/ft	757.8			369.0	388.8

Advice Filing, p. RF-32

Advice Filing lists 90.4 Btuh/ft as savings for med. temp. cases. Advice Filing lists 390.1 Btuh/ft as savings for low temp. cases. Difference is assumed to be due to rounding.

Direct Energy Savings:

Dheat Lineigy davings.
Direct Door Heat Savings = 0.225 amps/ft x 120 volts x (1kw/1000 Watts)
= 0.027
= 0.027 kW/ft
Full Load Hours = (20% x 8,760 hrs/yr) + (80% x 8,760 hrs/yr x 50%)
= 5,256
= 5,256 full load hours/yr

Direct Energy Impacts = 0.027 kW/ft x 5,256 hrs/yr	
= 142	
= 142 kWh/ft-yr	

Indirect Energy Savings:
Hours Heat Conducted into Case = 5,256 hrs/yr - (4 hrs/day x 365 days/yr)
= 3,796
Indirect Energy Impacts = (Δ in heat to case Btuh/ft) x 1/EER x (hours heat conducted into case) x (1 kW/1,000 Watts)
Indirect Energy Impacts (med. temp.) = 90.41 Btuh/ft x (1/7.5 Btuh/Watt) x 3,796 hrs/yr x (1 kW/1,000 Watts)
= 45.76
= 45.76 kWh/ft-yr
Indirect Energy Impacts (low temp.) = 390 Btuh/ft x (1/5 Btuh/Watt) x 3,796 hrs/yr x (1 kW/1,000 Watts)
= 296.09
= 296.1 kWh/ft-yr
Indirect Energy Impacts (mean) = (45.76 kWh/ft-yr + 296.1 kWh/ft-yr)/2
= 170.93
= 170.93 kWh/ft-yr
It seems inconceivable that the indirect impact could be larger than the direct impact.
This method does not agree with the recommendations of the LBL review of Humidistat Controls, p.RF-34,
which recommends assuming 60% of the heater load will be conducted into the case.

Total Energy Savings:	
= 142 kWh/ft-yr + 170.93 kWh/yr	
= 312.93	
= 312.93 kWh/ft-yr	
This method does not agree with the	ecommendations of the LBL review of Humidistat Controls.

Non-coincident	Demand	Savings:	

= 0.225 amps/ft	x 120 volts x (1kw/1000 Watts)
= 0.027	
= 0.027 kW/ft	

Coincident Demand Savings:

= 0.027 kW/ft x 0.54 CDF	
= 0.01458	
= 0.0146 kW/ft	
Although the advice filing methods apply a CDF = 0.54, this is not an appropriate value.	
Impacts are continuous over an entire year, therefore (313 kWh/ft-yr)/(8,760 hrs/yr) = 0.0	357 kW is a
more appropriate demand savings estimate.	

4) Evaluation Estimates:

Direct Energy Savings:

See Advice Filing estimate.

Indirect Energy Savings:

Assume 60% of heat reduction is transferred into case. See Advice Filing p. RF-34, Humidistat Controls. First, an adjustment is made for the hours that doors are open due to customer use and stoking. Hours Case Open = 4 hrs x 365 days/yr = 1,460 Hours Heat Conducted into Case = [20% x (8,760 hrs/yr - 1,460 hrs/yr)] + [80% x (8,760 hrs/yr - 1,460 hrs/yr) x 50%] = 4,380 = 4,380 = 4,380 hrs/yr Decrease in refrigeration load = (0.027 kW/ft) x (3,413 Btu/kWh) x (60% heat transfer to case) = 55.29 = 55.29 Btuh/ft Mean EER = (7.5 EER + 5.0 EER)/2 according to Advice Filing, p.RF-34 = 6.25 EER Compressor load savings = [(55.29 Btuh/ft)/(6.25 Btuh/Watt)] x 1 kW/1,000 Watts = 0.00885 = 0.00885 kW/ft Indirect energy savings = 0.00885 kW/ft x 4,380 hrs/yr = 38.75 = 38.75 kWh/ft-yr

Total Energy Savings:

- = 142 kWh/yr + 38.75 kWh/ft-yr
- = 180.75
- = 181 kWh/ft-yr

Evaluation estimate should supersede Advice Filing estimate, as it acknowledges the LBL review recommendations.

Coincident Demand Savings:

Assume savings is distributed evenly across an entire year.

- = (38.75 kWh/ft-yr + 142 kWh/ft-yr)/(8,760 hrs/yr)
- = 0.0206
- = 0.0206 kW/ft

Evaluation estimate should supersede Advice Filing estimate, as it acknowledges the LBL review recommendations.

5) Summary of Results:

Impact Type	Impact		Recommended
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0270	-	<u>†</u> ††
Coinc. Demand (kW)	0.0146	0.0206	Evaluation
Annual Energy (kWh)	313	181	Evaluation

††† Using the Evaluation methods, this value is unnecessary.

Measure G: Humidistat Control

Measure Description:	Installation of humidistat control devices which regulate display case anti-sweat heaters. Humidistat controls turn off anti-sweat heaters when ambient relative humidity is low enough that sweating will not occur.
Summary of Advice Filing Calculations:	An algorithm, which was reviewed by LBL, is used to develop direct and indirect impacts. Algorithm inputs include the connected load of the anti-sweat heater as well as the efficiency of the compressor.
Comments on Advice Filing Calculations:	The operating factor for humidistat controls is applied twice for no discernible reason in the development of indirect energy savings. Demand impacts are also affected, as they are derived using the final energy savings estimate. Additionally, an inappropriate CDF of 0.54 is applied to determine the coincident demand impacts.
Comments on Advice Filing Inputs:	The connected load for the anti-sweat heaters is developed using manufactures' data. The Advice Filing only uses values from energy efficient systems, and thereby underestimates the humidistat control impacts for conventional display cases.
Evaluation Process:	Direct and indirect impacts were determined using modified inputs that account for both conventional and energy efficient display cases. The operating factor for the humidistat controls is only applied once in the indirect impact calculations. Coincident demand impacts are developed with the assumption that the energy savings is distributed evenly across the entire year.
Additional Notes:	Due to the redundant application of an operating factor, the Evaluation estimates are significantly greater than the Advice Filing estimates. Evaluation demand and energy estimates are 144% and 38% greater, respectively.

G) Humidistat Control

1) Installation of humidistat control devices to regulate display case anti-sweat heaters.

Controls turn off anti-sweat heaters when ambient relative humidity is low enough that sweating will not occur.

2) Ex-ante assumptions:

Door heat load med temp = 201.36 Btu/hr-ft Door heat load low temp = 369.0 Btu/hr-ft Reduction of heater use = 50% Compressor efficiency med temp = 7.5 EER Compressor efficiency low temp = 5.0 EER Business day = 18 hrs Time doors open = 4 hours Refrigeration load due to heaters = 60% of heater energy Door heater usage = 0.4695 amps/ft This value is from the Low Heat/No Heat Refrigeration Case Door spreadsheet, p. RF-31,32. 0.4695 amps/ft is derived using values associated with energy efficient systems.

 $0.4695 = \{[(0.117 + 0.91)/2] \times 60\%\} + \{[(0.123 + 0.682)/2] \times 40\%\}$

3) Advice Filing Estimates:

Direct Energy Savings:

Door Heater Usage = 0.4695 amps/ft x 120 volts x 1kW/1,00	0 Watts
= 0.05634	
= 0.05634 kW/ft	
Direct Energy Savings = 0.05634 x 8,760 hrs/yr x 50%	
= 246.8	
= 246.8 kWh/yr	

Indirect Energy Savings:

indiraot Energy owninger
Decrease in refrigeration load = (0.05634 kW/ft) x (3,413 Btu/kWh) x 50% x (60% heat transfer to case)
= 57.69
Mean EER = (7.5 EER + 5.0 EER)/2
= 6.25 EER
Compressor load savings = [(57.69 Btuh/ft)/(6.25 Btuh/Watt)] x 1 kW/1,000 Watts
= 0.00923
Impact hours = [8,760 hrs/yr - (4 hrs case open x 365 days/yr)} x 50%
= 3,650
= 3,650 hrs/yr
Indirect energy savings = 0.00923 kW/ft x 3,650 hrs/yr
= 33.69
= 33.69 kWh/ft-yr
The operating factor of 50% associated with controls is applied both in the refrigeration load and the impact hours estimates.
The indirect energy savings should instead be double the reported value, or 67.38 kWh/ft-yr.

Total Energy Savings:	
	= 246.8 kWh/yr + 33.69 kWh/yr
	= 280.49
	= 280.5 kWh/yr
	The total energy savings should be (246.8 kWh/yr) + (67.38 kWh/yr) = 314.2 kWh/yr.

Non-coincident Demand Savings:
Indirect duty cycle savings = 33.69 kWh/ft-yr/5,708 EFLH/yr of operation
= 0.0059
See note in indirect energy savings regarding evaluation of this value.
Direct Demand Savings = 0.05634 kW/ft x 50%
= 0.02817
Total Demand Savings = 0.0059 kW/ft + 0.02817 kW/ft
= 0.03407
= 0.03407 kW/ft

Coincident Demand Savings:

	= 0.03407 kW/ft x 0.54 CDF
	= 0.0184
	= 0.0184 kW/ft
	See note in indirect energy savings regarding evaluation of this value.
ļ	The use of a CDF is redundant as the evaluation already takes this into account.
	Both the EFLH used to determine duty cycle savings and the operating factor of 50% used in the
	direct demand savings, take a CDF into account.

4) Evaluation Estimates:

Direct Energy Savings:

Using Advice Filing data from p.RF31-32, door heater usage for standard doors was calculated.

```
Door Heater Usage (Standard Doors) = {[(0.280 + 1.225)/2] x 60%} + {[(0.268 + 0.946)/2] x 40%}
= 0.6943
```

```
= 0.6943 amps/ft
                             Assume 50% low heat doors, 50% standard doors to calculate door heater usage.
                             This assumption is a conservative estimate, but is not based upon any "hard" data.
  Door Heater Usage (mean) = (0.6943 amps/ft + 0.4695 amps/ft)/2
                           = 0.5819
                           = 0.5819 amps/ft
               Adjust to kW = 0.5819 amps/ft x 120 volts x 1kW/1,000 Watts
                           = 0.0698
                           = 0.0698 kW/ft
       Direct Energy Savings = 0.0698 kW/ft x 8,760 hrs/yr x 50%
                           = 305.7
                           = 305.7 kWh/yr
       Indirect Energy Savings:
Decrease in refrigeration load = (0.0698 kW/ft) x (3,413 Btu/kWh) x (60% heat transfer to case)
                           = 142.94
                           = 142.94 Btuh/ft
                  Mean EER = (7.5 EER + 5.0 EER)/2
                           = 6.25 EER
    Compressor load savings = [(142.94 Btuh/ft)/(6.25 Btuh/Watt)] x 1 kW/1,000 Watts
```

Humidistat

.

≃ 0.02287

Impact hours = 3,650 hrs/yr, from Advice Filing

```
Indirect energy savings = 0.02287 \text{ kW/ft} \times 3,650 \text{ hrs/yr}
= 83.47
```

= 83.47 kWh/ft-yr

Total Energy Savings:

= 305.7 kWh/yr + 83.47 kWh/yr

= 389.2

= 389 kWh/yr

This value takes into account the fact that not all of the participants in the program will have low heat/no heat refrigeration doors. This value should supersede the Advice Filing estimate.

Coincident Demand Savings:

Assume savings is distributed evenly across an entire year.

- = (83.47 kWh/ft-yr + 305.7 kWh/ft-yr)/(8,760 hrs/yr)
- = 0.0449
- = 0.0449 kW/ft

Recommend using Evaluation estimate as values reflect that not all installations will be on low heat/no heat doors.

5) Summary of results:

Impact Type	Impact		Recommended
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0341	-	<u>+++</u>
Coinc. Demand (kW)	0.0184	0.0449	Evaluation
Annual Energy (kWh)	281	389	Evaluation

ttt Using the Evaluation methods, this value is unnecessary.

Measure H: Case Lighting, Electronic Ballast

Measure Description:	Replacement of standard lighting ballasts in refrigeration display cases with electronic ballasts.
Summary of Advice Filing Calculations:	Demand and energy impacts were determined using the power draw of various lamps with both standard and electronic ballasts.
Comments on Advice Filing Calculations:	The method used to develop energy impacts appears valid. However, a coincident diversity factor (CDF) is applied to the non- coincident impact to develop peak period impacts. This is unnecessary, as the lights in a display cases normally operate during peak hours.
Comments on Advice Filing Inputs:	Although a spreadsheet (based on manufacture's data) was used to derive key engineering inputs, attempts to reproduce these results were unsuccessful.
Evaluation Process:	Energy impacts were calculated using the Advice Filing method, and revised inputs. Demand impacts were developed without the application of a CDF.
Additional Notes:	The Evaluation demand and energy impacts are 74% and 16% greater, respectively.

H. Case Lighting, Electronic Ballast

1) Replacing standard ballasts in refrigeration display cases with electronic ballasts

2) Ex-ante calculation assumptions:

Majority of cases have single lamp ballasts. Same ballast will run (1)F96HO, (1)F72HO, (1)F60HO, and (2)F48HO lamps. Lamps and ballasts rated at 95% of maximum wattage at 78F. Average low temperature case is -10 F, medium temperature case is +20 F. Note: Baseline at beginning of Advice Filing lists low temp as -23 F and the medium temp range as 9 F-26 F. EPRI† Table 6-21, p.6-138 lists med temp as 15 F, and low temp as -25 F. Protective sleeve covers will increase bulb wall temp. 10 F above case temperature. Lamps and ballasts draw 65% of maximum wattage at 0 F, and 70% of maximum wattage at +30 F. 20% of display cases are EMS controlled and run 16 hrs/day, 365 days/yr, 80% run continuously for 8760 hrs/yr. Majority of participants will be for new cases.

3) Advice Filing Estimates:

Non-coincident Demand with a Temperature Correction:
Medium temperature cases, 800ma = (16 Watts/lamp) x (70%/95%)
= 11.79
= 11.8 Watts /lamp
Low temperature cases, 1,500ma = (14 Watts/lamp) x (65%/95%)
= 9.58
= 9.6 Watts /lamp
Mean NC demand impact = [(11.8 W/lamp + 9.6 W/lamp)/2] x 1 kW/1000 Watts
= 0.0107
= 0.0`07 kW/lamp
Though 16 W and 14 W are listed on the Advice Filing spreadsheet (p.RF-40), the values cannot be recreated.

Coincident Demand:

= (0.0107 kW/lamp) x 0.67 CDF	
= 0.0072	
= 0.0072 kW/lamp	

Energy Impacts:

Average operating hours = (80% x 8,760 hours/year) + (20% x 16 hours/day x 365 days/year)	
= 8,176	
= 8,176 full load hours/year	
Energy Savings = (8,176 hrs/yr x 0.0107 kW/lamp)	
= 87.48	
= 87.5 kWh/year-lamp	

Elec. Ballast

4) Evaluation Estimates:

1					stnd. bllst	EE blist	stnd. vs EE	elec blist	EE vs. elec	EE vs. elec
# lamps	type	lamp watts	min temp	m. amps	tot watts	tot watts	% change	tot watts	% change	W/lamp
1	F48	60		800	75	72	4.0%			
2	F48	60	1	800	140	136	2.9%			
1	F72	85		800	106	102	3.8%	75	26.5%	27
1	F96	110		800	130	123	5.4%	95	22.8%	28
2	F96	110		800	250	241	3.6%	190	21.2%	26
1	F96	95		800	112	106	5.4%	80	24.5%	26
2	F96	95		800	216	210	2.8%	160	23.8%	25
	· · · · · · · · · · · · · · · · · · ·		- • • • • • • • • • • • • • • • • • • •			average =	4.0%	average =	23.7%	26
						Listed as 4.2%	in Advice Filin	g, possibly due	to rounding.	
1	F96	215		1500	230	227	1.3%	200	11.9%	27
2	F96	215		1500	470	446	5.1%	400	10.3%	23
1	F96	195		1500	209	206	1.4%	180	12.6%	26
2	F96	195		1500	408	404	1.0%	350	13.4%	27
	· · · · · · · · · · ·					average =	2.2%	average =	12.0%	26
					stnd. blist	EE bllst	stnd. vs EE	elec blist	EE vs. elec	EE vs. elec
# lamps	type	lamp watts	min temp	m. amps	tot watts	tot watts	W saved	tot watts	W saved	W/lamp
2	F48	60	-20	800	140	134	6	107	27	13.5
1	F60	74	-20	800	100	96	4	76	20	20
1	F72	85	-20	800	106	102	4	75	27	27
					average =	111	5	86	25	20
2	F48	116	-20	1500	241	235	6	211	24	12
1	F60	138	-20	1500	157	153	4	138	15	15
1	F72	168	-20	1500	181	176	5	159	17	17
					average =	188	5	169	19	15

Recreated from Advice Filing, p. RF-42

Non-coincident Demand with a Temperature Correction:

Medium temperature cases, 800ma = (20 Watts/lamp) x (70%/95%)

= 14.7 Watts /lamp

Low temperature cases, 1,500ma = (15 Watts/lamp) x (65%/95%)

```
= 10.26
```

```
= 10.3 Watts /lamp
```

Mean NC demand impact = [(14.7 W/lamp + 10.3 W/lamp)/2] x 1 kW/1000 Watts

- = 0.0125
- = 0.0125 kW/lamp

Recommend using Evaluation estimate as the results are reproducible.

Coincident Demand:

There is no need to apply a CDF. Lights that do turn off in the evening will still be on 100% during business hours. Recommend using Evaluation estimate to supersede Advice Filing estimate. Annual Energy Impacts:

= (8,176 hrs/yr x 0.0125 kW/lamp)

= 102.20

= 102 kWh/year-lamp

Recommend using Evaluation estimate to supersede Advice Filing estimate.

6) Summary of results:

Impact Type	Impa	Recommended	
(per lamp)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0107	0.0125	Evaluation
Coinc. Demand (kW)	0.0072	0.0125	Evaluation
Annual Energy (kWh)	88	102	Evaluation

7) Sources:

† EPRI report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs";

Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA, 1992.

Measure I: Insulate Bare Suction Line

٠

Measure Description:	Provides an incentive for customers with small stores to insulate bare suction lines.
Summary of Advice Filing Calculations:	Energy impacts were determined using ASHRAE algorithms which incorporate radiant and convective heat transfer. No demand impacts were calculated.
Comments on Advice Filing Calculations:	The method used to develop energy impacts appears valid. Review of the measure indicates that there are demand savings associated with insulating bare suction line.
Comments on Advice Filing Inputs:	Inputs used are consistent with values from the ASHRAE Fundamentals Handbook.
Evaluation Process:	Energy impacts were calculated using the ASHRAE method. Demand impacts were assumed to be spread evenly across an entire year.
Additional Notes:	The Evaluation and Advice Filing energy impacts differ by just a small rounding error.

I. Insulate Bare Suction Line

1) Provides an incentive for smaller customers to insulate bare refrigeration suction lines.

Rebate is only available for pipes with 1.5" diameter or less, and must be installed on old equipment. Insulation decreases heat load to compressor, lowering compressor operating hours.

2) Ex-ante calculation assumptions:

Temp of superheat at exit of evaporator is 15 F.

Average coil to compressor rise is 5 F.

Low temp suction temperature is -20 F, so vapor temperature is 0 F.

Med temp suction temperature is 15 F, so vapor temperature is 35 F.

The language used above is not consistent with a refrigeration cycle.

Assume that there is a 20 F rise in temp from expansion valve to the compressor.

For ease of calculation this temp increase is assumed to be instantaneous at the point where the suction line leaves the display case.

leaves the display ca

Compressor operates 4,960 EFLH.

Average indoor temp. is 75 F.

Average wind speed is 0.5 mph (44 fpm, ASHRAE 1989 Fundamentals, p.13.9)

ASHRAE† p.13.9 simply lists a range of 0-100 fpm. 44 fpm is in this range.

Med temp. compressor efficiency, 7.5 EER

Low temp. compressor efficiency, 5.0 EER

80% of participation is for med temp. cases, 20% for low temp. cases.

Low temp. insulation is 1" thick.

Med temp. insulation is 3/4" thick.

Conductivity (k value) of insulation is 0.27 Btu-in/hr-sqft-F

Pipe Dia	Pipe Diameter		Insulation Radius (1")		adius (3/4")
Nominal	Actual	Surface	Inside	Surface	Inside
0.38	0.500	1.19	0.26	0.96	0.26
0.50	0.625	1.44	0.32	1.16	0.32
0.75	0.875	1.44	0.45	1.19	0.45
0.10	1.125	1.44	0.57	1.22	0.57
1.25	1.375	1.75	0.70	1.49	0.70
1.50	1.625	1.75	0.82	1.52	0.82

Recreated using data from Advice Filing, p.RF-50.

--

3) Advice Filing Estimates:

All sample calculations are for a 1.5" nominal diameter copper pipe with 3/4" of insulation.

```
Calculate bare pipe convective heat transfer:
```

```
From ASHRAE† p.22.15

hcv = C x [(1/d)^0.2] x [(1/tave)^0.181] x (\Deltat^0.266) x [1 + 1.277(wind)]^0.5

where:

hcv = heat transfer coefficient, Btu/hr-sqft-F

C = constant, 1.016 for horizontal cylinders (ASHRAE† p.22.15)

d = diameter of pipe, inches

tave = average temp of air film, F assumed to be 55 F from Advice Filing p.RF-48

\Deltat = surface to air temp difference, F (assume surface temp to be same as vapor temp)

wind = air speed, mph

= 1.016 x [(1/1.625in)^0.2] x [(1/55)^0.181] x [(75F - 35F)^0.266] x [1 + 1.277(0.5mph)]^0.5

= 1.524

= 1.524 Btu/hr-sqft-F
```

Calculate bare pipe radiant heat transfer:

```
From ASHRAE† p.22.15

hrad = {(e x 0.173 x 10^{-8}) x [(ta + 459.6)^4 - (ts + 459.6)^4]}/(ta-ts)

where:

hrad = radiant heat transfer coefficient, Btu/hr-sqft-F

e = surface emittance, (0.44 for dull pipe, ASHRAE† p.22.18)

ta = air temperature, F

ts = surface temperature, F (assume to be same temp as vapor temp)

= {(0.44 x 0.173 x 10^{-8}) x [(75 F + 459.6)^4 - (35 F + 459.6)^4]}/(75 F - 35 F)

= 0.415550322

= 0.4156 Btu/hr-sqft-F
```

Total bare pipe heat transfer:

= hrad + hcv = 1.524 Btu/hr-sqft-F + 0.4156 Btu/hr-sqft-F = 1.9396 = 1.94 Btu/hr-sqft-F

Calculate insulated pipe heat transfer:

From ASHRAE† p.208 qs = (ti - ts)/{[rs x ln(rs/ri)/k] + Rs} where: qs = rate of heat transfer per unit area of insulation's outer surface, Btu/hr-sqft ti = temperature of inner surface, F (assume to be same temp as vapor temp) ts = temperature of outer surface, F k = thermal conductivity of insulation, Btu-in/hr-sqft-F = 0.27 Btu-in/hr

Rs	= surface resistance, F-sqft-hr/Btu
	To correct for ambient temp incorporate surface resistance, Rs = 0.65 F-sqft-hr/Btu = 1/{[1.52 in x ln(1.52 in/82 in)/0.27 Btu/hr-sqft-F] + (0.65 F-sqft-hr/Btu)} = 0.242460133 = 0.242 Btu/hr-sqft-F

Calculate Heat Gain for Bare Pipe:

= (htot, Btu/hr-sqft-F) x ∆t x (area, sqft)
= 1.94 Btu/hr-sqft-F x 40 F x 0.425 sqft/ft
= 32.98
= 32.98 Btu/hr-ft
Advice Filing, p.RF-48 lists 32.93 Btu/hr
Difference due to rounding.

Calculate Heat Gain for Insulated Pipe:

= (htot, Btu/hr-sqft-F) x Δt x (area, sqft)		
= 0.24 Btu/hr-sqft-F x 40 F x 0.796 sqft/ft		
= 7.76896		
= 7.77 Btu/hr-ft		
Advice Filing, p.RF-48 lists7.71 Btu/hr		
 Difference due to rounding.		

Energy Savings:

Assume all heat gains are directly proportional to increased demand for the compressor.	
EER = 7.5 Btu/Watt-hr	
= [(32.93 Btu/hr-ft) - (7.77 Btu/hr-ft)] x (1/7.5 Btu/Watt-hr) x 4,960 EFLH	
= 16,672	
= 16,672 Watt-hr/ft-yr x 1 kW/1,000 Watts	
Adjust to kWh = 16.672	
= 16.672 kWh/ft-yr	

Neither coincident nor non-coincident demand savings were calculated.

4) Evaluation Estimates:

Pipe Diame	eter (in)	Circum.	sqft per		Insulation R	adius (1")	
Nominal	Actual	(in)	linear foot	Surface	Inside	Circum (in)	area per ft
0.38	0.500	1.571	0.131	1.19	0.26	7.477	0.623
0.50	0.625	1.963	0.164	1.44	0.32	9.048	0.754
0.75	0.875	2.749	0.229	1.44	0.45	9.048	0.754
0.10	1.125	3.534	0.295	1.44	0.57	9.048	0.754
1.25	1.375	4.320	0.360	1.75	0.70	10.996	0.916
1.50	1.625	5.105	0.425	1.75	0.82	10.996	0.916

Recreated using data from Advice Filing, p.RF-50.

Pipe Diam	eter_(in)	Circum.	saft per		Insulation Rac	lius (3/4")	
Nominal	Actual	(in)	linear foot	Surface	Inside	Circum (in)	area per ft
0.38	0.500	1.571	0.131	0.96	0.26	6.032	0.503
0.50	0.625	1.963	0.164	1.16	0.32	7.288	0.607
0.75	0.875	2.749	0.229	1.19	0.45	7.477	0.623
0.10	1.125	3.534	0.295	1.22	0.57	7.665	0.639
1.25	1.375	4.320	0.360	1.49	0.70	9.362	0.780
1.50	1.625	5.105	0.425	1.52	0.82	9.550	0.796

Recreated using data from Advice Filing, p.RF-50.

Calculate convective and radiant heat transfer from bare pipe:

Pipe	Diameter (in)	Medium Temperature (Btu/hr-sqft-F		hr-sqft-F)	Low Tem	perature (Btu/hr-s	qft-F)
Nominal	Actual	hcv	hrad	htot	hcv	hrad	htot
0.38	0.500	1.930	0.416	2.345	2.281	0.376	2.657
0.50	0.625	1.845	0.416	2.261	2.181	0.376	2.557
0.75	0.875	1.725	0.416	2.141	2.039	0.376	2.415
0.10	1.125	1.641	0.416	2.056	1.939	0.376	2.315
1.25	1.375	1.576	0.416	1.992	1.863	0.376	2.239
1.50	1.625	1.524	0.416	1.940	1.802	0.376	2.178

All sample calculations are for a 1.5" nominal diameter copper pipe with 3/4" of insulation.

Calculate Heat Gain for Bare Pipe:

- = (htot, Btu/hr-sqft-F) x Δt x (area, sqft)
- = 1.94 Btu/hr-sqft-F x 40 F x 0.425 sqft/ft
- = 32.98
- = 32.98 Btu/hr-ft
- Advice Filing, p.RF-48 lists 32.93 Btu/hr
- Difference due to rounding.

Calculate insulated pipe heat transfer:

```
From ASHRAE† p.208
```

```
qs = (ti - ts)/[rs \times ln(rs/ri)/k]
```

where:

- qs = rate of heat transfer per unit area of insulation's outer surface, Btu/hr-sqft
- ti = temperature of inner surface, F (assume to be same temp as vapor temp)
- ts = temperature of outer surface, F
- k = thermal conductivity of insulation, Btu-in/hr-sqft-F
- = 0.27 Btu-in/hr

qs = (35 F - 75 F)/[1.52 in x ln(1.52 in/0.82 in)/0.27 Btu/hr-sqft-F]

- = -11.51281434
- = 11.513 Btu/hr-sqft

To correct for surface resistance (Rs) use values from ASHRAE† Fig.6, p.22.15

lf qs = 11.513, Rs = 0.72

- qs = (35 F 75 F)/{[1.52 in x ln(1.52 in/0.82 in)/0.27 Btu/hr-sqft-F] + 0.72F-sqft-hr/Btu
 - = -9.536549009
 - = 9.537 Btu/hr-sqft

Calculate Heat Gain for Insulated Pipe:

- = (qs, Btu/hr-sqft) x sqft/ft
- = 9.537 Btu/hr-sqft x 0.796 sqft/ft
- = 7.591452
- = 7.591 Btu/hr-ft

Advice Filing, p.RF-48 lists 7.71 Btu/hr

Energy Savings:

```
Assume all heat gains are directly proportional to increased demand for the compressor. EER = 7.5 Btu/Watt-hr
```

- = [(32.98 Btu/hr-ft) (7.591 Btu/hr-ft)] x (1/7.5 Btu/Watt-hr) x 4,960 EFLH
- = 16,791

= 16,791 Watt-hr/ft-yr x 1 kW/1,000 Watts

Adjust to kWh = 16.791

= 16.791 kWh/ft-yr

Advice Filing lists 16.67 kWh/ft-yr

Coincident Demand Savings:

Assume that savings are spread evenly across an entire year.

- = (16.791 kWh/ft-yr)/8,760 hrs/yr
- = 0.00192
- = 0.00192 kW

		Low Temperatur	re Estimates		
Nominal Pipe	Unadjusted qs	Heat Gain (bare)	Heat Gain (ins)	Energy Savings	Demand Savings
Diameter (in)	(Btu/hr-sqft)	(Btu/hr-ft)	(Btu/hr-ft)	(kWh)	(kW)
0.38	5.967	26.084	6.269	19.656	0.002244
0.50	4.986	31.384	6.447	24.738	0.002824
0.75	6.448	41.498	8.132	33.099	0.003778
0.10	8.093	51.147	9.933	40.884	0.004667
1.25	6.735	60.453	10.274	49.778	0.005682
1.50	8.141	69.491	12.134	56.898	0.006495
Average = 6.73			Average =	37.51	0.00428
Rs	= 0.75	-			

		Medium Tempera	ture Estimates		
Nominal Pipe	Unadjusted qs	Heat Gain (bare)	Heat Gain (ins)	Energy Savings	Demand Savings
Diameter (in)	(Btu/hr-sqft)	(Btu/hr-ft)	(Btu/hr-ft)	(kWh)	(kW)
0.38	8.612	12.279	3.748	5.642	0.000644
0.50	7.229	14.798	3.885	7.217	0.000824
0.75	9.333	19.616	4.979	9.680	0.001105
0.10	11.633	24.225	6.144	11.957	0.001365
1.25	9.595	28.678	6.383	14.745	0.001683
1.50	11.513	33.011	7.590	16.812	0.001919
Average	Average = 9.65		Average =	11.01	0.00126
Rs	= 0.72	-			

Average Energy Savings:

= (80% x 11.01 kWh/yr) + (20% x 37.51 kWh/yr)

= 16.31

= 16.31 kWh/yr

Average Coincident Demand Savings:

= (80% x 0.00126 kW) + (20% x 0.00428 kW/yr)

= 0.001864

= 0.00186 kW/yr

5) Summary of results:

Impact Type	Imp	Recommended	
(per linear foot)	Advice Filing	Evaluation	Source
NC Demand (kW)	-	-	
Coinc. Demand (kW)	-	0.00186	Evaluation
Annual Energy (kWh)	16.02	16.31	Evaluation

6) Sources:

† ASHRAE Handbook, "Fundamentals"; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA, 1989.

Measure J: Multiplex Compressor System

Measure Description:	Replacement of equally sized conventional compressor systems with multiplex systems for a supermarket application.
Summary of Advice Filing Calculations:	Energy and demand impacts are based upon average system-wide savings as reported by EPRI.
Comments on Advice Filing Calculations:	Review of the Advice Filing estimates indicate that the effects of ambient and mechanical subcooling were included in the impact estimate. Program documentation, however, does no t specify subcooling as a necessary component of the multiplex system.
Comments on Advice Filing Inputs:	While the inputs are substantiated by the cited documentation, the inclusion of ambient and mechanical subcooling impacts is not consistent with the policy and procedures for the measure.
Evaluation Process:	Using the same sources cited in the Advice Filing, energy and demand impacts were developed, without ambient and mechanical subcooling.
Additional Notes:	The Evaluation estimates were smaller than the Advice Filing. Energy and demand impacts were reduced by 7% and 57%, respectively, due to the exclusion of subcooling impacts.

.

J. Multiplex Compressor System

1) Replacement of equally sized conventional compressor systems with multiplex systems for a supermarket application.

2) Ex-ante calculation assumptions:

Lower limit savings 10% Upper limit savings 27% using additional controls 15.1% savings cited from EPRI* p. ES-15. This includes savings due to ambient and mechanical subcooling, (something that is not a requirement for participation in this program). Best judgment savings is 13%, with floating head pressure control. Competitek† p.190, cites energy savings of13.7% for a monitored Safeway store.

3) Advice Filing Estimates:

Energy Savings:

Energy cavings.
Baseline energy use, conventional system = 2,141 kWh/day EPRI* Table 3-4, p. 3-7
Daily Energy Savings = 15.1% x 2,141 kWh/day
= 323
Advice filing cites 325 kWh/day, which is prorated from the total savings of 497 kWh/day (23.2%).
Value taken from EPRI* Table ES-4, p. ES15
Annual Energy Savings = (325 kWh/day) x 365 day/yr
= 118,625
= 118,625 kWh/yr
Rated Capacity = (808,220 BTU/hr)/12,000 BTU/ton
= 67.35
= 67.35 tons for new Multiplex Compressors
Annual Savings per Ton = (118,625 kWh/yr)/67.35 tons
= 1,761
= 1,761 kWh/ton-yr
Savings Prorated = (1,761 kWh/ton-yr) x (13% best judgement/15.1% EPRI CU-6268)
= 1,516
= 1,516 kWh/ton-yr

Coincident Demand Savings:

=	29.3 kW, a 25.6% savings
	Value taken from EPRI* Table ES-5, p. ES17
=	29.3 kW/67.35 tons
=	0.435
=	0.435 kW/ton rating of new compressors
Savings Prorated =	(0.435 kW/ton) x (13%/15.1%)
	0.375
z	0.375 kW/ton

Non-coincident Demand Savings:

The Advice Filing back calculates the non-coincident demand savings value by applying a 0.54 CDF			
= (0.375 kW/ton) x (1/0.54 CDF)			
= 0.694			
= 0.694 kW/ton	1		

4) Evaluation Estimates: **Energy Savings:** Baseline energy use, conventional system = 2,141 kWh/day EPRI* Table 3-4, p. 3-7 Daily Energy Savings = 12.1% x 2,141 kWh/day = 259 EPRI* Table ES-5, p. ES-17 indicates that a multiplex system, with floating head pressure control should save 12.1% of the energy use of a conventional system. Annual Energy Savings = (259 kWh/day) x 365 day/yr = 94,535 = 94,535 kWh/yr Annual Savings per Ton = (94,535 kWh/yr)/67.35 tons = 1.404= 1,404 kWh/ton-yr The Evaluation Estimate uses the same source of information as the Advice Filing, but without including energy savings for ambient and mechanical subcooling. Recommend that Evaluation Estimate supersede Advice Filing Estimate, as the program only requires floating head pressure installation, and does not specify subcooling. Non-coincident Demand Savings: Use full load operating hours cited in the Advice Filing baseline, p. RF-6. = (1,404 kWh/ton-yr)/(4,960 mean full load operating hours/year) = 0.283

= 0.283 kW/ton

Coincident Demand Savings:

Using EPRI* = 24.5 kW, a 21.4% savings.

- Value taken from EPRI* Table ES-5, p. ES17
- = 24.5 kW/67.35 tons
- = 0.364

While 0.364 kW/ton is a more conservative estimate, it is suspect.

EPRI* cites a 1.4 kW impact due to the use of floating head pressure. This might be true for the winter months when much of the testing of the floating head pressure system was done, however this would not be true for PG&E's peak load hour which would occur in the summer.

Assume energy savings is distributed evenly over an entire year.

- = (1,404 kWh/ton-yr)/8,760 hrs/yr
- = 0.160
- = 0.160 kW /ton

This represents the most conservative demand estimate method.

The non-coincident demand savings estimate represents the demand estimate method with the highest impact.

The demand estimate derived from EPRI* Table ES-5, p. ES-17 is outside the range of these two estimates.

- Greatest Impact = 0.283 kW/ton
 - Least Impact = 0.160 kW/ton
- Reported Impact = 0.364 kW/ton

This discrepancy in the EPRI* reported values for demand and energy should be investigated further.

5) Summary of Results:

Impact Type	Impact		Recommended	
(per ton)	Advice Filing	Evaluation	Source	
NC Demand (kW)	0.694	0.283	Evaluation	
Coinc. Demand (kW)	0.375	0.160	Evaluation	
Annual Energy (kWh)	1,516	1,404	Evaluation	

6) Sources:

* Foster Miller. 1989. "Supermarket Refrigeration Modeling and Field Demonstration," (prepared for the Electric Power Research Institute, (Palo Alto, CA) EPRI report CU-6268), Waltham, MA, March.

† Shepherd, Michael, Amory Lovins, et al. 1990. "The State of the Art: Appliances," Competitek, Rocky Mountain Institute, Snowmass, CO, August.

++ LBL 1985. Usibelli, A., et al. :Commercial Sector Conservation Technologies,* Lawrence Berkeley Laboratory, LBL 18543, Berkeley, CA February.

Measure K: Electronic Adjustable Speed Compressor

Measure Description:	Provides an incentive to install a controller to convert an existing fixed speed compressor to an adjustable speed compressor, or to replace an existing compressor with a compressor that has an adjustable speed drive (ASD).
Summary of Advice Filing Calculations:	Energy impacts were developed using a best judgment savings value derived from a number of sources. No demand impacts were developed.
Comments on Advice Filing Calculations:	Impacts do not take into account the baseline motor efficiency.
Comments on Advice Filing Inputs:	The sources cited in the Advice Filing were unavailable, and so could not be verified. No alternate sources were located.
Evaluation Process:	Energy impacts were developed using a 90% baseline motor efficiency. Demand impacts were assumed to be spread evenly across an entire year.
Additional Notes:	The Evaluation energy estimate was 11% greater than the Advice Filing estimate.

K. Electronic Adjustable Speed Compressor

1) Provides an incentive to install a controller to convert an existing fixed speed compressor to an adjustable speed compressor, or replace an existing compressor with a compressor that has an adjustable speed drive (ASD).

Existing compressor must be on a non-multiplexed refrigeration unit. Existing compressor must be 5 hp or more with a halocarbon refrigerant.

2) Ex-ante calculation assumptions:

Savings range from 7% to 30%, depending on the type of refrigeration system. Best judgment estimate for compressor energy savings is 12.5%. Average annual compressor operating hours is 4,960. Baseline power draw is 0.746 kW/hp.

3) Advice Filing Estimates:

Energy Savings:

31	
	= 4,960 hrs x 12.5% x 0.746 kW/hp
	= 462.52
	= 462.5 kWh/yr-hp

Neither coincident nor non-coincident demand impacts were developed.

4) Evaluation Estimates:

Energy Savings:

The Advice Filing estimate does not take into account the baseline motor efficiency in determining impacts. 5 hp and greater motor efficiencies range from 85% to 95%. Using a mean value of 90% the following equation can be applied.

= 12.5% x [(4,960 hrs x 0.746 kW/hp)/90%]

= 513.9

= 513.9 kWh/yr-hp

Coincident Demand Savings:

Assume energy savings is spread evenly across an entire year.

= (513.9 kWh/yr-hp)/(8,760 hrs/yr)

Impact

- = 0.0587
- = 0.0587 kW/hp
- 5) Summary of results:

Impact 1	Туре
----------	------

Recommended

(per horsepower)	Advice Filing	Evaluation	Source
NC Demand (kW)	-	-	
Coinc. Demand (kW)	-	0.0587	Evaluation
Annual Energy (kWh)	462.5	513.9	Evaluation

Measure M: Mechanical Subcooler

Measure Description:	Installation of a mechanical subcooler for a low temperature refrigeration system.
Summary of Advice Filing Calculations:	A bin analysis method was used to develop demand and energy impacts.
Comments on Advice Filing Calculations:	The Advice Filing method could not be reproduced due to inadequate documentation contained in that report.
Comments on Advice Filing Inputs:	Inputs used in the estimates were not included in the Advice Filing, and therefore could not be verified.
Evaluation Process:	An Evaluation estimate was not developed.
Additional Notes:	Demand impacts were developed using a CDF of 0.54, which may be inappropriate given the methods used. Without additional documentation, however, a more thorough analysis could not be performed.

M. Mechanical Subcooler

1) Installation of a mechanical subcooler in a low temperature refrigeration system.

Savings result from providing a greater capacity to the low temperature system at a higher total system efficiency. Lower discharge gas temperature in subcooled units leads to lower power use.

2) Ex-ante calculation assumptions:

Air-cooled condensers design for a 15 degree temperature difference. Suction temperature is -25 F. Subcooling temperature is 40 F. Travis AFB weather is used as a PG&E system average.

Peak demand savings are averaged over the three highest temperature bins.

The condensing temperature for an air-cooled unit is the dry bulb temperature plus 20 F.

The condensing temperature for an evaporative-cooled unit is the wet bulb temperature plus 15 F.

3) Advice Filing Estimate:

A bin analysis method was used to determine demand and energy impacts.

Inputs in the bin analysis method included:

Bin weather data Type of condenser, either air-cooled or evaporative-cooled. Average system operating capacity Evaporator efficiency Suction line superheat Compressor efficiency Subcooling temperature Subcooler capacity.

Analysis Method:

The following steps were implemented sequentially:

Mid-point dry bulb temperature and coincident wet bulb temperature determined for each bin.

Standard and subcooled enthalpies found from refrigerant tables.

Standard and subcooled mass flow rates found from tons (of heat) rejected and enthalpy difference between suction and evaporation conditions.

Enthalpy was determined for discharge gas conditions.

Associated power calculated from mass flow and enthalpy difference between discharge and suction conditions for standard and subcooled cases.

Additional power consumption is subcooler cycle calculated from subcooler mass flow rate and the enthalpy difference.

Demand savings calculated as standard cycle power draw minus subcooled cycle power draw.

Energy estimates calculated as difference in total power draw times the number of hours for a given bin.

Calculations completed for various refrigeration system sizes, and an average value was used to determine impacts per year-ton.

Analysis Results:

Capacity	Savi	ngs
	kWh/yr-ton	kW/ton
15 tons	589.73	0.6089
30 tons	589.73	0.6089
50 tons	589.72	0.6087
Average	589.7	0.6088

4) Evaluation Estimate:

Advice Filing estimates could not be reproduced due to inadequate documentation contained in the report.

Further analysis is required to determine the accuracy of the Advice Filing coincident demand impacts. A CDF of 0.54 was applied to the NC demand impacts, which may not be appropriate given the methods used. Without additional documentation, however, a more thorough analysis of the coincident impacts could not be performed.

5) Summary of results:

Impact Type	Imp	Recommended	
(per ton)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.6088	-	Advice Filing
Coinc. Demand (kW)	0.3288	-	Advice Filing
Annual Energy (kWh)	589.7	-	Advice Filing

Measure N: Floating Head Pressure Control

Measure Description:	Installation of a floating head pressure control which allows the condensing temperature to "float" below a conventional set minimum condensing temperature setpoint when the ambient temperature is lower than design conditions.	
Summary of Advice Filing Calculations:	Energy impacts were developed using a best judgment savings value derived from a number of sources. No demand impacts were developed.	
Comments on Advice Filing Calculations:	Review of the sources cited in the Advice Filing indicates that the savings value used is conservative and is substantiated by the references.	
Comments on Advice Filing Inputs:		
Evaluation Process:	An Evaluation estimate was not developed.	
Additional Notes:	Demand impacts were not developed as floating head pressure controls are effective only during periods of low ambient temperature.	

.

N. Floating Head Pressure Control

- 1) Retrofit allows the condensing temperature (CT) to "float" below a conventional set minimum condensing temperature setpoint when the ambient temperature is lower than design conditions
 - Lowering of condensing temperature saves energy
 - Retrofit minimum CT set points should be 70 F for halocarbon, 60 F for ammonia

2) Ex-ante calculation assumptions:

Typical setting for CT is 82 degrees for halocarbon systems Typical setting for CT is 78 degrees for ammonia systems Ambient temperatures will only be cold enough in the winter months, half of the year Baseline compressor energy consumption is 9,137 kWh/yr-ton A review of this calculation of compressor energy usage from EPRI CU-6268* actually yields 9,141 kWh/yr-ton.) Energy savings is assumed to be 6% of compressor use Energy savings is assumed to be the same for ammonia and halocarbon systems

3) Advice Filing Estimates:

Energy Savings: = (0.06*9,137 kWh/yr-ton) = 548.220 = 548 kWh/yr-ton Using 9,141 kWh/yr-ton does not change this value.

Demand Savings:

No demand savings as there is no "floating" unless ambient temperatures are low.

4) Evaluation Estimates:

Estimates for energy savings associated with floating head pressure range from 2% (EPRI CU-6268* p.ES-15) to 15% (LBL† p.3-8). Review of all sources indicates that the value used in the Advice Filing is a conservative one, and is substantiated by the references cited.

5) Summary of results:

Impact Type	Imp	Recommended	
(per ton)	Advice Filing	Evaluation	Source
NC Demand (kW)	-	-	Advice Filing
Coinc. Demand (kW)	-	•	Advice Filing
Annual Energy (kWh)	548	_	Advice Filing

6) Sources:

Walker D., EPRI Report CU-6268, "Supermarket Refrigeration Modeling and Field Demonstration". Prepared for the Electric Power Research Institute, Palo Alto, CA. Foster-Miller, Inc. Witham MA. March 1989

+ Usibelli, et al. LBL-18543, "Commercial-Sector Conservation Technologies". Prepared for Pacific Gas and Electric Co. San Francisco, CA. Lawrence Berkeley Labs, Berkeley, CA. February 1985.

Measure O: Cooler or Freezer Door Gaskets

Measure Description:	Replacement of worn-out gaskets with new gaskets on walk-in doors for coolers or freezers.
Summary of Advice Filing Calculations:	Used an equation from ASHRAE Refrigeration Handbook to determine infiltration loads associated with a faulty gasket for both a cooler and a freezer. Energy and demand impacts were determined using infiltration loads, the efficiency of the refrigeration system, and the hours that infiltration occurs.
Comments on Advice Filing Calculations:	Program review has shown that the ASHRAE method was incorrectly applied.
Comments on Advice Filing Inputs:	The value used for the average door area was inconsistent with other measures, and was determined to be too small. Review of the hours that infiltration would occur revealed that they are underestimated.
Evaluation Process:	Energy and demand impacts were developed using the correctly applied ASHRAE equation and the modified inputs.
Additional Notes:	The Evaluation estimates for energy and demand are 102% and 146% greater than the Advice Filing estimates, respectively.

O. Cooler or Freezer Door Gaskets

1) Replace worn-out gaskets with new gaskets on walk-in door for coolers or freezers.

2) Ex-ante calculation assumptions:

Cooler/freezer door intentionally open 3 hr/day or 1,095 hours/yr Door is assumed to be ajar for 25% of the rest of time, or 1,915 hours/yr Impact is over the remaining 5,750 hours/year Typical door perimeter, 16 ft Door dimensions, $W = 2ft \times H = 6ft$ Cooler temp. = 40 F, Freezer temp. = 0 F Kitchen temp. = 70 F, relative humidity 60% A faulty gasket allows 3% of the load gained from a fully open door. Cooler performance factor is 1.6 kW/ton; freezer performance factor 2.4 kW/ton 80% of installations are coolers, 20% freezers

3) Analysis of ex-ante assumptions:

Door dimensions are unreasonable. A six foot cook (not uncommon) could not fit through this door comfortably Additionally, this is inconsistent with the methods used in the evaluation of other programs. A 3 foot x 7 foot door was used to calculate for strip curtain impacts for walk-in coolers, Advice Filing, p. RF-16 Proposed dimensions: Width = 3ft x Height = 7ft, a very conservative estimate.

Convert performance factor into EER:

Cooler performance factor = 1.6 kW/ton

= 1/[1.6 kW/ton x (1 ton/12,000 Btuh) x 1000 Watts/kW]

- = 7.5
- = 7.5 EER (Btuh/Watt)

Freezer performance factor = 2.4 kW/ton

= 1/[2.4 kW/ton x (1 ton/12,000 Btuh) x 1000 Watts/kW]

- = 5.0
- = 5.0 EER (Btuh/Watt)

Both performance factors are reasonable.

EPRI TR 100894, V1† lists a range of 3.9 EER to 4.7 EER for low temp. freezers and 7.6 EER to 9.6 EER for medium temp. coolers.

4) Advice Filing Estimates:

Infiltration by air exchange, according to 1990 ASHRAE Handbook-Refrigeration, p. 27.3-4

 $qt = 3,790 \times W \times H^{1.5} \times (Q/A) \times (1/R) \times Dt \times Dt$ where: qt = average heat gain in a period (Btu/h)W = door widthH = door height Q/A = sensible heat load of infiltration per square foot of doorway

R = sensible heat ratio of the infiltration air heat gain

Dt = door open time factor

Df = door flow factor

This version of the equation excludes an important parameter that should be retained for calculations.

qt = 3,790 x W x H^1.5 x (Q/A) x (1/R) x Dt x Df x (1-E)

where:

E = effectiveness of doorway protective device (0 = unobstructed doorway)

Advice Filing assumes that a door with a faulty gasket is 97% effective in reducing infiltration.

Demand savings for coolers:

	Dt = 5,750 hrs/8,760 hrs
	Df = (0.80 flow factor x 3% savings assumption)
	Q/A = 0.155 tons/sqft
	R = 0.59
	qt = 3,790 x 2ft x (6^1.5ft) x (0.155 tons/sqft) x (1/0.59) x (5,750 hr/8,760 hr) x (0.80 x 0.03)
	= 461
Deman	d Savings = (461 Btu/h) x (1ton-hr/12,000 Btu) x (1.6 kW/ton)
	= 0.061
	= 0.061 kW

Demand savings for freezers:

Q/A = 0.62 tons/sqft
R = 0.63
qt = 3,790 x 2ft x (6^1.5ft) x (0.62 tons/sqft) x (1/0.63) x (5,750 hr/8,760 hr) x (0.80*0.03)
= 1,727
Demand Savings = (1,727 Btu/h) x (1ton-hr/12,000 Btu) x (2.4 kW/ton)
= 0.345
= 0.345 kW
Advice Filing, p.RF-74 lists 0.346 kW.

Annual Energy Savings:

Energy Savings = [(0.061 kW x 0.80)+(0.345 kW x 0.20)] x 8,760 hr/yr	
= 1,032	
= 1,032 kWh/yr	
Advice Filing, p.RF-74 lists 1,035 kWh.	
Difference is due to using 0.345 kW instead of 0.346 kW	

Non-coincident Demand Savings:

= (1,032	kWh/yr)/5,750	hrs	door	closed/year
= 0.179				
= 0.179	kW			

Advice Filing, p.RF-74 lists 0.179 kW
Difference is due to using 0.345 kW instead of 0.346 kW

Coincident Demand Savings:

= 0.179 kW x 0.54 CDF	
= 0.097	
= 0.097 kW	

5) Evaluation Estimates:

The equation used in the Advice Filing excludes an important parameter that should be retained for calculations.

qt = 3,790 x W x H^1.5 x (Q/A) x (1/R) x Dt x Df x (1-E)

where:

E = effectiveness of doorway protective device (0 = unobstructed doorway)

Advice Filing assumes that an faulty gasket is 97% effective in reducing infiltration.

Demand savings for coolers: Dt = 1.0The impact is initially calculated with the assumption that the impact is for an entire hour. Df = 0.80 flow factor E = 97% according to Advice Filing, p. RF-76 Q/A = 0.16 tons/sqft according to ASHRAE* Fig. 3, p. 26.4 R = 0.59 according to ASHRAE* Table 7, p. 26.4 Note that the Df value is separated from the effectiveness term. The net result is the same, but the Evaluation Estimate is in compliance with the ASHRAE" method. gt = 3,790 x 3ft x (7^1.5ft) x (0.16 tons/sqft) x (1/0.59) x 1.0 x (0.80 flow factor) x (1 - 97%) = 1,371 NC Demand Savings = (1,371 Btu/h) x (1ton-hr/12,000 Btu) x (1.6 kW/ton) = 0.183= 0.183 kWAgain, this impact is for an entire hour. Demand savings for freezers: Dt = 1.0The impact is initially calculated with the assumption that the impact is for an entire hour. Q/A = 0.61 tons/sqft according to ASHRAE* Fig. 3, p. 26.4 R = 0.63 according to ASHRAE* Table 7, p. 26.4 qt = 3,790 x 3ft x (7^1.5ft) x (0.61 tons/sqft) x 1.0 (1/0.63) x (0.80 flow factor) x (1 - 97%) = 4.893NC Demand Savings = (4,893 Btu/h) x (1ton-hr/12,000 Btu) x (2.4 kW/ton) = 0.979= 0.979 kWAgain, this impact is for an entire hour. Total Non-coincident Demand Savings: $= (0.183 \text{ kW} \times 0.80) + (0.979 \text{ kW} \times 0.20)$ = 0.342= 0.342 kWEvaluation estimate should supersede Advice Filing value. Annual Energy Savings: Hours Door Left Ajar = (365 day/yr x 20 hr/day) - (1,095 hr/yr door open) = 6.205= 6.205 hrs x 25% chance ajar = 1.551 Hours for potential savings = 8,760 hrs - 1,551 hrs - 1,095 hrs

= 6,114

Annual Energy Savings = 0.342 kW x 6,114 hrs/yr

- = 2,091
- = 2,091 kWh/yr
 - Evaluation Estimate should supersede Advice Filing value.

Coincident Demand Savings:

For a given hour in the year, the chance that a door will be closed is the CDF.

- = 0.342 kW x (6,114 hrs/yr door closed)/(8,760 hrs/yr)
- = 0.239
- = 0.239 kW
 - Evaluation Estimate should supersede Advice Filing value.

6) Summary of results:

Impact Type	Imp	Recommended	
(per walk-in)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.180	0.342	Evaluation
Coinc. Demand (kW)	0.097	0.239	Evaluation
Annual Energy (kWh)	1,035	2,091	Evaluation

7) Sources:

† EPRI report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs"; Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA, 1992.

* ASHRAE Handbook, "Refrigeration Systems and Applications"; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA, 1994

Measure P: Auto-Closer for Cooler or Freezer

Measure Description:	Installation of an automatic, hydraulic-type door closer on doors to walk-in coolers or freezers. The purpose of this measure is to reduce the loads caused by infiltration when a walk-in door is inadvertently left ajar.
Summary of Advice Filing Calculations:	Used an equation from ASHRAE Refrigeration Handbook to determine infiltration loads associated with an open door for both a cooler and a freezer. Energy and demand impacts were determined using infiltration loads, the efficiency of the refrigeration system, and the time that the door was assumed to be ajar.
Comments on Advice Filing Calculations:	Program review has shown that the ASHRAE method was incorrectly applied.
Comments on Advice Filing Inputs:	The value used for the average door area was inconsistent with other measures, and was determined to be too small. The hours that a door is left ajar are overestimated.
Evaluation Process:	Energy and demand impacts were developed using the correctly applied ASHRAE equation and the modified inputs.
Additional Notes:	While the Evaluation energy impact is 53% greater than the Advice Filing impact, the demand impact is 12% smaller than the Advice Filing impact.

P. Auto-Closer for Cooler or Freezer

1) Install an automatic, hydraulic-type door closer on doors to walk-in coolers and freezers

2) Ex-ante calculation assumptions:

Cooler/freezer door intentionally open 3 hr/day or 1,095 hours/yr Door is assumed to be ajar for 25% of the rest of time, or 1,915 hours/yr Typical door perimeter, 16 ft Door dimensions, $W = 2ft \times H = 6ft$ Cooler temp. = 40 F, Freezer temp. = 0 F Kitchen temp. = 70 F, relative humidity 60% An ajar door allows 20% of the load gained from a fully open door. Cooler performance factor is 1.6 kW/ton; freezer performance factor 2.4 kW/ton 80% of installations are coolers, 20% freezers

3) Analysis of ex-ante assumptions:

Door dimensions are unreasonable. A six foot cook (not uncommon) could not fit through this door comfortably Additionally, this is inconsistent with the methods used in the evaluation of other programs. A 3 foot x 7 foot door was used to calculate for strip curtain impacts for walk-in coolers, Advice Filing, p. RF-16 Proposed dimensions: Width = 3ft x Height = 7ft, a very conservative estimate.

Convert performance factor into EER:

Cooler performance factor = 1.6 kW/ton

- = 1/[1.6 kW/ton x (1 ton/12,000 Btuh) x 1000 Watts/kW]
- = 7.5
- = 7.5 EER (Btuh/Watt)

Freezer performance factor = 2.4 kW/ton

- = 1/[2.4 kW/ton x (1 ton/12,000 Btuh) x 1000 Watts/kW]
- = 5.0
- = 5.0 EER (Btuh/Watt)
- Both performance factors are reasonable.

EPRI TR 100894, V1† lists a range of 3.9 EER to 4.7 EER for low temp. freezers and 7.6 EER to 9.6 EER for medium temp. coolers.

4) Advice Filing Estimates:

Infiltration by air exchange, according to 1990 ASHRAE Handbook-Refrigeration, p. 27.3-4

 $qt = 3,790 \times W \times H^{1.5} \times (Q/A) \times (1/R) \times Dt \times Dt$

where:

- qt = average heat gain in a period (Btu/h)
- W = door width
- H = door height
- Q/A = sensible heat load of infiltration per square foot of doorway

- R = sensible heat ratio of the infiltration air heat gain
- Dt = door open time factor
- Df = door flow factor

This version of the equation excludes an important parameter that should be retained for calculations.

qt = 3,790 x W x H^1.5 x (Q/A) x (1/R) x Dt x Df x (1-E)

where:

E = effectiveness of doorway protective device (0 = unobstructed doorway) Advice Filing assumes that an ajar door is 80% effective in reducing infiltration.

.

 Demand savings for coolers, when door is left ajar:
Dt = 1,915 hrs/8,760 hrs
Df = (0.80 flow factor x 20% savings assumption)
Q/A = 0.155 tons/sqft
R = 0.59
qt = 3,790 x 2ft x (6^1.5ft) x (0.155 tons/sqft) x (1/0.59) x (1,915 hr/8,760 hr) x (0.80 x 0.20)
= 1,024
Demand Savings = (1,024 Btu/h) x (1ton-hr/12,000 Btu) x (1.6 kW/ton)
= 0.137
= 0.137 kW

Demand savings for freezers, when door is left ajar:

Q/A = 0.62 t	ons/sqft
R = 0.63	
qt = 3,790	x 2ft x (6^1.5ft) x (0.62 tons/sqft) x (1/0.63)* x (1,915 hr/8,760 hr) x (0.80*0.20)
= 3,835	
Demand Savings = (3,835	Btu/h) x (1ton-hr/12,000 Btu) x (2.4 kW/ton)
= 0.767	
= 0.767	kW

Annual Energy Savings:

Energy Savings = [(0.137 kW x 0.80)+(0.767 kW x 0.20)] x	8,760 hr/yr
= 2,304	
= 2,304 kWh/yr	

Non-coincident Demand Savings:

	= (2,304 kWh/yr)/1,915 hours door ajar/year
	= 1.203
	= 1.203 kW
10	

Coincident Demand Savings:

_ ·	1.203 kW x 0.54 CDF
= (0.650
= (0.650 kW

5) Evaluation Estimates:

The equation used in the Advice Filing excludes an important parameter that should be retained for calculations.

qt = 3,790 x W x H^1.5 x (Q/A) x (1/R) x Dt x Df x (1-E)

where:

E = effectiveness of doorway protective device (0 = unobstructed doorway)

Advice Filing assumes that an ajar door is 80% effective in reducing infiltration.

Demand savings for coolers, when door is left ajar:

Dt = 1.0

The impact is initially calculated with the assumption that the door is left ajar for an entire hour.

Df = 0.80 flow factor

E = 80% according to Advice Filing, p. RF-76

Q/A = 0.16 tons/sqft according to ASHRAE* Fig. 3, p. 26.4

R = 0.59 according to ASHRAE* Table 7, p. 26.4

Note that the Df value is separated from the effectiveness term.

The net result is the same, but the Evaluation Estimate is in compliance with the ASHRAE* method.

 $qt = 3,790 \times 3ft \times (7^{1.5ft}) \times (0.16 \text{ tons/sqft}) \times 1.0 \times (1/0.59) \times (0.80 \text{ flow factor}) \times (1 - 80\%)$ = 9.137NC Demand Savings = (9,137 Btu/h) x (1ton-hr/12,000 Btu) x (1.6 kW/ton) = 1.218 = 1.218 kWAgain, this impact assumes that the cooler door is left ajar for an entire hour. Demand savings for freezers, when door is left ajar: Dt = 1.0The impact is initially calculated with the assumption that the door is left ajar for an entire hour. Q/A = 0.61 tons/sqft according to ASHRAE* Fig. 3, p. 26.4 R = 0.63 according to ASHRAE* Table 7, p. 26.4 $qt = 3,790 \times 3ft \times (7^{1.5}ft) \times (0.61 \text{ tons/sqft}) \times (1/0.63) \times 1.0 \times (0.80 \text{ flow factor}) \times (1 - 80\%)$ = 32.622NC Demand Savings = (32,622 Btu/h) x (1ton-hr/12,000 Btu) x (2.4 kW/ton) = 6.524= 6.524 kWAgain, this impact assumes that the freezer door is left ajar for an entire hour. Average NC Demand Savings: $= (1.218 \text{ kW} \times 0.80) + (6.524 \text{ kW} \times 0.20)$ = 2.279= 2.279 kWEvaluation estimate should supersede Advice Filing value. Annual Energy Savings: Assume a busy, full-day restaurant, open 20 hours/day, 365 days/year. Hours Door Left Ajar = (365 day/yr x 20 hr/day) - (1,095 hr/yr door open) = 6,205 = 6,205 hrs x 25% chance ajar = 1.551Annual Energy Savings = [(1.218 kW x 0.80)+(6.524 kW x 0.20)] x 1,551 hr/yr = 3,535 = 3,535 kWh/yr The Advice Filing estimate understates the potential energy savings by 53%. Evaluation Estimate should supersede Advice Filing value. **Coincident Demand Savings:** Although the advice filing methods apply a diversity factor (CDF), this does not appear to be necessary. If the energy savings are assumed to be spread evenly across the time that the door potentially could be ajar, then a CDF need not be applied.

= 2.279 x (1,551 hrs door ajar)/6,205 hrs door potentially ajar

= 0.570

= 0.570 kW

Evaluation Estimate should supersede Advice Filing value.

6) Summary of results:

Impact Type	Impact		Recommended
(per walk-in)	Advice Filing	Evaluation	Source
NC Demand (kW)	1.203	2.279	Evaluation
Coinc. Demand (kW)	0.650	0.570	Evaluation
Annual Energy (kWh)	2,304	3,535	Evaluation

7) Sources:

† EPRI report TR-100984, V1, "Engineering Methods for Estimating the Impacts of Demand-Side Management Programs"; Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses; Electric Power Research Institute, Palo Alto, CA, 1992.

* ASHRAE Handbook, "Refrigeration Systems and Applications"; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA, 1994

Measure Q: Cooler or Freezer with Non-Electric Condensate Evaporator

Measure Description:	Replacement of an electric condensate evaporator with a non- electric one. A non-electric condensate evaporator routes the hot gas following compression to the condensate pan to evaporate water.
Summary of Advice Filing Calculations:	Demand and energy estimates were developed using the connected load of an electric condensate evaporator and its controls.
Comments on Advice Filing Calculations:	The method used to develop energy impacts appears valid. The use of a CDF in the development of demand impacts is unnecessary. The CDF is based upon the cycling of the compressor, which is unrelated to the operation of the condensate evaporator.
Comments on Advice Filing Inputs:	Inputs are based upon manufactures' data and appear to be valid.
Evaluation Process:	Demand estimates were generated with the assumption that the CDF for the measure is 1.0.
Additional Notes:	The Evaluation demand estimate is 84% greater than the Advice Filing estimate.

Q. Cooler or Freezer with Non-Electric Condensate Evaporator:

1) Hot gas following compression can be routed to the condensate pan to evaporate water.

In the absence of a hot gas evaporative system, electric resistance heaters are typically used.

2) Ex-ante calculation assumptions:

Condensate evaporators draw 215 Watts.

Controlled condensate evaporators operate just 4,380 hr/yr.

Uncontrolled units run constantly for 8,760 hours per year.

25% of the replaced units have controlled condensate evaporators.

Maximum power draw when pan is empty for controlled condensate evaporators is 30 W.

3) Advice Filing Estimates:

Non-coincident Demand Savings:

= [(215 Watts x 0.75) + (2	5 Watts x 0.25 x 0.5)]/1,000 Watts/kW
= 0.188	
= 0.188 kW/unit	

Coincident Demand Savings:

= 0.54 CDF x {[(215 Watts x 0.75) + (215 Watts x 0.25 x 0.5)]/1,000 Watts/kW}	
= 0.102	
0.102 kW/unit Advice Filing Estimate	
Note also that the 30 W value is not used in calculating the coincident demand.	
The 30 W power draw cancels itself out for demand estimates .	

Energy Savings:

= {(215 Watts x 8760 Hours x 0.75)+[0.25*(((215 Watts -30 Watts) x 8760 Hours x 0.5)+(30 Watts x 8760 Hours))]/1000 Watts/kW
= 1681
1,681 kWh/unit
There is no explanation in the advice filing for the use of the 30 Watt value in this algorithm.
According to the 1994 CIA Policy and Procedures (p.4.1-54) 30 Watts is the maximum power draw when the pan is empty.

4) Evaluation Estimates:

Non-coincident Demand Savings:

See Advice Filing.

Coincident Demand Savings:

Although the advice filing methods apply a diversity factor (CDF), this does not appear to be necessary. It is not anticipated that the electric resistance heater would be associated in any manner with the cycling of the refrigeration compressors.

Since the Advice Filing bases the CDF on the cycling of the refrigeration compressors, it should not be applied.

Therefore:

Baseline Coinc. kW = 0.188 kW/unit

Since the end-use is completely avoided, this is the impact.

Energy Savings:

See Advice Filing.

5) Summary of results:

Impact Type	Imp	Recommended	
(per unit)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.188	-	Advice Filing
Coinc. Demand (kW)	0.102	0.188	Evaluation
Annual Energy (kWh)	1,681	-	Advice Filing

1994 Measure: High Capacity Oversized Condenser, Evaporative-Cooled (Ammonia)

Measure Description:	Provides an incentive to increase the size of the evaporative condenser to meet or exceed ARI standard 490-89, and thus increase the total heat of rejection (THR).
Summary of Advice Filing Calculations:	Energy and demand impacts were developed using values generated for the High Capacity Oversized Condenser Evaporative-Cooled (Halocarbon) measure.
Comments on Advice Filing Calculations:	Demand impacts were developed using an inappropriate CDF. Energy impacts were based upon the impacts for the halocarbon measure. The methods used could not be verified because the references cited were not available.
Comments on Advice Filing Inputs:	Halocarbon measure non-coincident demand values were incorrectly entered into the Advice Filing method.
Evaluation Process:	Demand estimates were generated with the assumption that the energy savings are spread evenly across an entire year. Energy impacts were re-calculated using values from the halocarbon measure.
Additional Notes:	The Evaluation demand estimate is 37% smaller than the Advice Filing estimate. The difference in energy impacts is assumed to be the result of rounding.

1994. High Capacity Oversized Condenser, Air-Cooled

1) Incentive to increase size of air-cooled condenser and thus increase the total heat of rejection (THR).

Oversizing must meet/exceed ARI standard 460-87.

ARI standard 460-87 has been updated. New standard is 460-94.

Oversizing lowers condensing temperature (CT) and the discharge pressure of the compressors.

2) Ex-ante calculation assumptions:

Discharge temperatures range from 130 to 100 C.

Average compressor demand savings for R-12/R-22 medium temperature systems is 0.5736 kW/ton.

No mention is made of impacts for low temperature systems.

Using a 1.6 kW/ton performance factor (Advice Filing p.RF-76) for a medium temperature system the savings attributable to the reduced compressor demand would account for 35.8% of the entire system power draw. (0.5736 kW/ton)/1.6 kW/ton = 35.8%

There is a power increase of 0.06 hp/ton for auxiliary fans.

- = 0.06 hp/ton x 0.746 kW/hp
- = 0.04476
- = 0.04476 kW/ton

3) Advice Filing Estimates:

Impacts stated in the Advice Filing could not be verified because the method used was not described. Inputs used in the Advice Filing could not be verified, as not all of the inputs were listed The cited sources for the demand savings were unobtainable.

4) Evaluation Estimates:

Advice Filing coincident impacts were developed using 0.54 CDF. Using the energy impact and NC demand impact, full load hours were back-calculated, yielding 4,957 hours. This is very close to the 4,960 average EFLH's cited in the Advice Filing (p.RF-6), and indicates that the application of a CDF is inappropriate.

Coincident Demand Savings:

Assume savings is spread evenly across the entire year, a conservative estimate of demand savings.

- = (71.38 kWh/ton-F)/8,760 hrs/yr
- = 0.0081
- = 0.0081 kW/ton-F

Actual impacts at the time of system peak are most likely greater than this value.

5) Summary of Results:

Impact Type	Impact		Recommended
(per ton-F)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0144	-	Advice Filing
Coinc. Demand (kW)	0.0078	0.0081	Evaluation

Annual Energy (kWh)	71.38	-	Advice Filina

1994. High Capacity Oversized Condenser, Evaporative-Cooled (Halocarbon)

1) Incentive to increase size of evaporative condenser and thus increase the total heat of rejection (THR).

Oversizing must meet/exceed ARI standard 490-89.

Oversizing lowers condensing temperature (CT) and discharge pressure of compressors.

A penalty must be applied if the sum of condenser fan and pump horsepower exceeds 0.09 hp/condenser ton.

2) Ex-ante calculation assumptions:

Oversizing the condenser reduces medium temperature compressors power draw by 0.01471 kW/ton-F. There is a power increase of 0.06 hp/ton for auxiliary fans.

= 0.06 hp/ton x 0.746 kW/hp

= 0.04476

= 0.04476 kW/ton

Advice Filing lists 0.0055 kW/ton (p.NRR-64) which is inconsistent with other hp to kW conversions (see p.NRR-59,61). Compressors operate a total of 4.960 EFLH per year.

3) Advice Filing Estimates:

Impacts stated in the Advice Filing could not be verified because the references cited were not available.

4) Evaluation Estimates:

Advice Filing coincident impact were developed using 0.54 CDF.

Coincident Demand Savings:

Assume savings is spread evenly across the entire year.

- = (37.25 kWh/ton-F)/8,760 hrs/yr
- = 0.0043
- = 0.0043 kW/ton-F

Actual impacts at the time of system peak are most likely greater than this value.

5) Summary of Results:

Impact Type	Imp	Recommended	
(per ton-F)	Advice Filing	Evaluation	Source
NC Demand (kW)	0.0075	-	Advice Filing
Coinc. Demand (kW)	0.0041	0.0043	Evaluation
Annual Energy (kWh)	37.25	-	Advice Filing

1994. High Capacity Oversized Condenser, Evaporative-Cooled (Ammonia)

1) Incentive to increase size of evaporative condenser and thus increase the total heat of rejection (THR).

Oversizing must meet/exceed ARI standard 490-89.

Oversizing lowers condensing temperature (CT) and discharge pressure of compressors.

A penalty must be applied if the sum of condenser fan and pump horsepower exceeds 0.09 hp/condenser ton.

2) Ex-ante calculation assumptions:

Average operating hours are based upon assumptions as no current data exists.

EPRI estimates that demand savings for ammonia systems are 25% greater than demand savings for halocarbon systems.

All calculations are based upon a similar analysis completed for halocarbon systems (Advice Filing p.NRR-64,65)

3) Calculation of operating hours:

Advice Filing Estimate:

	% Participation	Full Load Hours/yr	Weighted
Industrial	0.35	2,340	819
Dist. Warehouse	0.15	4,960	744
Fruit Cold Storage	0.30	3,720	1,116
Fruit Hydrocoolers	0.20	1,620	324
		Weighted ave = 3,	003

4) Advice Filing Estimates:

Non-coincident Demand Savings:

= (0.0092 kW/ton-F x 1.25)	
= 0.0115	
= 0.0115 kW/ton-F	
This value is unsubstantiated by Advice Filing documentation.	
0.0094 kW/ton-F is the value used in the Advice Filing for the Measure Summary, p.NRR-68	3
Demand savings for the halocarbon condenser is 0.0075 kW, not 0.0092 kW/ton-F (Advice	

Coincident Demand Savings:

= (0.0094 kW/ton-F x 0.54)	
= 0.0051	
= 0.0051 kW/ton-F	

Advice Filing Estimate:

Energy Savings = (0.0092 kW/yr-ton-F x 3003) = 27.6276 = 27.63 kWh/yr-ton-F

The reported value in the Measure Summary is 28.19 kWh/yr-ton-F.
Using 0.0092 kW/ton-F ignores the prior calculation, which estimates non-coincident savings to be
0.0115 kW/ton-F.

5) Evaluation Estimates:

Non-coincident Demand Savings:

Halocarbon demand savings for oversizing the evaporative condenser = 0.0075 kW/ton-F (Advice Filing, p.NRR-65). Demand savings for ammonia systems will be 25% greater than halocarbon savings (Advice Filing, p.NRR-67).

- = (0.0075 kW/ton-F x 1.25)
- = 0.0094
- = 0.0094 kW/ton-F

0.0094 kW/ton-F is the value used in the Advice Filing for the Measure Summary, p. NRR-68

Coincident Demand Savings:

Although the Advice Filing methods apply a diversity factor (CDF), this does not appear to be necessary. Energy savings are assumed to be spread evenly across the entire year.

- = [(28.23 kWh/yr -ton-F) /8,760 hrs/yr]
- = 0.0032
- = 0.0032 kW/ton-F

This value should supersede the Advice Filing estimate,.

Actual coincident impacts can be assumed to be within the range of 0.0032 kW/ton-F to 0.0094 kW/ton-F, and may be closer to 0.0094 kW/ton-F.

Energy Savings:

= (0.0094 kW/ton-F x 3,003 full load hours/yr)

- = 28.23
- = 28.23 kWh/yr-ton-F

The reported value of 28.19 in the Measure Summary, p. NRR-68 is close to 28.23. Recommend using 28.23 kWh/yr-ton-F as the results are reproducible.

6) Summary of Results:

Impact Type	Impact		Recommended	
(per ton-F)	Advice Filing	Evaluation	Source	
NC Demand (kW)	0.0094	0.0094	Advice Filing	
Coinc. Demand (kW)	0.0051	0.0032	Evaluation	
Annual Energy (kWh)	28.19	28.23	Evaluation	

1994 Measure: Energy-Efficient Evaporator Motors: Display Case

·

Measure Description:	Replacement of an existing burned-out shaded pole evaporator motor with a permanent split capacitor motor for a refrigeration display case.
Summary of Advice Filing Calculations:	Energy and demand savings were developed using fan power draw, annual fan energy use, compressor efficiency, and case loads associated with evaporator fans.
Comments on Advice Filing Calculations:	Demand impacts were developed using an inappropriate CDF, and did not take indirect impacts into account. The method used to develop energy is valid.
Comments on Advice Filing Inputs:	Inputs were taken from the PG&E Commercial New Construction model, but could not be verified (because the document was unavailable).
Evaluation Process:	Demand estimates were developed which include the case load savings. An energy impact was not developed.
Additional Notes:	The Evaluation demand estimate is 191% greater than the Advice Filing estimate.

1993. Energy-Efficient Evaporator Motors: Display Case

1) Replace existing shaded-pole (SP) evaporator fan motors with permanent-split capacitor (PSC) motors.

The program targets customers replacing a burned-out evaporator fan motors in display cases. The long term goal is to encourage refrigeration servicemen to stock PSC fan motors instead of SP motors.

2) Ex-ante calculation assumptions:

Baseline evaporator fan energy usage for a display case is 234 kWh/yr-ft, according to Commercial New Construction model. Baseline evaporator fan power draw for a display case is 0.0267 kW/ft, according to Commercial New Construction model. PSC fan motors are 33% more efficient than similarly sized SP motors.

50% of installations will be in low temperature cases, with the remainder being medium temperature cases.

Low temperature compressors have EER of 5.0.

Medium temperature compressors have EER of 7.5.

100% of fan motor heat is transferred into the refrigerated space of the display case.

3) Advice Filing† Estimates:

Direct	Demand	Savings:
--------	--------	----------

= 0.0267 kW/ft x 33%	
= 0.0088	
 = 0.0088 kW/ft	

Energy Savings:

Savings.
Energy Savings:
= 234 kWh/yr-ft x 33%
= 77.22
= 77.22 kW/yr-ft
t Energy Savings:
Load Reduction = kW saved x 3,414 Btuh/kW x 100%
= 0.0088 kW/ft x 3,414 Btuh/kW x 100%
= 30.0432
= 30.0432 Btuh/ft
Advice Filing† lists 30.081 kW/ft. Difference assumed to be rounding.
Adjust to kWh = 30.0432 Btuh/ft x 8,760 hrs/yr x {[(1/5.0 Btuh/Watt) x 50%]} + [(1/7.5 Btuh/Watt) x 50%]} x 1 kW/1,000 Watts
= 43.86
= 43.86 kWh/yr-ft
Advice Filing† lists 44.02 kWh/yr-ft as the value. Difference assumed to be rounding.
nergy Savings:
= 77.2 kWh/yr-ft + 44.02 kWh/yr-ft
= 121.22
= 121.22 kWh/yr-ft

Coincident Dema	and Savings:
	= 0.0088 kW/ft x 0.54 CDF
	= 0.00475
	= 0.00475 kW/ft
	Though the Advice Filing† uses a CDF of 0.54, this is not an appropriate value as the fans are assumed
	operate continuously.
	Additionally, this does not take into account the indirect impacts.
	A more appropriate coincident impact would be (121.22 kWh/ft-yr)/(8,760 hrs/yr) = 0.0138 kW/ft

4) Evaluation Estimates:

Direct Demand Savings:

See Advice Filing estimate.

Indirect Demand Savings:

Case Load Reduction = kW saved x 3,414 Btuh/kW x 100% = 0.0088 kW/ft x 3,414 Btuh/kW x 100% = 30.0432 = 30.0432 Btuh/ft Adjust to kW = 30.0432 Btuh/ft x {[(1/5.0 Btuh/Watt) x 50%]} + [(1/7.5 Btuh/Watt) x 50%]} x 1 kW/1,000 Watts = 0.00501 = 0.00501 kW/ft

Total Demand Savings:

= 0.0088 kW/ft + 0.00501 kW/ft = 0.0138 = 0.0138 kW/ft

Energy Savings:

See Advice Filing estimate.

5) Summary of Results:

Impact Type	Impact		Recommended	
(per linear foot)	Advice Filing†	Evaluation	Source	
NC Demand (kW)	0.0088	-	<u>++</u> +	
Coinc. Demand (kW)	0.00475	0.0138	Evaluation	
Annual Energy (kWh)	121.22	-	Advice Filing	

††† Using the Evaluation methods, this value is unnecessary.

6) Sources:

† Advice Filing for the 1994 Retrofit Express Program; PG&E, October, 1993.

1994 Measure: Energy-Efficient Evaporator Motors: Walk-in Box

Measure Description:	Replacement of an existing burned-out shaded pole evaporator motor with a permanent split capacitor motor for a walk-in.
Summary of Advice Filing Calculations:	Energy and demand savings were developed using fan kVA, motor power factor, compressor efficiency, and heat gains associated with evaporator fans.
Comments on Advice Filing Calculations:	Demand impacts were developed using an inappropriate CDF, and did not take indirect impacts into account. The method used to develop energy impacts is valid.
Comments on Advice Filing Inputs:	Inputs are from the ASHRAE HVAC Systems and Applications Handbook, and manufactures' data, which appear valid.
Evaluation Process:	Demand estimates were developed which include the case load savings. An energy impact was not developed.
Additional Notes:	The Evaluation demand estimate is 147% greater than the Advice Filing estimate.

1993. Energy-Efficient Evaporator Motors: Walk-in Box

1) Replace existing shaded-pole (SP) evaporator fan motors with permanent-split capacitor (PSC) motors.

The program targets customers replacing a burned-out evaporator fan motors in walk-ins. The long term goal is to encourage refrigeration servicemen to stock PSC fan motors instead of SP motors.

2) Ex-ante calculation assumptions:

Baseline evaporator fan kVA for SP motors is 4.46 kVA/hp, according to Advice Filing† data, (p.RF-47 to p.RF-49). Baseline power factor for SP motors is 60%, according to ASHRAE*, Table 4, p.40.5 Retrofit evaporator fan kVA for PSC motors is 2.10 kVA/hp, according to Advice Filing† data, (p.RF-47 to p.RF-49). Retrofit power factor for PSC motors is 95%, according to ASHRAE* Table 4, p.40.5. 20% of installations will be in low temperature cases. 80% of installations will be in medium temperature cases. Low temperature compressors have EER of 5.0. Medium temperature compressors have EER of 7.5. 80% of the fans are located inside of the refrigerated space.

If a fan is located within the refrigerated space 100% of fan motor heat is transferred into the cooling load.

3) Advice Filing† Estimates:

Direct Demand Savings:

kW = kVA x power factor = (4.46 kVA/hp x 60%) - (2.10 kVA/hp x 95%) = 0.681 = 0.681 kW/hp

Energy Savings:

	t Energy Savings:
	= 0.681 kW/hp x 8,760 hrs/yr
	= 5,965.56
	= 5,966 kW/hp-yr
Indire	ect Energy Savings:
Case	e Load Reduction = kW saved x 3,414 Btuh/kW x 80%
	= 0.681 kW/hp x 3,414 Btuh/kW x 80%
	= 1,859.95
	= 1,860 Btuh/hp
	Adjust to kWh = 1,859.95 Btuh/hp x 8,760 hrs/yr x {[(1/5.0 Btuh/Watt) x 20%]} + [(1/7.5 Btuh/Watt) x 80%]} x 1 kW/1,000 Watts
	= 2,389.66
	= 2,390 kWh/yr-ft
Total	Energy Savings:
	= 5,965.56 kWh/yr-hp + 2389.66 kWh/yr-hp
	= 8,355.22

.

= 8,355 kWh/yr-hp

Coincident Demand Savings:
= 0.681 kW/hp x 0.54 CDF
= 0.3677
= 0.368 kW/ft
Though the Advice Filing uses a CDF of 0.54, this is not an appropriate value as the fans are assumed
operate continuously.
Additionally, this does not take into account the indirect impacts.
A more appropriate coincident impact would be (8,355 kWh/hp-yr)/(8,760 hrs/yr) = 0.954 kW/hp

4) Evaluation Estimates:

Direct Demand Savings:

See Advice Filing estimate.

Indirect Demand Savings:

Case Load Reduction = kW saved x 3,414 Btuh/kW x 80% = 0.681kW/hp x 3,414 Btuh/kW x 80% = 1,860 = 1,860 Btuh/hp Adjust to kW = 1,860 Btuh/ft x {[(1/5.0 Btuh/Watt) x 20%]} + [(1/7.5 Btuh/Watt) x 80%]} x 1 kW/1,000 Watts

= 0.273 kW/hp

Total Demand Savings:

= 0.681 kW/hp + 0.273 kW/hp

= 0.954

= 0.954 kW/hp

Energy Savings:

See Advice Filing estimate.

5) Summary of Results:

Impact Type	Impact		Recommended	
(per horsepower)	Advice Filing	Evaluation	Source	
NC Demand (kW)	0.681	-	+++	
Coinc. Demand (kW)	0.386	0.954	Evaluation	
Annual Energy (kWh)	8,355.22	-	Advice Filing	

††† Using the Evaluation methods, this value is unnecessary.

6) Sources:

† Advice Filing for the 1994 Retrofit Express Program; PG&E, October, 1993.

* ASHRAE Handbook, "HVAC Systems and Applications"; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

EE Motors (walk-in)

Atlanta, GA, 1992

Appendix B.6.1 Error Documentation

Brief analysis of Grocery #37 ASD measure (#1) savings:

Summary	\$upp	ly Fan	Calculate	d Savings	Attachment 7 Savings		
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	
Baseline	18.00	150,754					
Measure #1	15.00	25,732	3.00	125,022	0.00	125.022	
Measure #2	15.00	25,732					
Measure #3	15.00	25,732	-	-			

Brief analysis of Grocery #37 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Conden	ser Fans	To	tal	Calculated	d Savings	Attachmen	7 Savings
Usage by Measure	Demend	Energy	Demand	Energy	Demand	Energy	Demend	Energy	Demand	Energy	Demand	Energy
Baseline	73.00	448,248	20.00	9,624	9.00	26,541	102.00	484,413	•	•	-	
Measure #1	73.00	448,248	20.00	9,624	8.00	26,541	101.00	484,413	-	-	-	
Measure #2	73.00	412,969	20.00	3,165	9.00	67,082	102.00	483,216	-1.00	1,197	2.00	1,196
Measure #3	67.00	368,868	20.00	4.774	9.00	64,254	96.00	437,896	-		-	

Brief analysis of Grocery #37 EMS measure (#3) savings:

Summary		Compressors	A/C Com	pressors	Condens	ser Fans	Ice Cream	LT#1	LT#2	MT#1	MT#2	Lighting	To	otal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline														-	-			
Measure #1										1				-			-	-
Measure #2	73.00	412,969	20.00	3,165	9.00	67,082	10,750	120,867	34,775	30,366	30,660	194,909	102.00	905,543		-	-	.
Measure #3	67.00	368,868	20.00	4 774	9.00	64,254	5,667	65,689	29.352	16,789	29,486	109,636	96.00	694,515	6.00	211.02B	6.00	211.027

Brief analysis of Grocery #37, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demend	Energy
Baseline		
Measure #1	3.00	125,022
Measure #2	+1.00	1,197
Measure #3	6,00	211.028

Brief analysis of Grocery #37 summary of total savings:

Summary	Tota	Level	Calculate	d Savings	Attachm	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	240.00	1,487,219	-		240.00	1,487,219		-
Measure #1	236.00	1,344,106	4.00	143,113	240.00	1,344,106	0.00	143,113
Measure #2	237.00	1,342,910	-1 00	1,196	237.00	1,342,910	3.00	1,196
Measure #3	231.00	1,131,883	6.00	211,027	231.00	1,131,883	6.00	211,027

Brief analysis of Grocery #51 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachment 7 Savings		
Usage by Measure	Demand	Energy	Demand	Energy	Demend	Energy	
Baseline	14.00	120,672	-	-	-	-	
Measure #1	14.00	23,205	0.00	97,467	0.00	97,467	
Measure #2	14.00	23,205	-	. 1			
Measure #3	14.00	23,205		-		-	

Brief analysis of Grocery #51 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Con	pressors	Conden	ser Fans	Т	otal	Calculate	d Savings	Attachment 7 Savings	
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	56.00	339,933	17.00	15,149	16.00	63,758	89.00	418,840	-		-	•
Measure #1	56.00	339,933	17.00	15,149	15.00	63,758	88.00	418,840		-		-
Measure #2	56.00	307,456	16.00	12,765	11.00	86,582	83.00	406,803	5.00	12,037	6.00	12,037
Measure #3	53.00	283,836	16.00	12,765	11.00	83,978	80.00	380,579		-		

Brief analysis of Grocery #51 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Cor	npressors	Conden	ser Fans	Ice Cream	LT#1	LT#2	MT#2	Lighting	To	tal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline												-		-		•	-
Measure #1												-	-	-			-
Measure #2	56.00	307,456	16.00	12,765	11.00	86,582	17,608	23,196	68,964	66,839	172,412	83,00	755.822		-	-	
Measure #3	53.00	283,836	16.00	12,765	11,00	83,978	9,767	12,836	41,873	44,559	133,297	80.00	622,911	3.00	132,911	3.00	132,911

Brief analysis of Grocery #51, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demand	Energy
Baseline	-	-
Measure #1	0.00	97,467
Measure #2	5.00	12,037
Measure #3	3.00	132,911

.....

Brief analysis of Grocery #51 summary of total savings:

Summary	Tota	Level	Calculate	ed Savings	Attachm	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	221.00	1,356,554	-	•	221.00	1,356,554	•	-
Measure #1	220.00	1,259,087	1.00	97,467	221.00	1,259,087	0.00	97,467
Measure #2	214.00	1,247,049	6.00	12.038	214.00	1.247,049	7.00	12,038
Measure #3	211.00	1,114,138	3.00	132,911	211.00	1.114.138	3.00	132,911

Revisions based upon an updated (3/15/95) spreadsheet included within this application

Brief analysis of Grocery #63 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachmer	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	18.00	150,840	· ·	-	•	•
Measure #1	17.00	31,596	1.00	119,242	0.00	119,242
Measure #2	17.00	31,598			-	-
Measure #3	17.00	31,598		-	-	

Brief analysis of Grocery #63 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Con	pressors	Conden	ser Fans		otal	Calculate	d Savings	Attachmen	7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demend	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	75.00	460,446	20.00	16,171	16.00	30,435	111.00	507,052			-	-
Measure #1	75.00	460,446	20.00	16,171	8.00	30,435	103.00	507,052			-	-
Measure #2	78.00	402,479	16.00	7,782	7.00	57,732	101.00	467,993	2.00	39,059	10.00	39,059
Measure #3	72.00	375,809	16.00	7,782	7.00	56,343	95.00	439,934		-		

Brief analysis of Grocery #63 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Con	npressors	Conden	ser Fans	ice Cream	LT#1	MT#1	MT#2	Lighting	Te	otal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline												0.00	0		•	•	-
Measure #1												0.00	0		-		-
Measure #2	78.00	402,479	16.00	7,782	7.00	57,732	11,257	14,191	156,103	78,525	153,418	101.00	881,487		-		-
Measure #3	72.00	375,809	16.00	7,782	7.00	56,343	9,475	9,811	115,422	52,350	115,847	95,00	742,839	6.00	138,648	6.00	138,648

Brief analysis of Grocery #63, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demand	Energy
Baseline	•	-
Measure #1	1.00	119,242
Measure #2	2.00	39,059
Measure #3	6 00	138,648

Brief analysis of Grocery #63 summary of total savings:

Summary	Tota	I Level	Calculate	ed Savings	Attachm	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	242.00	1,563,010	-		242.00	1,563,010		•
Measure #1	234.00	1,443,768	8.00	119,242	242.00	1,443,768	0.00	119,242
Measure #2	232.00	1,404,709	2.00	39,059	232.00	1,404,709	10.00	39,059
Measure #3	226.00	1,266,061	6.00	138,648	226.00	1,266,061	6.00	138,648

Brief analysis of Grocery #73 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachmer	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	18.00	150,516	•	-		•
Measure #1	17.00	45,312	1.00	105,204	0.00	105,204
Measure #2	17.00	45,312			-	
Measure #3	17 00	45,312	-			

Brief analysis of Grocery #73 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Con	pressors	Conden	ser Fans	To	ota)	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	136.00	698,552	17.00	15,585	16.00	69,138	169.00	783,275	-	-	-	•
Measure #1	136.00	698,552	17.00	15,585	16.00	69,138	169.00	783.275				
Measure #2	133.00	632,041	14.00	7,252	16.00	98,489	163.00	737.782	6.00	45,493	6.00	45,493
Measure #3	129.00	603,447	17.00	8,322	16.00	95,555	162.00	707,324	-	•		

Brief analysis of Grocery #73 EMS measure (#3) savings:

	Refrigeration	Compressors	A/C Com	pressors	Condens	ser Fans	Ice Cream	LT#1	LT#2	MT#1	MT#2	Lighting		otal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demend	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline							· · · · · · · · · · · · · · · · · · ·						•			-		
Measure #1													-		-	-		.
Measure #2	133.00	632,041	14.00	7,252	16.00	98,489		83,395		36,792	169,331	353,831	163.00	1,381,131		-		
Measure #3	129.00	603,447	17.00	8,322	16.00	95,555		55,597		24,528	112,887	270,156	162.00	1,170,492	1.00	210,639	1.00	210,639

.

Brief analysis of Grocery #73, summary of measure savings:

Summary	Calculated Summary Savings							
Usage by Measure	Demand	Energy						
Baseline		-						
Measure #1	1.00	105,204						
Measure #2	6.00	45,493						
Measure #3	1.00	210,639						

Brief analysis of Grocery #73 summary of total savings:

Summary	Tota	Level	Calculate	d Savings	Attachm	ent 7 Level	Calculated Attach 7 Savings		
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	
Baseline	332.00	2,153,212	-	•	332.00	2,153,212	-	-	
Measure #1	331.00	2,048,008	1.00	105,204	332.00	2,048,008	0.00	105,204	
Measure #2	326.00	2,002,515	5.00	45,493	326.00	2,002,515	6.00	45,493	
Measure #3	325.00	1,791,876	1.00	210,639	325,00	1,791,876	1.00	210,639	

Brief analysis of Grocery #75 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachmer	t 7 Savings
Usage by Measure	Demand	Energy	Demend	Energy	Demand	Energy
Baseline	18.00	150,840	•		-	-
Measure #1	17.00	31,058	1.00	119,782	0.00	119,782
Measure #2	17.00	31,058	-	-	-	
Measure #3	17.00	31,058	-		-	

Brief analysis of Grocery #75 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Com	pressors	Conden	ser F <u>an</u> s	Ťc	otal	Calculate	d Savings	Attachmen	7 Savings
Usage by Measure	Demand	Energy	Demend	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	80.00	514,279	18.00	16,058	16.00	31,099	114,00	561,436	-	-	•	
Measure #1	80.00	514,279	18.00	16,058	12.00	31,099	110.00	561,436			-	
Measure #2	83.00	437,470	15.00	8,439	11.00	69,484	109.00	515,393	1.00	46,043	5.00	46.044
Measure #3	83.00	410,836	15.00	8,439	11.00	67,447	109.00	486,722				

Brief analysis of Grocery #75 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Con	npressors	Conder	ser Fans	Ice Cream	LT#1	MT#1	MT#2	Lighting	Т	otal	Calculate	d Savings	Attachme	nt 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline												-			-	-	-
Measure #1							Í						-	-	-	-	-
Measure #2	83.00	437,470	15.00	8,439	11.00	69,484	28,926	312,382	88,441	97,324	301,938	109.00	1.344.404	-			
Measure #3	83.00	410,836	15.00	8,439	11.00	67,447	15,236	184,953	62,921	64,882	231,009	109.00	1,045,723	0.00	298,681	5.00	317,117

Brief analysis of Grocery #75, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demand	Energy
Baseline	-	•
Measure #1	1.00	119,782
Møasure #2	1.00	46.043
Measure #3	0.00	298,681

Brief analysis of Grocery #75 summary of total savings:

Summary	Tota	i Level	Calculate	d Savings	Attachm	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	298.00	2,221,381	-		298.00	2,221,381	-	•
Measure #1	293.00	2,101,599	5.00	119,782	298.00	2,101,599	0.00	119,782
Measure #2	293.00	2,055,555	0.00	46,044	293.00	2,055,555	5.00	46,044
Measure #3	293.00	1,756,875	0.00	298,680	288.00	1,738,438	5.00	317,117

Brief analysis of Grocery #76 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachmer	1 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	18.00	150,840			•	•
Measure #1	17.00	35,762	1.00	115,078	0.00	115,070
Measure #2	17.00	35,762	-	.	-	-
Measure #3	17 00	35,762		-		

Brief analysis of Grocery #76 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Conden	ser Fans	To	otal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demend	Energy
Baseline	76.00	493,318	18.00	16,492	16.00	31.211	110.00	541,021	-	-	•	-
Measure #1	76.00	493,318	18.00	16,492	12.00	31,211	106.00	541,021	•	•	•	•
Measure #2	78.00	416,861	17.00	7,811	11.00	67,516	106.00	492,188	0.00	48,833	5.00	48,833
Measure #3	78.00	410,836	17.00	7,611	11.00	67,447	106.00	486,094	· ·		<u> </u>	<u> </u>

Brief analysis of Grocery #76 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Cor	noressors	Condens	ser Fans	Ice Cream	LT#1	MT#1	MT#2	Lighting	Ť	olal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline												-		-	-	•	•
Measure #1												-	-	-		•	•
Measure #2	7B.00	416,861	17.00	7,811	11.00	67,516	3.482	57,159	19,053	137,970	298,716	106.00	1.008,568	-	•	•	
Measure #3	78.00	410.836	17 00	7.811	11.00	67.447	3,095	50,808	16,936	122,640	225,347	106.00	904,920	0.00	103,648	0.00	103,429

Brief analysis of Grocery #76, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demand	Energy
Baseline	-	
Measure #1	1.00	115,078
Measure #2	0.00	48,833
Measure #3	0.00	103,648

Brief analysis of Grocery #76 summary of total savings:

Summary	Tota	Level	Calculate	d Savings	Atlachm	ent 7 Level	Calculated A	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	285.00	1,892,463			285.00	1.892,463	•	•
Measure #1	281.00	1,777,385	4.00	115,078	285.00	1,777,385	0.00	115,078
Measure #2	280.00	1,728,551	1.00	48,834	280.00	1,728,551	5.00	48,834
Measure #3	280.00	1,625,123	0.00	103,428	280.00	1,625,123	0.00	103,428

Brief analysis of grocery #77 ASD measure (#1) savings:

Summary	Supp	ty Fan	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	14.00	120,672			•	•
Measure #1	14.00	26,933	0.00	93,739	0.00	93,793
Measure #2	14.00	26,933	-	-		-
Measure #3	14.00	26,933			-	-

Brief analysis of grocery #77 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Conden	ser Fans	Te	tai	Calculate	d Savings	Attachmen	7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demend	Energy	Demand	Energy
Baseline	134.00	754,233	21.00	17,570	16.00	60,503	171.00	832,306	-	-		
Measure #1	134.00	754,233	21.00	17,570	12.00	60,503	167.00	832,306	-	-		-
Measure #2	136.00	691,010	20,00	9,330	16.00	94,834	172.00	795,174	-5.00	37,132	0.00	37,132
Measure #3	127.00	633,140	20.00	9,330	12.00	92,794	159.00	735.264	-		-	

Brief analysis of grocery #77 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Condens	ser Fans	Ice Cream	LT#1	LT#2	MT#1	_MT#2	Lighting	Т	otal	Calculat	ed Savings	Attachmen	1 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline															-			
Measure #1										Į į				.	-	.	-	.
Measure #2	136.00	691,010	20.00	9,330	16.00	94,834	14,892	49,932	234	31,054	28,908	267,756	172.00	1,187,950				.
Measure #3	127.00	633,140	20.00	9,330	12.00	92,794	9,928	44,384	4,672	20,703	25,696	205.223	159.00	1.045.870	13.00	142.080	13.00	142,081

Brief analysis of grocery #77, summary of measure savings:

Summary	Calculated Su	mmany Savings
Usage by Measure	Demand	Energy
Baseline		
Measure #1	0.00	93,739
Measure #2	-5.00	37,132
Measure #3	13.00	142,080

Brief analysis of grocery #77 summary of total savings:

Summary	Tota	Level	Calculate	d Savings	Attachme	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demend	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	308.00	1,959,506	-		308.00	1,959,506		-
Measure #1	304.00	1,865,767	4.00	93,739	308.00	1,865,767	0.00	93,739
Measure #2	308.00	1,828,635	-4.00	37,132	308.00	1,828,635	0.00	37,132
Measure #3	295.00	1,686,554	13,00	142,081	295.00	1,686,554	13.00	142,081

Brief analysis of Grocery #103 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	21.00	181,008			•	
Measure #1	21.00	31,013	0.00	149,995	0.00	149,995
Measure #2	21.00	31,013	-	-		
Measure #3	21.00	31,013				

Brief analysis of Grocery #103 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Con	rozenq	Conden	ser Fans	Te	otal	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demend	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	147.00	845,174	36.00	26,374	13.00	29,223	196.00	900,771		-	-	
Measure #1	147.00	845,174	36.00	26,374	13.00	29,223	196.00	900,771				-
Measure #2	126.00	577,635	32.00	13,709	13.00	129,683	171.00	721,027	25.00	179,744	24.00	179,744
Measure #3	117.00	532,277	36.00	26,374	13.00	106,614	166.00	665,265			-	

Brief analysis of Grocery #103 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Con	npressors	Conden	ser Fans	ice Cream	LT#1	LT#2	MT#1	MT#2	Lighting	Ť	otai	Calculate	d Savings	Attachmer	nt 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Énerav	Demand	Energy	Demand	Energy
Baseline													-					
Measure #1									ĺ									-
Measure #2	126.00	577,635	32.00	13,709	13.00	129,683	35,110	105.646		33,989	38,544	268.983	171.00	1,203,299	-		-	-
Measure #3	117.00	532,277	36.00	26.374	13,00	106,614	13,158	29,696		18,717	25.696	201,737	166.00	954,269	5.00	249,030	16.00	249,030

Brief analysis of Grocery #103, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demand	Energy
Baseline	-	-
Measure #1	0.00	149,995
Measure #2	25.00	179,744
Measure #3	5.00	249,030

Brief analysis of Grocery #103 summary of total savings:

Summary	Tota	Level	Calculate	d Savings	Attachme	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	340.00	2,236,306	•	-	340.00	2,236,306	-	
Measure #1	340.00	2,086,311	0.00	149,995	340.00	2,086,311	0.00	149,995
Measure #2	315.00	1,906,567	25.00	179,744	315.00	1,906,567	25.00	179,744
Measure #3	299.00	1,657,537	16.00	249,030	299.00	1,657,537	16.00	249,030

	Meas	ure #1	Meas	ure #2
	Demand	Energy	Demand	Energy
ice Cream	10.6	60932	6,3	28269
LT#1	39.7	228924	33.3	156605
LT#2				
MT#1	75.8	437407	69.2	317023
MT#2	20.4	117912	17.1	75739
	146.5	845175	125.9	577636

Revisions based upon an updated (3/15/95) spreadsheet included within this application

Brief analysis of Grocery #202 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachment 7 Savings		
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	
Baseline	18.00	150,840	-		•	-	
Measure #1	11.00	20,921	7.00	129,919	0.00	129,919	
Measure #2	11.00	20,921					
Measure #3	11.00	20,921	-	-			

Brief analysis of Grocery #202 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Conden	ser Fans	T	otal	Calculate	d Savings	Attachment 7 Savings	
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demend	Energy	Demand	Energy
Baseline	126.00	760,565	24.00	4,223	12.00	59,824	162.00	824,612			-	-
Measure #1	126.00	760,565	24.00	4,223	8.00	59,824	158.00	824,612		- (
Measure #2	121.00	696,000	22.00	1,451	12.00	99,205	155.00	796,656	3.00	27,956	14.00	27,955
Measure #3	113.00	644,888	22.00	1,451	12.00	98,188	147.00	744,527			•	

Brief analysis of Grocery #202 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Cor	npressors	Conden	ser Fans	ice Cream	LT#1	MT#1	MT#2	Lighting	т	otai	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline												0.00	0	•	-	•	-
Measure #1												0.00	0		-		-
Measure #2	121.00	696,000	22.00	1,451	12.00	99,205	21,480	76,457	82,379	29,083	258,017	155.00	1,264,072		-	•	-
Measure #3	113.00	644,888	22.00	1,451	12.00	98,188	12,638	48,011	53,308	24,225	145,134	147.00	1,027,843	8.00	236,229	8.00	236,230

Brief analysis of Grocery #202, summary of measure savings:

Summary	Calculated Su	mmary Savings
Usage by Measure	Demand	Energy
Baseline	•	-
Measure #1	7.00	129,919
Measure #2	3.00	27,956
Measure #3	8.00	236,229

Brief analysis of Grocery #202 summary of total savings:

Summary	Tota	i Level	Calculate	d Savings	Attachm	ent 7 Level	Calculated At	tach 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demend	Energy	Demand	Energy
Baseline	335.00	2,103,700	-	-	335.00	2,103,700	-	-
Measure #1	324.00	1,964,110	11.00	139,590	335.00	1,964,110	0.00	139,590
Measure #2	321.00	1,936,154	3.00	27,956	321.00	1,936,154	14.00	27,956
Measure #3	313.00	1,699,924	8.00	236,230	313.00	1.699,924	8.00	236,230

Brief analysis of Grocery #404 ASD measure (#1) savings:

Summary	Supp	ly Fan	Calculate	d Savings	Attachmen	t 7 Savings
Usage by Measure	Demend	Energy	Demand	Energy	Demend	Energy
Baseline	21.00	181,008	-	-	-	
Measure #1	21.00	33,137	0.00	147,871	0.00	147.871
Measure #2	21.00	33,137	-	-	-	
Measure #3	21.00	33,137	-	-	-	.

Brief analysis of Grocery #404 condenser measure (#2) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Conden	ser Fans	To	otal	Calculate	d Savings	Attachment 7 Savings	
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	132.00	754,011	42.00	25,575	13.00	34,769	187.00	814,355	-	•	-	
Measure #1	132.00	754,011	42.00	25,575	13 00	34,769	187.00	814,355	-			-
Measure #2	126.00	578,989	39.00	18,212	13.00	24,392	178.00	621,593	9.00	192,762	9.00	188,580
Measure #3	106.00	557,892	42.00	3,718	13.00	69,394	161.00	631,004				

Brief analysis of Grocery #404 EMS measure (#3) savings:

Summary	Refrigeration	Compressors	A/C Corr	pressors	Conden	ser Fans	Ice Cream	LT#1	LT#2	MT#1	MT#2	Lighting	т	otai	Calculate	d Savings	Attachmen	nt 7 Savings
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Demand	Energy	Demand	Energy	Demand	Energy
Baseline	1												-	-	•	-	-	
Measure #1																-		
Measure #2	126.00	579,989	39.00	18,212	13.00	24,392	47,374	169,594		283,649	72,708	289,674	178.00	1,484,592		-		
Measure #3	106.00	557,892	42.00	3,718	13.00	69,394	27,483	96,769		187,522	48.472	217,256	161.00	1,208,506	17.00	276,086	17.00	280,268

Brief analysis of Grocery #404, summary of

Brief analysis of C	Grocery #404, s	summary of mea	savings: Detail Level	Measure #	2 (Recircuit)	M
			Results	Demand	Energy	Dema
Summary	Calculated Su	mmary Savings	A/C Compressors	39	18212	
Usage by Measure	Demand	Energy	ice Cream			5.1
Baseline	-	-	LT#1			29.7
Measure #1	0.00	147,871	LT#2			
Measure #2	9.00	192,762	MT#1	67.4	305987	63.6
Measure #3	17.00	276,086	MT#2	19.4	88128	18.6

Brief analysis of Grocery #404 summary of total savings:

Summary	Tota	Level	Calculate	d Savings	Attachm	ent 7 Level	Calculated Attach 7 Savings		
Usage by Measure	Demand	Energy	Demand	Energy	Demand	Energy	Demand	Energy	
Baseline	387.00	2,613,930	•	-	387.00	2,609,749	-	•	
Measure #1	387.00	2,446,059	0.00	167,871	386.00	2,461,878	1.00	147,871	
Measure #2	378.00	2,273,298	9.00	172,761	378.00	2,273,298	8.00	188,580	
Measure #3	360.00	1,997,211	18.00	276,087	360.00	1,993,030	18.00	280,268	

Appendix B.6.2 Detailed Condenser Recircuit Engineering Calculations

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238.140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	E	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)		(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitless)	(kWh)
113	74	1.0	49,440	•	1.4	49,440	5.13	3.413	32,893		82,333	1.00	10
108	72	8.0	49,440	•	1.5	49,440	5.36	3.413	31,481		80,921	1.00	74
103	70	53.0	49,440	-	1.5	49,440	5.36	3.413	31,481		80.921	1.00	489
98	68	159.0	49,440	•	1.5	49,440	5.47	3.413	30,848		80,288	1.00	1,437
93	66	287.0	49,440	•	1.7	49,440	5.68	3.413	29,708		71,126	0.73	1,824
88	66	364.0	49,440		1.7	49,440	5.78	3.413	29,194		70,751	0.73	2,273
83	63	457.0	49,440	-	1.7	49,440	6.00	3.413	28.123		69,970	0.73	2,749
78	61	581.0	49,440	•	1.7	49,440	6.21	3.413	27,172		69,276	0.73	3,377
73	59	707.0	49,440		1.7	49,440	6.28	3.413	26,869		69,055	0.73	4,063
68	56	804.0	49,440	•	1.7	49,440	6.50	3.413	25,960		68,391	0.73	4,464
63	53	965.0	49,440		1.7	49,440	6.57	3.413	25,683		68,189	0.73	5,301
58	50	1100.0	49,440	-	1.8	49,440	6.79	3.413	24.851		67,581	0.73	5,847
53	47	1098.0	49,440		1.8	49.440	6.94	3.413	24,314		67,189	0.73	5,710
48	43	902.0	49,440		1.8	49,440	6.94	3.413	24,314		67,189	0.73	4,691
43	40	681.0	49,440	-	1.8	49,440	6.94	3.413	24,314		67,189	0.73	3.542
38	36	397.0	49,440	-	1.8	49,440	6.94	3.413	24,314		67,189	0.73	2,065
33	32	159.0	49,440		1.8	49,440	6.94	3.413	24.314		67,189	0.73	827
28	27	32.0	49,440		1.8	49,440	6.94	3.413	24,314		67,189	0.73	166

Application 48,902 9.6

kWh= 48,907 =

9.64 =

kWh=

Condenser Capacity	1.984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	E	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)		(Btu/Watt-hr)			(Btuh)	(unitless)	(kWh)
113	74	1.0	108,900	•	1.4	108,900	6.30	3.413	58,996		167,896	1.00	17
108	72	8.0	108,900	-	1.4	108,900	6.50	3.413	57,181		166,081	1.00	134
103	70	53.0	108,900	-	1.4	108,900	6.60	3.413	56.315		185,215	1.00	875
98	68	159.0	108,900	•	1.4	108,900	6.60	3.413	56,315		165,215	1.00	2,624
93	66	287.0	108,900	-	1.6	108,900	6.70	3.413	55,474		149,396	0.73	3,405
88	66	364.0	108,900	-	1.6	108,900	6.90	3.413	53,866		148,222	0.73	4,194
83	63	457.0	108,900	-	1.6	108,900	7.00	3.413	53,097		147,660	0.73	5,190
78	61	581.0	108,900	-	1.6	108,900	7.10	3.413	52,349		147,115	0.73	6,505
73	59	707.0	108,900	-	1.6	108,900	7.30	3.413	50,914		146,068	0.73	7,699
68	56	804.0	108,900	-	1.6	108,900	7.50	3.413	49,557		145,076	0.73	8,522
63	53	965.0	108,900	-	1.6	108,900	7.60	3.413	48,905		144,600	0.73	10,094
58	50	1100.0	108,900		1.7	108,900	7.80	3.413	47,651		143,685	0.73	11,211
53	47	1098.0	108,900	-	1.7	108.900	8.00	3.413	46.459		142,815	0.73	10,911
48	43	902.0	108,900	-	1.7	108,900	8.00	3.413	46,459		142,815	0.73	8,963
43	40	681.0	108,900	-	1.7	108,900	8.00	3.413	46,459		142,815	0.73	6,767
38	36	397.0	108,900	-	1.7	108,900	8.00	3.413	46,459		142,815	0.73	3,945
33	32	159.0	108,900	-	1.7	108,900	8.00	3.413	46,459		142,815	0.73	1,580
28	27	32.0	108,900	-	1.7	108.900	8.00	3.413	46,459		142,815	0.73	318

Application 93,159

kWh= 92.955 =

kWh≖

17.29 =

17.2

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Che	jected, ick Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	• •	(Btu/Watt-hr)	(Btuh)	(Btu	, , , , , , , , , , , , , , , , , , , ,	(kWh)
113	74	1.0	367,000	•	1.4	367.000	9.54	3.413	131,297	498,		38
108	72	8.0	367,000	-	1.4	367,000	9.92	3.413	126,267	493,	267 1.00	296
103	70	53.0	367,000	-	1.4	367,000	9.92	3.413	126,267	493,	267 1.00	1,961
98	68	159.0	367,000	-	1.4	367.000	10.11	3.413	123,894	490,	894 1.00	5,772
93	66	287.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,	084 0.73	7,323
88	66	364.0	367,000	-	1.5	367,000	10.69	3.413	117,172	452,	536 0.73	9,122
83	63	457.0	367.000	-	1.5	367,000	11.07	3.413	113,150	449,		11,060
78	61	581.0	367,000	-	1.5	367,000	11.45	3.413	109,395	446.	858 0.73	13,594
73	59	707.0	367,000		1.5	367,000	11.61	3.413	107,887	445.		16.315
68	56	804.0	367,000	-	1.5	367,000	11.92	3.413	105,081	443.		18,070
63	53	965.0	367,000	-	1.5	367,000	12.23	3.413	102,418	441,		21,139
58	50	1100.0	367,000	-	1.5	367,000	12.53	3.413	99,966	439,		23,520
53	47	1098.0	367,000	-	1.5	367,000	12.84	3.413	97,552	438,		22,910
48	43	902.0	367,000	-	1.5	367,000	13.00	3.413	96,352	437		18,589
43	40	681.0	367,000	-	1.5	367,000	13.00	3.413	96,352	437,		14,034
38	36	397.0	367,000		1.5	367,000	13.00	3.413	96,352	437.		8,182
33	32	159.0	367,000		1.5	367,000	13.00	3.413	96.352	437.	••••	3,277
28	27	32.0	367,000	-	1.5	367,000	13.00	3.413	96,352	437.		659

Application 195,872

38.5

kWh= 195.862 = 36.47 =

kWh=

61060.XLS

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)	(Btu/Watt-hr)	,	(Btuh)	(Btuh)	(unitless)	(kWh)
113	74	1.0	145,200	-	1.4	145,200	11.81	3.413	41,962	187,162	1.00	12
108	72	8.0	145,200	•	1.4	145,200	12.14	3.413	40,821	186,021	1.00	96
103	70	53.0	145,200	-	1,4	145,200	12.30	3.413	40,290	185,490	1.00	626
98	68	159.0	145,200	•	1.4	145,200	12.47	3.413	39,741	184,941	1.00	1,851
93	66	287.0	145,200	-	1.5	145,200	12.80	3.413	38,716	173,463	0.73	2,377
88	66	364.0	145,200	-	1.5	145,200	12.96	3.413	38,238	173,114	0.73	2,977
83	63	457.0	145,200	-	1.5	145,200	13.29	3.413	37,289	172,421	0.73	3,645
78	61	581.0	145,200	-	1.5	145,200	13.46	3.413	36,818	172,077	0.73	4,575
73	59	707.0	145,200	-	1.5	145.200	13.87	3.413	35.729	171,283	0.73	5,403
68	56	804.0	145,200	-	1.5	145,200	14.28	3.413	34,704	170,534	0.73	5,968
63	53	965.0	145,200	-	1.5	145,200	14.69	3.413	33,735	169,827	0.73	6,963
58	50	1100.0	145,200	-	1.5	145,200	15.10	3.413	32,819	169,158	0.73	7,722
53	47	1098.0	145,200	-	1.5	145,200	15.51	3.413	31,951	168,525	0.73	7,504
48	43	902.0	145,200	-	1.5	145.200	15.51	3.413	31,951	168,525	0.73	6,164
43	40	681.0	145,200	-	1.5	145,200	15.51	3.413	31,951	168,525	0.73	4,654
38	36	397.0	145,200	-	1.5	145,200	15.51	3.413	31,951	168,525	0.73	2,713
33	32	159.0	145,200	•	1.5	145,200	15.51	3.413	31,951	168,525	0.73	1.087
28	27	32.0	145,200	-	1.5	145,200	15.51	3.413	31,951	168,525	0.73	219

Application 64,547 12.3

kWh= 64,555 ≃

kWh= 12.29 =

61060.XLS

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674.730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694.575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)	(Btu/Watt-hr)	• •		(Btuh)	(unitless)	(kWh)
113	74	1.0	37.00	444,000	444,000	23.22	3.413	65,261	509,261	1.00	19
108	72	8.0	37.00	444,000	444,000	25.03	3.413	60,542	504,542	1.00	142
103	70	53.0	37.58	450,960	450,960	25.03	3.413	61,491	512,451	1.00	955
98	68	159.0	31.80	381,600	381,600	25.93	3.413	50,228	431,828	1.00	2,340
93	66	287.0	26.02	312,240	312,240	26.83	3.413	39,720	351,960	1.00	3,340
88	66	364.0	20.23	242,760	242,760	28.10	3.413	29,485	272,245	1.00	3,145
83	63	457.0	14.45	173,400	173,400	28.73	3.413	20,599	193,999	1.00	2,758
78	61	581.0	8.67	104,040	104,040	29.87	3.413	11,888	115,928	1.00	2,024
73	59	707.0	2.89	34,680	34,680	31.01	3.413	3,817	38,497	1.00	791
68	56	804.0									
63	53	965.0									
58	50	1100.0									
53	47	1098.0									
48	43	902.0									
43	40	681.0									
38	36	397.0									
33	32	159.0									
28	27	32.0									

 Application

 kWh=
 15,513
 >
 7,782

 kWh=
 19.12
 >
 16

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	509,261	935,687	-	1.4	1,444,949	1,312	1,312,000
108	72	8.0	504,542	926,290	-	1.4	1,430,833	1,306	1,306,000
103	70	53.0	512,451	924,893	-	1.4	1,437,344	1,313	1,313,000
98	68	159.0	431,828	921,338	-	1.5	1,353,165	1,243	1,243,000
93	66	287.0	351,960	848,069	-	1.7	1,200,028	1,171	1,171,000
88	66	364.0	272,245	844,623	-	1.8	1,116,869	1,102	1,102,000
83	63	457.0	193,999	839,651	-	1.9	1,033,650	1,035	1,035,000
78	61	581.0	115,928	835,325	•	2.1	951,253	925	925,000
73	59	707.0	38,497	832,162	-	2.3	870,659	922	922,000
68	56	804.0	0	827,710	-	2.4	827,710	919	919,000
63	53	965.0	0	824,381	-	2.4	824,381	917	917,000
58	50	1100.0	0	820,399	-	2.4	820,399	914	914,000
53	47	1098.0	0	816,742	-	2.4	816,742	911	911,000
48	43	902.0	0	815,866	-	2.4	815,866	911	911,000
43	40	681.0	0	815,866	-	2.4	815,866	912	912,000
38	36	397.0	0	815,866	-	2.4	815,866	912	912,000
33	32	159.0	0	815,866	-	2.4	815,866	912	912,000
28	27	32.0	0	815,866	-	2.4	815,866	912	912,000

Total Rejected 18,207,311 18,549 18,549,000

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	1.0	49,440	(41111000)	1.5	49.440	5.57	3.413	30,294	(Btuh)	(unitless)	(kWh)
108	72	8.0	49,440	-	1.5	49,440	5.68	3.413	29,708	79,734	1.00	9
103	70	53.0	49,440	-	1.5	49,440	5.68			79,148	1.00	70
								3.413	29,708	79,148	1.00	461
98	68	159.0	49,440	-	1.5	49,440	5.68	3.413	29,708	79,148	1.00	1,384
93	66	287.0	49,440	•	1.7	49.440	5.68	3.413	29,708	71.126	0.73	1,824
88	66	364.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71.126	0.73	2,313
83	63	457.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	2,904
78	61	581.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	3.692
73	59	707.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	4,492
68	56	804.0	49,440	-	1.7	49.440	5.68	3.413	29,708	71,126	0.73	5,109
63	53	965.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	6,132
58	50	1100.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	6,989
53	47	1098.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	6,977
48	43	902.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	5,731
43	40	681.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	4.327
38	36	397.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	2,523
33	32	159.0	49,440	-	1.7	49,440	5.68	3.413	29.708	71,126	0.73	1,010
28	27	32.0	49,440	-	1.7	49,440	5.68	3.413	29,708	71,126	0.73	203

 Application

 kWh=
 56,150
 =
 56,173

 kWh=
 8.88
 =
 8.9

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load		Conversion Constant	Compressor Btuh rejected due to work	Calculated tuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)		(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	1.0	108,900	+	1.4	108,900	6.50	3.413	57,181	166,081	1.00	17
108	72	8.0	108,900	-	1.4	108,900	6.70	3.413	55,474	164,374	1.00	130
103	70	53.0	108,900	-	1.4	108,900	6.70	3.413	55,474	164,374	1.00	861
98	68	159.0	108,900	-	1.4	108,900	6.70	3.413	55,474	164,374	1.00	2,584
93	66	287.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149,396	0.73	3,405
88	66	364.0	108,900	-	1.6	108.900	6.70	3.413	55,474	149,396	0.73	4,319
83	63	457.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149,396	0.73	5,422
78	61	581.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149,396	0.73	6.894
73	59	707.0	108,900	-	1.6	108.900	6.70	3.413	55.474	149,396	0.73	8,389
68	56	804.0	108,900		1.6	108,900	6.70	3.413	55,474	149,396	0.73	9,540
63	53	965.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149,396	0.73	11,450
58	50	1100.0	108,900		1.6	108,900	6.70	3.413	55,474	149,396	0.73	13,052
53	47	1098.0	108,900	•	1.6	108,900	6.70	3.413	55,474	149,396	0.73	13,028
48	43	902.0	108,900	-	1.6	108.900	6.70	3.413	55.474	149.396	0.73	10,702
43	40	681.0	108,900		1.6	108,900	6.70	3.413	55,474	149.396	0.73	8.080
38	36	397.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149,396	0.73	4,710
33	32	159.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149.396	0.73	1,887
28	27	32.0	108,900	-	1.6	108,900	6.70	3.413	55,474	149,396	0.73	380

Application 104,551 16.8

kWh= 104.850 = kWh= 16.75 =

Condenser Capacity	1,984,500	Bluh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circults	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Check	d, Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	• •	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	1.0	367,000	-	1.4	367,000	9.92	3.413	126,267	493,267	1.00	37
108	72	8.0	367,000	•	1.4	367,000	10.50	3.413	119,292	486,292	1.00	280
103	70	53.0	367,000	-	1,4	367,000	10.50	3.413	119,292	486,292	1.00	1,852
98	68	159.0	367,000	-	1.4	367.000	10.50	3.413	119,292	486,292	1.00	5,557
93	66	287.0	367,000	-	1.4	367,000	10.50	3.413	119,292	486,292	1.00	10,031
88	66	364.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	9,288
83	63	457.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	11,660
78	61	581.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	14,824
73	59	707.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454.084	0.73	18,039
68	56	804.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	20,514
63	53	965.0	367,000	-	1.5	367.000	10.50	3.413	119,292	454,084	0.73	24,622
58	50	1100.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	28,067
53	47	1098.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	28,016
48	43	902.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	23,015
43	40	681.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	17,376
38	36	397.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	10,130
33	32	159.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	4,057
28	27	32.0	367,000	-	1.5	367,000	10.50	3.413	119,292	454,084	0.73	816

Application

kWh± 228,182 = kWh≖ 37.00 = 225,576

37

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Stuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	B	Calculated Ituh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	- ,	(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitless)	(kWh)
113	74	1.0	145,200	-	1.4	145.200	11.97	3.413	41,401		186,601	1.00	12
108	72	8.0	145,200	-	1.4	145,200	12.47	3.413	39,741		184,941	1.00	93
103	70	53.0	145,200	-	1,4	145,200	12.63	3.413	39,237		184,437	1.00	609
98	68	159.0	145,200	-	1.4	145.200	12.63	3.413	39.237		184,437	1.00	1,828
93	66	287.0	145,200	-	1.4	145,200	12.63	3.413	39,237		184,437	1.00	3,299
88	66	364.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	3,055
83	63	457.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	3,835
78	61	581.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	4,876
73	59	707.0	145,200	-	1.5	145,200	12.63	3.413	39.237		173,843	0.73	5,933
68	56	804.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	6,747
63	53	965.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	8,099
58	50	1100.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	9,232
53	47	1098.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	9,215
48	43	902.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	7,570
43	40	681.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	5,715
38	36	397:0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	3,332
33	32	159.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	1,334
28	27	32.0	145,200	-	1.5	145,200	12.63	3.413	39,237		173,843	0.73	269

Application 74,145 12.1

kWh= 75,054 =

kWh= 12.13 =

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)	(Btu/Watt-hr) 22.34		• •	(Btuh)	(unitless)	(kWh)
113	74	1.0	37.00	444,000	444,000		3.413	67,832	511,832	1.00	20
108	72	8.0	37.00	444,000	444,000	23.66	3.413	64,048	508,048	1.00	150
103	70	53.0	37.58	450,960	450,960	24.29	3.413	63,365	514,325	1.00	984
98	68	159.0	31.80	381,600	381,600	26.83	3.413	48,543	430,143	1.00	2,261
93	66	287.0	26.02	312,240	312,240	26.83	3.413	39,720	351,960	1.00	3,340
88	66	364.0	20.23	242,760	242,760	26.83	3.413	30,881	273,641	1.00	3,294
83	63	457.0	14.45	173,400	173,400	26.83	3.413	22,058	195,458	1.00	2,954
78	61	581.0	8.67	104,040	104,040	26.83	3.413	13,235	117,275	1.00	2,253
73	59	707.0	2.89	34,680	34,680	26.83	3.413	4.412	39,092	1.00	914
68	56	804.0									
63	53	965.0									
58	50	1100.0									
53	47	1098.0									
48	43	902.0									
43	40	681.0									
38	36	397.0									
33	32	159.0									
28	27	32.0									

kWh= 16,169 = 16,171 kWh= 19.87 = 20

Application

•

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Condenser Capacity	1,984,500	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	6	circuits	119,070
LT#1 Condensing Circuits	12	circuits	238,140
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	34	circuits	674,730
MT#2 Condensing Circuits	13	circuits	257,985
AC Condensing Circuits	35	circuits	694,575
Total Circuits	100		1,984,500

						Calculated		Total Heat	Total Heat
Bin	Coincident		AC Heat	Refrigeration	Condenser	Condenser Load Factor,	Total Heat	the	Rejection from the
Temperature	Wet-Bulb	Hour per bin	Rejection	Heat Rejection	Load Factor	Check	Rejection	Application	Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	511,832	925,683	-	1.4	1,437,515	1,477	1,477,000
108	72	8.0	508,048	914,755	-	1.4	1,422,803	1,473	1,473,000
103	70	53.0	514,325	914,251	-	1.4	1,428,576	1,479	1,479,000
98	68	159.0	430,143	914,251	-	1.5	1,344,394	1,395	1,395,000
93	66	287.0	351,960	891,252	-	1.6	1,243.212	1,317	1,317,000
88	66	364.0	273,641	848,449	-	1.8	1,122,090	1,238	1,238,000
83	63	457.0	195,458	848,449	-	1.9	1.043,907	1,160	1,160,000
78	61	581.0	117,275	848,449	-	2.1	965,724	1,082	1,082,000
73	59	707.0	39,092	848,449	-	2.2	887,541	1,004	1,004,000
68	56	804.0	0	848,449	-	2.3	848,449	965	965,000
63	53	965.0	0	848,449	-	2.3	848,449	964	964,000
58	50	1100.0	0	848,449	•	2.3	848,449	964	964,000
53	47	1098.0	0	848,449	-	2.3	848,449	964	964,000
48	43	902.0	0	848,449	-	2.3	848,449	965	965,000
43	40	681.0	0	848,449	-	2.3	848.449	965	965,000
38	36	397.0	0	848,449	-	2.3	848,449	965	965,000
33	32	159.0	0	848,449	-	2.3	848,449	965	965,000
28	27	32.0	0	848,449	-	2.3	848,449	965	965,000
						Total Rejected	18,531.806	20,307	20,307,000

Measure #2 Summary of Findings

	Pre-Retrofit	Post-Retrofit	Measure # Demand	Pre-Retrofit	Post-Retrofit	Measure # Energy	
Evaluation Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	8.88	9.64	-0.76	56,150	48,907	7,242	
LT#1 Condensing Circuits	16.75	17.29	-0.53	104,850	92,955	11,896	
MT#1 Condensing Circuits	37.00	38.47	-1,47	228,182	195,862	32.320	
MT#2 Condensing Circuits	12.13	12.29	-0.16	75,054	64,555	10,499	
AC Condensing Circuits	19.87	19.12	0.75	16,169	15,513	656	
Total			-2.18	кW		62,614	kWh
Total Refer	w/ Compressor	85.54			458,947		

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	8.90	9.60	-0.70	56,173	48,902	7,271	
LT#1 Condensing Circuits	16.80	17.20	-0.40	104,551	93,159	11,392	
MT#1 Condensing Circuits	37.00	38.50	-1.50	225,576	195,872	29,704	
MT#2 Condensing Circuits	12.10	12.30	-0.20	74,145	64,547	9,598	
AC Condensing Circuits	20.00	16.00	4.00	16,171	7,782	8,389	
Total			1.20	kW		66,354	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

Applicaton Condenser Analysis D	a-Retrofit Demand 8.00	Post-Retrofit Demand 8.00	Measure # Demand Savings 0.00	Pre-Retrofit Energy 30,435	Post-Retrofit Energy 57,732	Measure # Energy Savings (kWh) -27,297	Pre- Condenser Rejection (Btuh) 20,307.000	Post- Condenser Rejection (Btuh) 18,549,000	Difference in Condenser Heat Rejection (Btuh) 1.758,000	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh) -0.02
---------------------------------	------------------------------	---------------------------------	--	----------------------------------	-----------------------------------	--	--	---	--	---

0.0031124 4.3129E-07

				Measure Energy		
	Pre- Condenser	Post- Condenser	Difference in Condenser Heat	Savings per Condenser Heat		
Evaluation Condenser Analysis Condenser Fan Use	Rejection (Btuh) 18,531,806	Rejection (Btuh) 18,207,311	Rejection (Btuh) 324,494	Rejection (kWh/Btuh) -5,039	Post-Energy 56,669	Post Demand 7.8526331

Final Results for Measure #2									
Source	Demand impact	Energy Impact							
Evaluation	-2.18	57,576							
Application	1.20	39,057							

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	Э	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460.080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

.

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Compressor Efficiency, EER		Compressor Btuh rejected due to work	Check	ed, Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)	· ·	(Btu/Watt-hr)	, ,	(Btuh)	(unitiess)	(kWh)
113	74	1.0	27,150	-	1.3	27,150	5.78	3.413	16,032	43,182	1.00	5
108	72	8.0	27,150	•	1.4	27,150	6.00	3.413	15.444	42,594	1.00	36
103	70	53.0	27,150	-	1.4	27,150	6.10	3.413	15,191	42,341	1.00	236
98	68	159.0	27,150	•	1.4	27,150	6.21	3.413	14,922	42,072	1.00	695
93	66	287.0	27,150	-	1.5	27,150	6.28	3.413	14,755	37,921	0.73	906
88	66	364.0	27,150	-	1.5	27,150	6.43	3.413	14,411	37,670	0.73	1,122
83	63	457.0	27,150	-	1.5	27,150	6.57	3.413	14.104	37,446	0.73	1,379
78	61	581.0	27,150	-	1.5	27,150	6.65	3.413	13,934	37,322	0.73	1.732
73	59	707.0	27,150	-	1.5	27,150	6.79	3.413	13,647	37,112	0.73	2,064
68	56	804.0	27,150	-	1.6	27,150	6.94	3.413	13,352	36.897	0.73	2,296
63	53	965.0	27,150	•	1.5	27,150	6.94	3.413	13,352	36,897	0.73	2,756
58	50	1100.0	27,150	-	1.6	27,150	6.94	3.413	13.352	36,897	0.73	3,141
53	47	1098.0	27,150	-	1.6	27,150	6.94	3.413	13,352	36,897	0.73	3,136
48	43	902.0	27,150	-	1.6	27,150	6.94	3.413	13,352	36,897	0.73	2,576
43	40	681.0	27,150	-	1.6	27,150	6.94	3.413	13,352	36,897	0.73	1,945
38	36	397.0	27,150	-	1.6	27,150	6.94	3.413	13,352	36,897	0.73	1,134
33	32	159.0	27,150	-	1.6	27,150	6.94	3.413	13.352	36,897	0.73	454
28	27	32.0	27,150	-	1.6	27.150	6.94	3.413	13,352	36,897	0.73	91

Application 25,700

kWh≖ 25,703 =

4.70 =

kWh=

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460.080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

I.

1

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Bluh	alculated Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitiess)	(Btuh)	(Btu/Watt-hr)				(Btuh)	(unitiess)	(kWh)
113	74	1.0	237,900	•	1.3	237,900	6.50	3.413	124,916	30	62,816	1.00	37
108	72	8.0	237,900	-	1.3	237,900	6.70	3.413	121,187	3	59,087	1.00	284
103	70	53.0	237,900	-	1.3	237,900	6.80	3.413	119,405	3:	57,305	1.00	1,854
98	68	159.0	237,900	-	1.3	237,900	6.80	3.413	119,405	3	57,305	1.00	5,563
93	66	287.0	237,900	-	1.4	237,900	7.00	3.413	115,993	3:	22,575	0.73	7,120
88	66	364.0	237,900	-	1.4	237,900	7.10	3.413	114,360	3	21,382	0.73	8,903
83	63	457.0	237,900	-	1.4	237,900	7.20	3.413	112,771	3:	20,223	0.73	11,023
78	61	581.0	237,900	-	1.4	237,900	7.40	3.413	109,723	3	17,998	0.73	13,635
73	59	707.0	237,900	-	1.5	237,900	7.50	3.413	108,260	3	16,930	0.73	16,371
68	56	804.0	237,900	-	1.5	237,900	7.70	3.413	105,448	3	14,877	0.73	18,134
63	53	965.0	237,900	-	1.5	237,900	7.90	3.413	102,779	3	12,929	0.73	21,214
58	50	1100.0	237,900	-	1.5	237,900	8.00	3.413	101,494	3	11,991	0.73	23,879
53	47	1098.0	237,900	-	1.5	237.900	8.00	3.413	101,494	3	11,991	0.73	23,836
48	43	902.0	237,900	-	1.5	237,900	8.00	3.413	101,494	3	11,991	0.73	19,581
43	40	681.0	237,900	-	1.5	237,900	8.00	3.413	101,494	3	11,991	0.73	14,783
38	36	397.0	237,900	-	1.5	237,900	8.00	3.413	101,494	3	11,991	0.73	8,618
33	32	159.0	237,900	-	1.5	237,900	8.00	3.413	101,494	3	11,991	0.73	3,452
28	27	32.0	237,900	-	1.5	237.900	8.00	3.413	101,494	3	11,991	0.73	695

Application 199,416 36.7

kWh=

kWh≈

196,982 =

-

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)	· ·	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	(k₩h)
113	74	1.0	28,500	•	1.3	28,500	6.80	3.413	14,304	42,804	1.00	4
108	72	8.0	28,500	-	1.4	28,500	7.00	3.413	13,896	42,396	1.00	33
103	70	53.0	28,500	-	1.4	28,500	7.00	3.413	13,896	42,396	1.00	216
98	68	159.0	28,500	-	1.4	28,500	7.10	3.413	13,700	42,200	1.00	638
93	66	287.0	28,500	-	1.5	28,500	7.20	3.413	13.510	38,362	0.73	829
88	66	364.0	28,500	-	1.5	28.500	7.40	3.413	13,145	38,096	0.73	1,023
83	63	457.0	28,500	-	1.5	28,500	7.50	3.413	12,969	37,968	0.73	1,268
78	61	581.0	28,500	-	1.5	28,500	7.60	3.413	12,799	37,843	0.73	1,590
73	59	707.0	28,500		1.5	28,500	7.60	3.413	12,471	37,604	0.73	1.886
68	56	804.0	28,500	-	1.5	28,500	8.00	3.413	12,159	37,376	0.73	2,091
63	53	965.0	28,500	•	1.5	28,500	8.00	3.413	12,159	37,376	0.73	2,510
58	50	1100.0	28,500	-	1.5	28,500	8.00	3.413	12,159	37,376	0.73	2,861
53	47	1098.0	28,500		1.5	28,500	8.00	3.413	12,159	37,376	0.73	2,855
48	43	902.0	28,500	-	1.5	28.500	8.00	3.413	12,159	37,376	0.73	2,346
43	40	681.0	28,500	-	1.5	28,500	8.00	3.413	12,159	37,376	0.73	1,771
38	36	397.0	28,500	-	1.5	28,500	8.00	3.413	12,159	37,376	0.73	1,032
33	32	159.0	28,500	-	1.5	28,500	8.00	3.413	12,159	37,376	0.73	413
28	27	32.0	28,500	-	1.5	28,500	8.00	3.413	12.159	37,376	0.73	83

Application 23,507 4.2

kWh= 23,450 =

4.19 =

kWh=

Condenser Capacity	1,917,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitiess)	(kWh)
113	74	1.0	288,585	•	1.2	288,585	11.97	3.413	82,284		370,869	1.00	24
108	72	8.0	288,585	-	1.2	288,585	12.47	3.413	78,985		367,570	1.00	185
103	70	53.0	288,585	-	1.2	288,585	12.63	3.413	77,984	- 1	366,569	1.00	1,211
98	68	159.0	288,585		1.2	288,585	12.63	3.413	77,984		366,569	1.00	3,633
93	66	287.0	288,585	-	1.3	288,585	12.96	3.413	75,999		344,064	0.73	4,665
88	66	364.0	288,585	-	1.3	288,585	13.13	3.413	75,015		343,346	0.73	5,840
83	63	457.0	288,585	•	1.3	288,585	13.46	3.413	73,175		342,003	0.73	7,153
78	61	581.0	288,585	-	1.3	288,585	13.67	3.413	72,051		341,182	0.73	8,954
73	59	707.0	288,585	-	1.3	288,585	14.08	3.413	69,953		339,651	0.73	10,578
68	56	804.0	288,585	-	1.3	288,585	14.49	3.413	67,974		338,206	0.73	11 689
63	53	965.0	288,585	-	1.3	288,585	14.90	3.413	66,103		336,840	0.73	13,644
58	50	1100.0	288,585	-	1.3	288,585	15.31	3.413	64,333		335,548	0.73	15,136
53	47	1098.0	288,585	•	1.3	288,585	15.51	3.413	63,504		334,943	0.73	14,914
48	43	902.0	288,585	-	1.3	288,585	15.51	3.413	63,504		334,943	0.73	12,252
43	40	681.0	288,585	-	1.3	288,585	15.51	3.413	63,504		334,943	0.73	9,250
38	36	397.0	288,585	-	1.3	288,585	15.51	3.413	63,504		334,943	0.73	5,392
33	32	159.0	288,585	-	1.3	288,585	15.51	3.413	63,504		334,943	0.73	2,160
28	27	32.0	288,585	-	1.3	288,585	15.51	3.413	63,504		334,943	0.73	435

Application 127,119 24.1

kWh= 127,114 = kWh= 24.11 =

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load (Btuh)	Application Factor	Calculated Application Factor, Check (unitiess)		Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	• •	(unitless)	•	(Btuh)		• • •		(Btuh)	(unitiess)	(kWh)
113	74	1.0	164,124	-	1.2	164,124	10.11	3.413	55,406	219,530	1.00	16
108	72	8.0	164,124	•	1.2	164,124	10.69	3.413	52,400	216,524	1.00	123
103	70	53.0	164,124	-	1.2	164,124	10. 69	3.413	52,400	216,524	1.00	814
98	68	159.0	164,124	-	1.2	164,124	10.88	3.413	51.485	215,609	1.00	2,399
93	66	287.0	164,124	-	1.3	164,124	11.26	3.413	49,747	200,440	0.73	3.054
88	66	364.0	164,124	-	1.3	164,124	11.61	3.413	48,248	199,345	0.73	3,756
83	63	457.0	164,124	•	1.3	164,124	11.76	3.413	47,632	198,896	0.73	4,656
78	61	581.0	164,124	-	1.4	164,124	12.07	3.413	46,409	198,002	0.73	5,767
73	59	707.0	164,124	-	1.4	164.124	12.38	3.413	45.247	197,154	0.73	6,842
68	56	804.0	164,124	-	1.4	164,124	12.69	3.413	44,141	196,347	0.73	7.591
63	53	965.0	164,124	•	1.4	164,124	13.00	3.413	43.089	195,579	0.73	8,894
58	50	1100.0	164,124	-	1.4	164,124	13.00	3.413	43,089	195,579	0.73	10,138
53	47	1098.0	164,124	-	1.4	164,124	13.00	3.413	43,089	195,579	0.73	10,119
48	43	902.0	164,124	-	1.4	164,124	13.00	3.413	43.089	195,579	0.73	8,313
43	40	681.0	164,124	-	1.4	164,124	13.00	3.413	43,089	195,579	0.73	6.276
38	36	397.0	164,124	-	1.4	164,124	13.00	3.413	43,089	195,579	0.73	3,659
33	32	159.0	164,124	-	1.4	164,124	13.00	3.413	43,089	195,579	0.73	1,465
28	27	32.0	164,124	-	1.4	164,124	13.00	3.413	43,089	195,579	0.73	295

Application 84,182

kWh=

kWh≂

84,177 =

16.23 =

AC, Measure #2

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460.080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268.380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Load (tons)	AC Load (Btuh)	Equivalent Btuh rejected for AC (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	40.00	480,000	480,000	26.24	3.413	62,433	542,433	1.00	
	72		40.00	480,000	480,000	27.56	3.413	59,443			18
108		8.0							539,443	1.00	139
103	70	53.0	40.63	487,560	487,560	27.56	3.413	60.379	547,939	1.00	938
98	68	159.0	34.38	412,560	412,560	31.52	3.413	44,672	457,232	1.00	2,081
93	66	287.0	28.13	337,560	337,560	36.05	3.413	31,958	369,518	1.00	2,687
88	66	364.0	21.88	262,560	262,560	44.28	3.413	20,238	282,798	1.00	2,158
83	63	457.0	15.63	187,560	187,560	48.39	3.413	13,229	200,789	1.00	1,771
78	61	581.0	9.38	112,560	112,560	32.31	3.413	11,890	124,450	1.00	2,024
73	59	707.0	3.13	37,560	37,560	33.10	3.413	3,873	41,433	1.00	802
68	56	804.0									
63	53	965.0									
58	50	1100.0									
53	47	1098.0									
48	43	902.0									
43	40	681.0									
38	36	397.0									
33	32	159.0									
28	27	32.0									

Application 7,943 kWh= 12,620 = 18.29 = 16

kWh=

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

						Calculated		Total Heat	Total Heat
Die	Onincident		AC Heat	Defrigeration	Condenser	Condenser Load Factor,	Total Heat		Rejection from
Bin	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Load Factor	Check	Rejection	the Application	the Application
Temperature		(hours)	(Btuh)	(Btuh)	(unitless)	(unitiess)	(Btuh)	(MBtuh)	(Btuh)
(°F) 113	(°F) 74	1.0	542,433	996,397	(0111(1633)	1.2	1,538,830	1,525	1,525,000
		8.0	539,443	985,775		1.3	1.525,217	1,517	
108	72		-						1,517,000
103	70	53.0	547,939	982,739	-	1.3	1,530,677	1,525	1,525,000
98	68	159.0	457,232	981,554	-	1.3	1,438,787	1,435	1,435,000
93	66	287.0	369,518	905,000	-	1.5	1,274.518	1,342	1,342,000
88	66	364.0	282,798	901,743	-	1.6	1,184,540	1,253	1,253,000
83	63	457.0	200,789	898,567	-	1.7	1.099,356	1,169	1,169,000
78	61	581.0	124,450	894,505	-	1.9	1,018,955	1,024	1,024,000
73	59	707.0	41,433	890,847	-	2.1	932,280	1,020	1,020,000
68	56	804.0	0	886,327	-	2.2	886,327	1,015	1,015,000
63	53	965.0	0	882,245	-	2.2	882,245	1,012	1,012,000
58	50	1100.0	0	880,015	-	2.2	880,015	1,011	1,011,000
53	47	1098.0	0	879,409	-	2.2	879,409	1,011	1,011,000
48	43	902.0	0	879,409	-	2.2	879,409	1,011	1,011,000
43	40	681.0	0	879,409	-	2.2	879.409	1,011	1,011,000
38	36	397.0	0	879,409	-	2.2	879,409	1,011	1,011,000
33	32	159.0	o	879,409	-	2.2	879,409	1,011	1,011,000
28	27	32.0	0	879,409	-	2.2	879,409	1,011	1,011,000

Total Rejected 19,468.203 20,914

20,914,000 Heat rejection differences are significant

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unness)	• •		• •	• • • • • • • •	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	1.0	27,150	•	1.3	27,150	5.06	3.413	18,313	45,463	1.00	5
108	72	8.0	27,150	-	1.3	27,150	5.06	3.413	18,313	45,463	1.00	43
103	70	53.0	27,150	-	1.3	27,150	5.06	3.413	18,313	45,463	1.00	284
98	68	159.0	27,150	•	1.3	27,150	5.06	3.413	18.313	45,463	1.00	853
93	66	287.0	27,150	-	1.4	27.150	5.06	3.413	18,313	40,518	0.73	1.124
88	66	364.0	27,150	•	1.4	27,150	5.06	3.413	18,313	40,518	0.73	1,426
83	63	457.0	27,150	•	1.4	27,150	5.06	3.413	18,313	40,518	0.73	1,790
78	61	581.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40,518	0.73	2,276
73	59	707.0	27,150	-	1.4	27,150	5.06	3.413	18.313	40,518	0.73	2,769
68	56	804.0	27,150	-	1.4	27.150	5.06	3.413	18,313	40.518	0.73	3,149
63	53	965.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40,518	0.73	3,780
58	50	1100.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40,518	0.73	4,309
53	47	1098.0	27,150	-	1,4	27,150	5.06	3.413	18,313	40,518	0.73	4,301
48	43	902.0	27,150	-	1.4	27,150	5.06	3.413	18.313	40,518	0.73	3,533
43	40	681.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40.518	0.73	2,667
38	36	397.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40,518	0.73	1,555
33	32	159.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40,518	0.73	623
28	27	32.0	27,150	-	1.4	27,150	5.06	3.413	18,313	40,518	0.73	125

Application 34,614

kWh= 34,613 =

kWh= 5.37 =

Condenser Capacity	1,917,000	Bluh	Btuh Capacity
Ice Cream Condensing Circuits	Э	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Bluh rejected for case Load (Btuh)	Estimated Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	E	Calculated Stuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	237,900		1.2	237,900	6.00	3.413	135,325		373,225	1.00	40
108	72	8.0	237,900	-	1.2	237,900	6.00	3.413	135,325		373,225	1.00	317
103	70	53.0	237,900	-	1.2	237,900	6.00	3.413	135,325		373,225	1.00	2,101
98	68	159.0	237,900	-	1.2	237,900	6.00	3.413	135,325		373,225	1.00	6,304
93	66	287.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	8,307
88	66	364.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	10,536
83	63	457.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	13,228
78	61	581.0	237,900		1.4	237,900	6.00	3.413	135,325		336,688	0.73	16,817
73	59	707.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	20,464
68	56	804.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	23,271
63	53	965.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	27,931
58	50	1100.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	31,839
53	47	1098.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	31,781
48	43	902.0	237,900	-	1.4	237.900	6.00	3.413	135,325		336,688	0.73	26,108
43	40	681.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	19,711
38	36	397.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	11,491
33	32	159.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	4,602
28	27	32.0	237,900	-	1.4	237,900	6.00	3.413	135,325		336,688	0.73	926

Application 256,243

kWh= 255,775 = 39.65 =

kWh=

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated uh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)			, ,	(Btuh)	(unitiess)	(kWh)
113	74	1.0	28,500	-	0.0	28,500	5.90	3.413	16,487	44,987	1.00	5
108	72	8.0	28,500	-	1.3	28,500	6.00	3,413	16,212	44,712	1.00	38
103	70	53.0	28,500	-	1.3	28,500	6.00	3.413	16.212	44,712	1.00	252
98	68	159.0	28,500	•	1.3	28,500	6.00	3.413	16,212	44.712	1.00	755
93	66	287.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	995
88	66	364.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	1,262
83	63	457.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	1,585
78	61	581.0	28,500	•	1.4	28,500	6.00	3.413	16.212	40,335	0.73	2,015
73	59	707.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	2,452
68	56	804.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	2,788
63	53	965.0	28,500		1.4	28,500	6.00	3.413	16,212	40,335	0.73	3,346
58	50	1100.0	28,500	-	1,4	28,500	6.00	3.413	16,212	40,335	0.73	3,814
53	47	1098.0	28,500	-	1.4	28,500	6.00	3.413	16.212	40,335	0.73	3,807
48	43	902.0	28,500		1.4	28,500	6.00	3.413	16,212	40.335	0.73	3,128
43	40	681.0	28,500		1.4	28,500	6.00	3.413	16,212	40.335	0.73	2.361
38	36	397.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	1,377
33	32	159.0	28,500	-	1.4	28,500	6.00	3.413	16,212	40,335	0.73	551
28	27	32.0	28,500	•	1.4	28,500	6.00	3.413	16,212	40,335	0.73	111

Application 30,697

4.8

kWh= 30,641 =

4.83 =

kWh=

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	Э	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632.610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	. ,	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	(k₩h)
113	74	1.0	288,585	-	1.2	288,585	11.12	3.413	88,574	377,159	1.00	26
108	72	8.0	288,585	-	1.2	288,585	11.12	3.413	88,574	377,159	1.00	208
103	70	53.0	288,585	-	1.2	288,585	11.12	3.413	88,574	377,159	1.00	1,375
98	68	159.0	288,585	-	1.2	288,585	11.12	3.413	88,574	377,159	1.00	4,126
93	66	287.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	5,437
88	66	364.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	6,896
83	63	457.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	8,658
78	61	581.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	11,007
73	59	707.0	288,585	•	1.2	288,585	11.12	3.413	88,574	353,244	0.73	13,394
68	56	804.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	15,232
63	53	965.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	18,282
58	50	1100.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	20,839
53	47	1098.0	288,585	•	1.2	288,585	11.12	3.413	88,574	353,244	0.73	20,801
48	43	902.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	17,088
43	40	681.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	12,901
38	36	397.0	288,585		1.2	288,585	11.12	3.413	88,574	353,244	0.73	7,521
33	32	159.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	3,012
28	27	32.0	288,585	-	1.2	288,585	11.12	3.413	88,574	353,244	0.73	606

Application 167,448 26

kWh≖ 167,411 ≖ kWh= 25.95 =

61061.XLS

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	• •	(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitless)	(kWh)
113	74	1.0	164,124	-	1.2	164,124	9.30	3.413	60,232		224,356	1.00	18
108	72	8.0	164,124	-	1.2	164,124	9.30	3.413	60,232		224,356	1.00	141
103	70	53.0	164,124	•	1.2	164,124	9.30	3.413	60,232	4	224,356	1.00	935
98	68	159.0	164,124	-	1.2	164,124	9.30	3.413	60,232		224,356	1.00	2,806
93	66	287.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	3,697
88	66	364.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	4,689
83	63	457.0	164,124	•	1.3	164,124	9.30	3.413	60,232		208,093	0.73	5,887
78	61	581.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	7,485
73	59	707.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	9,108
68	56	804.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	10,358
63	53	965.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	12,432
58	50	1100.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	14,171
53	47	1098.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	14,145
48	43	902.0	164,124	-	1.3	164.124	9.30	3.413	60.232		208,093	0.73	11,620
43	40	681.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	8,773
38	36	397.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	5,114
33	32	159.0	164,124	-	1.3	164,124	9.30	3.413	60,232		208,093	0.73	2,048
28	27	32.0	164,124	•	1.3	164,124	9.30	3.413	60,232		208,093	0.73	412

Application 113,889

kWh= 113.842 =

kWh= 17.65 =

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440.910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)	(Btu/Watt-hr)		• •		(Btuh)	(unitless)	(kWh)
113	74	1.0	40.00	480,000	480,000	24.11	3.413	67,949		547,949	1.00	20
108	72	8.0	40.00	480,000	480,000	24.11	3.413	67,949	· ·	547,949	1.00	159
103	70	53.0	40.63	487,560	487,560	24.11	3.413	69,019		556,579	1.00	1,072
98	68	159.0	34.38	412,560	412,560	24.11	3.413	58,402		470,962	1.00	2,721
93	66	287.0	28.13	337,560	337,560	24.11	3.413	47,785		385,345	1.00	4,018
88	66	364.0	21.88	262,560	262,560	24.11	3.413	37,168		299,728	1.00	3,964
83	63	457.0	15.63	187,560	187,560	24.11	3.413	26,551		214,111	1.00	3,555
78	61	581.0	9.38	112,560	112,560	24.11	3.413	15,934		128,494	1.00	2,712
73	59	707.0	3.13	37,560	37,560	24.11	3.413	5,317		42,877	1.00	1,101
68	56	804.0										
63	53	965.0										
58	50	1100.0										
53	47	1098.0										
48	43	902.0										
43	40	681.0										
38	36	397.0										
33	32	159.0										
28	27	32.0										
											1.140	40.000

kWh=19,323=19,318kWh=19.91=20

Application

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Condenser Capacity	1,917,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	57,510
LT#1 Condensing Circuits	24	circuits	460,080
LT#2 Condensing Circuits	3	circuits	57,510
MT#1 Condensing Circuits	23	circuits	440,910
MT#2 Condensing Circuits	14	circuits	268,380
AC Condensing Circuits	33	circuits	632,610
Total Circuits	100		1,917,000

						Calculated		Total Heat	Total Heat
Bin	Coincident		AC Heat	Refrigeration	Condenser	Condenser Load Factor,	Total Heat	the	Rejection from the
Temperature	Wet-Bulb	Hour per bin	Rejection	Heat Rejection	Load Factor	Check	Rejection	Application	Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	547,949	1,020,203	-	1.2	1,568,151	1,642	1,642,000
108	72	8.0	547,949	1,020,203	-	1.2	1.568,151	1,642	1,642,000
103	70	53.0	556,579	1,020,203	-	1.2	1,576,782	1,651	1,651,000
98	68	159.0	470,962	1,020,203	•	1.3	1,491,165	1,565	1,565,000
93	66	287.0	385,345	938,543	-	1.4	1,323.888	1,479	1,479,000
88	66	364.0	299,728	938,543	-	1.5	1,238,271	1,394	1,394,000
83	63	457.0	214,111	938,543	-	1.7	1.152,654	1,308	1,308,000
78	61	581.0	128,494	938,543	. •	1.8	1,067,037	1,222	1,222,000
73	59	707.0	42,877	938,543	-	2.0	981,420	1,137	1,137,000
68	56	804.0	0	938,543	-	2.0	938,543	1,094	1,094,000
63	53	965.0	0	938,543	-	2.0	938,543	1,094	1,094,000
58	50	1100.0	0	938,543	-	2.0	938,543	1,094	1,094,000
53	47	1098.0	0	938,543	-	2.0	938,543	1,094	1,094,000
48	43	902.0	0	938,543	-	2.0	938,543	1,094	1,094,000
43	40	681.0	0	938,543	-	2.0	938,543	1,094	1,094,000
38	36	397.0	0	938,543	-	2.0	938,543	1,094	1.094,000
33	32	159.0	0	938,543	-	2.0	938,543	1,094	1,094,000
28	27	32.0	0	938,543	-	2.0	938,543	1,094	1,094,000

Total Rejected 20,414.405 22,886 22,886,000 Heat rejection differences are significant

Measure #2 Summary of Findings

	Pre-Retrofit	Post-Retrofit	Measure # Demand	Pre-Retrofit	Post-Retrofit	Measure # Energy	
Evaluation Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	5.37	4.70	0.67	34,613	25.703	8,910	
LT#1 Condensing Circuits	39.65	36.60	3.05	255,775	198,982	56,793	
LT#2 Condensing Circuits	4.83	4.19	0.64	30,641	23,450	7,191	
MT#1 Condensing Circuits	25.95	24.11	1.84	167,411	127.114	40,297	
MT#2 Condensing Circuits	17.65	16.23	1.41	113,842	84,177	29,666	
AC Condensing Circuits	19.91	18.29	1.62	19,323	12,620	6.703	
Total			9.23	kW		149,560	kWh
Total Refer	w/ Compressor	97.00			519,727		

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	5.40	4.70	0.70	34,614	25,700	8,914	
LT#1 Condensing Circuits	39.70	36.70	3.00	256,243	199,416	56,827	
LT#2 Condensing Circuits	4.80	4.20	0.60	30,697	23.507	7.190	
MT#1 Condensing Circuits	26.00	24.10	1.90	167,448	127,119	40,329	
MT#2 Condensing Circuits	17.70	16.20	1.50	113,889	84,182	29,707	
AC Condensing Circuits	20.00	16.00	4.00	19,318	7,943	11,375	
Total			11.70	kW		154,342	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

Applicaton Condenser Analysis Condenser Fan Use	Pre-Retrofit Demand 12.00	Post-Retrofit Demand 12.00	Measure # Demand Savings 0.00	Pre-Retrofit Energy 33,645	Post-Retrofit Energy 64,780	Measure # Energy Savings (kWh) -31,135	Pre- Condenser Rejection (Btuh) 22,886.000	Post- Condenser Rejection (Btuh) 20.914,000	Difference in Condenser Heat Rejection (Btuh) 1,972,000	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh) -0.02
							0.00309745	5.7378E-07		
			Difference in	Measure Energy Savings per						

Evaluation Condenser Analysis Condenser Fan Use	Pre- Condenser Rejection (Btuh) 20,414,405	Post- Condenser Rejection (Btuh) 19,468,203	Condenser Heat Rejection (Btuh) 946,203	Condenser Heat Rejection (kWh/Btuh) -14,939	Post-Energy 60,302	Post Demand 11.1704328	
Condenser Fan Ose	20.414,400	13,400,200	570,200	14.000	00,002	11.1704020	

Final Results fo	Final Results for Measure #2										
Source	Demand Impact	Energy Impact									
Evaluation	9.23	134,621									
Application	11.70	123,207									

I.

Condenser Capacity	1,300,000	Stuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	26,263
LT#1 Condensing Circuits	7	circuits	91,919
MT#1 Condensing Circuits	18	circuits	236,364
MT#2 Condensing Circuits	27	circuits	354,545
AC Condensing Circuits	45	circuits	590,909
Total Circuits	99		
Total Refer v	/ Compressor	6.50	

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-br)	Compressor Btuh rejected due to work (Btuh)	Calculate Btuh Rejec Check (Btuh)	ted, Load Factor	Compressor Energy Use (kWh) (kWh)
(°F)	(°F)	(hours)	• •	1.2	0.6	26,000	5.04	3.413	17,607		•	9
113	74	1.8	26,000							43,607		-
108	72	27.6	26,000	1.3	0.6	26,000	5.06	3.413	17,537	43,537		142
103	70	138.8	26,000	1.2	0.6	26,000	5.08	3.413	17.468	43,468	1.00	710
98	68	246.9	26,000	1.2	0.6	26,000	5.11	3.413	17,366	43.366	1.00	1,256
93	66	322.0	26,000	1.2	0.7	26,000	5.13	3.413	17,298	38,627	0.73	1,191
88	66	380.8	26,000	1.2	0.7	26,000	5.13	3.413	17,298	38.627	0.73	1,409
83	63	526.0	26,000	1.1	0.7	26,000	5.13	3.413	17,298	38,627	0.73	1,946
78	61	530.6	26,000	1.1	0.7	26,000	5.15	3.413	17.231	38,578	0.73	1,955
73	59	671.0	26,000	1.1	0.7	26,000	5.25	3.413	16,902	38,339	0.73	2,426
68	56	683.7	26,000	1.1	0.7	26,000	5.47	3.413	16,223	37,843	0.73	2,372
63	53	851.7	26,000	1.1	0.7	26,000	5.68	3.413	15,623	37,405	0.73	2,846
58	50	871.3	26,000	1.1	0.7	26,000	5.89	3.413	15,066	36,998	0.73	2,808
53	47	1041.7	26,000	1.1	0.7	26,000	5.89	3.413	15.066	36,998	0.73	3,357
48	43	854.2	26,000	1.1	0.7	26,000	5.89	3.413	15,066	36,998	0.73	2,753
43	40	754.1	26,000	1.1	0.7	26,000	5.89	3.413	15,066	36,998	0.73	2,430
38	36	488.9	26,000	1.1	0.7	26,000	5.89	3.413	15,066	36,998	0.73	1,575
33	32	258.7	26,000	1.1	0.7	26,000	5.89	3.413	15,066	36,998	0.73	834
28	27	87.2	26,000	1.1	0.7	26,000	6.50	3.413	13.652	35,966	0.73	255

Application 16,375

kWh≖ 30,274 > kWh= 5,16 >

Condenser Capacity	1,300,000	Btuh	Btuh Capacity	
Ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	236,364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99			
Total Refer w	/ Compressor	7.70		116,2

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)	• • •	• • • • •	(Btuh)	(Btuh)	(unitless)	(kWh)
113	74	1.8	116,249	1.2	0.5	116,249	6.80	3.413	58,347	174,596	1.00	31
108	72	27.6	116,249	1.1	0.5	116,249	6.20	3.413	63,993	180,242	1.00	517
103	70	138.8	116,249	1.1	0.5	116,249	6.30	3.413	62,977	179,226	1.00	2,561
98	68	246.9	116,249	1.1	0.5	116,249	6.40	3.413	61,993	178,242	1.00	4,485
93	66	322.0	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	4,031
88	66	380.8	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	4,767
83	63	526.0	116,249	1.1	0.6	116,249	6.60	3.413	60,115	158,329	0.70	6,485
78	61	530.6	116,249	1.1	0.6	116,249	6.70	3.413	59,218	157,701	0.70	6,444
73	59	671.0	116,249	1.1	0.6	116.249	6.80	3.413	58,347	157,092	0.70	8,030
68	56	683.7	116.249	1.0	0.6	116,249	6.80	3.413	58,347	157,092	0.70	8,182
63	53	851.7	116,249	1.0	0.6	116,249	6.80	3.413	58,347	157,092	0.70	10,192
58	50	871.3	116,249	1.0	0.6	116,249	7.00	3.413	56,680	155,925	0.70	10,129
53	47	1041.7	116,249	1.0	0.6	115,249	7.00	3.413	56,680	155,925	0.70	12,110
48	43	854.2	116,249	1.0	0.6	116,249	7.00	3.413	56,680	155,925	0.70	9,930
43	40	754.1	116,249	0.9	0.6	116,249	7.00	3.413	56,680	155,925	0.70	8,766
38	36	488.9	116,249	0.9	0.6	116,249	7.00	3.413	56,680	155,925	0.70	5,683
33	32	258.7	116,249	0.9	0.6	116,249	7.00	3.413	56,680	155,925	0.70	3,007
28	27	87.2	116,249	0.9	0.6	116,249	7.70	3.413	51,527	152,318	0.70	922

Application 57,258 8.8

kWh= 106.273 >

17.10 >

kWh≃

Condenser Capacity	1,300,000	Btuh	Btuh Capacity	
Ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	236,364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99			
Total Refer v	/ Compressor	13 00		

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)		(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	(kWh)
113	74	1.8	151,600	1.1	1.1	151,600	9.15	3.413	56,548	208,148	1.00	30
108	72	27.6	151,600	1.1	1.1	151,600	9.15	3.413	56,548	208,148	1.00	457
103	70	138.8	151,600	1.1	1.1	151,600	9.25	3.413	55,936	207,536	1.00	2,275
98	68	246.9	151,600	1.1	1.1	151,600	9.34	3.413	55,397	206,997	1.00	4,007
93	66	322.0	151,600	1.1	1.2	151,600	9.39	3,413	55,102	191,825	0.73	3,795
88	66	360.8	151,600	1.1	1.2	151,600	9.39	3.413	55,102	191,825	0.73	4,488
83	63	526.0	151,600	1.1	1.2	151,600	9.49	3.413	54,522	191,401	0.73	6,134
78	61	530.6	151,600	1.1	1.2	151,600	9.54	3.413	54,236	191,192	0.73	6,155
73	59	671.0	151,600	1.1	1.2	151,600	9.73	3.413	53,177	190,419	0.73	7,632
68	56	683.7	151,600	1.2	1.3	151,600	10.11	3.413	51,178	188,960	0.73	7,484
63	53	851.7	151,600	1.2	1.3	151,600	10.69	3.413	48,401	186,933	0.73	8,817
58	50	871.3	151,600	1.2	1.3	151,600	11.07	3.413	46,740	185,720	0.73	8,710
53	47	1041.7	151,600	1.2	1.3	151,600	11.07	3.413	46,740	185,720	0.73	10,414
48	43	854.2	151,600	1.2	1.3	151,600	11.07	3.413	46.740	185,720	0.73	8,540
43	40	754.1	151,600	1.2	1.3	151,600	11.07	3.413	46,740	185,720	0.73	7,539
38	36	488.9	151,600	1.2	1.3	151,600	11.07	3.413	46,740	185,720	0.73	4,888
33	32	258.7	151,600	1.2	1.3	151,600	11.07	3.413	46,740	185,720	0.73	2,586
28	27	87.2	151,600	1.2	1.3	151,600	13.00	3.413	39,801	180,655	0.73	742

Application 91,310 16.6

94,694 =

16.57 =

kWh≕ kWh≖

61067.XLS

Condenser Capacity	1.300,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	26,263
LT#1 Condensing Circuits	7	circuits	91,919
MT#1 Condensing Circuits	18	circuits	236,364
MT#2 Condensing Circuits	27	circuits	354,545
AC Condensing Circuits	45	circuits	590,909
Total Circuits	99		
Total Refer v	/ Compressor	15 51	

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)		(Btu/Watt-hr)	• •	(Btuh)	(unitless)	(kWh)
113	74	1.8	239,371	1.1	1.1	239,371	10.57	3.413	77,292	316,663	1.00	41
108	72	27.6	239,371	1.1	1.1	239,371	10.70	3.413	76,353	315,724	1.00	617
103	70	138.8	239,371	1.1	1.1	239,371	10.84	3.413	75,367	314,738	1.00	3,065
98	68	246.9	239,371	1.1	1.1	239.371	11.26	3.413	72,555	311,926	1.00	5,249
93	66	322.0	239,371	1.1	1.2	239,371	11.39	3.413	71,727	291,732	0.73	4.940
88	66	380.8	239,371	1.1	1.2	239,371	11.39	3.413	71,727	291,732	0.73	5,842
83	63	526.0	239,371	1.1	1.2	239,371	11.67	3.413	70,006	290,476	0.73	7,876
78	61	530.6	239,371	1.1	1.2	239,371	11.81	3.413	69,176	289,870	0.73	7,851
73	59	671.0	239,371	1.1	1.2	239,371	11.97	3.413	68.252	289,195	0.73	9,795
68	56	683.7	239,371	1.1	1.2	239,371	12.30	3.413	66,421	287,858	0.73	9.713
63	53	851.7	239,371	1.1	1.2	239,371	12.63	3.413	64,685	286,591	0.73	11,784
58	50	871.3	239,371	1.2	1.2	239,371	12.96	3.413	63,038	285,389	0.73	11,748
53	47	1041.7	239,371	1.2	1.2	239,371	12.96	3.413	63,038	285,389	0.73	14,045
48	43	854.2	239,371	1.2	1.2	239,371	12.96	3.413	63,038	285,389	0.73	11,517
43	40	754.1	239,371	1.2	1.2	239,371	12.96	3.413	63,038	285,389	0.73	10,168
38	36	488.9	239,371	1.2	1.2	239,371	12.96	3.413	63,038	285,389	0.73	6,592
33	32	258.7	239,371	1.2	1.2	239,371	12.96	3.413	63,038	285,389	0.73	3,488
28	27	87.2	239,371	1.2	1.3	239,371	15.51	3.413	52,674	277,823	0.73	982

Application 121,005 22.8

kWh= 125,313 =

kWh= 22.65 =

61067.XI.S

Condenser Capacity	1,300,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	26,263
LT#1 Condensing Circuits	7	circuits	91,919
MT#1 Condensing Circuits	18	circuits	236,364
MT#2 Condensing Circuits	27	circuits	354,545
AC Condensing Circuits	45	circuits	590,909
Total Circuits	99		
Total Refer v	v/ Compressor	0.00	

Bin Temperature (°F) 1 13 1 08 1 03 9 8 9 3 8 8 8 3 7 8 7 3 6 8 6 3 5 8 5 3 4 8 4 3 3 8	Coincident Wet-Bulb (°F) 7 4 7 2 7 0 6 8 6 6 6 6 6 6 6 6 6 6 3 6 1 5 9 5 6 5 3 5 0 4 7 4 3 4 0 3 6	Hour per bin (hours) 1.8 27.6 138.8 246.9 322.0 380.8 526.0 530.6 671.0 683.7 851.7 851.7 871.3 1041.7 854.2 754.1 488.9	AC Load (tons) 30.00 28.68 24.26 19.85 15.44 11.03 6.62 2.21	AC Load (Btuh) 360,000 360,000 291,120 238,200 185,280 132,360 79,440 26,520	Equivalent Btuh rejected for AC (Btuh) 360,000 340,000 291,120 238,200 185,280 132,360 79,440 26,520	Compressor Efficiency, EER (Btu/Watt-hr) 22.34 24.93 28.73 35.06 36.07 40.12 40.12 23.66	Conversion Constant (Btu/Watt-hr) 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 4.413	Compressor Btuh rejected due to work (Btuh) 56,104 54,999 47,117 34,584 23,188 17,531 11,260 6,758 4,946	Calculated Bluh Rejected, Check (Bluh) 416,104 414,999 391,277 325,704 261,388 202,811 143,620 86,198 36,413	Load Factor (unitless) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00	Compressor Energy Use (kWh) (kWh) 30 445 1,916 2,502 2,188 1,956 1,735 1,051 1,504	
38	36	488.9										
33 28	32 27	258.7 87.2										
										kWh=	13,326	=

 Application

 kWh=
 13,326
 =
 9,084

 kWh=
 16.44
 =
 16

Condenser Capacity	1,300,000	Btuh	Btuh Capacity	
Ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	236,364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99		1,300,000	
Total Refer v	v/ Compressor	646761.46		

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(° F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.8	416,104	743,013	1.3	1.1	1,159,117	1,038	1,038,000
108	72	27.6	414,999	747,651	1.2	1.1	1,162,650	1,045	1,045,000
103	70	138.8	391,277	744,968	1.3	1.1	1,136,245	968	968,000
98	68	246.9	325,704	740,532	1.4	1.2	1,066,235	901	901,000
93	66	322.0	261,388	681,161	1.6	1.4	942.549	837	837,000
88	66	380.8	202,811	681,161	1.7	1.5	883,972	778	778,000
83	63	526.0	143,620	678,833	1.8	1.6	822,453	720	720,000
78	61	530.6	86,198	677,342	2.0	1.7	763,540	661	661,000
73	59	671.0	36,413	675,044	2.1	1.8	711,457	623	623,000
68	56	683.7	0	671,752	2.1	1.9	671,752	626	626,000
63	53	851.7	0	668,021	2.1	1.9	668,021	621	621,000
58	50	871.3	0	664,032	2.1	2.0	664,032	618	618,000
53	47	1041.7	0	664,032	3.1	2.0	664,032	619	619,000
48	43	854.2	0	664,032	4.1	2.0	664,032	620	620,000
43	40	754.1	0	664,032	5.1	2.0	664,032	621	621,000
38	36	488.9	0	664,032	6.1	2.0	664,032	622	622,000
33	32	258.7	0	664,032	7.1	2.0	664,032	623	623,000
28	27	87.2	0	646,761	2.1	2.0	646,761	610	610,000

Total Rejected 14,618,943 13,151 13,151,000 Heat rejection differences are significant

Condenser Capacity	1,300,000	Btuh	Btuh Capacity	
Ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	236.364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99		1,300,000	
Total Refer v	/ Compressor	5.06		

26,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	E	Calculated Ituh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.8	26,000	1.3	0.6	26,000	5.04	3.413	17,607		43,607	1.00	9
108	72	27.6	26,000	1.3	0.6	26,000	5.06	3.413	17,537		43,537	1.00	142
103	70	138.8	26,000	1.2	0.6	26,000	5.06	3.413	17,537		43,537	1.00	713
98	68	246.9	26,000	1.2	0.6	26,000	5.06	3.413	17.537		43,537	1.00	1,269
93	66	322.0	26,000	1.2	0.6	26,000	5.06	3.413	17,537		43,537	1.00	1,655
88	66	380.8	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	1,428
83	63	526.0	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	1,973
78	61	530.6	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	1,990
73	59	671.0	26,000	1.2	0.7	26,000	5.06	3.413	17.537		38,802	0.73	2,517
68	56	683.7	26,000	1.2	0.7	26.000	5.06	3.413	17,537		38,802	0.73	2.565
63	53	851.7	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	3,195
58	50	871.3	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	3,268
53	47	1041.7	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	3,907
48	43	854.2	26,000	1.2	0.7	26,000	5.06	3.413	17.537		38,802	0.73	3,204
43	40	754.1	26,000	1.2	0.7	26.000	5.06	3.413	17,537		38,802	0.73	2.829
38	36	488.9	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	1,834
33	32	258.7	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	970
28	27	87.2	26,000	1.2	0.7	26,000	5.06	3.413	17,537		38,802	0.73	327

Application 16,000 2.5

k₩h≖

kWh=

33,795 >

5.16 >

Condenser Capacity	1,300,000	Bluh	Btuh Capacity	
Ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	236,364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99		1,300,000	
Total Refer v	v/ Compressor	6.50		116

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	• •	(Btuh)	(Btuh)	(unitless)	(kWh)
113	74	1.8	116,249	1.1	0.5	116,249	6.30	3.413	62,977	179,226	1.00	33
108	72	27.6	116,249	1.1	0.5	116,249	6.20	3.413	63,993	180,242	1.00	517
103	70	138.8	116,249	1.1	0.5	116,249	6.30	3.413	62,977	179,226	1.00	2,561
98	68	246.9	116,249	1.1	0.5	116.249	6.40	3.413	61.993	178,242	1.00	4,485
93	66	322.0	116,249	1.1	0.5	116,249	6.50	3,413	61,040	177,289	1.00	5,759
88	66	380.8	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	4,767
83	63	526.0	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	6,585
78	61	530.6	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	6,643
73	59	671.0	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	8,400
68	56	683.7	116,249	1.1	0.6	116,249	6.50	3,413	61,040	158,977	0.70	8,559
63	53	851.7	116,249	1.1	0.6	116,249	6.50	3,413	61,040	158,977	0.70	10,663
58	50	871.3	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	10,908
53	47	1041.7	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	13,041
48	43	854.2	116,249	1.1	0.6	116.249	6.50	3.413	61,040	158,977	0.70	10,694
43	40	754.1	116,249	1.1	D.6	116,249	6.50	3.413	61,040	158,977	0.70	9,441
38	36	488.9	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	6,121
33	32	258.7	116,249	1.1	0.6	116,249	6.50	3.413	61,040	158,977	0.70	3,239
28	27	87.2	116,249	1.1	0.6	115,249	6.50	3.413	61,040	158,977	0.70	1,092

Application 55,770 8.8

kWh= 113.507 > 18.45 >

kWh≂

-

Condenser Capacity	1,300,000	Btuh	Btuh Capacity	
Ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	236,364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99		1,300,000	
Total Refer v	v/ Compressor	9.30		

151,600

Bin Tem pe rature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	E	Calculated Stuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	· ·	• •	(Btuh)		(Btuh)	(unitiess)	(kWh)
113	74	1.8	151,600	1.1	1,1	151,600	9.15	3.413	56,548		208,148	1.00	30
108	72	27.6	151,600	1.1	1.1	151,600	9.15	3.413	56,548		208,148	1.00	457
103	70	138.8	151,600	1.1	1,1	151,600	9.25	3.413	55,936		207,536	1.00	2,275
98	68	246.9	151,600	1.1	1.1	151,600	9.30	3.413	55.636		207,236	1.00	4,025
93	66	322.0	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	3.832
88	66	380.8	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	4,531
83	63	526.0	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	6,259
78	61	530.6	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	6,314
73	59	671.0	151,600	1.1	1.2	151.600	9.30	3.413	55,636		192,214	0.73	7,985
68	56	683.7	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	8.136
63	53	851.7	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	10,135
58	50	871.3	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	10,368
53	47	1041.7	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	12,396
48	43	854.2	151,600	1.1	1.2	151,600	9.30	3.413	55.636		192,214	0.73	10,165
43	40	754.1	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	8.974
38	36	488.9	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	5,818
33	32	258.7	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	3,078
28	27	87.2	151,600	1.1	1.2	151,600	9.30	3.413	55,636		192,214	0.73	1,038

Application 105,858 16.6

kWh= 105.915 kWh= 16.57 =

Condenser Capacity	1,300,000	Btuh	Bluh Capacity	
ice Cream Condensing Circuits	2	circuits	26,263	
LT#1 Condensing Circuits	7	circuits	91,919	
MT#1 Condensing Circuits	18	circuits	235,364	
MT#2 Condensing Circuits	27	circuits	354,545	
AC Condensing Circuits	45	circuits	590,909	
Total Circuits	99		1,300,000	
Total Refer w	v/ Compressor	11 12		

240.600

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(8tuh)	(unitiess)	(unitless)	(Btuh)	(Btu/Watt-hr)	• • • • •	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	1.8	240,600	1.1	1.1	240,600	10.57	3.413	77,689	318,289	1.00	41
108	72	27.6	240,600	1.1	1.1	240,600	10.70	3.413	76,745	317,345	1.00	621
103	70	138.8	240,600	1.1	1.1	240,600	10.84	3.413	75,753	316,353	1.00	3,081
98	68	246.9	240,600	1.1	1.1	240,600	11.12	3.413	73.846	314,446	1.00	5,342
93	66	322.0	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	5.086
88	66	380.8	240,600	1,1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	6,015
83	63	526.0	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	8,308
78	61	530.6	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	8,381
73	59	671.0	240,600	1.1	1.2	240.600	11.12	3.413	73,846	294,508	0.73	10,598
68	56	683.7	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	10,799
63	53	851.7	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	13,452
58	50	871.3	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	13,762
53	47	1041.7	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	16,453
48	43	854.2	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	13,492
43	40	754.1	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	11,911
38	36	488.9	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	7,722
33	32	258.7	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	4,086
28	27	87.2	240,600	1.1	1.2	240,600	11.12	3.413	73,846	294,508	0.73	1,377

Application 140,557

kWh= 140.527 = kWh= 22.76 =

Condenser Capacity	1,300,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	2	circuits	26,263
LT#1 Condensing Circuits	7	circuits	91,919
MT#1 Condensing Circuits	18	circuits	236.364
MT#2 Condensing Circuits	27	circuits	354,545
AC Condensing Circuits	45	circuits	590,909
Total Circuits	99		1,300,000
Total Refer v	v/ Compressor	0.00	

Bin Temperature (°F) 113	Coincident Wet-Bulb (°F) 7 4	Hour per bin (hours) 1.8	AC Load (tons) 30.00	AC Load (Btuh) 360,000	Equivalent Btuh rejected for AC (Btuh) 360,000	Compressor Efficiency, EER (Btu/Watt-hr) 21.47	(Btu/Watt-hr) 3.413	Compressor Btuh rejected due to work (Btuh) 57,228	Calculated Btuh Rejected, Check (Btuh) 417,228	Load Factor (unitless) 1.00	Compressor Energy Use (kWh) (kWh) 30
108	72	27.6	30.00	360,000	360,000	21.47	3.413	57,228	417,228	1.00	463
103	70	138.8	28.68	344,160	344,160	21.47	3.413	54,710	398,870	1.00	2,225
98	68	246.9	24.26	291,120	291,120	21.47	3.413	46,278	337,398	1.00	3,348
93	66	322.0	19.85	238,200	238,200	21.47	3.413	37,866	276,066	1.00	3,572
88	66	380.8	15.44	185,280	185,280	21.47	3.413	29,453	214,733	1.00	3,286
83	63	526.0	11.03	132,360	132,360	21.47	3.413	21,041	153,401	1.00	3,243
78	61	530.6	6.62	79,440	79,440	21.47	3.413	12,628	92,068	1.00	1,963
73	59	671.0	2.21	26,520	26,520	21.47	3.413	4,216	34,952	2.00	1,658
68	56	683.7								2.00	1,000
63	53	851.7									
58	50	871.3									
53	47	1041.7									
48	43	854.2									
43	40	754.1									
38	36	488.9									
33	32	258.7									
28	27	87.2									

 Application

 kWh≃
 19,788 ±
 18,970

 kWh=
 16.77 ±
 17

Notes

-

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Condenser Capacity	1,300,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	26,263
LT#1 Condensing Circuits	7	circuits	91,919
MT#1 Condensing Circuits	18	circuits	236,364
MT#2 Condensing Circuits	27	circuits	354,545
AC Condensing Circuits	45	circuits	590,909
Total Circuits	99		1,300,000
Total Refer v	v/ Compressor	684500.45	

						Calculated Condenser		Total Heat Rejection from	Total Heat Rejection from
Bin	Coincident		AC Heat	Refrigeration	Condenser	Load Factor,	Total Heat	the	the
Temperature	Wet-Bulb	Hour per bin	Rejection	Heat Rejection	Load Factor	Check	Rejection	Application	Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.8	417,228	749,269	1.2	1.1	1,166,497	1,049	1,049,000
108	72	27.6	417,228	749,272	1.2	1.1	1.166,499	1,047	1,047,000
103	70	138.8	398,870	746,653	1.3	1.1	1,145,523	1,027	1,027,000
98	68	246.9	337,398	743,461	1.3	1.2	1,080,859	965	965,000
93	66	322.0	276,066	707,547	1.4	1.3	983.613	903	903,000
88	66	380.8	214,733	684,500	1.5	1.4	899,234	842	842,000
83	63	526.0	153,401	684,500	1.7	1.6	837,901	781	781,000
78	61	530.6	92,068	684,500	1. 8	1.7	776,569	719	719,000
73	59	671.0	34,952	684,500	2.0	1.8	719,452	658	658,000
68	56	683.7	0	684,500	2.1	1.9	684.500	627	627,000
63	53	851.7	0	684,500	2.1	1.9	684,500	627	627,000
58	50	871.3	0	684,500	2.1	1.9	684,500	627	627,000
53	47	1041.7	0	684,500	3.1	1.9	684,500	628	628,000
48	43	854.2	0	684,500	4.1	1.9	684,500	629	629,000
43	40	754.1	0	684,500	5.1	1.9	684,500	630	630,000
38	36	488.9	0	684,500	6.1	1.9	684,500	631	631,000
33	32	258.7	0	684,500	7.1	1.9	684,500	632	632,000
28	27	87.2	0	684,500	2.1	1.9	684,500	627	627,000

-

Total Rejected 14,936.652 13.649 13,649,000 Heat rejection differences are significant

Measure #2 Summary of Findings

	Pre-Retrofit	Post-Retrofit	Measure # Demand	Pre-Retrofit	Post-Retrofit	Measure # Energy	
Evaluation Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	5.16	5.16	0.00	33,795	30,274	3,521	
LT#1 Condensing Circuits	18.45	17.10	1.36	113,507	106,273	7,234	
MT#1 Condensing Circuits	16.57	16.57	0.00	105,815	94,694	11,122	
MT#2 Condensing Circuits	22.76	22.65	0.12	140,527	125,313	15,214	
AC Condensing Circuits	16.77	16.44	0.33	19,788	13,326	6,462	
Total			1.80	kW		43,552	kWh
Total Refer	w/ Compressor	61.47			356,563		

Application Compressor Savings	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings	
Ice Cream Condensing Circuits	2.50	2.50	0.00	16,000	16,375	-375	
LT#1 Condensing Circuits	8.80	8.80	0.00	55,770	57,258	-1,488	
MT#1 Condensing Circuits	16.60	16.60	0.00	105,858	91,310	14,548	
MT#2 Condensing Circuits	22.80	22.80	0.00	140,557	121,005	19,552	
AC Condensing Circuits	17.00	16.00	1.00	18,970	9,084	9,886	
Total			1.00	кW		42,123	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

Applicaton Condenser Analysis	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings (kWh)	Pre-Condenser Rejection	Post- Condenser Rejection	Difference in Condenser Heat Rejection	Measure Energy Savings per Condenser Heat Rejection
			-			• • • •		(Btuh)	(Btuh)	(kWh/Btuh)
Condenser Fan Use	8.00	8.00	0.00	20,877	56,971	-36,094	13,649,000	13,151,000	498,000	-0.07

0.00152956 5.8612E-07

			Difference in			
		Post-	Condenser			
	Pre-Condenser	Condenser	Heat			
	Rejection	Rejection	Rejection			
Evaluation Condenser Analysis	(Btuh)	(Btuh)	(Btuh)	Post-Energy	Post Demand	
Condenser Fan Use	14,936.652	14,618,943	317,708	22,847	8.75472297	

Final Results for Measure #2										
Source	Demand Impact	Energy Impact								
Evaluation	1.80	66,399								
Application	1.00	6,029								

kWh≂

kWh=

123,282 <

=

24.24

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	• •	(Bluh)	(Btuh)	(unitiess)	(kWh)
113	74	2.0	147,847	1.5	1.5	147,847	6.10	3.413	82,722	230,569	1.00	48
108	72	28.0	147,847	1.5	1.5	147,847	6.20	3.413	81,387	229,234	1.00	668
103	70	139.0	147,847	1.5	1.5	147.847	6.30	3.413	80.096	227,943	1.00	3,262
98	68	247.0	147,847	1.5	1.5	147,847	6.50	3.413	77,631	225,478	1.00	5,618
93	66	322.0	147,847	1.5	1.7	147.847	6.60	3.413	76,455	201,365	0.70	5,049
88	66	381.0	147,847	1.5	1.7	147,847	6.60	3.413	76,455	201,365	0.70	5,974
83	63	526.0	147,847	1.5	1.7	147,847	6.80	3.413	74,206	199,791	0.70	8,005
78	61	531.0	147,847	1.5	1.7	147.847	6.90	3.413	73.131	199,038	0.70	7,964
73	59	671.0	147,847	1.6	1.7	147,847	7.00	3.413	72,086	198,307	0.70	9,921
68	56	684.0	147,847	1.6	1.7	147,847	7.20	3.413	70,084	196,906	0.70	9,832
63	53	852.0	147,847	1.6	1.8	147,847	7.40	3.413	68,189	195,580	0.70	11,916
58	50	871.0	147,847	1.6	1.8	147,847	7.50	3.413	67,280	194,943	0.70	12,019
53	47	1042.0	147,847	1.6	1.8	147.847	7.80	3.413	64,693	193,132	0.70	13,826
48	43	854.0	147,847	1.6	1.8	147,847	8.60	3.413	58,675	188,919	0.70	10,277
43	40	754.0	147,847	1.7	1.8	147,847	8.70	3.413	58,000	188,447	0.70	8,969
38	36	489.0	147,847	1.7	1.8	147,847	8.70	3.413	58,000	188,447	0.70	5,817
33	32	259.0	147,847	1.7	1.8	147,847	8.70	3.413	58,000	188,447	0.70	3,081
28	27	87.0	147,847	1.7	1.8	147.847	8.70	3.413	58,000	188,447	0.70	1,035

Application 128,092

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)		(Btu/Watt-hr)	• •	(Btuh)	(unitless)	(kWh)
113	74	2.0	428885	1.00	0.6	428,885	9.39	3.413	155,888	584,773	1.00	91
108	72	28.0	428885	1.00	0.6	428,885	9.39	3.413	155,888	584,773	1.00	1,279
103	70	139.0	428885	1.00	0.6	428,885	9.49	3.413	154,245	583,130	1.00	6,282
98	68	247.0	428885	1.00	0.6	428.885	9.73	3.413	150,440	579,325	1.00	10,887
93	66	322.0	428885	0.73	0.6	428,885	9.92	3.413	147,559	536,603	0.73	10,163
88	66	381.0	428885	0.73	0.6	428,885	9.92	3.413	147,559	536,603	0.73	12,025
83	63	526.0	428885	0.73	0.6	428,885	10.50	3.413	139,408	530, 6 53	0.73	15,684
78	61	531.0	428885	0.73	0.6	428,885	10.50	3.413	139,408	530,653	0.73	15,833
73	59	671.0	428885	0.73	0.7	428,885	10.88	3.413	134,539	527,098	0.73	19,309
68	56	684.0	428885	0.73	0.7	428,885	11.26	3.413	129,999	523,784	0.73	19,019
63	53	852.0	428885	0.73	0.7	428,885	11.61	3.413	126,080	520,923	0.73	22,976
58	50	871.0	428885	0.73	0.7	428,885	11.92	3.413	122,801	518,530	0.73	22,877
53	47	1042.0	428885	0.73	0.7	428,885	12.38	3.413	118,238	515,199	0.73	26,352
48	43	854.0	428885	0.73	0.7	428.885	13.97	3.413	104,781	505,375	0.73	19,139
43	40	754.0	428885	0.73	0.7	428,885	14.39	3.413	101,722	503,142	0.73	16,405
38	36	489.0	428885	0.73	0.7	428,885	14.39	3.413	101,722	503,142	0.73	10,639
33	32	259.0	428885	0.73	0.7	428,885	14.39	3.413	101,722	503,142	0.73	5,635
28	27	87.0	428885	0.73	0.7	428,885	14.39	3.413	101,722	503,142	0.73	1,893

Application 236,435 45.7

kWh≃ 236,488 = kWh= 45.67 ≠

61068.XLS

Condenser Capacity	2,425,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	2.0	307,541	1.5	2.2	307,541	12.26	3.413	85,615	393,156	1.00	50
108	72	28.0	307,541	1.5	2.2	307,541	12.41	3.413	84,580	392,121	1.00	694
103	70	139.0	307,541	1.5	2.2	307,541	12.72	3.413	82,519	390,060	1.00	3,361
98	68	247.0	307,541	1.5	2.2	307.541	13.09	3.413	80,186	387,727	1.00	5,803
93	66	322.0	307,541	1.5	2.3	307,541	13.28	3.413	79,039	365,239	0.73	5,444
88	66	381.0	307,541	1.5	2.3	307,541	13.28	3.413	79,039	365,239	0.73	6,441
83	63	526.0	307,541	1.5	2.4	307,541	13.84	3.413	75,841	362,905	0.73	8,532
78	61	531.0	307,541	1.5	2.4	307,541	13.84	3.413	75,841	362,905	0.73	8,614
73	59	671.0	307,541	1.5	2.4	307.541	14.21	3.413	73,866	361,463	0.73	10,601
68	56	684.0	307,541	1.5	2.4	307,541	14.58	3.413	71,992	360,095	0.73	10,532
63	53	852.0	307,541	1.5	2.4	307,541	15.05	3.413	69,743	358,454	0.73	12,710
58	50	871.0	307,541	1.6	2.4	307,541	15.76	3.413	66,601	356,160	0.73	12,408
53	47	1042.0	307,541	1.6	2.4	307,541	16.23	3.413	64,673	354,752	0.73	14,414
48	43	854.0	307,541	1.6	2.5	307.541	18.63	3.413	56,341	348,670	0.73	10,291
43	40	754.0	307,541	1.6	2.5	307,541	19.05	3.413	55,099	347,763	0.73	8,886
38	36	489.0	307,541	1.6	2.5	307,541	19.05	3.413	55,099	347,763	0.73	5,763
33	32	259.0	307,541	1.6	2.5	307,541	19.05	3.413	55,099	347,763	0.73	3,052
28	27	87.0	307,541	1.6	2.5	307,541	19.05	3.413	55,099	347,763	0.73	1,025

Application 128,596 25.1

kWh= 128.621 =

25.08 =

kWh=

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)		(Btu/Watt-hr)	• •	(Btuh)	(unitless)	(kWh)
113	74	2.0	50.00	600,000	600,000	17.77	3.413	115,239	715,239	1.00	68
108	72	28.0	44.12	529,440	529,440	19.24	3.413	93,918	623,358	1.00	770
103	70	139.0	38.24	458,880	458,880	21.44	3.413	73,048	531,928	1.00	2,975
98	68	247.0	32.35	388,200	388,200	25.17	3.413	52,639	440,839	1.00	3,810
93	66	322.0	26.47	317,640	317,640	29.94	3.413	36,209	353,849	1.00	3,416
88	66	381.0	20.59	247,080	247,080	34.68	3.413	24,316	271,396	1.00	2,714
83	63	526.0	14.71	176,520	176,520	49.62	3.413	12,142	188,662	1.00	1,871
78	61	531.0	8.82	105,840	105,840	55.79	3.413	6,475	112,315	1.00	1,007
73	59	671.0	2.94	35,280	35,280	60.72	3.413	1,983	37,263	1.00	390
68	56	684.0									
63	53	852.0									
58	50	871.0									
53	47	1042.0									
48	43	854.0									
43	40	754.0									
38	36	489.0									
33	32	259.0									
28	27	87.0									
											47 000

Application kWh= 17,022 = 16,995 33.76 = 34

kWh=

Condenser Capacity	2425000	Btuh	Btuh Capacity	
Ice Cream Condensing Circuits	8	circuits	195,960	
LT#1 Condensing Circuits	14	circuits	342,929	
LT#2 Condensing Circuits	0	circuits	0	
MT#1 Condensing Circuits	35	circuits	857,323	
MT#2 Condensing Circuits	24	circuits	587,879	
AC Condensing Circuits	18	circuits	440,909	
Total Circuits	99		2,425,000	

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	2.0	715,239	1,381,868	1.2	1.2	2,097,107	2,097	2,097,000
108	72	28.0	623,358	1,379,499	1.2	1.2	2,002,857	2,005	2,005,000
103	70	139.0	531,928	1,374,230	1.3	1.3	1,906,158	1,907	1,907,000
98	68	247.0	440,839	1,363,645	1.3	1.3	1,804,485	1,810	1,810,000
93	66	322.0	353,849	1,256,121	1.4	1.5	1,609,970	1,717	1,717,000
88	66	381.0	271,396	1,256,121	1.5	1.6	1,527,517	1,635	1,635,000
83	63	526.0	188,662	1,241,749	1.6	1.7	1,430,411	1,545	1,545,000
78	61	531.0	112,315	1,240,996	1.7	1.8	1,353,311	1,466	1,466,000
73	59	671.0	37,263	1,235,269	1.8	1.9	1,272,532	1,386	1,386,000
68	56	684.0	0	1,228,350	1.8	2.0	1,228,350	1,344	1,344,000
63	53	852.0	0	1,219,798	1.8	2.0	1,219,798	1,340	1,340,000
58	50	871.0	0	1,214,474	1.8	2.0	1,214,474	1,334	1,334,000
53	47	1042.0	0	1,206,531	1.8	2.0	1,206,531	1,329	1,329,000
48	43	854.0	0	1,181,579	1.8	2.1	1,181,579	1,312	1,312,000
43	40	754.0	0	1,178,887	1.9	2.1	1,178,887	1,309	1,309,000
38	36	489.0	0	1,178,887	1.9	2.1	1,178,887	1,309	1,309,000
33	32	259.0	0	1,178,887	1.9	2.1	1,178,887	1,309	1,309,000
28	27	87.0	0	1,178,887	1.9	2.1	1,178,887	1,309	1,309,000

Total Rejected 25,770,629 27,463 27,463,000

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	Check	id, Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)		(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	2.0	103,700	1.2	1.1	103,700	4.70	3.413	75,304	179,004	1.00	44
108	72	28.0	103,700	1.2	1.1	103,700	4.70	3.413	75,304	179,004	1.00	618
103	70	139.0	103,700	1.2	1.1	103,700	4.70	3.413	75,304	179,004	1.00	3,067
98	68	247.0	103,700	1.2	1.1	103,700	4.70	3.413	75,304	179,004	1.00	5,450
93	66	322.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	5,186
88	66	381.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	6,137
83	63	526.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	8,472
78	61	531.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	8,553
73	59	671.0	103,700	1.2	1.2	103,700	4.70	3.413	75.304	158,672	0.73	10,808
68	56	684.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	11,017
63	53	852.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	13,723
58	50	871.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	14,029
53	47	1042.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	16,783
48	43	854.0	103,700	1.2	1.2	103,700	4.70	3.413	75.304	158,672	0.73	13,755
43	40	754.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	12,144
38	36	489.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	7,876
33	32	259.0	103,700	1.2	1.2	103,700	4.70	3.413	75,304	158,672	0.73	4,172
28	27	87.0	103,700	1.2 🏷	1.2	103,700	4.70	3.413	75,304	158,672	0.73	1,401

Application 143,337

kWh= 143,234 = kWh= 22.06 =

22.1

Condenser Capacity	2,425,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	8	circults	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)	Estimated Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	· ·	(BUII) 147,847	(Blu/wall-III) 5.30	3.413	95,208	243,055	(unitiess) 1.00	(KWII) 56
113	74	2.0	147,847	1.1	1.4			3.413				
108	72	28.0	147,847	1.1	1.4	147,847	5.30		95,208	243,055	1.00	781
103	70	139.0	147,847	1.1	1,4	147,847	5.30	3.413	95,208	243,055	1.00	3,877
98	68	247.0	147,847	1.1	1.4	147.847	5.30	3.413	95,208	243,055	1.00	6,890
93	66	322.0	147.847	1,1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	6.557
88	66	381.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	7,759
83	63	526.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	10,711
78	61	531.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	10,813
73	59	671.0	147,847	1.1	1.6	147.847	5.30	3.413	95,208	217,349	0.73	13,664
68	56	684.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	13,929
63	53	852.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	17,350
58	50	871.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	17,737
53	47	1042.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	21,219
48	43	854.0	147,847	1.1	1.6	147.847	5.30	3.413	95,208	217,349	0.73	17,391
43	40	754.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217 349	0.73	15,354
38	36	489.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	9,958
33	32	259.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	5,274
28	27	87.0	147,847	1.1	1.6	147,847	5.30	3.413	95,208	217,349	0.73	1,772

Application 179,932 27.7

kWh≖ 181.093 ≖ kWh≖ 27.90 ≖

Condenser Capacity	2.425.000	Bluh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	•		(Btuh)	(unitless)	(kWh)
113	74	2.0	428,885	1.1	0.0	428,885	8.58	3.413	170,604	599,489	1.00	100
108	72	28.0	428,885	1.1	0.0	428,885	8.58	3.413	170,604	599,489	1.00	1,400
103	70	139.0	428,885	1.1	0.0	428,885	8.58	3.413	170,604	599,489	1.00	6,948
98	68	247.0	428,885	1.1	0.0	428,885	8.58	3.413	170,604	599,489	1.00	12,347
93	66	322.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	11,750
88	66	381.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	13,903
83	63	526.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	19,194
78	61	531.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	19,376
73	59	671.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553.426	0.73	24,485
68	56	684.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	24,959
63	53	852.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	31,090
58	50	871.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	31,783
53	47	1042.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	38,023
48	43	854.0	428,885	1.2	0.0	428.885	8.58	3.413	170,604	553,426	0.73	31,163
43	40	754.0	428,885	1.2	0.0	428,885	8.58	3.413	170,604	553,426	0.73	27,514
38	36	489.0	428.885	1.2	0.0	428.885	8.58	3.413	170,604	553,426	0.73	17,844
33	32	259.0	428,885	1.1	0.0	428,885	8.58	3.413	170,604	553,426	0.73	9,451
28	27	87.0	428,885	1.1	0.0	428,885	8.58	3.413	170,604	553,426	0.73	3,175

Application 324,536 50

kWh= 324,502 =

kWh= 49.99 =

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	в	Calculated tuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	• •	• •		(Btuh)	(unitiess)	(kWh)
113	74	2.0	307,541	1.1	1.4	307,541	10.54	3.413	99,586		407,127	1.00	58
108	72	28.0	307,541	1.1	1.4	307,541	10.54	3.413	99,586		407,127	1.00	817
103	70	139.0	307,541	1.1	1,4	307,541	10.54	3.413	99,586		407,127	1.00	4,056
98	68	247.0	307,541	1.1	1.4	307,541	10.54	3.413	99.586		407.127	1.00	7,207
93	66	322.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	6.859
88	66	381.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	8,115
83	63	526.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	11,204
78	61	531.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	11,310
73	59	671.0	307,541	1.1	1.5	307,541	10.54	3.413	99.586		380,239	0.73	14,292
68	56	684.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	14,569
63	53	852.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	18,148
58	50	871.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	18,553
53	47	1042.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	22,195
48	43	854.0	307,541	1.1	1.5	307.541	10.54	3.413	99.586		380,239	0.73	18,190
43	40	754.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	16,060
38	36	489.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	10,416
33	32	259.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	5,517
28	27	87.0	307,541	1.1	1.5	307,541	10.54	3.413	99,586		380,239	0.73	1,853

Application 189,271

k₩h≖

kWh=

189.420 =

29.18 **≃**

29.2

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

1 I. I.

i -

L.

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Loed	AC Load	Equivalent Btuh rejected for AC	Efficiency, EER		Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)		
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)	(Btu/Watt-hr)		• •		(Btuh)	(unitless)	(kWh)		
113	74	2.0	50.00	600,000	600,000	23.58	3.413	86,845		686,845	1.00	51		
108	72	28.0	44.12	529,440	529,440	24.11	3.413	74,947		604,387	1.00	615		
103	70	139.0	38.24	458,880	458,880	24.11	3.413	64,959		523,839	1.00	2,646		
98	68	247.0	32.35	388,200	388,200	24.11	3.413	54,953		443,153	1.00	3,977		
93	66	322.0	26.47	317,640	317,640	24.11	3.413	44,965		362,605	1.00	4,242		
88	66	381.0	20.59	247,080	247,080	24.11	3.413	34,977		282,057	1.00	3,904		
83	63	526.0	14.71	176,520	176,520	24.11	3.413	24,988	Í.	201,508	1.00	3,851		
78	61	531.0	8.82	105,840	105,840	24.11	3.413	14,983		120,823	1.00	2,331		
73	59	671.0	2.94	35,280	35,280	24.11	3.413	4,994		40,274	1.00	982		
68	56	684.0												
63	53	852.0												
58	50	871.0												
53	47	1042.0												
48	43	854.0												
43	40	754.0												
38	36	489.0												
33	32	259.0												
28	27	87.0												
											kWh= kWh=	22,599 25.45	=	lication 22,578 25

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587,879
AC Condensing Circuits	18	circuits	440,909
Total Circuits	99		2,425,000

						Calculated		Total Heat	Total Heat
				D	A	Condenser			Rejection from
Bin	Coincident	l terre e e e ble	AC Heat	Refrigeration	Condenser	Load Factor,	Total Heat	the	the
Temperature	Wet-Bulb	Hour per bin	Rejection	Heat Rejection	Load Factor	Check	Rejection	Application	Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	2.0	686,845	1,428,675	1.2	1.1	2,115,520	2,106	2,106,000
108	72	28.0	604,387	1,428,675	1.2	1.2	2,033,062	2,024	2,024,000
103	70	139.0	523,839	1,428,675	1.2	1.2	1,952,514	1,943	1,943,000
98	68	247.0	443,153	1,428,675	1.3	1.3	1,871,828	1,862	1,862,000
93	66	322.0	362,605	1,309,686	1.4	1.5	1,672,290	1,782	1,782,000
88	66	381.0	282,057	1,309,686	1.4	1.5	1,591,742	1,701	1,701,000
83	63	526.0	201,508	1,309,686	1.5	1.6	1,511,194	1,620	1,620,000
78	61	531.0	120,823	1,309,686	1.6	1.7	1,430,508	1,540	1,540,000
73	59	671.0	40,274	1,309,686	1.7	1.8	1,349,960	1,459	1,459,000
68	56	684.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000
63	53	852.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000
58	50	871.0	0	1,309,686	1.7	1.9	1.309,686	1,419	1,419,000
53	47	1042.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000
48	43	854.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000
43	40	754.0	0	1,309,686	1.7	1.9	1,309.686	1,419	1,419,000
38	36	489.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000
33	32	259.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000
28	27	87.0	0	1,309,686	1.7	1.9	1,309,686	1,419	1,419,000

Total Rejected 27,315.788 28,808 28,808,000 Heat rejection differences are significant

Measure #2 Summary of Findings

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Evaluation Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	22.06	20.41	1.65	143,234	108,202	35,032	
LT#1 Condensing Circuits	27.90	24.24	3.66	181,093	123,282	57,811	
MT#1 Condensing Circuits	49.99	45.67	4.31	324,502	236,488	88.014	
MT#2 Condensing Circuits	29.18	25.08	4.09	189,420	128,621	60,800	
AC Condensing Circuits	25.45	33.76	-8.32	22,599	17,022	5,577	
Total			5.39	kW		247,234	kWh
Total Refer w/ Compressor		122.92			668,919		

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	22.10	20.40	1.70	143,337	108,153	35,184	
LT#1 Condensing Circuits	27.70	24.10	3.60	179,932	128,092	51,840	
MT#1 Condensing Circuits	50.00	45.70	4.30	324,536	236,435	88,101	
MT#2 Condensing Circuits	29.20	25.10	4.10	189,271	128,596	60,675	
AC Condensing Circuits	25.00	34.00	-9.00	22,578	16,995	5,583	
Total			4.70	kW		241,383	kWh

Applicaton Condenser Analysis	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings (kWh)	Pre- Condenser Rejection (Btuh)	Post- Condenser Rejection (Btuh)	Difference in Condenser Heat Rejection (Btuh)	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh)
			•		•••	• •	• •		(Btuh)	(kWh/Btuh)
Condenser Fan Use	8.00	8.00	0.00	20,720	77,076	-56,356	28,808,000	27,463.000	1.345,000	-0.04

0.00280654 2.913E-07

	Pre-	Post-	Difference in Condenser	Savings per Condenser			
Evaluation Condenser Analysis	Condenser Rejection (Btuh)	Condenser Rejection (Btuh)	Heat Rejection (Btuh)	Heat Rejection (kWh/Btuh)	Post-Energy	Post Demand	
Condenser Fan Use	27,315.788	25,770.629	1,545,160	-64,743	72,326	7.5070105	

Final Results for Measure #2										
Source	Demand Impact	Energy Impact								
Evaluation	5.39	182,491								
Application	4.70	185,027								

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	5	circuits	121,250
LT#1 Condensing Circuits	12	circuits	291,000
MT#1 Condensing Circuits	33	circuits	800,250
MT#2 Condensing Circuits	20	circuits	485,000
AC Condensing Circuits	30	circuits	727,500
Total Circuits	100		

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)	
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	• •	(Btu/Watt-hr)		(Btuh)	(unitiess)	(kWh)	
113	74	1.8	36,457	2.1	2.0	36,457	5.36	3.413	23,214	59,671	1.00	12	
108	72	27.6	36,457	2.0	2.0	36,457	5.47	3.413	22,747	59,204	1.00	184	
103	70	138.8	36,457	2.1	2.1	36,457	5.68	3.413	21,906	58,363	1.00	891	
98	68	246.9	36,457	2.1	2.1	36,457	6.00	3.413	20,738	57.195	1.00	1,500	
93	66	322.0	36,457	2.1	2.4	36,457	6.10	3.413	20,398	51,348	0.73	1,405	
88	66	380.8	36,457	2.1	2.4	36,457	6.10	3.413	20,398	51,348	0.73	1,661	
83	63	526.0	36,457	2.2	2.4	36,457	6.35	3.413	19,595	50,761	0.73	2,205	
78	61	530.6	36,457	2.2	2.4	36,457	6.43	3.413	19.351	50,583	0.73	2,196	
73	59	671.0	36,457	2.2	2.4	36,457	6.50	3.413	19,143	50,431	0.73	2,747	
68	56	683.7	36,457	2.2	2.4	36,457	6.72	3.413	18,516	49,974	0.73	2,708	
63	53	851.7	36,457	2.2	2.4	36,457	6.87	3.413	18,112	49,679	0.73	3,299	
58	50	871.3	36,457	2.2	2.4	36,457	6.94	3.413	17,929	49,545	0.73	3,341	
53	47	1041.7	36,457	2.2	2.4	36,457	6.94	3.413	17.929	49,545	0.73	3,995	
48	43	854.2	36,457	2.2	2.4	36,457	6.94	3.413	17,929	49,545	0.73	3,276	
43	40	754.1	36,457	2.2	2.4	36,457	6.94	3.413	17,929	49,545	0.73	2,892	
38	36	488.9	36,457	2.2	2.4	36,457	6.94	3.413	17,929	49,545	0.73	1,875	
33	32	258.7	36,457	2.2	2.4	36,457	6.94	3.413	17,929	49,545	0.73	992	
28	27	87.2	36,457	2.2	2.4	36,457	6.94	3.413	17,929	49,545	0.73	334	
	2.					, -	-						

kWh=	35,513	Agrees	35,513
k₩h=	6.80	Agrees	6.8

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	121,250
LT#1 Condensing Circuits	12	circuite	291,000
MT#1 Condensing Circuits	33	circuits	800,250
MT#2 Condensing Circuits	20	circuits	485,000
AC Condensing Circuits	30	circuits	727,500
Total Circuits	100		

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Bluh)	(Btuh)	(unitiess)	(kWh)
113	74	1.8	139,450	1.8	1.4	139,450	6.90	3.413	68,977	208,427	1.00	36
108	72	27.6	139,450	1.8	1.4	139,450	6.90	·3.413	68,977	208,427	1.00	558
103	70	138.8	139,450	1.8	1.4	139,450	7.10	3.413	67,034	206,484	1.00	2,726
98	68	246.9	139,450	1.8	1.4	139,450	7.30	3.413	65,198	204,648	1.00	4,716
93	56	322.0	139,450	1.8	1.6	139,450	7.40	3.413	64,317	184,472	0.70	4,248
88	66	380.8	139,450	1.8	1.6	139,450	7.40	3.413	64,317	184,472	0.70	5,023
83	63	526.0	139,450	1.8	1.6	139,450	7.60	3.413	62,624	183,287	0.70	6,756
78	61	530.6	139,450	1.8	1.6	139,450	7.70	3.413	61,811	182,718	0.70	6,727
73	59	671.0	139,450	1.8	1.6	139.450	7.80	3.413	61.018	182,163	0.70	8,397
68	56	683.7	139,450	1.8	1.6	139,450	8.00	3.413	59,493	181,095	0.70	8,342
63	53	851.7	139,450	1.8	1.6	139,450	8.20	3.413	58,042	180,079	0.70	10,139
58	50	871.3	139,450	1.8	1.6	139,450	8.40	3.413	56,660	179,112	0.70	10,125
53	47	1041.7	139,450	1.8	1.6	139,450	8.70	3.413	54,706	177,744	0.70	11,688
48	43	854.2	139,450	1.8	1.6	139,450	8.70	3.413	54,706	177,744	0.70	9,584
43	40	754.1	139,450	1.8	1.6	139,450	8.70	3.413	54,706	177,744	0.70	8,461
38	36	488.9	139,450	1.8	1.6	139,450	8.70	3.413	54,706	177,744	0.70	5,486
33	32	258.7	139,450	1.8	1.6	139,450	8.70	3.413	54,706	177,744	0.70	2,903
28	27	87.2	139,450	1.8	1.6	139,450	8.70	3.413	54,706	177,744	0.70	978

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	121,250
LT#1 Condensing Circuits	12	circuits	291,000
MT#1 Condensing Circuits	33	circuits	800,250
MT#2 Condensing Circuits	20	circuits	485,000
AC Condensing Circuits	30	circuits	727,500
Total Circuits	100		

B in Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Stuh rejected for case Load		Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	() ()
113	74	1.8	363,886	1.9	1.6	363,886	9.92	3.413	125,196	489,082	1.00	Ì
108	72	27.6	363,886	1.9	1.6	363,886	9.92	3.413	125,196	489,082	1.00	1.0
103	70	138.8	363,886	1.9	1.7	363,886	10.30	3.413	120,577	484,463	1.00	4,90
98	68	246.9	363,886	2.0	1.7	363.886	10.69	3.413	116,178	480,064	1.00	8,40
93	66	322.0	363,886	2.0	1.8	363,886	11.07	3.413	112,190	445,785	0.73	7,72
88	66	380.8	363,886	2.0	1.8	363,886	11.07	3.413	112,190	445,785	0.73	9,138
83	63	526.0	363,886	1.9	1.8	363,886	11.45	3.413	108,467	443,067	0.73	12,20
78	61	530.6	363,886	1.9	1.8	363,886	11.61	3.413	106,972	441,975	0.73	12,14
73	59	671.0	363,886	1.9	1.8	363,886	11.76	3.413	105,607	440,979	0.73	15,15
68	56	683.7	363,886	2.0	1.8	363,886	12.23	3.413	101,549	438,017	0.73	14,850
63	53	851.7	363,886	2.0	1.8	363,886	12.53	3.413	99,118	436,242	0.73	18,056
58	50	871.3	363,886	2.0	1.8	363,886	12.84	3.413	96,725	434,495	0.73	18,026
53	47	1041.7	363,886	2.0	1.9	363,886	13.28	3.413	93,520	432,155	0.73	20,837
48	43	854.2	363,886	2.0	1.9	363,886	14.11	3.413	88,019	428,140	0.73	16.081
43	40	754.1	363,886	1.9	1.9	363,886	14.39	3,413	86,306	426,889	0.73	13,921
38	36	488.9	363,886	1.9	1.9	363,886	14.39	3.413	86,306	426,889	0.73	9,025
33	32	258.7	363,886	1.9	1.9	363,886	14.39	3.413	86,306	426,889	0.73	4,776
28	27	87.2	363,886	1.9	1.9	363,886	14.39	3.413	86,306	426,889	0.73	1,610

Application kWh= 187.932 Different Result 160,882

kWh= 36.68 Different Result 29.6

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	121,250
LT#1 Condensing Circuits	12	circuits	291,000
MT#1 Condensing Circuits	33	circuits	800,250
MT#2 Condensing Circuits	20	circuits	485,000
AC Condensing Circuits	30	circuits	727,500
Total Circuits	100		

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected Check	, Load Factor	Compressor Energy Use (kWh)	
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)		(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	(kWh)	
113	74	1.8	199,000	2.0	2.0	199,000	14.31	3.413	47,462	246,462	1.00	25	
108	72	27.6	199,000	2.0	2.0	199,000	14.53	3.413	46,744	245,744	1.00	378	
103	70	138.8	199,000	2.0	2.0	199,000	14.74	3.413	46,078	245,078	1.00	1,874	
98	68	246.9	199,000	2.0	2.0	199.000	15.40	3.413	44,103	243,103	1.00	3,190	
93	66	322.0	199,000	2.0	2.1	199,000	15.61	3.413	43,510	230,762	0.73	2,997	
88	66	380.8	199,000	2.0	2.1	199,000	15.61	3.413	43,510	230,762	0.73	3,544	
83	63	526.0	199,000	2.0	2.1	199,000	16.33	3.413	41,591	229,362	0.73	4.679	
78	61	530.6	199,000	2.0	2.1	199,000	16.60	3.413	40,915	228,868	0.73	4,643	
73	59	671.0	199,000	2.0	2.1	199,000	16.88	3.413	40.236	228,372	0.73	5,775	
68	56	683.7	199,000	2.0	2.1	199,000	17.71	3.413	38,350	226,996	0.73	5,608	
63	53	851.7	199,000	2.1	2.1	199,000	18.26	3.413	37,195	226,153	0.73	6,776	
58	50	871.3	199,000	2.1	2.2	199,000	19.07	3.413	35,615	224,999	0.73	6,637	
53	47	1041.7	199,000	2.1	2.2	199,000	19.81	3.413	34,285	224,028	0.73	7,639	
48	43	854.2	199,000	2.1	2.2	199.000	20.81	3.413	32.638	222,825	0.73	5,963	
43	40	754.1	199,000	2.1	2.2	199,000	21.31	3.413	31,872	222,266	0.73	5,141	
38	36	488.9	199,000	2.1	2.2	199,000	21.31	3.413	31,872	222,266	0.73	3,333	
33	32	258.7	199,000	2.1	2.2	199.000	21.31	3.413	31,872	222,266	0.73	1,764	
28	27	87.2	199,000	2.1	2.2	199,000	21.31	3.413	31,872	222,266	0.73	594	

			Application
kWh=	70,560	Agrees	70,559
kWh≖	13.91	Agrees	13.9

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	121,250
LT#1 Condensing Circuits	12	circuits	291,000
MT#1 Condensing Circuits	33	circuits	800,250
MT#2 Condensing Circuits	20	circuits	485,000
AC Condensing Circuits	30	circuits	727,500
Total Circuits	100		

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)		(Btu/Watt-hr)		(Btuh)	(unitless)	(kWh)
113	74	1.8	34.00	408,000	408,000	20.38	3.413	68,327	476,327	1.00	36
108	72	27.6	34.00	408,000	408,000	20.74	3.413	67,141	475,141	1.00	543
103	70	138.8	34.39	412,680	412,680	21.11	3.413	66,721	479,401	1.00	2,713
98	68	246.9	27.30	327,600	327,600	24.18	3.413	46,241	373,841	1.00	3,345
93	66	322.0	21.30	255,600	255,600	30.10	3.413	28,982	284,582	1.00	2,734
88	66	380.8	15.20	182,400	182,400	32.03	3.413	19,436	201,836	1.00	2,169
83	63	526.0	9.10	109,200	109,200	35.91	3.413	10,379	119,579	1.00	1,600
78	61	530.6	3.10	37,200	37,200	35.91	3.413	3,536	40,736	1.00	550
73	59	671.0									
68	56	683.7									
63	53	851.7									
58	50	871.3									
53	47	1041.7									
48	43	854.2									
43	40	754.1									
38	36	488.9									
33	32	258.7									
28	27	87.2						1			

 Application

 kWh=
 13,690
 Agrees
 13,699

 kWh=
 20.02
 Agrees
 20

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	121,250
LT#1 Condensing Circuits	12	circuits	291,000
MT#1 Condensing Circuits	33	circuits	800,250
MT#2 Condensing Circuits	20	circuits	485,000
AC Condensing Circuits	30	circuits	727,500
Total Circuits	100		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.8	476,327	1,003,643	1.8	1.6	1,479,970	1,353	1,353,000
108	72	27.6	475,141	1,002,457	1.8	1.6	1,477,598	1,359	1,359,000
103	70	138.8	479,401	994,388	1.8	1.6	1,473,789	1,357	1,357,000
98	68	246.9	373,841	985,010	1.9	1.8	1,358,850	1,247	1,247,000
93	66	322.0	284,582	912,366	2.1	2.0	1,196.948	1,154	1,154,000
88	66	380.8	201,836	912,366	2.3	2.2	1,114,202	1,072	1.072,000
83	63	526.0	119,579	906,476	2.5	2.4	1.026,055	990	990,000
78	61	530.6	40,736	904,144	2.7	2.6	944,880	909	909,000
73	59	671.0	0	901,946	2.8	2.7	901,946	870	870,000
68	56	683.7	0	896,081	2.8	2.7	896,081	866	866,000
63	53	851.7	0	892,152	2.8	2.7	892,152	864	864,000
58	50	871.3	0	888,151	2.8	2.7	888,151	863	863,000
53	47	1041.7	0	883,473	2.8	2.7	883,473	862	862,000
48	43	854.2	0	878,254	2.8	2.8	878,254	862	862,000
43	40	754.1	0	876,445	2.8	2.8	876.445	863	863,000
38	36	488.9	0	876,445	2.8	2.8	876,445	863	863,000
33	32	258.7	0	876,445	2.8	2.8	876,445	863	863,000
28	27	87.2	0	876,445	2.8	2.8	876,445	863	863,000

Total Rejected 18,918.131 18.080 18,080,000 Heat rejection differences are significant

Ice Cream, Measure #1

.....

Condenser Capacity	2,425,000	Bluh	Btuh Capacity
Ice Cream Condensing Circuits	4	circuits	97,000
LT#1 Condensing Circuits	11	circuits	266,750
MT#1 Condensing Circuits	29	circuits	703,250
MT#2 Condensing Circuits	17	circuits	412,250
AC Condensing Circuits	38	circuits	921,500
High Temperature	1	circults	24,250
Total Circuits	100		2,425,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	alculated h Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)		
113	74	1.8	36,457	1.6	1.6	36,457	5.06	3.413	24,590	61,047	1.00	13		
108	72	27.6	36,457	1.6	1.6	36,457	5.06	3.413	24,590	61,047	1.00	199		
103	70	138.8	36,457	1.6	1.6	36,457	5.06	3.413	24,590	61,047	1.00	1,000		
98	68	246.9	36,457	1.6	1.6	36,457	5.06	3.413	24,590	61.047	1.00	1,779		
93	66	322.0	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	1,694		
88	66	380.8	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	2,003		
83	63	526.0	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	2,767		
78	61	530.6	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	2,791		
73	59	671.0	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	3.529		
68	56	683.7	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	3,5 96		
63	53	851.7	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	4,480		
58	50	871.3	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54.408	0.73	4,583		
53	47	1041.7	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	5,479		
48	43	854.2	36,457	1.6	1.8	36.457	5.06	3.413	24,590	54.408	0.73	4.493		
43	40	754.1	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	3,966		
38	36	488.9	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	2,571		
33	32	258.7	36,457	1.6	1.8	36,457	5.06	3.413	24,590	54,408	0.73	1,361		
28	27	87.2	36,457	1.6	1.8	36,457	5.06	3.413	24.590	54,408	0.73	459		Application
											kWh=	46.761	Agrees	46,762

46,762 7.2 46.761 Agrees kWh= 7.20 Agrees

LT#1, Measure #1

Condenser Capacity loc Cream Condensing Circuits LT#1 Condensing Circuits MT#1 Condensing Circuits MT#2 Condensing Circuits AC Condensing Circuits High Temperature Total Circuits	2,425,000 4 11 29 17 38 1 100	Btuh circuits circuits circuits circuits circuits circuits	Btuh Capacity 97,000 266,750 703,250 412,250 921,500 24,250 2,425,000
---	--	--	--

Bin Temperature (°F) 113 108 103 98 93 88 93 88 83 78 73 68 63 58 53 58 53 48 43 38 33 28	Coincident Wet-Bulb (*F) 74 72 70 68 66 66 63 61 59 56 53 50 47 43 40 36 32 27	Hour per bin (hours) 1.8 27.6 138.8 246.9 322.0 380.8 526.0 530.6 671.0 683.7 851.7 871.3 1041.7 854.2 754.1 488.9 258.7 87.2	Refrigeration Case Load (Btuh) 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450 139,450	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess) 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		Estimated Compressor Efficiency, EER (Btu/Watt-hr) 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30	Conversion Constant (Blu/Watt-hr) 3.413	Compressor Bluh rejected due to work (Bluh) 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546 75,546	1	Calculated Btuh Rejected, (Btuh) 214,996 214,996 214,996 214,996 214,996 214,996 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333 192,333	Load Factor (unitiess) 1.00 1.00 1.00 0.70 0.70 0.70 0.70 0.70	Compressor Energy Use (kWh) (kWh) 40 611 3,072 5,465 4,989 5,900 8,150 8,221 10,397 10,594 13,197 13,500 16,141 13,235 11,684 7,575 4,008 1,351	
---	--	--	---	-------------------------------------	---	--	---	---	--	---	--	---	--	--

Application

 138,131
 No Application for Comparison

 22.13
 No Application for Comparison
 kWh= kWh=

MT#1, Measure #1

Condenser Capacity lee Cream Condensing Circuits LT#1 Condensing Circuits MT#1 Condensing Circuits MT#2 Condensing Circuits AC Condensing Circuits High Temperature Total Circuits	2,425,000 4 11 29 17 38 1 100	Btuh circuits circuits circuits circuits circuits circuits	Btuh Capacity 97,000 266,750 703,250 412,250 921,500 24,250 2,425,000
---	--	--	--

1 3 7

1

Case Losi Factor Factor Splatation Splatation	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Herrigeration Application iib Hour per bin Case Load Factor Fi (hours) (Btuh) (unitless) (unitless) 1.8 363,886 1.7 138.8 363,886 1.7 138.8 363,886 1.7 322.0 363,886 1.7 380.8 363,886 1.7 526.0 363,886 1.7 530.6 363,886 1.7 671.0 363,886 1.7 6851.7 363,886 1.7 851.7 363,886 1.7 851.7 363,886 1.7 851.7 363,886 1.7 851.7 363,886 1.7 854.2 363,886 1.7 854.2 363,886 1.7 754.1 363,886 1.7 486.9 363,886 1.7 95.8 1.7 55.7 95.8 1.7 55.7 95.8	perature Wet-Bult (*F) (*F) 113 74 108 72 103 70 98 68 83 65 88 66 83 63 78 61 73 59 68 56 53 53 58 50 53 47 48 43 43 36 36 32	Bin Tempera ("F) 113 108 93 88 83 78 78 73 68 63 53 68 63 53 58 53 58 53 38 48 43 38 33 28
---	---	---	--	--

Application kWh= 253,941 Different Result 195,786 30.2

kWh# 39.13 Different Result

•

MT#2, Measure #1

-

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	4	circuits	97.000
LT#1 Condensing Circuits	11	circuits	266,750
MT#1 Condensing Circuits	29	circuits	703,250
MT#2 Condensing Circuits	17	circuits	412,250
AC Condensing Circuits	38	circuits	921,500
High Temperature	1	circuits	24,250
Total Circuits	100		2,425,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	(Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	• •	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)		
113	74	1.8	199,000	1.6	1.6	199,000	12.99	3.413	52,285	251,285	1.00	28		
108	72	27.6	199,000	1.6	1.5	199,000	12.99	3.413	52,285	251,285	1.00	423		
103	70	138.8	199,000	1.6	1.6	199,000	12.99	3.413	52,285	251,285	1.00	2,126		
98	68	246.9	199,000	1.6	1.6	199,000	12.99	3.413	52,285	251,285	1.00	3,782		
93	66	322.0	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	3,601		
88	66	380.B	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	4,259		
83	63	526.0	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	5,882		
78	61	530.6	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	5,934		
73	59	671.0	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	7.504		
68	56	683.7	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	7,646		
63	53	851.7	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	9,525		
58	50	871.3	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	9,744		
53	47	1041.7	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	11,650		
48	43	854.2	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	9,553		
43	40	754.1	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	8,433		
38	36	488.9	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	5.467		
33	32	258.7	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	2,893		
28	27	87.2	199,000	1.6	1.7	199,000	12.99	3.413	52,285	237,168	0.73	975		
											kWh= kWh=	99,425 15,32	Agrees Agrees	Application 99,435 15.3

AC, Measure #1

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	4	circuits	97,000
LT#1 Condensing Circuits	11	circuits	266,750
MT#1 Condensing Circuits	29	circuits	703,250
MT#2 Condensing Circuits	17	circuits	412,250
AC Condensing Circuits	38	circuits	921,500
High Temperature	1	circuits	24,250
Total Circuits	100		2,425,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Caiculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)	•	(Btu/Watt-hr)		(Btuh)	(unitless)	(kWh)
113	74	1.8	34.00	408.000	408,000	19.29	3.413	72,188	480,188	1.00	38
108	72	27.6	34.00	408,000	408,000	19.29	3.413	72,188	480,188	1.00	584
103	70	138.8	34.39	412,680	412,680	19.29	3.413	73,016	485,696	1.00	2,969
98	68	246.9	27.30	327,600	327,600	19.29	3.413	57,963	385,563	1.00	4,193
93	66	322.0	21.30	255,600	255,600	19.29	3.413	45,224	300,824	1.00	4,267
88	66	380.8	15.20	182,400	182,400	19.29	3.413	32,272	214,672	1.00	3,601
83	63	526.0	9.10	109,200	109,200	19.29	3.413	19,321	128,521	1.00	2,978
78	61	530.6	3.10	37,200	37,200	19.29	3.413	6,582	43,782	1.00	1,023
73	59	671.0									
68	56	683.7									
63	53	851.7									
58	50	871.3									
53	47	1041.7									
48	43	854.2									
43	40	754.1									
38	36	488.9									
33	32	258.7									
28	27	87.2									

			Application
kWh=	19,653	Disagrees	28,417
kWh=	21.15	Disagrees	25

Notes

-

-

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	4	circuits	97,000
LT#1 Condensing Circuits	11	circuits	266,750
MT#1 Condensing Circuits	29	circuits	703,250
MT#2 Condensing Circuits	17	circuits	412,250
AC Condensing Circuits	38	circuits	921,500
High Temperature	1	circuits	24,250
Total Circuits	100		2,425,000

.

						Calculated Condenser		Total Heat Bejection from	Total Heat Rejection from
Bin	Coincident		AC Heat	Refrigeration	Condenser	Load Factor,	Total Heat	the	the
Temperature	Wet-Bulb	Hour per bin	Rejection	Heat Rejection	Load Factor	Check	Rejection	Application	Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.8	480,188	1,024,758	1.7	1.6	1,504,945	1,452	1,452,000
108	72	27.6	480,188	1,024,758	1.7	1.6	1,504,945	1,452	1,452,000
103	70	138.8	485,696	1,024,758	1.7	1.6	1,510,453	1,432	1,432,000
98	68	246.9	385,563	1,024,758	1.8	1.7	1,410,320	1,348	1,348,000
93	66	322.0	300,824	945,281	1.9	1.9	1,246,104	1,264	1,264,000
88	66	380.8	214,672	945,281	2.1	2.1	1,159,953	1,180	1,180,000
83	63	526.0	128,521	945,281	2.2	2.3	1,073,802	1,096	1,096,000
78	61	530.6	43,782	945,281	2.4	2.5	989,063	1,013	1,013,000
73	59	671.0	0	945,281	2.6	2.6	945,281	929	929,000
68	56	683.7	0	945,281	2.7	2.6	945,281	887	887,000
63	53	851.7	0	945,281	2.7	2.6	945,281	887	887,000
58	50	871.3	0	945,281	2.7	2.6	945,281	887	887,000
53	47	1041.7	0	945,281	2.7	2.6	945,281	887	887,000
48	43	854.2	0	945,281	2.7	2.6	945,281	887	887,000
43	40	754.1	0	945,281	2.7	2.6	945,281	887	887,000
38	36	488.9	0	945,281	2.7	2.6	945,281	887	887,000
33	32	258.7	0	945,281	2.7	2.6	945,281	887	887,000
28	27	87.2	0	945,281	2.7	2.6	945,281	887	887,000

Total Rejected 19,852,393 19,149 19,149,000 Heat rejection differences are significant

Measure #2 Summary of Findings

			Measure #			Measure #	
Evaluation Compressor Savings	Pre-Retrofit Demand	Post-Retrofit Demand	Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Energy Savings	
Ice Cream Condensing Circuits	7.20	6.80	0.40	46,761	35,513	11,247	
LT#1 Condensing Circuits	22.13	20.21	1.92	138,131	106,894	31,238	
MT#1 Condensing Circuits	39,13	36.68	2,45	253,941	187,932	66,009	
MT#2 Condensing Circuits	15.32	13.91	1.41	99,425	70,560	28,865	
AC Condensing Circuits	21.15	20.02	1.13	19,653	13,690	5,963	
Total			7.32	kW		143,322	kWh
Total Refer	w/ Compressor	85.97			450,145		

	Pre-Retrofit	Post-Retrofit	Measure # Demand	Pre-Retrofit	Post-Retrofit	Measure # Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	7.20	6.80	0.40	46,762	35,513	11,249	
LT#1 Condensing Circuits	16.40	15.80	0.60	105,450	92,228	13,222	
MT#1 Condensing Circuits	30.20	29.60	0.60	195,786	160,882	34,904	
MT#2 Condensing Circuits	15.30	13.90	1.40	99,435	70,559	28,876	
AC Condensing Circuits	25.00	20.00	5.00	28,417	13,699	14,718	
Total			8.00	kW		102,969	kWh
			8			102969	

Dark Green font is an estimate because this level of detail was missing from the application.

Measure # Pre-Retrofit Post-Retrofit Demand Pre-Ret Applicaton Condenser Analysis Demand Demand Savings Ener Condenser Fan Use 8.00 8.00 0.00 11,6-	it Post-Retrofit Energy 47.064	Measure # Energy Savings (kWh) -35,421	Pre- Condenser Rejection (Btuh) 19,149,000	Post- Condenser Rejection (Btuh) 18,080,000	Difference in Condenser Heat Rejection (Btuh) 1,069,000	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh) -0.03
--	--------------------------------------	--	--	---	--	---

0.0026031 4.4248E-07

	Pre-	Post-	Difference in Condenser	Measure Energy Savings per Condenser			
Evaluation Condenser Analysis Condenser Fan Use	Condenser Rejection (Btuh) 19,852.393	Condenser Rejection (Btuh) 18,918,131	Heat Rejection (Btuh) 934,262	Heat Rejection (kWh/Btuh) -30,957	Post-Energy 49,246	Post Demand 8,37085443	

Final Results for Measure #2										
Source	Demand Impact	Energy Impact								
Evaluation	7.32	112,366								
Application	8.00	67,548								

I I I

ice Cream, Measure #2

Condenser Capacity	1,150.000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58.081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

,

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Appilcation Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)		Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)	
113	74	1.0	39,300	(0111110884)	0.5	39,300	4.42	3.413	30,346	69,646	1.00	9	
108	72	8.0	39,300	-	0.5	39,300	4.42	3.413	30,346	69,646	1.00	71	
103	70	53.0	39,300	-	0,5	39,300	4.42	3.413	30,346	69.646	1.00	471	
98	68	159.0	39,300	-	0.5	39,300	4.42	3.413		69,646	1.00	1,414	
93	66	287.0	39,300		0.5	39,300	4.42		30,346 30,346	61,453	0.73	1,863	
88	66			-				3.413		•		2,363	
83	63	364.0 457.0	39,300	-	0.6	39,300	4.42 4.42	3.413	30,346	61,453	0.73 0.73		
			39,300	-	0.6	39,300		3.413	30,346	61,453		2,966	
78	61	581.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	3,771	
73	59	707.0	39,300	-	0.8	39,300	4.42	3.413	30.348	61,453	0.73	4,589	
68	56	804.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	5,219	
63	53	965.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	6,264	
58	50	1100.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	7,140	
53	47	1098.0	39,300	-	0.6	39,300	4.42	3.413	30,346	81,453	0.73	7.127	
48	43	902.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	5,855	
43	40	681.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	4,420	
38	36	397.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	2,577	
33	32	159.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	1,032	
28	27	32.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	208	
											kWh≍	57,357	=

Application 57,364 8.9

kWh≠

8.89

-

....

Condenser Capacity	1,150,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circults	406,566
Total Circuits	99		1,150,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Bluh)	(unitless)	(kWh)
113	74	1.0	99,900	•	0.5	99,900	5.00	3.413	68,192	168,092	1.00	20
108	72	8.0	99,900	•	0.5	99,900	5.00	3.413	68,192	168,092	1.00	160
103	70	53.0	99,900	-	0.5	99,900	5.00	3.413	68,192	168,092	1.00	1,059
98	68	159.0	99,900	-	0.5	99,900	5.00	3.413	68,192	168,092	1.00	3,177
93	66	287.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	4,014
88	66	364.0	99,900		0.6	99,900	5.00	3.413	68,192	147.634	0.70	5,091
83	63	457.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	6,392
78	61	581.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	8,126
73	59	707.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	9,888
68	56	804.0	99,900		0.6	99,900	5.00	3.413	68,192	147.634	0.70	11,245
63	53	965.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	13,496
58	50	1100.0	99,900		0.6	99,900	5.00	3.413	68,192	147,634	0.70	15,385
53	47	1098.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147.634	0.70	15,357
48	43	902.0	99,900		0.6	99,900	5.00	3.413	68,192	147,634	0.70	12,615
43	40	681.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	9,524
38	36	397.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	5,552
33	32	159.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	2,224
28	27	32.0	99,900	•	0. 6	99,900	5.00	3.413	68,192	147,634	0.70	448

Application 128,288

kWh= 123,772 = 19.98 =

k₩h=

19.9

Condenser Capacity	1,150,000	Bluh	Btuh Capacity
Ice Cream Condensing Circuits	з	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature (°F) 113	Coincident Wet-Bulb (°F) 74	Hour per bin (hours) 1.0	Refrigeration Case Load (Btuh) 87,100	Application Factor (unitless)	Calculated Application Factor, Check (unitiess) 0.4	Equivalent Btuh rejected for case Load (Btuh) 87,100	Efficiency, EER		Compressor Bluh rejected due to work (Bluh) 59,454	Calculated Bluh Rejected, Check (Bluh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
108	72	8.0	87,100	-	0.4	87,100	5.00	3.413	59,454 59,454	146,554	1.00	17
103	70	53.0	87,100		0.4	87,100	5.00			146,554	1.00	139
98	68	159.0	87,100	-	0.4	•		3.413	59,454	146,554	1.00	923
93	66	287.0	87,100			87,100	5.00	3.413	59,454	146,554	1.00	2,770
88	66	364.0		•	0.4	87,100	5.00	3.413	59,454	146,554	1.00	5,000
			87,100	•	0.4	87,100	5.00	3.413	59,454	130,502	0.73	4,629
83	63	457.0	87,100	•	0.4	87,100	5.00	3.413	59,454	130,502	0.73	5,811
78	61	581.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	7,388
73	59	707.0	87,100	•	0.4	87,100	5.00	3.413	59,454	130,502	0.73	8,991
68	56	804.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	10,224
63	53	965.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	12,272
58	50	1100.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	13,988
53	47	1098.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	13,963
48	43	902.0	87,100	-	0.4	87,100	5.00	3.413	59,454			
43	40	681.0	87,100		0.4	87,100	5.00			130,502	0.73	11,470
38	36	397.0	87,100			• •		3.413	59.454	130,502	0.73	8,660
33	32			-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	5,048
		159.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	2,022
28	27	32.0	87,100	-	0.4	87,100	5.00	3.413	59.454	130,502	0.73	407

Application 113,282

17.4

kWh≃ 113,723 ∝

kWh= 17.42 =

Condenser Capacity	1,150,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Bluh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	1.0	198,450	•	1.0	198,450	8.77	3.413	77,230	275,680	1.00	23
108	72	8.0	198,450	•	1.0	198,450	8.96	3.413	75,593	274,043	1.00	177
103	70	53.0	198,450	-	1.0	198,450	9.05	3.413	74,841	273,291	1.00	1,162
98	68	159.0	198,450	-	1.0	198,450	9.10	3.413	74,430	272,880	1.00	3,467
93	66	287.0	198,450	-	1.1	198,450	9.15	3.413	74,023	252,487	0.73	4,544
88	66	364.0	198,450	-	1.1	198,450	9.20	3.413	73,621	252,193	0.73	5,732
83	63	457.0	198,450		1.1	198,450	9.25	3.413	73,223	251,903	0.73	7,157
78	61	581.0	198,450	-	1.1	198,450	9.34	3.413	72,517	251,387	0.73	9,012
73	59	707.0	198,450	-	1.1	198,450	9.39	3.413	72,131	251,106	0.73	10,908
68	56	804.0	198,450		1.1	198,450	9.49	3.413	71,371	250,551	0.73	12,273
63	53	965.0	198,450	-	1.1	198,450	9.54	3.413	70,997	250,278	0.73	14,654
58	50	1100.0	198,450	-	1.1	198,450	9.92	3.413	68,277	248,292	0.73	16,064
53	47	1098.0	198,450	-	1.1	198,450	10.30	3.413	65,758	245,454	0.73	15,443
48	43	902.0	198,450	•	1.1	198,450	11.07	3.413	61,184	243,115	0.73	11,804
43	40	681.0	198,450	-	1.1	198,450	12.07	3.413	56,115	239,414	0.73	8.174
38	36	397.0	198,450		1.1	198,450	12.07	3.413	56,115	239,414	0.73	4,765
33	32	159.0	198,450	-	1.1	198,450	12.07	3.413	58,115	239,414	0.73	1,908
28	27	32.0	198,450	•	1.1	198,450	12.07	3.413	56,115	239,414	0.73	384

Application 127,637 22.6

kWh=

kWh=

127,651 =

22.63 =

Condenser Capacity	1,150,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	239,000	•	0.9	239,000	9.96	3.413	81,898	320,898	1.00	24
108	72	8.0	239,000	-	0.9	239,000	10.20	3.413	79,971	318,971	1.00	187
103	70	53.0	239,000	•	0.9	239,000	10.31	3.413	79,118	318,118	1.00	1.229
98	68	159.0	239,000	-	1.0	239,000	10.43	3.413	78,208	317,208	1.00	3,643
93	66	287.0	239,000	•	1.0	239,000	10.57	3.413	77,172	295,335	0.73	4.737
88	66	364.0	239,000	-	1.0	239,000	10.70	3.413	76.234	294,651	0.73	5,935
83	63	457.0	239,000	•	1.0	239,000	10.98	3.413	74.290	293.232	0.73	7,262
78	61	581.0	239,000	-	1.0	239,000	11.12	3.413	73,355	292.549	0.73	9,116
73	59	707.0	239,000	-	1.0	239,000	11.26	3.413	72,443	291,883	0.73	10,955
68	56	804.0	239,000	-	t.0	239,000	11.53	3.413	70,746	290,645	0.73	12,166
63	53	965.0	239,000	-	1.0	239,000	11.81	3.413	69,069	289,421	0.73	14,258
58	50	1100.0	239,000		1.0	239,000	11.97	3.413	68,146	288,747	0.73	16,033
53	47	1098.0	239,000	-	1.1	239,000	12.30	3.413	65,318	287,412	0.73	15,575
48	43	902.0	239,000	-	1.1	239,000	12.96	3.413	62,940	284,946	0.73	12,143
43	40	681.0	239,000	-	1,1	239,000	14.08	3.413	57,934	281,292	0.73	8.438
38	36	397,0	239,000	-	1.1	239,000	14.08	3.413	57,934	281,292	0.73	
33	32	159.0	239,000	-	1.1	239,000	14.08	3.413	57,934			4.919
28	27	32.0	239,000	-	1.1	239,000	14.08			281,292	0.73	1,970
			200,000	-		233,000	14.08	3.413	57,934	281,292	0.73	397

Application 128,992

kWh= 128,985 =

24.00 =

kWh≖

24

AC, Measure #2

Condenser Capacity	1,150,000	Btuh	Btuh Capacit
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267.172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Load (tons)	AC Load (Btuh)	Equivalent Btuh rejected for AC (Btuh)	Efficiency, EER	Conversion Constant (Btu/Wat1-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	30.00	360,000	360.000	18.33	3.413	67,031	427,031	1.00	20
108	72	8.0	30.00	360,000	360,000	18.96	3.413	64,804	424,804	1.00	152
103	70	53.0	30.47	365,640	365,640	20.15	3.413	61,932	427,572	1.00	962
98	68	159.0	25.78	309,360	309,360	22.78	3.413	46,350	355,710	1.00	2,159
93	66	287.0	21.09	253,080	253,080	26.19	3.413	32,981	286,061	1.00	2,773
88	66	364.0	16.41	196,920	196,920	31.01	3.413	21,673	218,593	1.00	2,311
83	63	457.0	11.72	140,640	140.640	38.09	3.413	12,602	153,242	1.00	1,687
78	61	581.0	7.03	84,360	84,360	40.12	3.413	7,176	91,536	1.00	1,222
73	59	707.0	2.34	28,080	28,080	23.66	3.413	4,051	32,131	1.00	839
68	56	804.0			20,000	20.00	0.410	4,001	52,101	1.00	000
63	53	965.0									
58	50	1100.0									
53	47	1098.0									
48	43	902.0									
43	40	681.0									
38	36	397.0									
33	32	159.0									
28	27	32.0									

 Application

 kWh=
 12,125
 >
 8,754

 kWh=
 19.64
 =
 20

Condenser Capacity	1,150,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	427,031	834,317	-	0.9	1,261,348	1,407	1,407,000
108	72	8.0	424,804	830,752	-	0.9	1,255,556	1,402	1,402,000
103	70	53.0	427,572	829,147	-	0.9	1,256,719	1,352	1,352,000
98	68	159.0	355,710	827,826	-	1.0	1,183,535	1,280	1,280,000
93	66	287.0	286,061	756,909	-	1.1	1,042,970	1,210	1,210,000
88	66	364.0	218,593	755,931	-	1.2	974,524	1,142	1,142,000
83	63	457.0	153,242	754,222	-	1.3	907,463	1,075	1,075,000
78	61	581.0	91,536	753,024	-	1.4	844,560	1,012	1,012,000
73	59	707.0	32,131	752,076	-	1.5	784,207	966	966,000
68	56	804.0	0	750,283	-	1.5	750,283	963	963,000
63	53	965.0	0	748,785	-	1.5	748,785	961	961,000
58	50	1100.0	0	746,126	-	1.5	746,126	957	957,000
53	47	1098.0	0	742,952	-	1.5	742,952	953	953,000
48	43	902.0	0	737,148	-	1.6	737,148	945	945,000
43	40	681.0	0	729,793	-	1.6	729,793	935	935,000
38	36	397.0	0	729,793	-	1.6	729,793	935	935,000
33	32	159.0	0	729,793	-	1.6	729,793	935	935,000
28	27	32.0	0	729,793	-	1.6	729,793	935	935,000

Total Rejected 16,155,348 19,365 19,365,000

Ice Cream, Measure #1

Condenser Capacity	1,150,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	408,566
Total Circuits	99		1.150.000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)	(Btu/Watt-hr)		(Bluh)	(Btuh)	(unitiess)	(kWh)
113	74	1.0	39,300	-	0.5	39,300	4.42	3.413	30,346	69,646	1.00	9
108	72	8.0	39,300	-	0.5	39,300	4.42	3.413	30,346	69,646	1.00	71
103	70	53.0	39,300	•	0.5	39,300	4.42	3.413	30,346	69,646	1.00	471
98	68	159.0	39,300	•	0.5	39,300	4.42	3.413	30,346	69,646	1.00	1,414
93	66	287.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	1.863
88	66	364.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	2,363
83	63	457.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	2,966
78	61	581.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	3,771
73	59	707.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	4,589
68	56	804.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	5,219
63	53	965.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	6,264
58	50	1100.0	39,300		0.6	39,300	4.42	3.413	30,346	61,453	0.73	7,140
53	47	1098.0	39,300		0.6	39,300	4.42	3.413	30,346	61.453	0.73	7,127
48	43	902.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	5,855
43	40	681.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	4,420
38	36	397.0	39,300	-	0.6	39,300	4.42	3.413	30,346	61,453	0.73	2,577
33	32	159.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	1,032
28	27	32.0	39,300	•	0.6	39,300	4.42	3.413	30,346	61,453	0.73	208

Application 57,364 8.9

kWh= 57,357 =

3.89 =

kWh=

LT#1, Measure #1

Condenser Capacity	1,150,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Estimated Compressor Efficiency, EER		Compressor Bluh rejected due to work	Calculated Btuh Rejected Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	(kWh)
113	74	1.0	99,900	•	0.5	99,900	5.00	3.413	68,192	168,092	1.00	20
108	72	8.0	99,900	•	0.5	99,900	5.00	3.413	68,192	168,092	1.00	160
103	70	53.0	99, 90 0	-	0.5	99,900	5.00	3.413	68,192	168.092	1.00	1,059
98	68	159.0	99,900	-	0.5	99,900	5.00	3.413	68,192	168.092	1.00	3,177
93	66	287.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	4.014
88	66	364.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	5,091
83	63	457.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	6,392
78	61	581.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	8,126
73	59	707.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147.634	0.70	9,888
68	56	804.0	99,900	-	0.6	99,800	5.00	3.413	68,192	147,634	0.70	11,245
63	53	965.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	13,496
58	50	1100.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	15,385
53	47	1098.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	15,357
48	43	902.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	12,615
43	40	681.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	9,524
38	36	397.0	99,900	•	0.6	99,900	5.00	3.413	68,192	147,634	0.70	5,552
33	32	159.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	2,224
28	27	32.0	99,900	-	0.6	99,900	5.00	3.413	68,192	147,634	0.70	448

Application 128,387

kWh* 123.772 =

19.98 <

k₩h=

19.9

Condenser Capacity	1,150,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature (°F) 113	Coinci de nt Wet-Bulb (°F) 74	Hour per bin (hours) 1.0	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Efficiency, EER (Btu/Watt-hr)	• •	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
-			87,100	•	0.0	87,100	5.00	3.413	59,454	146,554	1.00	17
108	72	8.0	87,100	•	0.4	87,100	5.00	3.413	59,454	146,554	1.00	139
103	70	53.0	87,100	•	0.4	87,100	5.00	3.413	59,454	146,554	1.00	923
98	68	159.0	87,100	-	0.4	87,100	5.00	3.413	59,454	146,554	1.00	2,770
93	66	287.0	87,100	-	0.4	87,100	5.00	3.413	59,454	148,554	1.00	5,000
88	66	364.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	4,629
83	63	457.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	5,811
78	61	581.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130.502	0.73	7,388
73	59	707.0	87,100		0.4	87.100	5.00	3.413	59,454	130,502	0.73	8,991
68	56	804.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	10,224
63	53	965.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	12,272
58	50	1100.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	13,988
53	47	1098.0	87,100	-	0.4	87,100	5.00	3.413	59.454	130,502	0.73	13,963
48	43	902.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502	0.73	11,470
43	40	681.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	8,660
38	36	397.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73	5,048
33	32	159.0	87,100		0.4	87,100	5.00	3.413	59,454	130,502		
28	27	32.0	87,100	-	0.4	87,100	5.00	3.413	59,454	130,502	0.73 0.73	2,022 407

Application 113,282 17.4

kWh= 113,723 = kWh= 17.42 =

MT#1, Measure #1

Condenser Capacity	1,150,000	Bluh	Bluh Capacity
Ice Cream Condensing Circuits	3	circuits	34.848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58.081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin Temperature (°F) 113 108	Coincident Wet-Bulb (°F) 74 72	Hour per bin (hours) 1.0 8.0	Refrigeration Case Load (Btuh) 198,450 198,450	Application Factor (unitless) - -	Calculated Application Factor, Check (unitless) 1.0 1.0	Equivalent Btuh rejected for case Load (Btuh) 198,450 198,450		Conversion Constant (Btu/Watt-hr) 3.413 3.413	Compressor Btuh rejected due to work (Btuh) 78,941 78,941	Calculated Btuh Rejected, Check (Btuh) 277,391 277,391	Load Factor (unitless) 1.00 1.00	Compressor Energy Use (kWh) (kWh) 23 185
103	70	53.0	198,450	•	1.0	198,450	8.58	3.413	78,941	277,391	1.00	1,226
98	68	159.0	198,450	-	1.0	198,450	8.58	3.413	78,941	277.391	1.00	3,678
93	66	287.0	198,450	-	1.0	198,450	8.58	3.413	78,941	277,391	1.00	6,638
68	66	364.0	198,450	-	1.0	198,450	8.58	3.413	78,941	256,077	0.73	6,146
83	63	457.0	198,450	-	1.0	198,450	8.58	3.413	78,941	256,077	0.73	7,716
78	61	581.0	198,450	-	1.0	198,450	8.58	3.413	78,941	256.077	0.73	9,810
73	59	707.0	198,450	-	1.0	198,450	8.58	3.413	78.941	256,077	0.73	11,937
68	56	804.0	198,450	-	1.0	198,450	8.58	3,413	78,941	256,077	0.73	13,575
63	53	965.0	198,450	-	1.0	198,450	8.58	3,413	78,941	256,077	0.73	16,293
58	50	1100.0	198,450	-	1.0	198,450	8.58	3.413	78,941	256,077	0.73	18,573
53	47	1098.0	198,450	•	1.0	198,450	8.58	3.413	76,941	256,077	0.73	18,539
48	43	902.0	198,450	•	1.0	198,450	8.58	3.413	78,941	256,077	0.73	15,230
43	40	681.0	198,450	-	1.0	198,450	8.58	3.413	78,941	256.077	0.73	11,498
38	36	397.0	198,450	•	1.0	198,450	8.58	3.413	78,941	256,077	0.73	6,703
33	32	159.0	198,450	-	1.0	198,450	8.58	3.413	78,941	256,077	0.73	2,685
28	27	32.0	198,450	•	1.0	198,450	8.58	3.413	78,941	256,077	0.73	540

Application 149,258 23.1

k₩h=

kWh=

150,996 =

23.13 =

MT#2, Measure #1

Condenser Capacity	1,150,000	Bluh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302.020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150.000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Stuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Bluh)	(Btuh)	(unitless)	(kWh)
113	74	1.0	239,000	-	0.9	239,000	9.85	3.413	82,813	321,813	1.00	24
108	72	8.0	239,000	•	0.9	239,000	9.85	3.413	82,813	321,813	1.00	194
103	70	53.0	239,000	-	0.9	239,000	9.85	3.413	82,813	321,813	1.00	1,286
98	68	159.0	239,000	-	0.9	239,000	9.85	3.413	82,813	321,813	1.00	3,858
93	66	287.0	239,000	-	0.9	239,000	9.85	3.413	82,813	321,813	1.00	6,964
88	66	364.0	239,000	•	1.0	239,000	9.85	3.413	82,813	299,453	0.73	6,447
83	63	457.0	239,000	•	1.0	239,000	9.85	3.413	82,813	299,453	0.73	8,095
78	61	581.0	239,000	•	1.0	239,000	9.85	3.413	82,813	299,453	0.73	10,291
73	59	707.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	12,523
68	56	804.0	239,000	•	1.0	239,000	9.85	3.413	82,813	299,453	0.73	14,241
63	53	965.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	17,093
58	50	1100.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	19,484
53	47	1098.0	239,000	•	1.0	239,000	9.85	3.413	82,813	299,453	0.73	19,449
48	43	902.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	15,977
43	40	681.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	12,062
38	36	397.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	7,032
33	32	159.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	2,816
28	27	32.0	239,000	-	1.0	239,000	9.85	3.413	82,813	299,453	0.73	567

Application 156,540

24.3

kWh= 158,403 = kWh= 24,26 =

Condenser Capacity	1,150,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406.566
Total Circuits	99		1,150,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Load (tons)	AC Load (Btuh)	Equivalent Btuh rejected for AC (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)	
113	74	1,0	30.00	• •	• •		• •	• •	(Btuh)	(unitiess)	(kWh)	
108	72			360,000	360,000	17.69	3.413	69,456	429,456	1.00	20	
		8.0	30.00	360,000	360,000	17.69	3.413	69,456	429,456	1.00	163	
103	70	53.0	30.47	365,640	365,640	17.69	3.413	70,544	436,184	1.00	1,095	
98	68	159.0	25.78	309,360	309,360	17.69	3.413	59,686	369,046	1.00	2,781	
93	66	287.0	21.09	253,080	253,080	17.69	3.413	48,828	301,908	1.00	4,106	
88	66	364.0	16.41	196,920	196,920	17.69	3.413	37,993	234,913	1.00	4,052	
83	63	457.0	11.72	140,640	140,640	17.69	3.413	27,134	167,774	1.00	3,633	
78	61	581.0	7.03	84,360	84,360	17.69	3.413	16,276	100,636	1.00	2,771	
73	59	707.0	2.34	28,080	28,080	17.69	3.413	5,418	33,498	1.00	1,122	
68	56	804.0										
63	53	965.0										
58	50	1100.0										
53	47	1098.0										
48	43	902.0										
43	40	681.0										
38	36	397.0										
33	32	159.0										
28	27	32.0										
										kWh= kWh=	19,743 20.35	=

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Application 19,748

21

Condenser Capacity	1,150,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	34,848
LT#1 Condensing Circuits	7	circuits	81,313
LT#2 Condensing Circuits	5	circuits	58,081
MT#1 Condensing Circuits	23	circuits	267,172
MT#2 Condensing Circuits	26	circuits	302,020
AC Condensing Circuits	35	circuits	406,566
Total Circuits	99		1,150,000

Bin	Coincident		AC Heat	Refrigeration	Condenser	Calculated Condenser Load Factor,	Total Heat	Total Heat Rejection from the	Total Heat Rejection from the
Temperature	Wet-Bulb	Hour per bin	Rejection	Heat Rejection	Load Factor	Check	Rejection	Application	Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	429,456	836,942	-	0.9	1,266,398	1,330	1,330,000
108	72	8.0	429,456	836,942	-	0.9	1,266,398	1,412	1,412,000
103	70	53.0	436,184	836,942	-	0.9	1,273,126	1,419	1,419,000
98	68	159.0	369,046	836,942	-	1.0	1,205,988	1,352	1,352,000
93	66	287.0	301,908	808,290	-	1.0	1,110,198	1,285	1,285,000
88	66	364.0	234,913	764,617	-	1.2	999,530	1,218	1,218,000
83	63	457.0	167,774	764,617	-	1.2	932,391	1,151	1,151,000
78	61	581.0	100,636	764,617	-	1.3	865,253	1,083	1,083,000
73	59	707.0	33,498	764,617	-	1.4	798,115	1,016	1,016,000
68	56	804.0	0	764,617	-	1.5	764,617	983	983,000
63	53	965.0	0	764,617	-	1.5	764,617	983	983,000
58	50	1100.0	0	764,617	-	1.5	764,617	983	983,000
53	47	1098.0	0	764,617	-	1.5	764,617	983	983,000
48	43	902.0	0	764,617	-	1.5	764,617	983	983,000
43	40	681.0	0	764,617	-	1.5	764,617	983	983,000
38	36	397.0	0	764,617	-	1.5	764,617	983	983,000
33	32	159.0	0	764,617	-	1.5	764,617	983	983,000
28	27	32.0	0	764,617	-	1.5	764,617	983	983,000

Total Rejected 16,598,949 20,113 20,113,000 Heat rejection differences are significant

Measure #2 Summary of Findings

Evaluation Compressor Savings	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings	
Ice Cream Condensing Circuits	8.89	8.89	0.00	57,357	57.357	0	
LT#1 Condensing Circuits	19.98	19.98	0.00	123,772	123.772	Ō	
LT#2 Condensing Circuits	17.42	17.42	0.00	113,723	113,723	õ	
MT#1 Condensing Circuits	23.13	22.63	0.50	150,996	127.651	23.344	
MT#2 Condensing Circuits	24.26	24.00	0.27	158,403	128,985	29.417	
AC Condensing Circuits	20.35	19.64	0.71	19,743	12,125	7.618	
Total			1.48	kW		60,379	kWh
Total Refer	w/ Compressor	102.09			613,255		

	Pre-Retrofit	Post-Retrofit	Measure # Demand	Pre-Retrofit	Post-Retrofit	Measure # Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savinos	
Ice Cream Condensing Circuits	8.90	8.90	0.00	57,364	57,364	0	
LT#1 Condensing Circuits	19.90	19.90	0.00	128.387	128,288	99	
LT#2 Condensing Circuits	17.40	17.40	0.00	113,282	113,282	0	
MT#1 Condensing Circuits	23.10	22.60	0.50	149,258	127.637	21.621	
MT#2 Condensing Circuits	24.30	24.00	0.30	156,540	128,992	27.548	
AC Condensing Circuits	21.00	20.00	1.00	19,748	8.754	10,994	
Total			1.80	kW	-, •.	60,262	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

Applicaton Condenser Analysis Condenser Fan Use	Pre-Retrofit Demand 11.00	Post-Retrofit Demand 11.00	Measure # Demand Savings 0.00	Pre-Retrofit Energy 28,049	Post-Retrofit Energy 74,038	Measure # Energy Savings (kWh) -45,989	Pre- Condenser Rejection (Btuh) 20,113,000 0.00382329	Post- Condenser Rejection (Btuh) 19.365,000 5.6804E-07	Difference in Condenser Heat Rejection (Btuh) 748,000	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh) -0.06
Evaluation Condenser Analysis Condenser Fan Use	Pre- Condenser Rejection (Btuh) 18,598,949	Post- Condenser Rejection (Btuh) 16,155,348	Difference in Condenser Heat Rejection (Btuh) 443,502	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh) -27.274	Post-Energy 61,767	Post Demand 9.17680473				
Final Results for Measure #2 Source Demand Impact Evaluation 1.48 Application 1.80	Energy Impact 33,106 14,273									

Ice Cream, Measure #2

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	308,122
MT#2 Condensing Circuits	12	circuits	367.347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejects Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)	• •	• •	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	1.0	24,800	1.4	1.5	24,800	5.08	3.413	16,662	41,462	1.00	5
108	72	8.0	24,800	1.5	1.5	24,800	5.11	3.413	18,564	41,364	1.00	39
103	70	53.0	24,800	1.5	1.5	24,800	5.13	3.413	16,499	41,299	1.00	256
98	68	159.0	24,800	1.5	1.5	24,800	5.15	3.413	16,435	41,235	1.00	766
93	66	287.0	24,800	1.5	1.7	24,800	5.36	3.413	15,791	35,084	0.65	863
88	66	364.0	24,800	1.5	1.8	24,800	5.47	3.413	15,474	34,858	0.65	1,073
83	63	457.0	24,800	1.5	1.8	24,800	5.68	3.413	14,902	34,486	0.65	1,297
78	61	581.0	24,800	1.5	1.8	24,800	5.78	3.413	14,644	34,319	0.65	1,620
73	59	707.0	24.800	1.5	1.8	24,800	6.00	3.413	14,107	33,970	0.65	1,899
68	56	804.0	24,800	1.6	1.8	24,800	6.28	3.413	13,478	33,561	0.65	2,064
63	53	965.0	24,800	1.6	1.8	24,800	6.35	3.413	13,330	33,464	0.65	2,450
58	50	1100.0	24,800	1.6	1.9	24,800	£.50	3.413	13.022	33,264	0.65	2,728
53	47	1098.0	24,800	1.6	1.9	24,800	6.72	3.413	12,596	32,987	0.65	2,634
48	43	902.0	24,800	1.6	1.9	24,800	6.94	3.413	12,196	32,728	0.65	2,095
43	40	681.0	24,800	1.6	1.9	24,800	6.94	3.413	12,196	32.728	0.65	1,582
38	36	397.0	24,800	1.6	1.9	24,800	6.94	3.413	12,196	32,728	0.65	922
33	32	159.0	24,800	1.6	1.9	24,800	6.94	3.413	12,196	32,728	0.65	369
28	27	32.0	24,800	1.6	1.9	24,800	6.94	3.413	12,196	32.728	0.65	74

Application 22,736 4.9

kWh=

kWh≖

22,736 =

4.88 =

62985.XLS

LT#1, Measure #2

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	40		1,500,000

Bìn Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Bluh)	(unitiess)	(unitless)	(Btuh)	(Btu/Watt-hr)		(Btuh)	(Bluh)	(unitless)	(kWh)
113	74	1.0	50,850	1.1	1.1	50,850	5.70	3.413	30,448	81,298	1.00	8
108	72	8.0	50,850	1.1	1.1	50,850	5.90	3.413	29,415	80,265	1.00	69
103	70	53.0	50,850	1.1	1.1	50,850	5.90	3.413	29,415	80,265	1.00	457
98	68	159.0	50,850	1.1	1.1	50,850	5.90	3.413	29,415	80.265	1.00	1.370
93	66	287.0	50,850	1.1	1.3	50,850	6.10	3.413	28,451	70,766	0.70	1,675
88	66	364.0	50,850	1.1	1.3	50,850	6.10	3.413	28,451	70,766	0.70	2,124
83	63	457.0	50,850	1.1	1.3	50,850	6.30	3.413	27,548	70,133	0.70	2,582
78	61	581.0	50,850	1.2	1.3	50,850	6.30	3.413	27,548	70,133	0.70	3,283
73	59	707.0	50,850	1.2	1.3	50,850	6.40	3.413	27,117	69.832	0.70	3.932
68	56	804.0	50.850	1.2	1.3	50,850	6.60	3.413	26,296	69,257	0.70	4,336
63	53	965.0	50,850	1.2	1.3	50,850	6.70	3.413	25,903	68,982	0.70	5,127
58	50	1100.0	50,850	1.2	1.3	50,850	6.90	3.413	25,152	68,457	0.70	5,675
53	47	1098.0	50,850	1.2	1.4	50,850	7.10	3.413	24,444	67,961	0.70	5,505
48	43	902.0	50,850	1.2	1.4	50,850	7.50	3.413	23,140	67.048	0.70	4.281
43	40	681.0	50,850	1.2	1.4	50,850	8.00	3.413	21,694	66,036	0.70	3,030
38	36	397.0	50,850	1.2	1.4	50,850	8.00	3.413	21,694	66,036	0.70	1,766
33	32	159.0	50,850	1.2	1.4	50,850	8.00	3.413	21,694	66,036	0.70	707
28	27	32.0	50,850	1.2	1.4	50,850	8.00	3.413	21.694	66,036	0.70	142

Application 42,933 8.9

46.070 >

8.92 =

kWh= kWh=

LT#2, Measure #2

Condenser Capacity	1,500,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	з	circuits	91.837
LT#2 Condensing Circuits	4	circults	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367.347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	82,750	0.9	0.9	82,750	5.30	3.413	53,288	136,038	1.00	16
108	72	8.0	82,750	0.9	0.9	82,750	5.50	3.413	51,350	134,100	1.00	120
103	70	53.0	82,750	0.9	0.9	82,750	5.50	3.413	51,350	134,100	1.00	797
98	68	159.0	82,750	0.9	0.9	82,750	5.50	3.413	51,350	134,100	1.00	2.392
93	66	287.0	82,750	0.9	1.1	82,750	5.60	3.413	50,433	115,532	0.65	2,757
88	66	364.0	82,750	0.9	1.1	82,750	5.70	3.413	49,548	114,956	0.65	3,435
83	63	457.0	82,750	0.9	1.1	82,750	5.80	3.413	48,694	114,401	0.65	4,238
78	61	581.0	82,750	0.9	1.1	82,750	5.90	3.413	47,869	113.865	0.65	5,297
73	59	707.0	82,750	0.9	1.1	82,750	€.00	3.413	47,071	113,346	0.65	6.338
68	56	804.0	82,750	0.9	1.1	82,750	6.10	3.413	46,299	112,845	0.65	7,089
63	53	965.0	82,750	0.9	1.1	82,750	6.20	3.413	45,553	112,359	0.65	8,372
58	50	1100.0	82,750	0.9	1.1	82,750	6.30	3.413	44,829	111,889	0.65	9,391
53	47	1098.0	82,750	1.0	1,1	82,750	6.50	3.413	43,450	110,993	0.65	9,086
48	43	902.0	82,750	1.0	1.1	82,750	6.80	3.413	41,533	109,747	0.65	7,135
43	40	681.0	82,750	1.0	1.1	82,750	7.30	3.413	38,688	107,897	0.65	5,018
38	36	397.0	82,750	1.0	1.1	82,750	7.30	3.413	38,688	107,897	0.65	2,925
33	32	159.0	82,750	1.0	1.1	82,750	7.30	3.413	38,688	107,897	0.65	1,172
28	27	32.0	82,750	1.0	1.1	82,750	7.30	3.413	38,688	107,897	0.65	236

Application 77,227 15.5

kWh= 75,813 <

15.61 =

kWh=

MT#1, Measure #2

Condenser Capacity	1,500,000	Bluh	Bluh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91.837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49	0.00110	1.500.000

Application 148,073

kWh≖

kWh≈

148.099 =

29.20 =

48,073 29.2

MT#2, Measure #2

Condenser Capacity	1,500,000	Bluh	Bluh Capacity
ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551.020
Total Circuits	49		1.500,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-br)	Compressor Btuh rejected due to work (Btuh)		Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	290,600	0.9	0.9	290,600	9.96	3.413	99,580		390,180	1.00	29
108	72	8.0	290,600	0.9	0.9	290,600	10.20	3.413	97,237		387,837	1.00	228
103	70	53.0	290,600	0.9	0.9	290,600	10.31	3.413	96,200		386,800	1.00	1,494
98	68	159.0	290,600	0.9	0.9	290,600	10.31	3.413	96,200		386.800	1.00	4,482
93	66	287.0	290,600	0.9	1.0	290,600	10.57	3.413	93,833		351,592	0.65	5,129
88	66	364.0	290,600	0.9	1.0	290,600	10.70	3.413	92,693		350,851	0.65	6,426
83	63	457.0	290,600	0.9	1.0	290,600	10.84	3.413	91,496		350,072	0.65	7,963
78	61	581.0	290,600	0.9	1.1	290,600	11.12	3.413	89,192	And And	348,575	0.65	9,869
73	59	707.0	290,600	1.0	1.1	290,600	11.26	3.413	88,083		347,854	0.65	11,860
68	56	804.0	290,600	1.0	1.1	290,600	11.53	3.413	86,021		346,513	0.65	13,172
63	53	965.0	290,600	1.0	1,1	290,600	11.67	3.413	84,989	14	345,843	0.65	15,619
58	50	1100.0	290,600	1.0	1.1	290,600	11.97	3.413	82,859		344,458	0.65	17,358
53	47	1098.0	290,600	1.0	1.1	290,600	12.30	3.413	80,636		343,013	0.65	16,862
48	43	902.0	290,600	1.0	1.1	290,600	12.96	3.413	76,529		340,344	0.65	13,147
43	40	681.0	290,600	1.0	1.1	290,600	13.87	3.413	71,508		337,080	0.65	9,274
38	36	397.0	290,600	1.0	1.1	290,600	13.87	3.413	71,508		337,080	0.65	5,407
33	32	159.0	290,600	1.0	1.1	290,600	13.87	3.413	71,508		337,080	0.65	2,165
28	27	32.0	290,600	1.0	1.1	290,600	13.87	3.413	71,508		337,080	0.65	436

Application 140,914

29.2

kWh= 140.919 =

29.18 =

kWh=

20

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91.837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature (°F)	Coin cide nt Wet-Bulb (°F)	Hour per bin (hours)	AC Load (tons)	AC Load (Btuh)	Equivalent Btuh rejected for AC (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	1.0	40.00	480,000	480,000			· ·	14 - E	(Btuh)	(unitless)	(kWh)
108	72				•	16.37	3.413	100,076		580,076	1.00	29
		8.0	40.00	480,000	480,000	17.20	3.413	95,247		575,247	1.00	223
103	70	53.0	40.63	487,560	487,560	18.20	3.413	91,431		578,991	1.00	1,420
98	68	159.0	34.38	412,560	412,560	20.02	3.413	70,333		482,893	1.00	3,277
93	66	287.0	28.13	337,560	337,560	23.15	3.413	49,766		387,326	1.00	4,185
88	66	364.0	21.88	262,560	262,560	27.19	3.413	32,958		295,518	1.00	3,515
83	63	457.0	15.63	187,560	187,560	33.00	3.413	19,398		206,958	1.00	2,597
78	61	581.0	9.38	112,560	112,560	35.91	3.413	10,698		123,258	1.00	1,821
73	59	707.0	3.13	37,560	37,560	35.91	3.413	3,570		44,700	2.00	1,479
68	56	804.0			• • • • • • • •			0,070		44,700	2.00	1,479
63	53	965.0										
58	50	1100.0										
53	47	1098.0										
48	43	902.0										
43	40	681.0										
38	36	397.0										
33	32	159.0										
28	27	32.0										

 Application

 kWh=
 18,546
 >
 13,472

 kWh=
 29.32
 =
 29

: `

-

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

						Calculated Condenser		Total Heat Rejection from	Total Heat Rejection from
Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Load Factor, Check	Total Heat Rejection	the Application	the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	580,076	860,256	1.0	1.0	1,440,332	1,575	1,575,000
108	72	8.0	575,247	854,599	1.0	1.0	1,429,845	1,565	1,565,000
103	70	53.0	578,991	852,385	1.0	1.0	1,431,376	1,501	1,501,000
98	68	159.0	482,893	851,342	1.1	1.1	1,334,235	1,405	1,405,000
93	66	287.0	387,326	766,382	1.1	1.3	1,153,709	1,305	1,305,000
88	66	364.0	295,518	764,825	1.2	1.4	1,060,343	1,210	1,210,000
83	63	457.0	206,958	762,709	1.3	1.5	969,668	1,120	1,120,000
78	61	581.0	123,258	760,388	1.5	1.7	883,646	1,031	1,031,000
73	59	707.0	44,700	758,694	1.6	1.9	803,394	964	964,000
68	56	804.0	0	755,797	1.6	2.0	755.797	959	959,000
63	53	965.0	0	754,442	1.6	2.0	754,442	956	956,000
58	50	1100.0	0	752,022	1.6	2.0	752,022	951	951,000
53	47	1098.0	0	749,497	1.6	2.0	749,497	946	946,000
48	43	902.0	0	741,103	1.6	2.0	741,103	932	932,000
43	40	681.0	0	731,470	1.6	2.1	731.470	915	915,000
38	36	397.0	0	731,470	1.6	2.1	731,470	915	915,000
33	32	159.0	0	731,470	1.6	2.1	731,470	915	915,000
28	27	32.0	0	731,470	1.6	2.1	731,470	915	915,000

Total Rejected 17,185,288 20,080

20,080,000 Heat rejection differences are significant

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuita	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circults	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature (°뚜)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Btul	alculated h Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	1.0	24,800	•	• •	(Btuh)		(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitless)	(kWh)
108	72			1.4	1.5	24,800	5.04	3.413	16,794		41,594	1.00	5
		8.0	24,800	1.4	1.5	24,800	5.06	3.413	16,728		41,528	1.00	39
103	70	53.0	24,800	1.4	1.5	24,800	5.06	3.413	16,728		41,528	1.00	260
98	68	159.0	24,800	1.4	1.5	24,800	5.06	3.413	16,728		41,528	1.00	779
93	66	287.0	24,800	1.4	1.5	24,800	5.06	3.413	16,728		41,528	1.00	1,407
88	66	364.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	1,160
83	63	457.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	1,456
78	61	581.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	1,851
73	59	707.0	24,800	1.4	1.7	24,800	5.06	3.413	18,728		35,673	0.65	2,252
68	56	804.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35.673	0.65	2,561
63	53	965.0	24,800	1.4	1.7	24,800	5.06	3.413	18,728		35,673	0.65	3.074
58	50	1100.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	3,504
53	47	1098.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	3,498
48	43	902.0	24,800	1.4	1.7	24,800	5.06	3.413	18,728		35,673	0.65	2,874
43	40	681.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35.673	0.65	2,170
38	36	397.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	1,265
33	32	159.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	507
28	27	32.0	24,800	1.4	1.7	24,800	5.06	3.413	16,728		35,673	0.65	102

Application 28,272 4.9

kWh= 28,763 = kWh= 4.92 =

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551.020
Total Circuits	49		1,500,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Bluh rejected for case Load (Btuh)	Estimated Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Btuh	alculated Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	50,850	1.1	1.1	50,850	5.70	3.413	30,448		81,298	1.00	9
108	72	8.0	50,850	1.1	1.1	50,850	5.90	3.413	29,415		80,265	1.00	69
103	70	53.0	50,850	1.1	1.1	50,850	5.90	3.413	29,415		80,265	1.00	457
98	68	159.0	5 0,85 0	1.1	1.1	50,850	5.90	3.413	29,415		80,265	1.00	1,370
93	66	287.0	50,850	1.1	1.2	50.850	6.00	3.413	28,925		79,775	1.00	2,432
88	66	364.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		B 9,6 51	0.65	2,005
83	63	457.0	50, 85 0	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	2,517
78	61	581.0	5 0,85 0	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	3,201
73	59	707.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	3,895
68	56	804.0	50,850	1.1	1.3	50.850	6.00	3.413	28,925		39,651	0.65	4,429
63	53	965.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	5,316
58	50	1100.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	6,060
53	47	1098.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	6,049
48	43	902.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	4,969
43	40	681.0	50,850	1.1	1.3	50.850	6.00	3.413	28,925		39.651	0.65	3,751
38	36	397.0	50,850	1.1	1.3	50,850	6.00	3,413	28,925		59,651	0.65	2,187
33	32	159.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		89,651	0.65	876
28	27	32.0	50,850	1.1	1.3	50,850	6.00	3.413	28,925		59,651	0.65	176

Application 49,002 8.9

kWh= 49,768 = kWh≈ 8.92 =

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	2	circuits	61.224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122.449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551.020
Total Circuits	49		1,500,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Bluin rejected due to work (Bluin)	Calculated Btuth Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	82,750	0.9	0.9	82,750	5.30	3.413	53.288	136.038	1.00	16
108	72	8.0	82,750	0.9	0.9	82,750	5.50	3,413	51,350	134,100	1.00	120
103	70	53.0	82,750	0.9	0.9	82,750	5.50	3.413	51.350	134,100	1.00	797
98	68	159.0	82,750	0.9	0.9	82,750	5.50	3.413	51,350	134,100	1.00	2,392
93	66	287.0	82,750	0.9	0.9	82,750	5.60	3.413	50,433	133,183	1.00	4,241
88	66	364.0	82,750	0.9	1.1	82,750	5.70	3.413	49,548	114,956	0.65	3,435
83	63	457.0	82,750	0.9	1.1	82,750	5.80	3.413	48,694	114,401	0.65	4,238
78	61	581.0	82,750	0.9	1.1	82,750	5.90	3.413	47,869	113,865	0.65	5,297
73	59	707.0	82,750	0.9	1.1	82,750	6.00	3.413	47.071	113,346	0.65	6,338
68	56	804.0	82,750	0.9	1.1	82,750	6.00	3.413	47,071	113,346	0.65	7,208
63	53	965.0	82,750	0.9	1.1	82,750	6.00	3.413	47,071	113.346	0.65	8,651
58	50	1100.0	82,750	0.9	1.1	82,750	6.00	3.413	47,071	113.346	0.65	9,861
53	47	1098.0	82,750	0.9	1.1	82,750	6.00	3.413	47.071	113,346	0.65	9,843
48	43	902.0	82,750	0.9	1.1	82,750	8.00	3.413	47,071	113,346	0.65	8.086
43	40	681.0	82,750	0.9	1.1	82,750	6.00	3.413	47,071	113,346	0.65	6,105
38	36	397.0	82,750	0.9	1.1	82,750	6.00	3.413	47,071	113,346	0.65	3,559
33	32	159.0	82,750	0.9	1.1	82,750	6.00	3.413	47,071	113,346	0.65	1,425
28	27	32.0	82,750	0.9	1.1	82,750	6.00	3.413	47.071	113,346	0.65	287

Application 81,950

kWh= 81,899 > kWh≃ 15.61 > 81,950 15.5

circuits 61,224
circuits 91,837
circuits 122,449
0 circuits 306,122
2 circuits 367,347
6 circuits 551,020
9 1,500,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)			Compressor Stuh rejected due to work (Stuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	247,845	0.9	0.9	247,845	8.48	3.413	99,671	347,318	1.00	29
108	72	8.0	247,645	0.9	0.9	247,645	8.67	3.413	97,487	345,132	1.00	229
103	70	53.0	247,645	0.9	0.9	247,645	8.77	3.413	96,375	344,020	1.00	1,497
98	68	159.0	247,645	0.9	0.9	247,645	8.86	3.413	95,396	343,041	1.00	4,444
93	66	287.0	247,645	0.9	1.0	247,645	8.96	3.413	94,332	308,961	0.65	5,156
88	66	364.0	247,645	0.9	1.0	247,645	9.05	3.413	93,394	308,351	0.65	6,474
83	63	457.0	247,645	0.9	1.0	247,645	9.10	3.413	92,880	308,017	0.65	8,084
78	61	581.0	247,645	0.9	1.0	247,645	9.20	3.413	91,871	307,361	0.65	10,166
73	59	707.0	247,645	0.9	1.0	247,645	9.25	3.413	91,374	307.038	0.65	12,303
68	56	804.0	247,645	0.9	1.0	247,645	9.34	3.413	90,494	306,466	0.65	13,856
63	53	965.0	247,645	0.9	1.0	247,645	9.39	3.413	90,012	306,153	0.65	16.543
58	50	1100.0	247,645	0.9	1.0	247,645	9.44	3.413	89,535	305,843	0.65	18,757
53	47	1098.0	247,645	0.9	1.0	247,645	9.49	3.413	89,063	305,536	0.65	18,624
48	43	902.0	247,645	0.9	1.0	247,645	9.54	3.413	88,597	305.233	0.65	15,220
43	40	681.0	247,645	0.9	1.0	247,645	9,54	3.413	88,597	305,233	0.65	11,491
38	36	397.0	247,645	0.9	1.0	247,845	9.54	3.413	88,597	305,233	0.65	6,699
33	32	159.0	247,845	0.9	1.0	247,845	9.54	3.413	88,597	305.233	0.65	2,663
28	27	32.0	247,645	0.9	1.0	247,645	9.54	3.413	88,597	305,233	0.65	540

Application 152,780

kWh= 152.793 > kWh= 29.20 =

29.2

Condenser Capacity	1,500,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	 Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	1.0	• •	(unitiess)	(unitiess)	(Btuh)		(Btu/Watt-hr)	• •	(Btuh)	(unitless)	(kWh)
			290,600	0.9	0.9	290,600	9.96	3.413	99,580	390,180	1.00	29
108	72	8.0	290,600	0.9	0.9	290,600	10.20	3,413	97,237	387,837	1.00	228
103	70	53.0	290,600	0.9	0.9	290,600	10.31	3.413	96,200	386,800	1.00	1,494
98	68	159.0	290,600	0.9	0.9	290,600	10.31	3.413	96,200	385,800	1.00	4,482
93	66	287.0	290,600	0.9	1.0	290,600	10.57	3.413	93,833	351,592	0.65	5,129
88	66	364.0	290,600	0.9	1.0	290,800	10.70	3.413	92,693	350,851	0.65	6,426
83	63	457.0	290,600	0.9	1.0	290,600	10.84	3.413	91,496	350,072	0.65	7,963
78	61	581.0	290,600	0.9	1.1	290,600	11.12	3.413	89,192	348,575	0.65	9,869
73	59	707.0	290,600	1.0	1.1	290,600	11.26	3.413	88,083	347,854	0.65	11,860
68	56	804.0	290,300	1.0	1.1	290,600	11.53	3.413	86,021	346,513	0.65	13,172
63	53	965.0	290,600	1.0	1.1	290,600	11.67	3.413	B4,989	345,843	0.65	15,619
58	50	1100.0	290,600	1.0	1.1	290,600	11.81	3.413	83,981	345,188	0.65	17,593
53	47	1098.0	290,600	1.0	1.1	290,600	11.81	3.413	83,981	345,188	0.65	17,561
48	43	902.0	290,600	1.0	1.1	290,600	11.81	3.413	83.981	345,188	0.65	14,427
43	40	681.0	290,600	1.0	1.1	290,600	11.81	3.413	83,981	345,188	0.65	10,892
38	36	397.0	290,600	1.0	1,1	290,600	11.81	3.413	83,961	345,188	0.65	6,350
33	32	159.0	290,600	1.0	1.1	290,600	11.81	3.413	83,981	345,188	0.65	2,543
28	27	32.0	290,600	1.0	1.1	290,600	11.B1	3.413	83,981	345,188	0.65	512

Application kWh≐ 146.149 = kWh= 29.18 = 146,177 29.2

Condenser Capacity	1.500.000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	2	circuits	61,224
LT#1 Condensing Circuits	3	circuits	91,837
LT#2 Condensing Circuits	4	circuits	122,449
MT#1 Condensing Circuits	10	circuits	306,122
MT#2 Condensing Circuits	12	circuits	367,347
AC Condensing Circuits	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature (°F) 113 108 103 98 93 88 83 78 73 68 63 58 63 58 53 48 43 38 38	Coincident Wet-Bub (°F) 74 72 70 68 86 66 66 66 66 63 61 59 56 53 56 53 50 47 43 40 36 32	Hour per bin (hours) 1.0 8.0 53.0 159.0 287.0 364.0 457.0 581.0 707.0 804.0 965.0 1100.0 1098.0 902.0 681.0 397.0 150.0	AC Load (tons) 40.00 40.63 34.38 28.13 21.88 15.63 9.38 3.13	AC Load (Btuh) 480,000 480,000 487,560 337,560 262,560 187,560 112,560 37,560	Equivalent Biuh rejected for AC (Btuh) 480,000 487,560 412,560 337,560 262,560 187,560 112,560 37,560	Compressor Efficiency, EER (Btu/Watt-hr) 16.37 16.92 17.20 18.93 19.29 19.29 19.29 19.29 19.29	Conversion Constant (Btu/Watt-hr) 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413	Compressor Btuh rejected due to work (Btuh) 100,076 96,823 96,747 74,383 59,725 46,455 33,185 19,915 6,646	Btuh Rejected, Check (Btuh) 580,076 576,823 584,307 486,943 397,285 309,015 220,745 132,475 50,851	Load Factor (unitiess) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00	Compressor Energy Use (kWh) (kWh) 29 227 1,502 3,465 5,022 4,954 4,443 3,390 2,753	
		397.0										
33	32 27	159.0 32.0										

Notes

-

The application assumes a lower AC load in the post-measure #2 retrofit condition.

kWh= 29.32 <

Application

24,413

29

Condenser Capacity loe Cream Condensing Circuits LT#1 Condensing Circuits LT#2 Condensing Circuits MT#1 Condensing Circuits MT#2 Condensing Circuits AC Condensing Circuits	1,500,000 2 3 4 10 12 18	Btuh circuits circuits circuits circuits circuits circuits	Btuh Capacity 61,224 91,837 122,449 306,122 367,347 551,020
	18	circuits	551,020
Total Circuits	49		1,500,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(°F) 113	(°F)	(hours)	(Btuh)	(Btuh)	(unitiess)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
	74	1.0	580,076	860,388	1.0	1.0	1,440,464	1,575	1,575,000
108	72	8.0	576,823	854,762	1.0	1.0	1,431,585	1,566	1,566,000
103	70	53.0	584,307	852,613	1.0	1.0	1,436,920	1,571	1,571,000
98	68	159.0	486,943	851,634	1.0	1.1	1,338,577	1,472	1,472,000
93	66	287.0	397,285	781,855	1.1	1.3	1,179,140	1,378	1,378,000
88	66	364.0	309,015	764,526	1.2	1.4	1,073,541	1,287	1,287,000
83	63	457.0	220,745	763,414	1.3	1.5	984,159	1,196	1,196,000
78	61	581.0	132,475	761,260	1.4	1.7	893,736	1,103	1,103,000
73	59	707.0	50,851	760,217	1.5	1.8	811,068	1,013	1,013,000
68	56	804.0	0	758,304	1.6	2.0	758,304	966	966,000
63	53	965.0	0	757,320	1.6	2.0	757,320	964	964,000
58	50	1100.0	0	756,355	1.6	2.0	756,355	963	963,000
53	47	1098.0	0	756,048	1.6	2.0	756,048	962	962,000
48	43	902.0	Ó	755,745	1.6	2.0	755,745		•
43	40	681.0	ō	755,745	1.6	2.0	755,745	962	962,000
38	36	397.0	õ	755,745	1.6			962	962,000
33	32	159.0	õ	•		2.0	755,745	962	962,000
28	27	32.0	0	755,745	1.6	2.0	755,745	962	962,000
20	£ /	52.0	U	755,745	1.6	2.0	755,745	962	962,000

Total Rejected 17,395.942 20.826 20,826,000 Heat rejection differences are significant

Condenser Capacity	2,425,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	8	circuits	195,960
LT#1 Condensing Circuits	14	circuits	342,929
LT#2 Condensing Circuits	0	circuits	ó
MT#1 Condensing Circuits	35	circuits	857,323
MT#2 Condensing Circuits	24	circuits	587.879
AC Condensing Circuits	18	circults	440,909
Total Circuits	99		2,425,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Bluh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-br)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejecte Check (Btuh)	i, Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	2.0	103,700	1.1	1.1	103,700	5.08	3.413	69,671	173,371	1.00	41
108	72	28.0	103,700	1.1	1.1	103,700	5.08	3.413	69.671	173,371	1.00	572
103	70	139.0	103,700	1.2	1.1	103,700	5.10	3,413	69.398	173.098	1.00	2,826
98	68	247.0	103,700	1.2	1.1	103.700	5.25	3.413	87,415	171,115	1.00	4,879
93	66	322.0	103,700	1.2	1.3	103,700	5.25	3,413	87,415	152,913	0.73	4,643
88	66	381.0	103,700	1.2	1.3	103,700	5.25	3.413	67,415	152,913	0.73	5,494
83	63	526.0	103,700	1.2	1.3	103,700	5.78	3.413	61,233	148,400	0.73	6,889
78	61	531.0	103,700	1.2	1.3	103,700	5.78	3.413	61,233	148,400	0.73	6.955
73	59	671.0	103,700	1.2	1.3	103,700	5.78	3.413	61,233	148,400	0.73	8,788
68	56	684.0	103,700	1.2	1.3	103,700	5.89	3.413	60,090	147,565	0.73	8,791
63	53	852.0	103,700	1.2	1.4	103,700	6.28	3.413	56,358	144,841	0.73	10,270
58	50	871.0	103,700	1.2	1.4	103,700	6.28	3.413	58,358	144.841	0.73	10,499
53	47	1042.0	103,700	1.3	1.4	103,700	6.50	3.413	54,450	143,449	0.73	12,135
48	43	854.0	103,700	1.3	1.4	103,700	7.40	3.413	47,828	138,615	0.73	8,736
43	40	754.0	103,700	1.3	1.4	103,700	7.21	3.413	49.089	139,535	0.73	7,917
38	36	489.0	103,700	1.3	1.4	103,700	7.21	3.413	49,089	139,535	0.73	5,134
33	32	259.0	103,700	1.3	1.4	103.700	7.21	3.413	49,089	139,535	0.73	2,719
28	27	87.0	103,700	1.3	1.4	103,700	7.21	3.413	49,089	139,535	0.73	913

Application 108,153 20.4

kWh= 108,202 # kWh∞ 20.41 ≠

Measure #2 Summary of Findings

Evaluation Compressor Savings	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings	
Ice Cream Condensing Circuits	4.92	4.88	0.04	28,763	22.738	6,026	
LT#1 Condensing Circuits	8.92	8.92	0.00	49,768	46,070	3.698	
LT#2 Condensing Circuits	15.61	15.61	0.00	81,899	75,813	6,085	
MT#1 Condensing Circuits	29.20	29.20	0.00	152,793	148,099	4,695	
MT#2 Condensing Circuits	29.18	29.18	0.00	146,149	140,919	5,229	
AC Condensing Circuits	29.32	29.32	0.00	25,788	18,546	7.241	
Total			0.04	kW		32,975	kWh
Total Refer	w/ Compressor	101.49			548,749		

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	4.90	4.90	0.00	28,272	22,736	5,536	
LT#1 Condensing Circuits	8.90	8.90	0.00	49,002	42,933	6,069	
LT#2 Condensing Circuits	15.50	15.50	0.00	81,950	77,227	4,723	
MT#1 Condensing Circuits	29.20	29.20	0.00	152,780	148,073	4,707	
MT#2 Condensing Circuits	29.20	29.20	0.00	146,177	140,914	5,263	
AC Condensing Circuits	29.00	29.00	0.00	24,413	13,472	10,941	
Total			0.00	kW		37,239	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

Applicaton Condenser Analysis	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings (kWh)	Pre- Condenser Rejection (Btuh)	Post- Condenser Rejection (Btuh)	Difference in Condenser Heat Rejection (Btuh)	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh)
Condenser Fan Use	16.00	16.00	0.00	127,026	134,501	-7,475	20,826.000	20,080,000	746,000	-0.01

0.00669826 7.9681E-07

				Measure Energy			
	0	Deat	Difference in	Savings per			
	Pre- Condenser	Post- Condenser	Condenser Heat	Condenser Heat			
Evaluation Condenser Analysis	Rejection (Btuh)	Rejection (Btuh)	Rejection (Btuh)	Rejection (kWh/Btuh)	Post-Energy	Post Demand	
Condenser Fan Use	17,395,942	17,185,288	210,653	-2,111	115,111	13.6934568	

Final Results for Measure #2											
Source	Demand Impact	Energy Impact									
Evaluation	0.04	30,865									
Application	0.00	29,764									

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154.350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88.200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)		Conversion Constant	Compressor Btuh rejected due to work	е	Calculated Ituh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	1.0	63,400	1.2	6.2	(Blun) 63,400		(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitiess)	(kWh)
108	72	8.0	63,400	1.2	6.3	63,400	5.08	3,413	42,595		105,995	1.00	12
103	70	53.0	63,400	1.2	6.3		5.13	3.413	42.180		105.580	1.00	99
98	68	159.0				63,400	5.25	3.413	41,216		104,616	1.00	640
93			63,400	1.2	6.4	63,400	5.36	3.413	40.370		103,770	1.00	1,881
	66	287.0	63,400	1.2	7.3	63,400	5.68	3.413	38,098		91,210	0.73	2,339
88	66	364.0	63,400	1.2	7.3	63,400	5.78	3.413	37,437		90,729	0.73	2,915
83	63	457.0	63,400	1.2	7.4	63,400	6.21	3.413	34,844		88,836	0.73	3,406
78	61	581.0	63,400	1.2	7.5	63,400	6.50	3.413	33,290		87,702	0.73	4,137
73	59	707.0	63,400	1.2	7.5	63,400	6.50	3.413	33,290		87,702	0.73	5,034
68	56	804.0	63,400	1.2	7.7	63,400	6.87	3.413	31,497		86,393	0.73	5,416
63	53	965.0	63,400	1.2	7.7	63,400	6.94	3.413	31,179		86,161	0.73	6,435
58	50	1100.0	63,400	1.2	7.7	63,400	6.94	3.413	31,179		86,161	0.73	7,336
53	47	1098.0	63,400	1.2	7.7	63,400	6.94	3.413	31,179		86,181	0.73	
48	43	902.0	63,400	1.2	7.7	63,400	6.94	3,413	31,179				7.322
43	40	681.0	63,400	1.2	7.7	63,400	6.94				86,161	0.73	6,015
38	36	397.0	53,400					3.413	31,179		86,161	0.73	4,542
33	32			1.2	7.7	63,400	6.94	3.413	31,179		86,181	0.73	2,648
		159.0	63,400	1.2	7.7	63,400	6.94	3.413	31,179		86,161	0.73	1,060
28	27	32.0	63,400	1.2	7.7	63,400	6.94	3.413	31,179		86,161	0.73	213

Application 61,447 12.5

kWh= 61,450 =

12.48 =

kWh=

Condenser Capacity	1,764,000	Btuh	Btuh Capacil
Ice Gream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	861,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)		Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	86.900	1.2	1.2	86,900	6.70	3.413	44,267	Sec. 1	131,167	(unitiess) 1.00	13
108	72	8.0	86,900	1.2	1.2	86,900	6.90	3.413	44,207		129,884	1.00	101
103	70	53.0	86,900	1.2	1.2	86,900	7.20	3.413	41,193		128,093	1.00	640
98	68	159.0	86,900	1.2	1.2	86,900	7.30	3.413	40,629		127,529	1.00	1,893
93	66	287.0	86,900	1.2	1.4	86,900	7.60	3.413	39.025		114,217	0.70	2,297
88	66	364.0	86.900	1.2	1.4	86,900	7.70	3.413	38,518		113.863	0.70	2,876
83	63	457.0	86,900	1.2	1.4	86,900	8.00	3.413	37,074		112,852	0.70	3.475
78	61	581.0	86,900	1.2	1.4	86,900	8.50	3.413	34,893		111,325	0.70	4,158
73	59	707.0	86,900	1.2	1.4	86,900	8.40	3.413	35,308		111,616	0.70	5,120
68	56	804.0	86,900	1.2	1.4	86,900	8.70	3,413	34,091		110,764	0.70	5,622
63	53	965.0	86,900	1.2	1.4	86,900	8.70	3.413	34,091		110,764	0.70	6,747
58	50	1100.0	86,900	1.2	1,4	86,900	8.70	3.413	34,091		110,764	0.70	7,691
53	47	1098.0	86,900	1.2	1.4	86,900	8.70	3.413	34,091		110,764	0.70	7,677
48	43	902.0	86,900	1.2	1.4	86.900	8.70	3.413	34,091		110,764	0.70	6,307
43	40	681.0	86,900	1.2	1.4	86,900	8.70	3.413	34,091		110,764	0.70	4,762
38	36	397.0	86,900	1.2	1.4	86,900	8.70	3.413	34,091		110,764	0.70	2,776
33	32	159.0	85,900	1.2	1.4	86,900	8.70	3.413	34,091		110,764	0.70	1,112
28	27	32.0	86,900	1.2	1.4	86,900	8.70	3.413	34,091		110,764	0.70	224

Application 66,143

kWh= 63.488 >

12.97 =

kWh≖

13

Condenser Capacity	1,764,000	Btuh	Bluh Capacity
ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154.350
LT#2 Condensing Circuits	2	circuits	44.100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	861,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1.764.000

Bin Temperature (°F)	Coincident Wet-Buib (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	27,300	1.0	1.0	27,300	5.90	3,413	15,792	43,092	1.00	5
108	72	8.0	27,300	1.0	1.0	27,300	6.20	3.413	15,028	42,328	1.00	35
103	70	53.0	27,300	1.0	1.0	27,300	6.20	3.413	15,028	42.328	1.00	233
98	68	159.0	27,300	1.0	1.0	27,300	6.20	3.413	15,028	42.328	1.00	700
93	66	287.0	27,300	1.0	1.2	27,300	6.30	3.413	14,790	38,096	0.73	908
88	66	364.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	1,116
83	63	457.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	1,401
78	61	581.0	27,300	1.0	1.2	27,300	6.60	3.413	14,117	37,606	0.73	1,754
73	59	707.0	27,300	1.0	1.2	27,300	6.80	3.413	13,702	37,303	0.73	2,072
68	56	804.0	27,300	1.1	1.2	27,300	6.90	3.413	13,504	37,158	0.73	2,322
63	53	965.0	27,300	1.1	1.2	27,300	7.00	3.413	13,311	37,017	0.73	2,747
58	50	1100.0	27,300	1.1	1.2	27,300	7.20	3.413	12,941	36,747	0.73	3,045
53	47	1098.0	27,300	1.1	1.2	27,300	7.50	3.413	12,423	36,369	0.73	2,918
48	43	902.0	27,300	1.1	1.2	27,300	7.80	3.413	11,946	36,020	0.73	2,305
43	40	681.0	27,300	1.1	1.2	27,300	8.40	3.413	11.092	35,397	0.73	1.616
38	36	397.0	27,300	1.1	1.2	27,300	8.40	3.413	11.092	35,397	0.73	942
33	32	159.0	27,300	1.1	1.2	27,300	8.40	3,413	11,092	35,397	0.73	377
28	27	32.0	27,300	1.1	1.2	27,300	8.40	3.413	11,092	35,397	0.73	76

Application 24,563 4.6

kWh= 24,572 < kWh≈ 4.63 =

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110.250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	881,500
AC Condensing Circuits	32	circuits	705.600
Total Circuits	80		1.764.000

Bin Temperature (°F) 113 108 103 98 93 88 83 73 88 83 78 73 68 63 58 53 58 53 48 43 38	Coincident Wet-Bulb (*F) 74 72 70 68 66 65 63 65 63 61 59 56 53 50 47 43 40 26	Hour per bin (hours) 1.0 8.0 53.0 159.0 287.0 364.0 457.0 581.0 707.0 804.0 965.0 1100.0 1098.0 902.0 681.0 297.0	Refrigeration Case Load (Btuh) 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600	Application Factor (unitiess) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Calculated Application Factor, Check (unitiess) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Equivalent Btuh rejected for case Load (Btuh) 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600 97,600	Efficiency, EER (Btu/Watt-hr) 9.39 9.54 9.92 10.11 10.88 11.07 11.76 12.38 13.00 13.00 13.00 13.00 13.00 13.00	(Btu/Watt-hr) 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413	Compressor Btuh rejected due to work (Bluh) 35,475 34,917 33,580 32,948 30,617 30,091 28,326 26,907 27,237 25,624 25,624 25,624 25,624	Calculated Btuh Rejected, Check (Btuh) 133,075 132,517 131,180 130,548 119,950 119,567 118,278 117,242 117,483 116,305 116,305 116,305 116,305	Load Factor (unitless) 1.00 1.00 1.00 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0	Compressor Energy Use (kWh) (kWh) 10 82 521 1,535 1.879 2,343 2,769 3,344 4,119 4,406 5,289 5,029 6,018 4,944 3,732
43 38 33 28	40 36 32 27	681.0 397.0 159.0 32.0	97, 600 97, 600 97,600 97,600	1.2 1.2 1.2 1.2	0.8 0.8 0.8 0.8	97,600 97,600 97,600 97,600 97,600	13.00 13.00 13.00 13.00	3.413 3.413 3.413 3.413	25 ,62 4 25, 624 25,624 25,624	116,305 116,305 116,305 116,305	0.73 0.73 0.73 0.73	3.732 2,176 871 175

Application 26,984 5.6

kWh= 50,242 >

kWh= 10.39 >

63621.XLS

Condenser Capacity	1,784,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1.764.000

Bin Temperature (°F) 113	Coincident Wet-Bulb (°F) 74	Hour per bin (hours) 1.0	Refrigeration Case Load (Btuh) 454,700	Application Factor (unitiess)	Calculated Application Factor, Check (unitless)	(Btuh)	Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)		Calculated Btuh Rejected, Check (Btuh)	Load Factor (unilless)	Compressor Energy Use (kWh) (kWh)
108	72	8.0	454,700	1.3	1.1	454,700	10.89	3.413	142,506	597,206	1.00	42
103			•	1.3	1.1	454,700	11.33	3.413	136,972	591,672	1.00	321
	70	53.0	454,700	1.3	1.1	454,700	11,62	3.413	133,553	588,253	1.00	2,074
98	68	159.0	454,700	1.3	1.1	454.700	11.91	3.413	130,302	585,002	1.00	6,070
93	66	287.0	454,700	1.3	1.2	454,700	12.34	3.413	125,761	546,506	0.73	7,720
88	66	364.0	454,700	1.3	1.2	454,700	12.52	3.413	123,953	545,186	0.73	9,650
83	63	457.0	454,700	1.3	1.2	454,700	13.22	3.413	117,390	540.394	0.73	11,474
78	61	581.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	13,687
73	59	707.0	454,700	1.3	1.2	454,700	14.09	3.413	110.141	535,103	0.73	16,655
68	56	804.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	18,941
63	53	965.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	22,733
58	50	1100.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	25,914
53	47	1098.0	454,700	1.3	1.2	454,700	14.09	3,413	110,141	535,103	0.73	25,867
48	43	902.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	•		
43	40	681.0	454,700	1.3	1.2	454,700	14.09			535,103	0.73	21,249
38	36	397.0	454,700					3.413	110,141	535,103	0.73	16,043
33			-	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	9,352
	32	159.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	3,746
28	27	32.0	454,700	1.3	1.2	454,700	14.09	3.413	110,141	535,103	0.73	754

Application 212,476 41.8

-

kWh≈ 212,293 ≠ kWh≈ 41.75 ≠

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154.350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature (°F) 113 108 103 98 93 88 93 88 83 73 68 63 73 68 63 58 53 48 43 38 33	Coincident Wet-Bulb (*F) 74 72 70 68 66 63 66 63 61 59 56 53 50 47 43 40 36 32	Hour per bin (hours) 1.0 8.0 53.0 159.0 287.0 364.0 457.0 581.0 707.0 804.0 965.0 1100.0 1098.0 902.0 681.0 397.0 159.0	AC Load (tons) 40.00 40.00 40.63 34.38 23.13 21.88 15.63 9.38 3.13	AC Load (Btuh) 480,000 480,000 480,000 480,000 412,550 262,560 187,560 112,550 37,560	Equivalent Btuh rejected for AC (Btuh) 480,000 487,560 412,560 277,560 262,560 187,560 112,560 37,560	Compressor Efficiency, EER (Btu/Watt-hr) 18.33 19.27 21.03 23.66 27.46 35.06 40.12 40.12 23.66	Compressor Btuh rejected due to work (Btuh) 89,375 85,015 79,127 59,513 34,498 25,560 15,956 9,575 5,418	Calculated Btuh Rejected, Check (Btuh) 569,375 566,015 556,687 472,073 312,058 288,120 203,516 122,135 42,978	Load Factor (unitless) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Compressor Energy Use (kWh) (kWh) 26 199 1,229 2,772 2,801 2,726 2,136 1,630 1,122	
28	27	32.0							kWh=	14,742	-

		Application
14,742	=	13,055
26.19	#	25

kWh=

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Heat Rejection (Btuh)	Refrigeration Heat Rejection (Btuh)	Condenser Load Factor (unitless)	Calculated Condenser Load Factor, Check (unitless)	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
113	74	1.0	569,375	967,443	1.1	(difficess) 1.1	(Btuh)	(MBtuh)	(Btuh)
108	72	8.0	565,015	959,653	1.1	1.2	1,536,818	1,574	1,574,000
103	70	53.0	566,687	952,142	1.2	1.2	1,524,668 1,518,829	1,565	1,565,000
98	68	159.0	472,073	946,849	1.3	1.2	1,418,921	1,484	1,484,000
93	66	287.0	312,058	871,883	1.3	1.5	1,183,941	1,404 1,325	1,404,000
88	66	364.0	288,120	869,344	1.4	1.5	1,157,463	1,325	1,325,000 1,247,000
83	63	457.0	203,516	860,360	1.5	1.7	1,063,876	1,175	1,175,000
78	61	581.0	122,135	851,372	1.6	1.8	973,507	1,106	1,106,000
73	59	707.0	42,978	851,904	1.7	2.0	894,882	1,039	1,039,000
68	56	804.0	0	848,565	1.8	2.1	848,565	1,002	1,002,000
63	53	965.0	0	848,333	1.8	2.1	848,333	1,002	1,002,000
58	50	1100.0	0	848,333	1.8	2.1	848,333	1,001	1,001,000
53	47	1098.0	0	848,333	1.8	2.1	848,333	1,000	1,000,000
48	43	902.0	0	848,333	1.8	2.1	848,333	1,000	1,000,000
43	40	681.0	0	848,333	1.8	2.1	848,333	1,000	1,000,000
38	36	397.0	0	848,333	1.8	2.1	848,333	1,000	1,000,000
33	32	159.0	0	848,333	1.8	2.1	848,333	1,000	1,000,000
28	27	32.0	0	848,333	1.8	2.1	848,333	1,000	1,000,000

Total Rejected 18,908,134

20,924

20,924,000

63621.XLS

Condenser Capacity	1,764,000	Btuh	Bluh Capacity
Ice Cream Condensing Circuits	5	circuits	110.250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88.200
MT#2 Condensing Circuits	30	circuits	681.500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113		(hours)	(Btuh)	(unitiess)	(unitiess)	(Btuh)		(Btu/Watt-hr)			(Btuh)	(unitiess)	(kWh)
	74	1.0	63,400	1.0	1.0	63,400	4.70	3.413	46,039		109,439	1.00	13
108	72	8.0	63,400	1.0	1.0	63,400	4.70	3.413	46,039		109,439	1.00	108
103	70	53.0	63,400	1.0	1.0	63,400	4.70	3.413	46,039		109,439	1.00	715
98	68	159.0	63,400	1.0	1.0	63,400	4.70	3.413	46,039		109,439	1.00	2,145
93	66	287.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039		97.009	0.73	2.826
88	66	364.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039		97,009	0.73	3,584
83	63	457.0	63,400	1.0	1.1	63,400	4.70	3 413	46.039	د مىسىرى . مۇرىغە بىر	97,009	0.73	4,500
78	61	581.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039	· · · ·	97,009	0.73	5,721
73	59	707.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039		97,009	0.73	5,962
68	56	804.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039		97,009	0.73	
63	53	965.0	63,400	1.0	1.1	63,400	4.70	3,413	46,039	1	97,009	0.73	7.917
58	50	1100.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039				9,503
53	47	1098.0	63,400	1.0	1,1	63,400	4.70	3.413			97,009	0.73	10,832
48	43	902.0	63,400	1.0	1.1				46,039		97,009	0.73	10,812
43	40	681.0				63,400	4.70	3.413	46,039		97,009	0.73	8,882
38			63,400	1.0	1.1	63,400	4.70	3.413	46,039		97,009	0.73	6.706
	36	397.0	63,400	1.0	1.1	63,400	4.70	3.413	48,039		97,009	0.73	3,909
33	32	159.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039		97,009	0.73	1,566
28	27	32.0	63,400	1.0	1.1	63,400	4.70	3.413	46,039		97,009	0.73	315

Application 87,103 13.5

kWh≕ 87,017 ቋ kWh≖ 13.49 ≠

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuita	88,200
MT#2 Condensing Circuits	30	circuits	881,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Bluh rejected for case Load	Estimated Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Btuh F		ad Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Stuh)	(unitiess)	(unitless)	(Btuh)	(Btu/Watt-hr)	• •	• •		•	unitiess)	(kWh)
113	74	1.0	86,900	1.1	1.1	86,900	5.70	3.413	52,033	138	3,933	1.00	15
108	72	8.0	86,900	1.1	1.1	86,900	5.70	3.413	52,033	138	3,933	1.00	122
103	70	53.0	86, 9 00	1.1	1,1	86,900	5.70	3.413	52,033	138	3,933	1.00	808
98	68	159.0	86,900	1.1	1.1	86,900	5.70	3.413	52,033	138	3,933	1.00	2,424
93	66	287.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	3,063
88	66	364.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	3,885
83	63	457.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	4,877
78	61	581.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	12:	3,323	0.70	6,200
73	59	707.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	7,545
68	56	804.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	8,580
63	53	965.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	10,298
58	50	1100.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	11,739
53	47	1098.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	11,718
48	43	902.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	9,626
43	40	681.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	7.268
38	36	397.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	4,237
33	32	159.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	123	3,323	0.70	1,697
28	27	32.0	86,900	1.1	1.3	86,900	5.70	3.413	52,033	12:	3,323	0.70	342

Application 97,665 15,1

kWh= 94,444 <

kWh= 15.25 =

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	681,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load		Conversion Constant	Compressor Btuh rejected due to work	alculated h Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitiess)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitless)	(kWh)
113	74	1.0	27,300	1.0	1.0	27,300	5.90	3.413	15,792	43,092	1.00	5
108	72	8.0	27,300	1.0	1.0	27,300	6.10	3.413	15,275	42,575	1.00	36
103	70	53.0	27,300	1.0	1.0	27,300	6.20	3.413	15,028	42,328	1.00	233
98	68	159.0	27,300	1.0	1.0	27,300	6.20	3.413	15,028	42,328	1.00	700
93	66	287.0	27,300	1.0	1.2	27,300	6.30	3.413	14,790	38,096	0.73	908
88	66	364.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	1,116
83	63	457.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	1,401
78	61	581.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	1,781
73	59	707.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37.764	0.73	2,168
68	56	804.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	2,465
63	53	965.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37.764	0.73	2,959
58	50	1100.0	27.300	1.0	1.2	27.300	6.50	3.413	14,335	37.764	0.73	3,373
53	47	1098.0	27.300	1.0	1.2	27,300	6.50	3.413	14,335	37,764	0.73	3,366
48	43	902.0	27,300	1.0	1.2	27,300	6.50	3.413	14,335	37,784	0.73	2.766
43	40	681.0	27,300	1.0	1.2	27.300	6.50	3.413	14,335	37,764	0.73	2,088
38	36	397.0	27,300	1.0	1.2	27,300	6.50	3,413	14.335	37,764	0.73	1,217
33	32	159.0	27,300	1.0	1.2	27,300	8.50	3.413	14,335	37,764	0.73	487
28	27	32.0	27,300	1.0	1.2	27,300	6.50	3.413	14.335	37,764	0.73	98

Application 27,296

kWh= 27,167 =

4.63

kWh≂

4.6

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88.200
MT#2 Condensing Circuits	30	circuits	861,500
AC Condensing Circuits	32	circuita	705.600
Total Circuits	80		1,764,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)		Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	1.0	97,600	1.0	0.6	97,600	8.58	3.413	38,824	136,424	1.00	11
108	72	8.0	97,600	1.0	0.6	97,600	8.58	3.413	38,824	136,424	1.00	91
103	70	53.0	97,600	1.0	0.6	97,600	8.58	3.413	38,824	136,424	1.00	603
98	68	159.0	97,600	1.0	0.6	97,600	8.58	3.413	38,824	138,424	1.00	1,809
93	66	287.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	2,383
88	66	364.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	3,023
83	63	457.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125.941	0.73	3,795
78	61	581.0	97,600	1.0	0.7	97,800	8.58	3.413	38,824	125,941	0.73	4,825
73	59	707.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	5,871
68	56	804.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	8.875
63	53	965.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	8,013
58	50	1100.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	9,134
53	47	1098.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	 125,941	0.73	9,118
48	43	902.0	97,600	1.0	0.7	97,600	8.58	3.413	38.824	125,941	0.73	7,490
43	40	681.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	5,655
38	36	397.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	3.297
33	32	159.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	1,320
28	27	32.0	97,600	1.0	0.7	97,600	8.58	3.413	38,824	125,941	0.73	266

Application 39,422 6.1

kWh≖ 73,380 > kWh≖ 11.38 > kWh= 11.38 >

Condenser Capacity	1,764,000	Btuh	Btuh Capacit
ice Cream Condensing Circuits	5	circuita	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88.200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Bluh rejected for case Load (Btuh)	Compressor Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	1.0	454,700	1.0	1.1	454,700	(Btu/Watt-hr)		(Btuh)	(Btuh)	(unitiess)	(kWh)
108	72	8.0	454,700	1.0	1.1	• •	9.15	3.413	169,606	624,308	1.00	50
103	70	53.0	454,700	1.0		454,700	9.15	3.413	169,606	624,306	1.00	398
98				-	1.1	454,700	9.15	3.413	169,606	624,306	1.00	2,634
	68	159.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	624,306	1.00	7,901
93	66	287.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	10,411
88	66	364.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	13,205
83	63	457.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	16,578
78	61	581.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	21,077
73	59	707.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	25,648
68	56	804.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	29,166
63	53	965.0	454,700	1.0	1.1	454,700	9,15	3.413	169,606	578,512	0.73	
58	50	1100.0	454,700	1.0	1.1	454,700	9.15	3,413	169,606	578,512	0.73	35.007
53	47	1098.0	454,700	1.0	1.1	454,700	9,15	3.413		•	-	39,904
48	43	902.0	454,700	1.0	1.1				169,606	578,512	0.73	39,832
43	40	681.0	• •			454,700	9.15	3.413	169,606	578,512	0.73	32,722
			454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	24,704
38	36	397.0	454,700	1.0	3.1	454,700	9.15	3.413	169,606	578,512	0.73	14,402
33	32	159.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	5,768
28	27	32.0	454,700	1.0	1.1	454,700	9.15	3.413	169,606	578,512	0.73	1,161

Application 320,451 49.7

kWh= 320.567 =

49.69 =

kWh≖

63621.XLS

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110.250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1.764.000

Bin Temperature (°F) 113 108 103 98 93	Coincident Wet-Buib (°F) 74 72 70 68 66	Hour per bin (hours) 1.0 8.0 53.0 159.0 287.0	AC Load (tons) 40.00 40.63 34.38 23.13	AC Load (Btuh) 480,000 480,000 487,560 412,560 277,560	Equivalent Btuh rejected for AC (Btuh) 480,000 480,000 487,560 412,560 277,560	Compressor Efficiency, EER (Btu/Watt-hr) 21.47 21.47 21.47 21.47 21.47		Compressor Btuh rejected due to work (Btuh) 76,304 76,304 77,505 65,583 44,123		Calculated Btuh Rejected, Check (Btuh) 556,304 556,304 565,065 478,143 321,683	Load Factor (unitiess) 1.00 1.00 1.00 1.00 1.00	Compressor Energy Use (kWh) (kWh) 22 179 1,204 3,055 3,710
88	66	364.0	21.88	262,560	262,560	21.47	3.413	41,738		304,298	1.00	4,451
83	63	457.0	15.63	187,560	187,560	21.47	3.413	29,816		217,376	1.00	3,992
78	61	581.0	9.38	112,560	112,560	21.47	3.413	17,893		130,453	1.00	3,046
73	59	707.0	3.13	37,560	37,560	21.47	3.413	5,971		43,531	1.00	1,237
68	56	804.0										
63	53	965.0										
58	50	1100.0							~ .			
53	47	1098.0										
48	43	902.0										
43	40	681.0										
38	36	397.0										
33	32	159.0										
28	27	32.0										

Application kWh= 20,897 <</td> 21,697 kWh= 22,36 23

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

Condenser Capacity	1,764,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	5	circuits	110,250
LT#1 Condensing Circuits	7	circuits	154,350
LT#2 Condensing Circuits	2	circuits	44,100
MT#1 Condensing Circuits	4	circuits	88,200
MT#2 Condensing Circuits	30	circuits	661,500
AC Condensing Circuits	32	circuits	705,600
Total Circuits	80		1,764,000

						Calculated Condenser		Total Heat Rejection from	Total Heat Rejection from
Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Load Factor, Check	Total Heat Rejection	the Application	the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	1.0	556,304	1,009,102	1.1	1.1	1,565,406	1,561	1,561,000
108	72	8.0	556,304	1,009,102	1.1	1.1	1,565,406	1,560	1,560,000
103	70	53.0	565,065	1,009,102	1.1	1.1	1,574,167	1,569	1,569,000
98	68	159.0	478,143	1,009,102	1.2	1.2	1,487,245	1,482	1,482,000
93	66	287.0	321,683	924,785	1.3	1.4	1,246,468	1,395	1,395,000
88	66	364.0	304,298	924,785	1.4	1.4	1,229,084	1,307	1,307,000
83	63	457.0	217,376	924,785	1.6	1.5	1,142,161	1,220	1,220,000
78	61	581.0	130,453	924,785	1.7	1.7	1,055,239	1,133	1,133,000
73	59	707.0	43,531	924,785	1.8	1.8	968,316	1,046	1,046,000
68	56	804.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
63	53	965.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
58	50	1100.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
53	47	1098.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
48	43	902.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
43	40	681.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
38	36	397.0	0	924,785	1.8	1.9	924,785	1,003	1.003,000
33	32	159.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000
28	27	32.0	0	924,785	1.8	1.9	924,785	1,003	1,003,000

Total Rejected 20,156,560 21,300 21,300,0

21,300,000 Heat rejection differences are significant

Measure #2 Summary of Findings

	Pre-Retrofit	Post-Retrofit	Measure # Demand	Pre-Retrofit	Post-Retrofit	Measure # Energy	
Evaluation Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	13.49	12.48	1.01	87,017	61.450	25,567	
LT#1 Condensing Circuits	15.25	12.97	2.28	94,444	63,488	30,955	
LT#2 Condensing Circuits	4.63	4.63	0.00	27,167	24,572	2,595	
MT#1 Condensing Circuits	11.38	10.39	0.98	73,380	50,242	23.138	
MT#2 Condensing Circuits	49.69	41.75	7.94	320,567	212,293	108,274	
AC Condensing Circuits	22.36	26.19	-3.83	20.897	14.742	6.154	
Total			8.38	кW		196,684	ƙWh
Total Refer	w/ Compressor	89.45			466,761		

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	13.50	12.50	1.00	87,103	61,447	25,656	
LT#1 Condensing Circuits	15.10	13.00	2.10	97,665	66,143	31,522	
LT#2 Condensing Circuits	4.60	4.60	0.00	27,296	24,563	2,733	
MT#1 Condensing Circuits	6.10	5.60	0.50	39,422	26,984	12,438	
MT#2 Condensing Circuits	49.70	41.80	7.90	320,451	212,476	107,975	
AC Condensing Circuits	23.00	25.00	-2.00	21,697	13,055	8,642	
Total			9.50	kW		188,966	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

	Pre-Retrofit	Post-Retrofit	Measure #	Pro-Retrofit	Post-Betrofit	Measure #	Pre- Condenser Relection	Post- Condenser Relection	Difference in Condenser Heat Bejection	Measure Energy Savings per Condenser Heat Belection
Applicaton Condenser Analysis	Pre-Retrofit Demand	Post-Retrofit Demand	Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Energy Savings (kWh)	Rejection (Btuh)	Rejection (Btuh)	Rejection (Btuh)	Rejection (kWh/Btuh)
Condenser Fan Use	8.00	8.00	0.00	19,099	60,549	-41,450	21,300,000	20,924,000	376,000	-0.11

0.00289376 3.8234E-07

				Measure Energy		
			Difference in	Savings per		
	Pre-	Post-	Condenser	Condenser		
	Condenser	Condenser	Heat	Heat		
	Rejection	Rejection	Rejection	Rejection		
Evaluation Condenser Analysis	(Btuh)	(Btuh)	(Btuh)	(kWh/Btuh)	Post-Energy	Post Demand
Condenser Fan Use	20,156,560	18,908,134	1,248,425	-137,626	54,716	7.22926175

Final Results for Measure #2									
Source	Demand Impact	Energy impact							
Evaluation	8.38	59,058							
Application	9.50	147,516							

Condenser Capacity	2,552,000	Btuh	Bluh Capacity
ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245.385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2.552.000

Bin Temperatura (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	0.0	0	•	0.0	0	0.00	3.413	0	0	0.00	0
108	72	5.0	23,704	•	3.4	23,704	4.10	3.413	19.732	43,436	1.00	29
103	70	16.0	23,704	-	3.5	23,704	4.40	3.413	18,387	42,091	1.00	86
98	68	60.0	23,704	-	3.6	23,704	4.70	3.413	17,213	40,917	1.00	303
93	66	126.0	23,704	-	4.1	23,704	5.00	3.413	16,180	35,516	0.73	436
88	66	197.0	23,704	•	4.2	23,704	5.10	3.413	15.863	35,284	0.73	668
83	63	295.0	23,704	-	4.2	23,704	5.10	3.413	15.863	35,284	0.73	1,001
78	61	430.0	23,704	•	4.3	23,704	5.70	3.413	14,193	34,065	0.73	1,305
73	59	563.0	23,704	•	4.5	23,704	6.30	3.413	12,842	33,078	0.73	1,546
68	56	773.0	23,704	-	4.5	23,704	6.60	3.413	12,258	32,652	0.73	2,027
63	53	1177.0	23,704	•	4.6	23,704	6.90	3.413	11,725	32,263	0.73	2,952
58	50	1593.0	23,704	-	4.6	23,704	6.90	3.413	11,725	32,263	0.73	3,995
53	47	1407.0	23,704	-	4.6	23,704	6.90	3.413	11,725	32,263	0.73	3.528
48	43	987.0	23,704	-	4.6	23,704	6.90	3.413	11,725	32,263	0.73	2,475
43	40	676.0	23,704	-	4.6	23,704	6.90	3.413	11,725	32,263	0.73	1,695
38	36	313.0	23,704	-	4.6	23,704	6.90	3.413	11,725	32,283	0.73	785
33	32	108.0	23,704		4.6	23,704	6.90	3.413	11,725	32,263	0.73	271
28	27	23.0	23,704	-	4.6	23,704	6.90	3.413	11,725	32,263	0.73	58

Application 23,063 6

kWh= 23,161 **∞**

5.78 =

kWh=

.

.

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
ce Cream Condensing Circuits	з	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736.154
AC Condensing Circuits	7	circuits	343.538
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (*F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)		Conversion Constant (Btu@att_br)	Compressor Btuh rejected due to work (Btuh)		Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh)
113	74	0.0	0	(4	0.0	0	0.00	0	(5(01))		0	0.00	(kWh)
108	72	5.0	43,850		3.3	43.850	4,76	3.413	31,441		75,291	1.00	46
103	70	16.0	43,850		3.3	43,850	5.05	3.413	29.636		73,486	1.00	139
98	68	60.0	43,850		3.4	43,850	5.35	3.413	27,974		71,824	1.00	492
93	66	126.0	43,850	-	3.9	43,850	5.64	3.413	26,535		63,221	0.73	715
88	66	197.0	43,850	-	4.0	43,850	6.06	3,413	24,696		61,878	0.73	1,041
83	63	295.0	43,850	-	4.0	43,850	6.42	3.413	23,312	~	60,867	0.73	1,471
78	61	430.0	43,850	-	4.1	43,850	6.82	3.413	21,944		59,869	0.73	2,018
73	59	563.0	43,850	-	4.2	43.850	7.22	3.413	20,729		58,982	0.73	2,496
68	56	773.0	43,850	•	4.2	43,850	7.67	3.413	19,512		58,094	0.73	3,226
63	53	1177.0	43,850	-	4.3	43,850	8.12	3.413	18,431		57.305	0.73	4,640
58	50	1593.0	43,850	-	4.3	43,850	8.12	3.413	18,431		57,305	0.73	6,280
53	47	1407.0	43,850	-	4.3	43,850	8,12	3.413	18,431		57,305	0.73	5,547
48	43	987.0	43,850	•	4.3	43,850	8.12	3.413	18,431		57,305	0.73	3,891
43	40	676.0	43,850	-	4.3	43,850	8.12	3.413	18,431		57,305	0.73	2,665
38	36	313.0	43.850	-	4.3	43,850	8.12	3.413	18,431		57,305	0.73	1,234
33	32	108.0	43,850	-	4.3	43,850	8.12	3.413	18,431	and the	57,305	0.73	426
28	27	23.0	43,850	•	4.3	43,850	8.12	3.413	18,431		57,305	0.73	91

Application 36,676 9

kWh= 36,417 = kWh= 9,21 =

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	738,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Bluh rejected for case Load (Bluh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Bluh Rejected, Check (Bluh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
113	74	0.0	0	•	0.0	0	0.00	0	0	0	0.00	0
108	72	5.0	91,200	-	2.0	91,200	5.88	3.413	52,936	144,136	1.00	78
103	70	16.0	91,200	-	2.1	91,200	6.29	3.413	49,486	140,686	1.00	232
98	68	60.0	91,200	-	2.1	91,200	6.70	3.413	46,458	137,658	1,00	817
93	66	126.0	91,200		2.5	91,200	7.14	3.413	43,595	119,537	0.65	1,046
88	66	197.0	91,200	-	2.5	91,200	7.61	3.413	40,902	117,786	0.65	1,535
83	63	295.0	91,200	-	2.5	91,200	8.21	3.413	37,913	115,843	0.65	2,130
78	61	430.0	91,200	-	2.6	91,200	8.75	3.413	35.573	114,323	0.65	2,913
73	59	563.0	91,200		2.6	91,200	9.34	3.413	33,326	112,862	0.65	3,573
68	56	773.0	91,200	-	2.6	91,200	9.98	3,413	31,189	111,473	0.65	4,592
63	53	1177.0	91,200		2.7	91,200	10.23	3.413	30,427	110.977	0.65	6,820
58	50	1593.0	91,200	-	2.7	91,200	10.23	3,413	30,427	110,977	0.65	9,231
53	47	1407.0	91,200		2.7	91,200	10.23	3.413	30,427	110,977	0.65	8,153
48	43	987.0	91,200	-	2.7	91,200	10.23	3.413	30,427	110,977	0.65	5,719
43	40	676.0	91,200	-	2.7	91,200	10.23	3.413	30,427	110,977	0.65	3,917
38	36	313.0	91,200	-	2.7	91,200	10.23	3.413	30,427	110,977	0.65	1,814
33	32	108.0	91,200	•	2.7	91,200	10.23	3.413	30,427	110,977	0.65	626
28	27	23.0	91,200	•	2.7	91,200	10.23	3.413	30,427	110,977	0,65	133

Application 60,185 15.6

kWh= 53,329 < kWh≖ 15.51 =

-

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Blu/Watt-br)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
113	74	0.0	0	()	0.0	0	0.00	0	(2001)	(Btuh) 0	(unitless)	(kWh)
108	72	5.0	227,100	-	2.3	227,100	7.15	3.413	108,405	335.505	0.00 1.00	0 159
103	70	18.0	247,645	-	2.2	247,645	7.62	3,413	110,920	358,565	1.00	520
98	68	60.0	247,645	-	2.2	247.645	8.20	3.413	103.075	350,365	1.00	1,812
93	66	126.0	247.645	-	2.5	247,645	8.67	3,413	97,487	318.811	0.73	2.627
88	66	197.0	247,645	-	2.5	247.845	9.10	3.413	92,880	315,448	0.73	3,914
83	63	295.0	247.645	-	2.5	247.645	9.34	3.413	90,494	313,705	0.73	5,710
78	61	430.0	247,645	-	2.5	247,645	9.73	3.413	86,867	311.058	0.73	7.989
73	59	563.0	247,645	-	2.6	247,645	10.88	3.413	77,685	304,355	0.73	9,355
68	56	773.0	247,845	-	2.6	247.645	11.76	3,413	71,872	300,111	0.73	11,883
63	53	1177.0	247,645	-	2.6	247,645	12.53	3,413	67.455	296,887	0,73	16,982
58	50	1593.0	247,645	•	2.7	247,645	13,00	3.413	65.016	295.107	0.73	22,153
53	47	1407.0	247,645	-	2.7	247,645	13.00	3.413	65,016	295,107	0.73	19,566
48	43	987.0	247,645	•	2.7	247,645	13.00	3.413	65.016	295,107	0,73	13,725
43	40	676.0	247,645	-	2.7	247,645	13,00	3.413	65,016	295,107	0.73	9,401
38	36	313.0	247,645	-	2.7	247,645	13.00	3.413	65.016	295,107	0.73	4,353
33	32	108.0	247,645	-	2.7	247,645	13.00	3.413	65,016	295,107	0,73	1,502
28	27	23.0	247,645	-	2.7	247,645	13.00	3.413	65,016	295,107	0.73	320

Application 121,921 32

kWh= 131,969 > kWh= 31,76 =

63624.XLS

Condenser Capacity	2,552,000	Stuh	Btuh Capacity
ice Cream Condensing Circuits	3	circuits	147.231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	738,154
AC Condensing Circuits	7	circuits	343.538
Total Circuits	52		2,552,000

Bin Temperature (°F) 113	Coincident Wet-Buib (°F) 74	Hour per bin (hours) 0.0	Refrigeration Case Load (Btuh) 0	Application Factor (unitless)	Calculated Application Factor, Check (unitiess)	Equivalent Bluh rejected for case Load (Btuh)		(Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
108	72	5.0	-	-	0.0	0	0.00	0	0	0	0.00	0
103			219,825	-	2.4	219,825	8.11	3.413	92,511	312,336	1.00	136
	70	16.0	219,825	•	2.4	219,825	8.80	3.413	85,257	305,082	1.00	400
98	68	60.0	219,825	•	2.5	219,825	9.38	3.413	79,985	299,810	1.00	1,406
93	66	126.0	219,825	-	2.7	219,825	9.96	3.413	75,328	274,814	0.73	2,030
88	66	197.0	219,825	•	2.7	219,825	10.57	3.413	70,980	271,641	0.73	2,991
83	63	295.0	219,825	-	2.7	219,825	11.26	3.413	66,631	268,465	0.73	4,204
78	61	430.0	219,825	•	2.8	219,825	12.14	3.413	61,801	264,940	0.73	
73	59	563.0	219,825	-	2.8	219,825	12.96	3.413	57,891			5,684
68	56	773.0	219,825	-	2.8	219,825	13.87	3.413		262.085	0.73	6,971
63	53	1177.0	219,825	-	2.9	219,825	14.90		54,092	259,313	0.73	8,943
58	50	1593.0	219,825					3.413	50,353	256,583	0.73	12.676
53	47			•	2.9	219,825	15.51	3.413	48,373	255,137	0.73	16,482
48		1407.0	219,825	-	2.9	219,825	15.51	3.413	48,373	255,137	0.73	14,557
	43	987.0	219,825	-	2.9	219,825	15.51	3.413	48.373	255,137	0.73	10,212
43	40	676.0	219.825	-	2.9	219,825	15.51	3.413	48,373	255,137	0.73	6,994
38	36	313.0	219,825	•	2.9	219,825	15.51	3.413	48,373	255,137	0.73	3,238
33	32	108.0	219,825	-	2.9	219,825	15.51	3.413	48,373	255,137	0.73	1,117
28	27	23.0	219,825	•	2.9	219,825	15.51	3.413	48,373	 255,137	0.73	238

 Application

 kWh=
 99,280
 =
 99,024

 kWh=
 27.11
 =
 27

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	3	circuits	147.231
LT#1 Condensing Circuits	5	circuits	245.385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuita	736.154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Load	AC Load	Equivalent Btuh rejected for AC	Efficiency, EER		Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compresso Energy Use (kWh)	
(°F)	(°F)	(hours)	(tons)	(Btuh)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitless)	(kWh)	
113	74	0.0	0.00	0	0	0.00	0	0		0	•	0	
108	72	5.0	20.00	240,000	240,000	12.64	3.413	64,804		304,804	1.00	95	
103	70	16.0	18.57	222,840	222,840	14.85	3.413	51,216		274,056	1.00	240	
98	68	60.0	15.71	188,520	188,520	17.06	3.413	37,715		226,235	1.00	663	
93	66	126.0	12.86	154,320	154,320	18.71	3.413	28,150		182,470	1.00	1,039	
88	66	197.0	10.00	120,000	120,000	22.78	3.413	17,979		137,979	1.00	1,038	
83	63	295.0	7.14	85,680	85,680	27.46	3.413	10,649		96,329	1.00	920	
78	61	430.0	4.29	51,480	51,480	33.04	3.413	5,318		56,798	1.00	670	
73	59	563.0	1.43	17,160	17,160	37.08	3.413	1,579		18,739	1.00	261	
68	56	773.0								-,			
63	53	1177.0											
58	50	1593.0											
53	47	1407.0											
48	43	987.0											
43	40	676.0											
38	36	313.0											
33	32	108.0											
28	27	23.0							at mades				
											kWh=	4,926	=

		Application
4,926	=	2,726
18.99	5	15.1

kWh≖

•

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	Total Heat Rejection from the Application	Total Heat Rejection from the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitless)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	0.0	0	0	-	0.0	0	0	ົວ໌
108	72	5.0	304,804	766,568	-	2.4	1,071,371	1,163	1,163,000
103	70	16.0	274,056	779,224	-	2.4	1,053,279	1,114	1,114,000
98	68	60.0	226,235	763,271	•	2.6	989,506	1,049	1,049,000
93	66	126.0	182,470	692,361	-	2.9	874,832	990	990,000
88	66	197.0	137,979	684,251	•	3.1	822,230	934	934,000
83	63	295.0	96,329	678,322	-	3.3	774,652	882	882,000
78	61	430.0	56,798	669,932	-	3.5	726,730	830	830,000
73	59	563.0	18,739	658,500	-	3.8	677,240	829	829,000
68	56	773.0	0	650,170	•	3.9	650,170	797	797,000
63	53	1177.0	0	643,038	-	4.0	643,038	786	786,000
58	50	1593.0	0	639,812	-	4.0	639,812	782	782,000
53	47	1407.0	0	639,812	-	4.0	639,812	782	782,000
48	43	987.0	0	639,812	-	4.0	639,812	782	782,000
43	40	676.0	0	639,812		4.0	639,812	782	782,000
38	36	313.0	0	639,812	-	4.0	639,812	800	800,000
33	32	108.0	0	639,812	-	4.0	639,812	700	700,000
28	27	23.0	0	639,812	•	4.0	639,812	600	600,000

Total Rejected 12,761,731 14,602

14,602,000 Heat rejection differences are significant

Condenser Capacity	2,552,000	Btuh	Btuh Capacit
Ice Cream Condensing Circuits	з	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785.231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343.538
Total Circuits	52		2,552,000

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitiess)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)	(Btuh)	(unitiess)	(kWh)
113	74	0.0	0	-	0.0	0	0.00	0	0	0	0.00	0
108	72	5.0	23,704	•	3.4	23,704	4.10	3.413	19,732	43,436	1.00	29
103	70	16.0	23,704	-	3.5	23,704	4.40	3.413	18,387	42,091	1.00	86
98	68	60.0	23,704	-	3.6	23,704	4.70	3.413	17,213	40,917	1.00	303
93	66	126.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	464
88	66	197.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	725
83	63	295.0	23,704	-	4.1	23,704	4.70	3.413	17,213	38,270	0.73	1.086
78	61	430.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	1,583
73	59	563.0	23,704	-	4.1	23,704	4.70	3.413	17.213	36,270	0.73	2.073
68	56	773.0	23,704		4.1	23,704	4.70	3.413	17,213	36.270	0.73	2.846
63	53	1177.0	23,704	-	4.1	23,704	4.70	3.413	17,213	36.270	0.73	4,333
58	50	1593.0	23,704		4.1	23,704	4.70	3.413	17,213	36,270	0.73	5,865
53	47	1407.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	5,180
48	43	987.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	3,634
43	40	676.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	2,489
38	36	313.0	23,704	-	4.1	23,704	4.70	3.413	17,213	36,270	0.73	1,152
33	32	108.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	398
28	27	23.0	23,704	•	4.1	23,704	4.70	3.413	17,213	36,270	0.73	85

Application 32,363

kWh≖ 32,331 ≖ kWh≖ 5.78 ≖

6

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	738,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature (°F) 113	Coincident Wet-Bulb (°F) 74	Hour per bin (hours) 0.0	Refrigeration Case Load (Btuh) 0	Application Factor (unitiess)	Calculated Application Factor, Check (unitless) 0.0	(Btuh)		, , , , , , , , , , , , , , , , ,		E	Calculated Stuh Rejected, Check (Btuh)	Load Factor (unitless)	Compressor Energy Use (kWh) (kWh)
108	72	5.0	43,850		3.3	0		0	0		0	0.00	0
103	70	16.0	43,850			43,850	4.76	3,413	31,441		75,291	1.00	46
			•	-	3.3	43,850	5.05	3.413	29,636		73,486	1.00	139
98	68	60.0	43,850	-	3.4	43,850	5.35	3.413	27,974		71,824	1.00	492
93	66	126.0	43,850	-	3.4	43.850	5.40	3.413	27,715		71.565	1.00	1,023
88	66	197.0	43,850	-	3.8	43,850	5.40	3.413	27,715		64,082	0.73	1,168
83	63	295.0	43,850	-	3.8	43,850	5.40	3.413	27,715		64.082	0.73	1,749
78	61	430.0	43,850	-	3.8	43,850	5.40	3.413	27,715		64,082	0.73	2,549
73	59	563.0	43,850	•	3.8	43,850	5.40	3.413	27,715		64,082	0.73	3,337
68	56	773.0	43,850	-	3.8	43.850	5.40	3.413	27,715		64.082	0.73	4,582
63	53	1177.0	43,850	•	3.8	43,850	5.40	3.413	27,715		64,082	0.73	6,977
58	50	1593.0	43,850	-	3.8	43,850	5.40	3.413	27.715		64,082	0.73	9,443
53	47	1407.0	43,850	•	3.8	43,850	5.40	3.413	27,715		64,082	0.73	8,341
48	43	987.0	43,850	-	3.8	43,850	5.40	3.413	27,715		64.082	0.73	5,851
43	40	676.0	43,850	-	3.8	43,850	5.40	3.413	27,715		64,082	0.73	4.007
38	36	313.0	43,850	•	3.8	43,850	5.40	3.413	27,715		64,082	0.73	1,855
33	32	108.0	43,850	•	3.8	43,850	5.40	3.413	27,715		64,082	0.73	640
28	27	23.0	43,850	•	3.8	43,850	5.40	3,413	27,715		64,082	0.73	136

Application 52,289

kWh= 52,336 = kWh= 9.21 =

9

Condenser Capacity	2,552,000	Btuh	Btuh Capacit
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	8	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	738,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check		Compressor Efficiency, EER		Compressor Btuh rejected due to work	Check	Load Factor	Compressor Energy Use (kWh)
113	74	0.0	(B(0/))		(unitiess)	(Btuh)	(Btu/Watt-hr)	• •		(Btuh)	(unitiess)	(kWh)
108			-	-	0.0	0	0.00	0	0	0	0.00	0
	72	5.0	91,200	-	2.0	91,200	5.88	3.413	52,936	144,136	1.00	78
103	70	16.0	91,200	-	2.1	91,200	6.29	3.413	49,486	140,686	1.00	232
98	68	60.0	91,200	-	2.1	91,200	6.54	3.413	47,594	138,794	1.00	837
93	66	126.0	91,200	-	2.1	91,200	6.54	3.413	47.594	138,794	1.00	1,757
88	66	197.0	91,200	-	2.3	91,200	6.54	3.413	47.594	125.944	0.73	2,005
83	63	295.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	3,003
78	61	430.0	91,200	•	2.3	91,200	6.54	3.413	47.594	125,944	0.73	4,377
73	59	563.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	5,731
68	56	773.0	91,200	-	2.3	91,200	6.54	3,413	47,594	125,944	0.73	7,869
63	53	1177.0	91,200	-	2.3	91,200	6.54	3.413	47.594	125,944	0.73	11,982
58	50	1593.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	16,216
53	47	1407.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	14,323
48	43	987.0	91,200	-	2.3	91,200	6.54	3,413	47,594	125,944	0.73	10,047
43	40	676.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	6,882
38	36	313.0	91,200	•	2.3	91,200	6.54	3.413	47,594	125,944	0.73	3,166
33	32	108.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	1,099
28	27	23.0	91,200	-	2.3	91,200	6.54	3.413	47,594	125,944	0.73	234

Application 89,869 15.6

Condenser Capacity	2,552,000	Btuh	Btuh Capacit
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343.538
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Stuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Compressor Efficiency, EER (Btu/Watt-br)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	0.0	0	-	0.0	0	0.00	0	0	0	0.00	(KWI) 0
108	72	5.0	227,100	-	2.3	227.100	6.86	3.413	112,987	340,087	1.00	166
103	70	16.0	227,100	-	2.4	227,100	7.34	3.413	105,598	332,698	1.00	495
98	68	60.0	227,100	-	2.4	227,100	7.91	3.413	97.989	325,089	1.00	1,723
93	66	126.0	227,100	-	2.5	227,100	8.39	3.413	92,383	319,483	1.00	3,411
88	66	197.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293,046	0.73	3,806
83	63	295.0	227,100	-	2.7	227.100	8.58	3.413	90.337	293,046	0.73	5,700
78	61	430.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293,046	0.73	8,308
73	59	563.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293.046	0.73	10,878
68	56	773.0	227,100	-	2.7	227,100	8.58	3.413	90.337	293,046	0.73	14,936
63	53	1177.0	227,100	•	2.7	227,100	8.58	3.413	90.337	293,046	0.73	22,742
58	50	1593.0	227,100	-	2.7	227,100	8.58	3.413	90.337	293.046	0.73	30,780
53	47	1407.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293.046	0.73	27,186
48	43	987.0	227,100	-	2.7	227,100	8.58	3.413	90.337	293.046	0.73	19,071
43	40	676.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293,046	0.73	13,062
38	36	313.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293,046	0.73	6,048
33	32	108.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293,046	0.73	2,087
28	27	23.0	227,100	-	2.7	227,100	8.58	3.413	90,337	293,046	0.73	444

Application 170,905 33

kWh= 170,843 = kWh= 33.10 =

Condenser Capacity	2,552,000	Bluh	Btuh Capacit
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294.462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitless)	Calculated Application Factor, Check (unitless)	Equivalent Btuh rejected for case Load (Btuh)		Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	0.0	0	•	0.0	0	0.00	٥	0	0	0.00	0
108	72	5.0	219,825	•	2.3	219,825	7.88	3.413	95,211	315,036	1.00	139
103	70	16.0	219,825	-	2.4	219,825	8.57	3.413	87,545	307,370	1.00	410
98	68	60.0	219,825	-	2.4	219,825	9.15	3.413	81,996	301,821	1.00	1,441
93	66	126.0	219,825	-	2.7	219,825	9.73	3.413	77,108	276,114	0.73	2.078
88	66	197.0	219,825	-	2.7	219,825	9.85	3.413	76,169	275,428	0.73	3,209
83	63	295.0	219,825	-	2.7	219.825	9.85	3.413	76,169	275,428	0.73	4,808
78	61	430.0	219,825	-	2.7	219,825	9.85	3.413	76,169	275,428	0.73	7,005
73	59	563.0	219,825	-	2.7	219.825	9.85	3.413	76,169	275,428	0.73	9,172
68	56	773.0	219,825	-	2.7	219,825	9.85	3.413	76,169	275,428	0.73	12,593
63	53	1177.0	219,825	-	2.7	219.825	9.85	3.413	76,169	275,428	0.73	19,175
58	50	1593.0	219,825		2.7	219,825	9.85	3.413	76.169	275,428	0.73	25,953
53	47	1407.0	219,825	-	2.7	219,825	9.85	3.413	76,169	275,428	0.73	22,922
48	43	987.0	219,825	-	2.7	219.825	9.85	3.413	78,169	275,428	0.73	16.080
43	40	676.0	219.825		2.7	219.825	9.85	3.413	76,169	275,428	0.73	11,013
38	36	313.0	219,825		2.7	219,825	9.85	3.413	78,169	275,428	0.73	5,099
33	32	108.0	219,825	-	2.7	219,825	9.85	3,413	76,169	275.428	0.73	
28	27	23.0	219,825	-	2.7	219,825	9.85	3.413	76,169	275,428	0.73	1,759 375

Application 144,016 28

kWh≕ 143.232 = kWh= 27.90 =

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147.231
LT#1 Condensing Circuits	5	circuits	245.385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736.154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2.552.000

Bin Temperature (°F) 113 108 103 98 93 88 83 78 73 68 63 58 63 58 53 48 43	Coincident Wet-Buib (*F) 74 72 70 68 66 86 63 61 59 56 53 50 47 43 40	Hour per bin (hours) 0.0 5.0 16.0 60.0 126.0 197.0 295.0 430.0 563.0 773.0 1177.0 1593.0 1407.0 987.0 676.0	AC Load (tons) 0.00 20.00 18.57 15.71 12.86 10.00 7.14 4.29 1.43	AC Load (Btuh) 0 240,000 222,840 188,520 154,320 120,000 85,680 51,480 17,160	Equivalent Btuh rejected for AC (Btuh) 0 240,000 222,840 188,520 154,320 120,000 85,680 51,480 17,160	Compressur Efficiency, EER (Btu/Watt-hr) 0.00 12.64 14.85 17.06 17.69 17.69 17.69 17.69 17.69	Conversion Constant (Btu/Watt-hr) 0 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413 3.413	Compressor Btun rejected due to work (Btuh) 0 64,804 51,216 37,715 29,774 23,152 16,531 9,932 3,311	Calculated Btuh Rejected, Check (Btuh) 0 304.804 274,056 226,235 184,094 143,152 102,211 61,412 20,471	Load Factor (unitless) 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Compressor Energy Use (kWh) 0 95 240 663 1,099 1,336 1,429 1,251 546	
38	36	313.0										
33	32	108.0										
28	27	23.0										
										kWh=	6,660	=

	Application
=	6,665
=	19

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

kWh≖

18.99

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	5	circuits	245,385
LT#2 Condensing Circuits	6	circuits	294,462
MT#1 Condensing Circuits	16	circuits	785,231
MT#2 Condensing Circuits	15	circuits	736,154
AC Condensing Circuits	7	circuits	343,538
Total Circuits	52		2,552,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	AC Heat Rejection	Refrigeration Heat Rejection	Condenser Load Factor	Calculated Condenser Load Factor, Check	Total Heat Rejection	the Application	Total Heat Rejection from the Application
(°F)	(°F)	(hours)	(Btuh)	(Btuh)	(unitiess)	(unitless)	(Btuh)	(MBtuh)	(Btuh)
113	74	0.0	0	0	•	0.0	0	0	0
108	72	5.0	304,804	773,851	-	2.4	1,078,654	1,233	1,233,000
103	70	16.0	274,056	755,645	-	2.5	1,029,701	1,181	1,181,000
98	68	60.0	226,235	739,651	-	2.6	965,886	1,115	1,115,000
93	66	126.0	184,094	703,431	•	2.9	887,525	1,062	1,062,000
88	66	197.0	143,152	668,826	-	3.1	811,978	1,018	1,018,000
83	63	295.0	102,211	668,826	•	3.3	771,036	977	977,000
78	61	430.0	61,412	668,826	-	3.5	730,238	936	936,000
73	59	563.0	20,471	668,826		3.7	689,296	895	895,000
68	56	773.0	0	668,826	-	3.8	668,826	875	875,000
63	53	1177.0	0	668,826	-	3.8	668,826	875	875,000
58	50	1593.0	0	668,826	-	3.8	668,826	875	875,000
53	47	1407.0	0	668,826	•	3.8	668,826	875	875,000
48	43	987.0	0	668,826	-	3.8	668,826	875	875,000
43	40	676.0	0	668,826	•	3.8	668,826	875	875,000
38	36	313.0	0	668,826	-	3.8	668,826	800	800,000
33	32	108.0	0	668,826	-	3.8	668,826	700	700,000
28	27	23.0	0	668,826	•	3.8	668,826	600	600,000

Total Rejected 12,983,746 15,767 15,767,000 Heat rejection differences are significant

Measure #2 Summary of Findings

Evaluation Compressor Savings	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Measure # Energy Savings	
Ice Cream Condensing Circuits	5.78	5.78	0.00	32,331	23,161	9,170	
LT#1 Condensing Circuits	9.21	9.21	0.00	52,336	36,417	15,919	
LT#2 Condensing Circuits	15.51	15.51	0.00	89,859	53,329	36.530	
MT#1 Condensing Circuits	33.10	31.76	1.34	170,843	131,969	38.873	
MT#2 Condensing Circuits	27.90	27.11	0.79	143,232	98,280	44,952	
AC Condensing Circuits	18.99	18.99	0.00	6,660	4,926	1,734	
Total			2.13	kW		147,179	kWh
Total Refer	w/ Compressor	103.36			460,705		

			Measure #			Measure #	
	Pre-Retrofit	Post-Retrofit	Demand	Pre-Retrofit	Post-Retrofit	Energy	
Application Compressor Savings	Demand	Demand	Savings	Energy	Energy	Savings	
Ice Cream Condensing Circuits	6.00	6.00	0.00	32,363	23,063	9,300	
LT#1 Condensing Circuits	9.00	9.00	0.00	52,289	36,676	15,613	
LT#2 Condensing Circuits	15.60	15.60	0.00	89,869	60,185	29,684	
MT#1 Condensing Circuits	33.00	32.00	1.00	170,905	121,921	48,984	
MT#2 Condensing Circuits	28.00	27.00	1.00	144,016	99,024	44,992	
AC Condensing Circuits	19.00	15.10	3.90	6,665	2,726	3,939	
Total			5.90	kW		152,512	kWh

Dark Green font is an estimate because this level of detail was missing from the application.

Applicaton Condenser Analysis	Pre-Retrofit Demand	Post-Retrofit Demand	Measure # Demand Savings	Pre-Retrofit Energy	Post-Retrofit Energy	Savings (kWh)	Pre- Condenser Rejection (Btuh)	Post- Condenser Rejection (Btuh)	Difference in Condenser Heat Rejection (Btuh)	Measure Energy Savings per Condenser Heat Rejection (kWh/Btuh)
Condenser Fan Use	16.00	16.00	0.00	127,026	134,501	-7,475	15,767,000	14,602,000	1,165,000	-0.01

0.00921114 1.0957E-06

			Difference in	Measure Energy Savings per	Energy avings per			
	Pre- Condenser Rejection	Post- Condenser Rejection	Condenser Heat Rejection	Condenser Heat Rejection				
Evaluation Condenser Analysis Condenser Fan Use	(<mark>Btuh)</mark> 12.983,746	(Btuh) 12,761,731	(Étuh) 222,015	(kWh/Btuh) -1,425	Post-Energy 117,550	Post Demand 13.9835431		

Final Results for Measure #2										
Source	Demand Impact	Energy impact								
Evaluation	2.13	145,754								
Application	5.90	145,037								

.....

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343.538
MT#2 Condensing Circuits	21	circuits	1.030.615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

Bin Temperature (°F) 113 108	Coincident Wet-Buib (°F) 74 72	Hour per bin (hours) 0.0 8.0	Reirigeration Case Load (Btuh) 0 31,833	Application Factor (unitless)	Calculated Application Factor, Check (unitiess) 0.0 2.6	Equivalent Btuh rejected for case Load (Btuh) 0 31,833	Compressor Efficiency, EER (Btu/Watt-hr) 3.90 4.20	Conversion Constant (Btu/Watt-hr) 0 3.413	Compressor Btuh rejected due to work (Btuh) 0 25,868	Check (Btuh) 0	ed, Load Factor (unitiess) 0.00	Compressor Energy Use (kWh) (kWh) 0
103	70	53.0	31,833		2.6	31,833	4.50	3.413	24,144	57,701 55,977	1.00 1.00	61 375
98	68	159.0	31,833	-	2.7	31,833	4.80	3.413	22,635	54,468	1.00	1,054
93	66	287.0	31,833		3.1	31,833	5.00	3.413	21,729	47,695	0.73	1,334
88	66	364.0	31,833		3.1	31.833	5.10	3.413	21,303	47,384	0.73	1,659
83	63	457.0	31,833	-	3.2	31,833	5.40	3.413	20,120	46,520	0.73	1,967
78	61	581.0	31,833	•	3.3	31,833	6.00	3.413	18,108	45,052	0.73	2,250
73	59	707.0	31,833		3.3	31.833	6.40	3.413	16,976	44,225	0.73	2,567
68	56	804.0	31,833	-	3.4	31,833	6.80	3.413	15,977	43,496	0.73	2,748
63	53	965.0	31,833	-	3.4	31,833	6.90	3.413	15,746	43,327	0.73	3,250
58	50	1100.0	31,833	-	3.4	31,833	6.90	3.413	15,748	43,327	0.73	3,705
53	47	1098.0	31,833	-	3.4	31,833	6.90	3.413	15,746	43,327	0.73	3,698
48	43	902.0	31,833	-	3.4	31,833	6.90	3.413	15,746	43,327	0.73	3,038
43	40	681.0	31,833	-	3.4	31,833	6.90	3.413	15,748	43,327	0.73	2,293
38	36	397.0	31,833	-	3.4	31,833	6.90	3.413	15,746	43,327	0.73	1,337
33	32	159.0	31,833	•	3.4	31,833	6.90	3.413	15,746	43,327	0.73	535
28	27	32.0	31,833	•	3.4	31.833	6.90	3.413	15,746	43,327	0.73	108

Application 32,840

k₩h≕ 31,978 = 7.58 =

kWh≖

8

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	з	circuits	147.231
LT#1 Condensing Circuits	12	circuits	588.923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343.538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441.692
Total Circuits	52		2,552,000

Bin Temperature	Coincident Wet-Buib	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check		Compressor Efficiency, EER		Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitiess)	(unitiess)	(Btuh)		(Btu/Watt-hr)	(Btuh)	in the second	(Btuh)	(unitiess)	(kWh)
113	74	0.0	o	-	0.0	0	0.00	0	0		0	0.00	0
108	72	8.0	107,318	-	3.2	107,318	4.76	3.413	76,949		184,267	1.00	180
103	70	53.0	107,318	-	3.3	107,318	5.05	3.413	72,530		179.848	1.00	1,126
98	68	159.0	107.318	-	3.4	107,318	5.35	3.413	68,463		175,781	1.00	3,189
93	66	287.0	107,318	•	3.4	107,318	5.64	3.413	64,943		172.261	1.00	5,461
88	66	364.0	107,318	•	3.9	107,318	5.99	3.413	61,148		151,956	0.73	4,761
83	63	457.0	107,318	-	4.0	107,318	6.42	3.413	57,052		148,966	0.73	5,577
78	61	581.0	107,318	-	4.0	107,318	6.82	3.413	53,706		146,524	0.73	6,674
73	59	707.0	107.318	-	4.1	107,318	7.22	3.413	50,731		144,351	0.73	7,671
68	56	804.0	107.318	-	4.1	107,318	7.67	3.413	47,754		142,179	0.73	8,212
63	53	965.0	107,318	•	4.2	107,318	8.12	3.413	45.108		140.247	0.73	9,310
58	50	1100.0	107.318	-	4.2	107.318	8.12	3.413	45,108		140,247	0.73	
53	47	1098.0	107,318	-	4.2	107.318	8.12	3.413	45,108				10,613
48	43	902.0	107,318		4.2	107,318	B.12	3.413	45,108		140,247	0.73	10,594
43	40	681.0	107,318		4.2	107,318	B.12 B.12				140,247	0.73	8,703
38	36	397.0	107,318		4.2			3.413	45,108		140,247	0.73	6,570
33	32	159.0	107,318			107,318	B.12	3.413	45,108		140,247	0.73	3,830
28	27	32.0		-	4.2	107,318	8.12	3.413	45,108		140,247	0.73	1,534
20	<i>L</i>	32.0	107,318	-	4.2	107.318	8.12	3.413	45.108		140,247	0.73	309

Application 94,312 23

kWh≈ 94.315 = kWh≈ 22.55 =

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	Ó
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitless)	Equivalent Bluh rejected for case Load (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	0.0	0	•	0.0	0	0.00	0	0	0	0.00	0
108	72	8.0	115,300	-	3.5	115,300	7.38	3.413	53,322	168.622	1.00	125
103	70	53.0	115,300	-	3.6	115,300	8.01	3.413	49,128	164,428	1.00	763
98	68	159.0	115,300	•	3.6	115,300	8.53	3.413	48,134	161,434	1.00	2,149
93	66	287.0	115,300	-	3.7	115,300	9.05	3.413	43,483	158,783	1.00	3,656
88	66	384.0	115,300	-	4.1	115,300	9.57	3,413	41,120	145,318	0.73	3,201
83	63	457.0	115,300	-	4.1	115,300	10.28	3.413	38,280	143.244	0.73	3,742
78	61	581.0	115,300	-	4.2	115,300	10.89	3.413	36,136	141,679	0.73	4,491
73	59	707.0	115,300	•	4.2	115,300	11.62	3.413	33.866	140,022	0.73	5,121
68	56	804.0	115,300	-	4.2	115,300	12.34	3.413	31,890	138,579	0.73	5,484
63	53	965.0	115,300	-	4.3	115,300	13.22	3.413	29,767	137.030	0.73	6,144
58	50	1100.0	115,300	•	4.3	115,300	14.19	3.413	27,732	135,544	0.73	6,525
53	47	1098.0	115,300	-	4.3	115,300	14.19	3.413	27,732	135,544	0.73	6,513
48	43	902.0	115,300	-	4.3	115.300	14.19	3.413	27,732	135.544	0.73	5,350
43	40	681.0	115,300	-	4.3	115,300	14.19	3.413	27,732	135,544	0.73	4.039
38	36	397.0	115,300	•	4.3	115,300	14,19	3.413	27,732	135,544	0.73	2,355
33	32	159.0	115,300	-	4.3	115,300	14.19	3.413	27,732	135.544	0.73	943
28	27	32.0	115,300	-	4.3	115,300	14.19	3.413	27,732	135,544	0.73	190

Application 60,973 16

kWh= 60,791 =

15.62 ≠

kWh=

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
ce Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552.000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Efficiency, EER	Conversion Constant	Compressor Btuh rejected due to work		Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitless)	(Btuh)	(Btu/Watt-hr)	(Btu/Watt-hr)	(Btuh)		(Btuh)	(unitless)	(kWh)
113	74	0.0	0	-	0.0	0	0.00	0	0		0	0.00	0
108	72	8.0	366,750	-	0.7	366,750	7.88	3.413	158,847		525,597	1.00	372
103	70	53.0	366,750	-	0.7	366,750	8.46	3.413	147.957	11 2 2	514,707	1.00	2,298
98	68	159.0	366,750	-	0.7	366,750	9.04	3.413	138,464	· · ·	505,214	1.00	6,451
93	66	287.0	366,750	-	0.7	366,750	9.73	3.413	128,645		495,395	1.00	10,818
88	66	364.0	366,750	•	0.8	366,750	10.31	3.413	121,408		455,378	0.73	9,452
83	63	457.0	366,750	-	0.8	366.750	10.98	3,413	114,000		449.970	0.73	11,143
78	61	581.0	366,750		0.8	366,750	11.67	3.413	107.259		445,049	0.73	13,329
73	59	707.0	366,750	-	0.8	366.750	12.47	3.413	100,378		440.026	0.73	15,179
68	56	804.0	366,750	-	0.8	366,750	13.46	3.413	92,995		434.637	0.73	15,992
63	53	965.0	366,750	•	0.8	366,750	14.49	3.413	86,385		429,811	0.73	17,830
58	50	1100.0	366,750	-	0.8	366,750	15.51	3.413	80,704		425,664	0.73	18,988
53	47	1098.0	366,750	•	0.8	366,750	15.51	3.413	80,704		425,664	0.73	18,953
48	43	902.0	366,750	-	0.8	366,750	15.51	3.413	80,704		425,664	0.73	15,570
43	40	681.0	366,750		0.8	366,750	15.51	3.413	80,704		425,664	0.73	11,755
38	36	397.0	366,750		0.8	366,750	15.51	3.413	80,704		425,664	0.73	6,853
33	32	159.0	366,750	-	0.8	366,750	15.51	3.413	80,704		425.664	0.73	2,745
28	27	32.0	366,750	•	0.8	366,750	15.51	3.413	80,704		425,664	0.73	552

kWh= 178,280 = 178,274 kWh= 46,54 = 47

_

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	3	circuits	147.231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343.538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441.692
Total Circuits	52		2,552,000

Bin Temperature (°ŕ)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Loed (tons)	AC Load (Btuh)	Equivalent Btuh rejected for AC (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)	
113	74	0.0	0.00	0	0	0.00	0 .	0	Ò	•	`o ´	
108	72	8.0	20.00	240,000	240,000	13.91	3.413	58,887	298,887	1.00	138	
103	70	53.0	18.57	222,840	222,840	15.80	3.413	48,136	270,976	1.00	748	
98	68	159.0	15.71	188,520	188,520	18.01	3.413	35,726	224,246	1.00	1,664	
93	66	287.0	12.86	154,320	154,320	20.59	3.413	25,580	179,900	1.00	2,151	
88	66	364.0	10.00	120,000	120,000	23.66	3.413	17,310	137,310	1.00	1,846	
83	63	457.0	7.14	85,680	85,680	28.10	3.413	10,407	96,087	1.00	1,393	
78	61	581.0	4.29	51,480	51,480	34.05	3.413	5,160	56,640	1.00	878	
73	59	707.0	1.43	17,160	17,160	37.08	3.413	1,579	18,739	1.00	327	
68	56	804.0										
63	53	965.0										
58	50	1100.0										
53	47	1098.0										
48	43	902.0										
43	40	681.0										
38	36	397.0										
33	32	159.0										
28	27	32.0										
										kWh≠	9,146	æ

Application 4,058 12.4

kWh=

17.25 =

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Heat Rejection (Btuh)	Refrigeration Heat Rejection (Btuh)	Condenser Load Factor (unitless)	Calculated Condenser Load Factor, Check (unitless)	Total Heat Rejection (Btuh)	Total Heat Rejection from the Application (MBtuh)	Total Heat Rejection from the Application (Btuh)
113	74	0.0	0	0	-	0.0	0	0	0
108	72	8.0	298,887	936,188	-	2.1	1,235,075	1,153	1,153,000
103	70	53.0	270,976	914,960	-	2.2	1,185,936	1,106	1,106,000
98	68	159.0	224,246	896,896	-	2.3	1,121,142	1,042	1,042,000
93	66	287.0	179,900	874,134	-	2.4	1,054,034	982	982,000
88	66	364.0	137,310	800,036	-	2.7	937,346	927	927,000
83	63	457.0	96,087	788,701	-	2.9	884,787	872	872,000
78	61	581.0	56,640	778,304	-	3.1	834,944	821	821,000
73	59	707.0	18,739	768,625	-	3.2	787,365	843	843,000
68	56	804.0	0	758,891	-	3.4	758,891	811	811,000
63	53	965.0	0	750,415	-	3.4	750,415	798	798,000
58	50	1100.0	0	744,783	-	3.4	744,783	791	791,000
53	47	1098.0	0	744,783	-	3.4	744,783	791	791,000
48	43	902.0	0	744,783	-	3.4	744,783	791	791,000
43	40	681.0	0	744,783	-	3.4	744,783	791	791,000
38	36	397.0	0	744,783	-	3.4	744,783	800	800,000
33	32	159.0	0	744,783	-	3.4	744,783	700	700,000
28	27	32.0	0	744,783	-	3.4	744,783	600	600,000

Total Rejected 14,763,413 14,619 14,619,000

Condenser Capacity	2,552,000	Btuh	Btuh Capacit
Ice Cream Condensing Circuits	з	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1.030.615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Bluh rejected for case Load (Btuh)	Efficiency, EER	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	1	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh)
113	74	0.0	0		0.0	0	0.00	0	0		(8(01))		(kWh)
108	72	8.0	31.833	-	2.5	31,833	3.90	3.413	27.858		59,691	0.00 1.00	0
103	70	53.0	31,833	•	2.6	31,833	4.20	3.413	25,868				85
98	68	159.0	31,833	_	2.6	31,833	4.50	3.413	25,000		57,701	1.00	402
93	66	287.0	31,833	-	3.0	31,833	4.70	3.413	23,116		55,977	1.00	1,125
88	66	364.0	31,833	-	3.0	31,833	4.70	3.413	23,116		48.708	0.73	1,419
83	63	457.0	31,833	-	3.0	31,833	4.70				48,708	0.73	1,800
78	61	581.0	• • • •					3.413	23,116		48,708	0.73	2,260
			31,833	•	3.0	31,833	4.70	3.413	23,116		48,708	0.73	2,873
73	59	707.0	31,833	-	3.0	31,833	4.70	3.413	23,116		48,708	0.73	3,496
68	56	804.0	31,833	-	3.0	31,833	4.70	3.413	23,116		48,708	0.73	3,975
83	53	965.0	31.833	-	3.0	31,833	4.70	3.413	23,116		48,708	0.73	4,771
58	50	1100.0	31, 833	•	3.0	31,833	4.70	3.413	23,116		48,708	0.73	5,439
53	47	1098.0	31,833	•	3.0	31,833	4.70	3.413	23.116		48,708	0.73	5,429
48	43	902.0	31,833	•	3.0	31,833	4.70	3.413	23,116		48,708	0.73	4,460
43	40	681.0	31,833	•	3.0	31.833	4.70	3.413	23,116		48,708	0.73	3,367
38	36	397.0	31,833	-	3.0	31,833	4,70	3.413	23,116		48,708	0.73	1,963
33	32	159.0	31,833	-	3.0	31,833	4.70	3.413	23,118		48,708	0.73	786
28	27	32.0	31,833	-	3.0	31,833	4.70	3.413	23,116		48,708	0.73	158

Application 43,820 8

kWh≖ 43,786 = kWh= 8,16 =

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	ò
MT#1 Condensing Circuits	7	circuits	343.538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441.692
Total Circuits	52		2,552,000

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	Refrigeration Case Load (Btuh)	Application Factor (unitiess)	Calculated Application Factor, Check (unitiess)	Equivalent Btuh rejected for case Load (Btuh)	Estimated Compressor Efficiency, EER (Btu/Watt-hr)	Conversion Constant (Btu/Watt-hr)	Compressor Btuh rejected due to work (Btuh)	Calculated Btuh Rejected, Check (Btuh)	Load Factor (unitiess)	Compressor Energy Use (kWh) (kWh)
113	74	0.0	0		0.0	0	0.00	0	0	0	0.00	0
108	72	8.0	107,318	-	3.2	107,318	4.76	3.413	76,949	184,267	1.00	180
103	70	53.0	107,318	-	3.3	107,318	5.05	3.413	72,530	179,848	1.00	1,126
98	68	159.0	107,318		3.4	107,318	5.35	3,413	68,463	175,781	1.00	3,189
93	66	287.0	107,318	-	3.4	107,318	5.40	3.413	67,829	175,147	1.00	5,704
88	66	364.0	107,318	-	3.8	107,318	5.40	3.413	67,829	158,833	0.73	5,281
83	63	457.0	107,318	-	3.8	107.318	5.40	3.413	67,829	156,833	0.73	6,630
78	81 ·	581.0	107,318	-	3.8	107,318	5,40	3,413	67,829	156,833	0.73	8,429
73	59	707.0	107,318	-	3.8	107,318	5.40	3.413	67.829	156,833	0.73	10,257
68	56	804.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	11,664
63	53	965.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156.833	0.73	14,000
58	50	1100.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	15,959
53	47	1098.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	15,930
48	43	902.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	13,088
43	40	681.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	9,880
38	36	397.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	5,760
33	32	159.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	2,307
28	27	32.0	107,318	-	3.8	107,318	5.40	3.413	67,829	156,833	0.73	464

Application 129,734 23

kWh= 129.848 = kWh= 22.55 =

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuita	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	Ó
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

Bin Temperature	Coincident Wet-Bulb	Hour per bin	Refrigeration Case Load	Application Factor	Calculated Application Factor, Check	Equivalent Btuh rejected for case Load	Compressor Efficiency, EER		Compressor Btuh rejected due to work	Calculated Btuh Rejected, Check	Load Factor	Compressor Energy Use (kWh)
(°F)	(°F)	(hours)	(Btuh)	(unitless)	(unitiess)	(Btuh)		(Btu/Watt-hr)		(Btuh)	(unitiess)	(kWh)
113	74	0.0	0	-	0.0	٥	0.00	0	0	0	0.00	0
108	72	8.0	115,300	-	0.0	115,300	7.38	3.413	53,322	168,622	1.00	125
103	70	53.0	115,300	-	0.0	115,300	8.01	3.413	49,128	164,428	1.00	763
98	68	159.0	115,300	-	0.0	115,300	8.53	3.413	48,134	161,434	1.00	2,149
93	66	287.0	115,300	-	0.0	115,300	9.05	3.413	43,483	158,783	1.00	3,658
88	66	364.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	3,348
83	63	457.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	4,204
78	61	581.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	5,345
73	59	707.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	6,504
68	56	804.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	7,396
83	53	965.0	115,300	-	0.0	115,300	9.15	3.413	43,008	148,695	0,73	8,877
58	50	1100.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	10,119
53	47	1098.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	10,100
48	43	902.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	8,297
43	40	681.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	6.264
38	36	397.0	115,300	•	0.0	115,300	9.15	3.413	43,008	148,695	0.73	3,652
33	32	159.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	1,463
28	27	32.0	115,300	-	0.0	115,300	9.15	3.413	43,008	146,695	0.73	294

Application 82,530 16

kWh= 82,556 ≠ kWh= 15.62 ≠

MT#2, Measure #1

-

Condenser Capacity	2.552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147.231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1.030.615
AC Condensing Circuits	9	circuits	441.692
Total Circuits	52	circuits	2,552,000

Bin Temperature (°F) 113 108 103 98 93 88 83 78 73 68 63 58 63 58 63 58 63 58 63 58 63 58 53 38 33 28	Coincident Wet-Buib (°F) 74 72 70 68 66 66 66 66 63 61 59 56 53 59 56 53 50 47 43 40 38 32 27	Hour per bin (hours) 0.0 8.0 53.0 159.0 287.0 364.0 457.0 581.0 707.0 804.0 985.0 1100.0 1098.0 902.0 681.0 397.0 159.0 32.0	Refrigeration Case Load (Btuh) 0 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750	Application Factor (unitiess) - - - - - - - - - - - - - - - - - -	Calculated Application Factor, Check (unitiess) 0.0 2.0 2.0 2.0 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	Equivalent Btuh rejected for case Load (Btuh) 0 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 366,750 368,750 368,750 368,750 368,750 368,750 368,750 368,750 366,750			Compressor Btuh rejected due to work (Btuh) 0 158,847 147,957 138,464 128,645 127,078 127,078 127,078 127,078 127,078 127,078 127,078 127,078 127,078 127,078 127,078		Calculated Btuh Rejected, Check (Btuh) 0 525,597 514,707 505,214 495,395 459,517 459,517 459,517 459,517 459,517 459,517 459,517 459,517 459,517 459,517 459,517	Load Factor (unltiess) 0.00 1.00 1.00 1.00 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0	Compressor Energy Use (kWh) 0 372 2,298 6,451 10,818 9,894 12,421 15,792 19,217 21,853 26,229 29,899 29,844 24,517 18,510 10,791 4,322 870
---	--	---	--	---	--	--	--	--	--	--	---	--	--

Application 244,122 47

kWh≈ 244,098 =

kWh≈ 46.54 =

AC, Measure #1

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
Ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	0
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

74 72 70 68 66 66 66 63	0.0 8.0 53.0 159.0 287.0 364.0	0.00 20.00 18.57 15.71 12.86 10.00	0 240,000 222,840 188,520 154,320	0 240,000 222,840 188,520	0.00 11.07 12.64 14.85	0 3.413 3.413	0 73,995 60,170		(Btuh) 0 313,995	0.00	(kWh) 0 173
70 68 66 66	53.0 159.0 287.0 364.0	18.57 15.71 12.86	222,840 188,520	222,840	12.64					1.00	173
68 66 66	159.0 287.0 364.0	15.71 12.86	188,520			3.413	60.170				
66 66	287.0 364.0	12.86		188,520	14 95				283,010	1.00	934
66	364.0		154,320		19.60	3.413	43,328		231,848	1.00	2,018
		10.00		154,320	17.06	3.413	30,873		185,193	1.00	2,596
6.0		10.00	120,000	120,000	17.69	3.413	23,152		143,152	1.00	2,469
03	457.0	7.14	85,680	85,680	17.69	3.413	16,531		102,211	1.00	2,213
61	581.0	4.29	51,480	51,480	17.69	3.413	9,932		61,412	1.00	1,691
59	707.0	1.43	17,160	17,160	17.69	3.413	3,311		20,471	1.00	686
56	804.0										
53	965.0										
50	1100.0										
47	1098.0										
43	902.0										
40	681.0										
36	397.0										
32	159.0										
27	32.0										
40 36 32		681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0	681.0 397.0 159.0

Notes

The application assumes a lower AC load in the post-measure #2 retrofit condition.

kWh= 21.68 =

Application

12,292

21.7

Condenser Capacity	2,552,000	Btuh	Btuh Capacity
ice Cream Condensing Circuits	3	circuits	147,231
LT#1 Condensing Circuits	12	circuits	588,923
LT#2 Condensing Circuits	0	circuits	Ó
MT#1 Condensing Circuits	7	circuits	343,538
MT#2 Condensing Circuits	21	circuits	1,030,615
AC Condensing Circuits	9	circuits	441,692
Total Circuits	52		2,552,000

ļ.

1 1 1

i .

Bin Temperature (°F)	Coincident Wet-Bulb (°F)	Hour per bin (hours)	AC Heat Rejection (Btuh)	Refrigeration Heat Rejection (Btuh)	Condenser Load Factor (unitless)	Calculated Condenser Load Factor, Check (unitless)	Total Heat Rejection (Btuh)	Total Heat Rejection from the Application (MBtuh)	Total Heat Rejection from the Application (Btub)
113	74	0.0	0	0	-	0.0	0	O Ó	0
108	72	8.0	313,995	938,178	-	2.0	1.252,172	1,243	1,243,000
103	70	53.0	283,010	916,685	-	2.1	1,199,695	1,191	1,191,000
98	68	159.0	231,848	898,405	-	2.3	1,130,253	1,125	1,125,000
93	66	287.0	185,193	878,033	-	2.4	1,063.226	1,068	1,068,000
88	66	364.0	143,152	811,753	-	2.7	954,905	1,025	1.025,000
83	63	457.0	102,211	811,753	-	2.8	913,964	984	984,000
78	61	581.0	61,412	811,753	-	2.9	873,166	944	944,000
73	59	707.0	20,471	811,753	•	3.1	832,224	903	903,000
68	56	804.0	0	811,753	-	3.1	811,753	882	882,000
63	53	965.0	0	811,753	-	3.1	811,753	882	882,000
58	50	1100.0	0	811,753	•	3.1	811,753	882	882,000
53	47	1098.0	0	811,753	-	3.1	811,753	882	882,000
48	43	902.0	0	811,753	-	3.1	811,753	882	882,000
43	40	681.0	0	811,753	•	3.1	811,753	882	882,000
38	36	397.0	0	811,753	-	3.1	811,753	800	800,000
33	32	159.0	0	811,753	-	3.1	811,753	700	700,000
28	27	32.0	0	811,753	-	3.1	811,753	600	600,000

Total Rejected 15,525,385

15,875

15,875,000 Heat rejection differences are significant

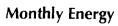
Measure #2 Summary of Findings

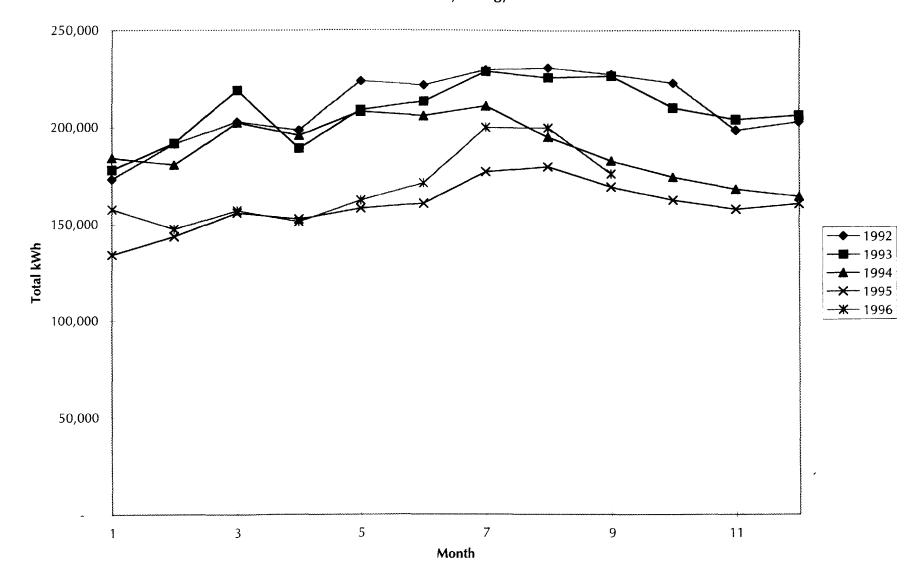
Evaluation Compressor Savings Ice Cream Condensing Circuits LT#1 Condensing Circuits MT#1 Condensing Circuits MT#2 Condensing Circuits AC Condensing Circuits Total Total Refer w	8.16 22.55 15.62 46.54 21.68	Demand 7.58 22.55 15.62 46.54 17.25	Measure # Demand Savings 0.58 0.00 0.00 0.00 4.43 5.01	Pro Due a	Energy 31,978 94,315 60.791 178,280 9,146	Savings 11,808 35,531 21,765 65,816 3,636	kWh
--	--	--	--	-----------	--	--	-----

Application Compressor Savings Ice Cream Condensing Circuits LT#1 Condensing Circuits MT#1 Condensing Circuits MT#2 Condensing Circuits AC Condensing Circuits Total	Pre-Retrofit Demand 8.00 23.00 16.00 47.00 21.70	Post-Retrofit Demand 8.00 23.00 16.00 47.00 12.40	Measure # Demand Savings 0.00 0.00 0.00 0.00 9.30 9.30	Pro Due	Post-Retrofit Energy 32,840 94,312 60,973 178,274 4,058	Measure # Energy Savings 10,980 35,422 21,557 65,848 8,234 142,041	
						-,041	ĸwh

Applicaton Condenser Analysis Condenser Fan Use	Pre-Retrofit Demand 21.00	Post-Retrofit Demand 21.00	Measure # Demand Savings 0.00	Pre-Retrofi Energy 65,532	t Post-Retro Energy 59,499	(kWh) 6,033	Condenser Rejection (Btuh) 15,875,000		Difference in Condenser Heat Rejection (Btuh) 1.256,000	Condenser Heat Rejection (kWh/Btuh)
Evaluation Condenser Analysis Condenser Fan Use Final Results for Measure #2 Source Demand Impact Er Evaluation 5.01 Application 9.20		Condenser Rejection (Btuh)	Difference in Condenser Heat Rejection (Btuh) 761,972	Condenser Heat Rejection	Post-Energy 60,087	Post Demand 21.2074476	0.00406398	1.4365E-06		0.00

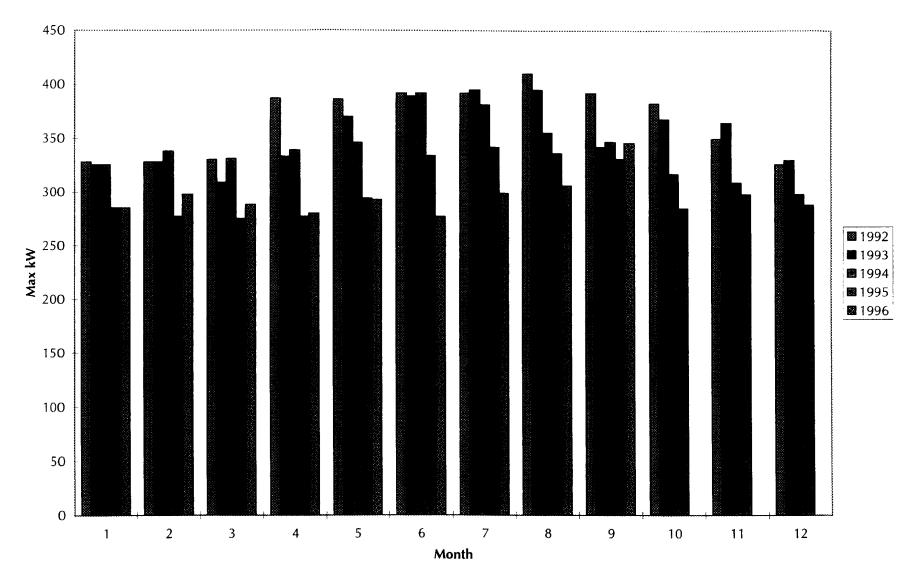
Site ID#:	390
Check #	63398
Measure	EMS for store lighting and refrigeration system; new condenser
Measure Description:	Action code 453, refrigeration EMS.
Summary of Calculations in the Original	Savings are estimated in this application for improved compressor efficiency resulting from a reduced minimum condensing temperature setpoint.
Application:	Additionally, the EMS controls refrigerated case anti-sweat heaters.
	Also, a new evaporative oversized condenser was installed.
Comments on Calculations:	This application is well documented and clearly explains the proposed retrofit at this grocery store and all assumptions regarding the associated savings.
	In conjunction with the refrigeration retrofits covered under this application, store lighting systems were also retrofit with high efficiency technologies.
Evaluation Process	An on-site audit of this facility has shown that all equipment specified in the application were installed.
	Condensing temperatures measured at the time of this audit indicate that a floating head control strategy is used for the condenser. Condensing temperature leaving the condenser (before liquid subcooling) ranged from 63 °F to 65 °F, while ambient dry bulb conditions were 52 °F. These measurements suggest a minimum condensing setpoint below the assumed 70 °F application value.
	The final impact verification consisted of a billing comparison. Billing records clearly show an impact following this retrofit that is at least as large as claimed savings. Impacts in the application were adopted as the evaluation estimate of savings.
Additional Notes:	An on-site inspection of this facility was conducted with Pam Funk on October 18, 1996. The did not provide useful site contact information. However, an equipment inventory was conducted, and R-22 refrigerant conditions were measured during this inspection (discharge, suction and condensate temperatures).


Impact Results for Site ID# 390


	kW	kWh	Therm
Application	0.94	188,633	0
MDSS	0.94	188,633	0
Evaluation Estimates	0.94	188,633	0
Engineering Realization Rate	1.00	1.00	NA
Customer Billing Summary	NA	308,747	

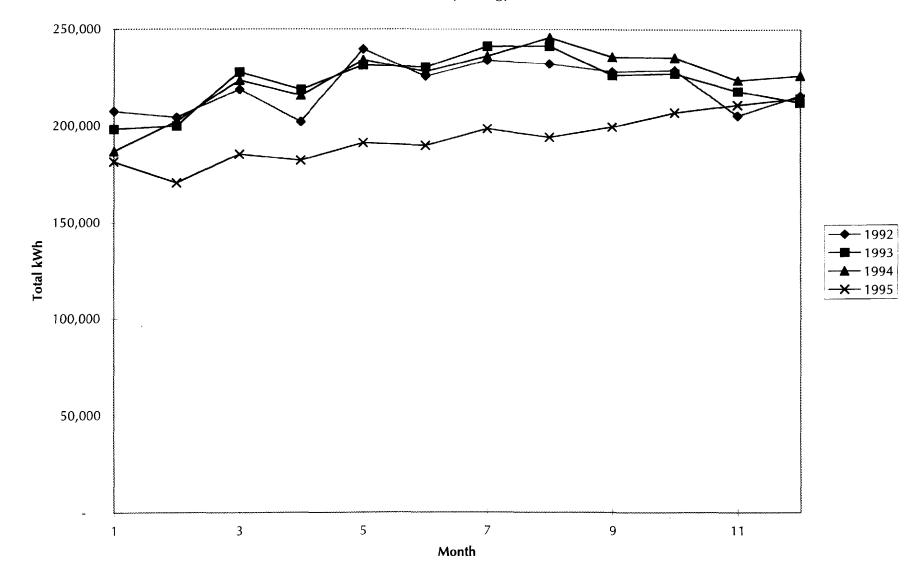
BILL0390

	~ ~						·									
Monthly Ene													-	l 4		
Site_ID	Year	1	2	3	4	5	6	7	8	9	10	11			Oct-Sept	
390	1992	173,120	191,400	202,733	198,376	223,877	221,650	229,605	230,742	227,357	222,844	198,753	203,101	2,523,559		·
390,	1993	177,865	191,758	218,912	189,148	208,805	213,289	228,897	225,670	226,462	210,037	204,139	206,396	2,501,376	2,505,503	
390	1994	184,258	180,492	202,176	195,714	207,920	205,926	210,797	194,870	182,689	174,471	168,293	164,550	2,272,155	2,385,412	95%
390 390	1995		143,440	155,640	152,417	158,023	160,480	176,855	179,593	169,072	162,465	157,950	160,665	1,910,760	1,936,994	77%
	1996	157,560	147,397	156,825	151,063	162,155	171,097	199,943	199,730	175,950				1,521,720	2,002,800	80%
Monthly Ma Site_ID	x Demand Year		1		Ā	- el	¢.			0	10					r
390:	1992 1992	328	328	330	387	386	392	392	410	202	10 382	11 350	326	Maximum 410	· · - · ·	r
390	1993	325	328	309	333	370	389	392	395	342	368	365	320			
390	1994	325	338	331	339	346	392	381	355	392 342 347	317	309	298	392	÷	
390	1995		277	275	277	294	334	342	336	331	285	298	288	342		· –
390	1996	· ·	298	288	280	293	277	299	306	346				346	• · · · · · · · •	
							1				• • • • • • • • • • • • • • • • • • • •	+				
•			1	!					Ţ							
-			Ī					•								
]				[
Energy Com	parison of C	alendar 1995	and Calend	ar 1993:		-	,									
				······	-		-									
	993-1995=	590,616	Wh savings	per year				· •								·
Light	ting Retrofit	281,869	Wh savings	per year froi	m applicatio	on for lighting	g retrofit									·
		308,747	estimated ad	ditional savi	ngs atter ligt	nting retrotit	savings are r	emoved						- 		} · ·
	-	Energy Comp	barable to, an	no in lactexe	ceeds the Cl	anneu saving	25 01 100,00	s kvvii/year	ł							·
- :		(308,747 kW	h / 2 501 3	76 L\A/h	•		1		·	-						1
	1		Savings to the					· ·· · ·	-					<u>.</u>		
•		A calendar y			 rison was se	elected since	the project	completion	date was not	until Augus	of 1994	· ·				
		Note that a 1					F. STeer								•	
•			- III - EVE 12:	e verse p												
					t			1	Ī							· · · · · · · · · · · · · · · · · · ·
Because the	demand sav	ings are so sr	mall for the r	efrigeration j	portion of th	is retrofit, no	demand co	mparison us	ing billing d	ata was deer	ned necessa	ry.		•		· ·


Energy Chart

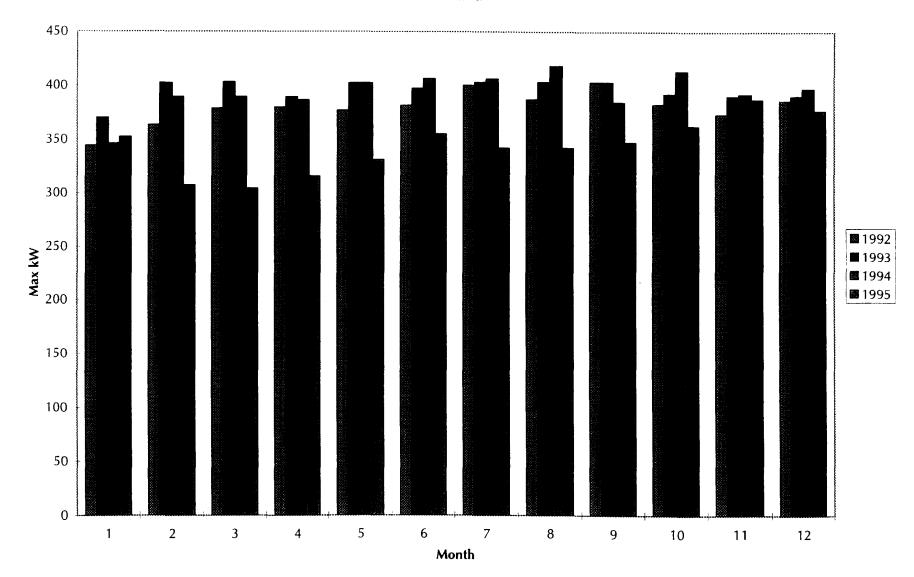
Demand Chart

Site ID#:	396
Check #	63879
Measure	EMS, new evaporative condenser, floating head pressure controls, anti- sweat heater controls, HID retrofit, and VFD for condenser fans
Measure Description:	Action code 478, oversized condensers. Retrofit, however, more extensive than just a condenser measure.
Summary of Calculations in the Original	Savings are estimated in this application for improved compressor efficiency resulting from a reduced minimum condensing temperature setpoint (floating head pressure controls).
Application:	Additionally, the EMS controls refrigerated case anti-sweat heaters.
	Lastly, condensing fans were intended to be retrofit with variable frequency drive (VSD) fan speed controls.
Comments on Calculations:	This application is well documented and clearly explains the proposed retrofit at this grocery store and all assumptions regarding the associated savings.
Evaluation Process	: An on-site audit of this facility could not identify the location of the VFD serving the condenser. All other equipment were, however, installed according to the application records.
	Condensing temperatures measured at the time of this audit indicate that a floating head control strategy is used for the condenser. Condensate temperatures (before liquid subcooling) were measured below 70 °F, while ambient dry bulb conditions were 69 °F. These measurements are consistent with application minimum condensing setpoint assumptions.
	The final impact verification consisted of a billing comparison. Billing records clearly show an impact following this retrofit that is at least as large as claimed savings. Impacts in the application were adopted as the evaluation estimate of savings, following a reduction in claimed savings for the VFD measure.
Additional Notes:	An on-site inspection of this facility was conducted with Les on October 23, 1996. The inspection included a thorough equipment inventory of the refrigeration systems, and R-22 refrigerant conditions were measured during this inspection (discharge, suction and condensate temperatures).


Impact Results for Site 1D# 396

	kW	kWh	Therm
Application	24.7	244,994	0
MDSS	24.7	244,994	0
Evaluation Estimates	24.7	222,466	0
Engineering Realization Rate	1.00	0.91	NA
Customer Billing Summary	16	325,213	

Site_II	nly Energy	/					-										
		· · ·	1	2	3	4	5 :	6	7	8	9	10	11	12	Calander	Oct-Sept	
	396	1992	207,365	204,352	218,772	202,232	239,796	225,680	233,988	232,252	228,169	228,805	205,382	215,462	2,642,255		
	396	1993	198,280	199,920	227,875	218,696	231,469	230,436	241,077	241,419	226,290	227,220	217,963	212,006	2,672,651	2,665,110	
	396	1994	186,912	202,423	223,465	215,570	234,201	228,221	236,058	245,630	235,782	235,374	223,698	226,026	2,693,360	2,665,451	100%
	396	1995	181,440	170,624	185,330	182,136	191,314	189,961	198,555	194,331	199,539	206,770	210,735	214,175	2,324,910	2,378,328	89%
	nly Max E				-	i			-								
Site_II			1	2	3	4	5	6	7	8	9	10	11		Maximum		
	396	1992	344	363	378	379	376	381	400	387	403	382	373	386			
	396	1993	370	402	403	389	402	397	403	403	403	392	390	390			
	396	1994	346	389	389	386	402	406	406	418	384	413	392	397			
	396	1995	352	307	304	315	331	355	342	342	347	362	387	376	387		
		t						ļ	4								
				į	-			ł									
-		÷			-		1		1		ļ						
	ł	ļ		1					1	-							
		ļ		ļ	-	1					- +						
	e lu				1003				÷	t	-						
Energy	Compar	ison of Ca	lendar 1995	and Calend	lar 1993:	÷	:			·		+				· · · · · · · · · · · · · · · · · · ·	
	100	3-1995=	247 741	Wh savings		1	i		•	÷							
	SD for Co					: dua ta inco	malata V/SD	rotrofit (cou	Id not find V								
V		nuenser								SO during o							
			275 212	AM/h covinge	nor voar afte	ar VSD rodu	-tion	1				!	-				
	į				per year afte			s of 244 99	4 kWh/waar							-	
	-	1					tion aimed saving	s of 244,99	4 kWh/year				· •· ·· · · ·				
	-	1	nergy Com	parable to, a	nd in fact ex			s of 244,99	4 kWh/year				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			·····
		1	nergy Comp 325,213 kW	oarable to, a (h) / 2,672,6	nd in fact ex 51 kWh			s of <u>2</u> 44,99	4 kWh/year				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	- - - - - - - - - - - - - - - - - - -		nergy Comp 325,213 kW 12%	barable to, a (h) / 2,672,6 Savings to th	nd in fact ex 51 kWh e 1993 bill,	ceeds the cla	imed saving		4 kWh/year	- · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	- - - -		nergy Comp 325,213 kW 12%	barable to, a (h) / 2,672,6 Savings to th	nd in fact ex 51 kWh e 1993 bill,	ceeds the cla			4 kWh/year	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
			nergy Comp 325,213 kW 12%	barable to, a (h) / 2,672,6 Savings to th	nd in fact ex 51 kWh e 1993 bill,	ceeds the cla	imed saving		4 kWh/year								
Dema	nd Comp		nergy Comp 325,213 kW 12% Note that a 1	oarable to, a (h) / 2,672,6 Savings to th 992 or 1994	nd in fact ex 51 kWh e 1993 bill 4 base year y	ceeds the cla	imed saving		4 kWh/year				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Dema	nd Comp		nergy Comp 325,213 kW 12% Note that a 1	barable to, a (h) / 2,672,6 Savings to th	nd in fact ex 51 kWh e 1993 bill 4 base year y	ceeds the cla	imed saving		4 kWh/year								
		arison of	nergy Comp 325,213 kW 12% Note that a 1 Calendar 19	Darable to, a (h) / 2,672,6 Savings to th 992 or 1994 95 and Cale	nd in fact ex 51 kWh e 1993 bill 4 base year y	ceeds the cla	imed saving		4 kWh/year								
	nd Comp Max 199	arison of (3-1996=	nergy Comp 325,213 kW 12% Note that a 1 Calendar 19 16	0 arable to, a (h) / 2,672,6 Savings to th 992 or 1994 95 and Cale	nd in fact exe 51 kWh e 1993 bill 4 base year y ndar 1993:	ceeds the cla	aimed saving		4 kWh/year								
		arison of 6	a25,213 kW 12% Note that a 1 Calendar 19 16 Demand con	h) / 2,672,6 Savings to th 992 or 1994 95 and Cale	nd in fact ex 51 kWh e 1993 bill. I base year y ndar 1993:	ields a simil	imed saving ar savings es .7 kW	timate.	4 kWh/year								
		arison of 6	a25,213 kW 12% Note that a 1 Calendar 19 16 Demand con	h) / 2,672,6 Savings to th 992 or 1994 95 and Cale	nd in fact ex 51 kWh e 1993 bill. I base year y ndar 1993:	ields a simil	aimed saving	timate.	4 kWh/year								
		arison of (3-1996=	a25,213 kW 12% Note that a 1 Calendar 19 16 Demand con	Arable to, a (h) / 2,672,6 Savings to th 992 or 1994 95 and Cale (W nparable to t 994 base with	nd in fact ex 51 kWh e 1993 bill. I base year y ndar 1993:	ields a simil	imed saving ar savings es .7 kW	timate.	4 kWh/year								


Energy Chart

Demand Chart

Site ID#:	657
Check #	62974
Measure	Energy Management System and Control Optimization
Measure Description:	An Energy Management System (EMS) was installed at a large industrial refrigeration company; action code 453. The EMS serves 117,185 sq ft of refrigerated warehouse, with three engine rooms driving the R-717 ammonia system. This warehouse processes, cools and freezes vegetables, meat, fish and juice concentrates. The application states that the control system saves energy using the following strategies: floating head pressure, floating suction pressure, evaporator coil defrost optimization, and evaporator fan control.
Summary of Calculations in the Original Application:	Bin models were developed to estimate, warehouse loads (surface gains and losses) in conjunction with product load estimates, and equipment energy use required to meet those loads condenser, compressor and evaporator energy use. Assumptions and model results are well documented.
Comments on Calculations:	The EMS system installed (engine room #1, PLC-5) serves engine rooms #1 and #2 (compressors and condensers) and the refrigerated warehouse space controlled by those systems (including evaporators). However, the original application also indicates that this EMS system serves engine room #3 systems; information provided by the on-site contact has shown that although engine room #3 systems will eventually be controlled by the PLC-5 unit, this portion of the retrofit has not yet been completed (engine room #3 is currently served by a separate control system installed in 1989).
	Additionally, the following issues were noted surrounding the application calculations:
	Surprisingly, evaporator loads, according to the bin models, are often larger than the compressor loads. Pre-retrofit demand estimates for the evaporator systems are based upon undiversified evaporator fan use in the pre-retrofit condition.
	• The modeled compressor and evaporator energy usage shows evaporator loads that are greater than compressor loads. Impacts are based upon the following percentage contributions to the total refrigeration load:
	Pre-Retrofit Usage Post-Retrofit Usage
	Compressors 36% 34%
	Evaporators 62% 59%
	Condensers 2% 5%
	• Compressor loads appear small when compared against the equipment inventory for each engine room. For example, the largest modeled hourly baseline compressor load (excluding boosters) in engine room #1 is 195.9 kW out of 527 available

kW, or just 37% of capacity.

٠	Additionally, engine room #2 compressor loads never exceed
	46.7 kW , or just 18% of the 301.7 kW in total capacity.

- Within engine room #1, booster compressors are also modeled with relatively low loads. The maximum observed booster compressor load is 31.6 kW out of a total available equipment connected load of 107 kW, or just 30% of capacity.
- June pre- and post-retrofit engine room #2 energy use is set equal to zero using a monthly use factor that accounts for the portion of each system actually in use.
- It appears that only 15% of the evaporator fan energy use contributes to the warehouse load. All of the evaporator fan energy use should contribute as heat load to the refrigerated space, not just the portion due to "motor inefficiency".

Evaluation Process: The equipment listed on page 7.10 of the application were verified (though one Mycom compressor serving engine room #3 was added in April of 1996)

Product loads were gathered for the one year period following installation of the EMS system (installation completed in September of 1995).

PG&E 15 minute interval load data were acquired for this particular site, providing an additional source for model verification.

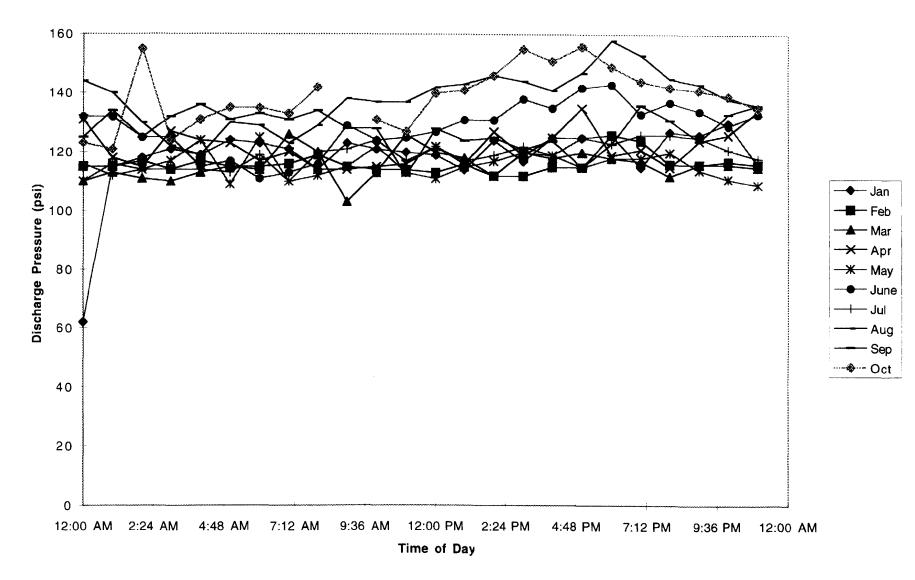
According to those site contact records, 87,640,000 pounds of meat, juice concentrate and fruit were processed/stored at this facility during the period October 1995 through September 1996. These loads are significantly lower than application records assumed to estimate impacts -- 109,856,000 lb of product. It is assumed that the product loads gathered on-site indicate a period of relatively low to average historic processing.

No attempt was made to revise the application calculation records due to many of the issues noted above. For this reason, the evaluation process consisted of the following:

Analysis of refrigerant operating setpoints during the year. A nine month sample of EMS data were provided by the site contact for selected weekdays (one per month) and for a smaller sample of Saturday and Sunday observations. These hourly EMS records provide ammonia refrigerant suction and discharge pressures, a binary evaporator defrost history, and warehouse room and outside air temperatures. These data have been used to verify both the application records and on-site records of refrigeration system operating setpoints. Additionally, condensing temperatures and outdoor temperatures were recorded during the on-site audit in order to verify the use floating head control strategies. Exhibits 657-1 and 657-2 provide a summary of measured high-stage discharge pressures which indicate that summer discharge pressures that are roughly 10-25 psi higher than the winter values recorded. This suggests that floating head pressure controls are used. Exhibits

657-3 and 657-4, however, show that suction pressures are not significantly variable during the year (and therefore with change in ambient temperature conditions). This suggests that application reports of floating suction control may not be used.

Because the energy impacts for this retrofit were cited in the application as a 20% reduction in annual usage, and because application end-use models exhibit characteristics that may not accurately predict refrigeration equipment usage, evaluation analyses rely instead upon a billing analysis -- that is, a comparison of pre-retrofit and post-retrofit energy use.


Additional Notes: An on-site inspection of this facility was conducted on October 8, 1996 with Tom Casey and Dave Apling, along with Clay Shmidt, a PG&E representative.

During an interview with the facility engineer he stated that the discharge and suction settings for the refrigeration system have not changed since the installation of the EMS. The static discharge temperature (pre- vs post-retrofit) in turn suggests that the condensing temperature has not changed since the installation of the EMS system. The condensed ammonia at a given saturation pressure will have a fixed condensing temperature (due to the properties of pure ammonia at saturation temperature and pressure). Regardless of whether or not floating head pressure control strategies are used at this site, the fact that the discharge pressure has not been modified following the installation of EMS controls suggests that the condensing temperature also has not changed.

In addition, automated evaporator defrost control strategies have been decommissioned since the installation of the EMS, in favor of manual defrost control.

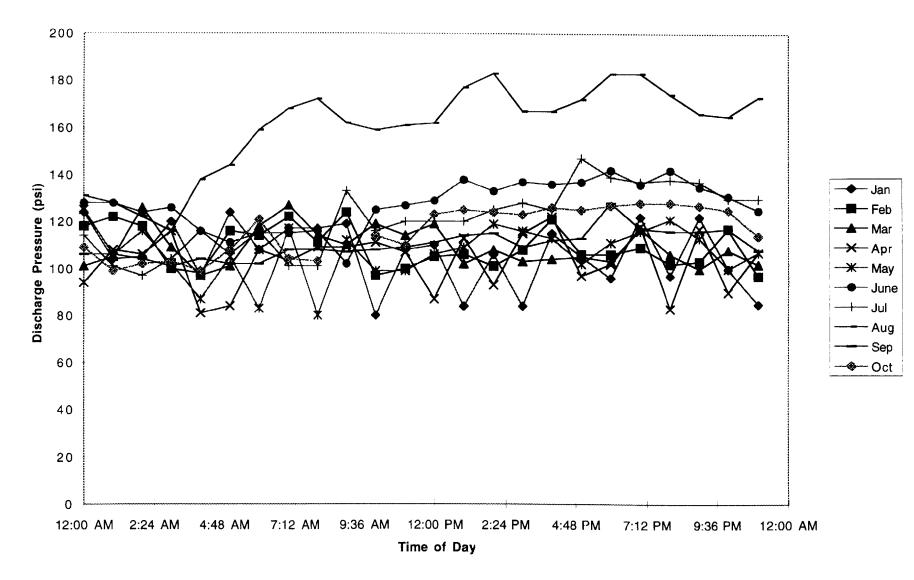

	kW	kWh	Therm
Application	24	900,322	0
MDSS	24	900,322	0
Evaluation Estimates	0	0	0
Engineering Realization Rate	0	0	NA
Customer Billing Summary			

Exhibit 657-1

Engine Room #1 Discharge Pressure Comparis

Exhibit 657-2

Enginer Room #2 Discharge Pressure Comparis

Exhibit 657-3

Engine Room #1 Suction Pressure Comparis

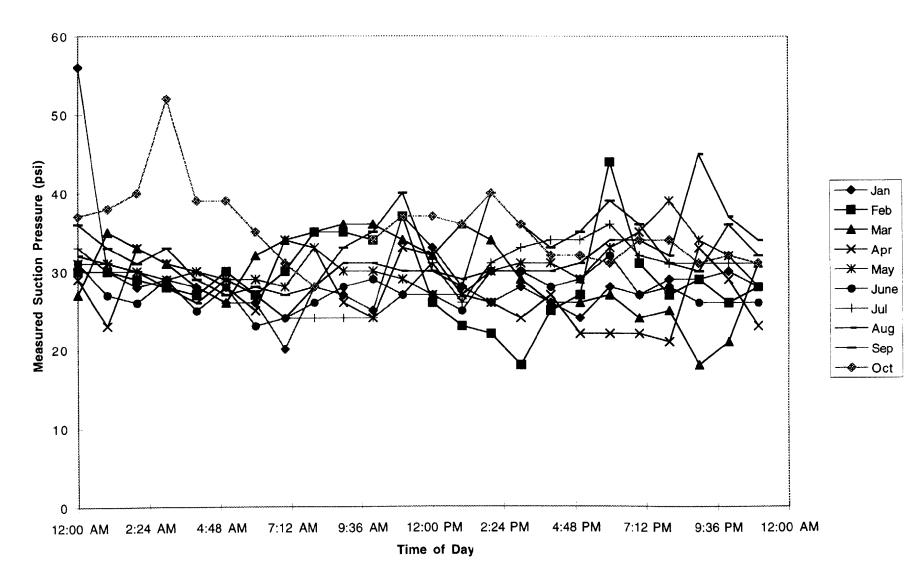
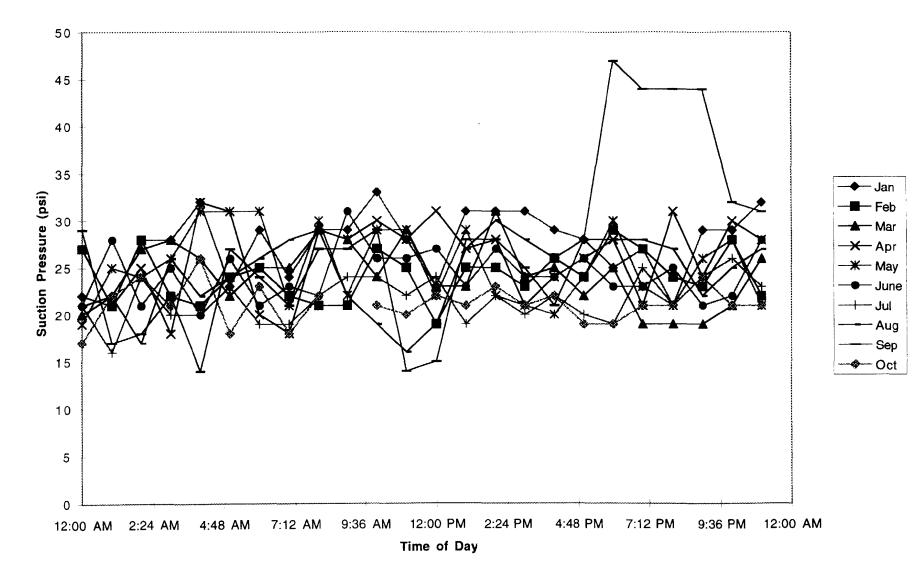
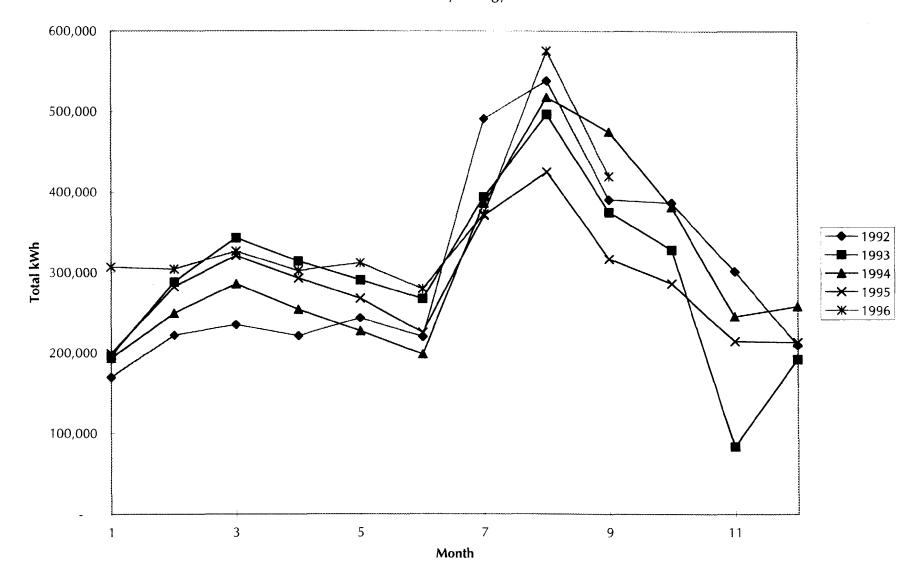



Exhibit 657-4

Engine Room #2 Suction Pressure Comparis

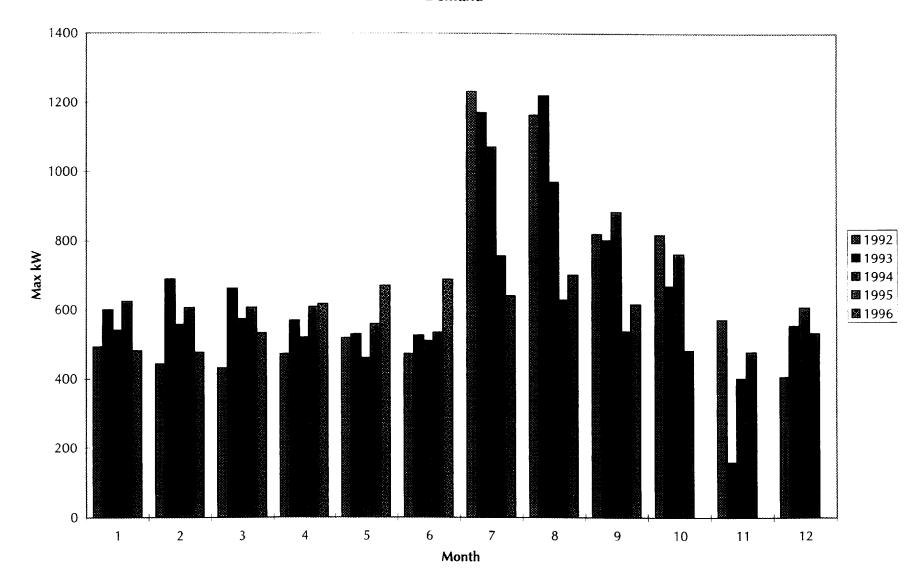


Energy Chart

Monthly Energy

.

.



Demand Chart

.

Demand

.

0.1				
-81	L	11	нı	57

Monthly	Energy		•				-,			•	1						•
Site_ID	Yea		1	2	3 '	4	5	6	7	8	9	10	11	12	Oct-Sept	Percent of 19	93
6	57	1992	169,431	221,799	234,847	220,910	243,257	219,693	490,746	538,014	390,129	386,131	301,748	209,692	···· •· •		
6	57	1993	195,976	287,927	342,983	313,732	29 0,375	266,848	393,853	496,355	374,505	328,313	83,093	192,021	3,860,126		
	57	1994	192,581	249,122	285,786	253,996	226,801	198,020	385,871	517,516	474,824	380,893	245,761	258,293	3,387,942	88%	
6	57	1995	198,570	282,284	320,777	292,662	267,261	224,897	370,897	424,700	316,584	286,350	214,503	213,250	3,583,579	93%	
	57	1996	306,259	303,916	326,229	301,834	311,492	279,149	372,452	575,303	419,301				3,910,038	101%	
Monthly	Max De	emand				1											
site_ID	Yea		1	2	3	4	5 j	6	7.	8	9	10	11	12			
6		1992	491	441	430	470	516 ₁	470	1231	1164	819	817	570	404			
6		1993	600	689	662	568	528	525	1170	1220	801	668	157	553			
6		1994	540	555	573	518	458	508	1071	970	884	761	400	606			
6		1995	624	605	606	607	557	533	756	627	536	480	476	531			
6	57	1996	480	476	531	616	669	687	639	700	615					L	
				-												· · · · · +	
						,										· · · · · · · · · · · · · · · · · · ·	
									<					i		· · · · ·	
he abov	e billin	g summa	ry for site_id	657 was as	sembled to i	nvestigate th	ie claimed in	npact levels	of nearly 1,0	00,000 kW	h.						
					:	1 1 1										_	
							sage has incr							i			
							d during the				mber 1996	was average	• • • • • • • • • • • • • • • • • • • •			+ · · · +·	
							zed. Evaluat							falles in a d	- FLIC Land D		
	Inis	is not su	iprising sinc	e on-site rec	orus nave sr	iown inat m	any of the en	ergy saving	principles de	picted in th	e application	i were not ir	npiemented	tonowing th	e EMS installa	ation.	
	Dan	and could	age given th			thore estim	ates were ac	contod								· • · · · · · · · · · · · · · · · · · ·	
	Den	nand savi	ngs, given tr	ne conservat	ive nature of	these estim	ales were ac	cepted.	·····								

Site ID#:	2862
Check #	63612
Measure	Rerack warehouse, suction re-route, condenser replacement
Measure Description:	The retrofit site is a large agricultural cold storage facility, where produce are injected with ice, vacuum cooled, and stored for a short while prior to being shipped to market. The retrofit performed at this site consists of three distinct measures (all covered under a single application and recorded under a single MDSS record; action code 469):
	1) Storage racks were added to the existing cold rooms to allow storage of additional iced product (pallets of broccoli); prior to the installation of these racks, cold storage capacity was often exceeded, resulting in approximately 25% of the pallets being stored outside. On average, the pallets stored outside would remain for one or two days and require re-icing once per day. Approximately 300 lbs of ice are required to re-ice a single pallet of broccoli. This increase in available cold storage has reduced the frequency of product storage outdoors, and therefore plant ice production.
	2) The suction line feeding the cold storage was separated from the remainder of the system to allow a higher suction pressure for this particular application. A higher suction pressure provides a reduced pressure differential between the compressor discharge and the suction-side, leading to improved compressor performance. Prior to this system modification, a common suction was shared by all loads, leading to low suction pressures (that are not optimal for the cold storage application). A "pumper drum" liquid storage vessel was installed on the suction return from the cold storage room to augment the receiver vessel used by the remainder of the system (where liquid is removed from the vapor line before returning to the compressors). The separation of the cold storage suction line is desirable due to the high discharge pressure and low suction pressure requirements demanded by the site contact, ice-making equipment are in use the majority of the time at this facility, and ice-making is estimated to account for roughly 60-70% of the system load.
	3) The application also sites the replacement of two existing centrifugal fan evaporative condensers with a new axial fan evaporative condenser.
Summary of Calculations in the Original Application:	Bin models were developed to estimate equipment energy use at this site including condenser, compressor and evaporator energy use. Although the bin model results are reasonably documented, it is unclear if loads on the system were derived or simply applied to achieve a desired level of predicted energy use.
Comments on Calculations:	Estimates of ice-making deferred due to re-icing assume that re-icing is no longer required in the post-retrofit condition. Site contact information indicates, however, that some outdoor storage is still

	required (though post-retrofit frequency of outdoor storage was not quantified).
	The suction re-routing measure included the installation of two 200 hp M&M compressors (though two existing 60 hp compressors are now off-line and remain only for standby purposes). Attachment 7 documentation suggest that one existing Mycom reciprocating compressor would be dedicated to the cold storage system, while in reality one of the new 200 hp M&M compressors were dedicated to that particular system.
	The condenser replacement measure is not a replacement, but the addition of a new condenser.
	The documentation and calculations provided make reference to liquid ammonia pumps (9 kW load) that is not used at this facility. liquid ammonia is distributed using the pressure differential between discharge and suction.
Evaluation Process:	The evaluation does not attempt to reproduce the bin models provided in the application, but instead uses alternate methods to validate each estimate.
	Current estimates were provided for iced product processed per year (8 million boxes vs 5 million from the application).
	PG&E 15 minute interval load data were acquired for this particular site, providing a source for model calibration.
	Since this retrofit occurred, an additional ice-making machine was purchased. Whenever possible, no ice is made during the peak period (noon - 6 PM). There is an active policy at this site to shift ice-making loads to the partial-peak periods.
Additional Notes:	An on-site inspection of this facility was conducted on September 23, 1996 with Danny Vincent and Pete Zucker.

.

	kW	kWh	Therm
Application	268	903,671	0
MDSS	268	903,671	0
Evaluation Estimates	186	903,671	0
Engineering Realization Rate	0.69	1.0	NA
Customer Billing Summary			

ergy Use Peak Hour De /h) (kW)	emand Recommended Evaluation Result
532 67	Application
015 52	Appliation/Evaluation
124 67	Application
671 186	NA
	Vh) (kW) 532 67 015 52 124 67

The contact p	rovided the sche	dule during which	h ice is produced	at this facility:				J		
Daytype Weekday Weekday Saturday Sunday * The PG&E	Season Summer* Non-Summer All All summer season	Pre-Retrofit Begin Ice Production 12:00 midnight 12:00 midnight 12:00 midnight 12:00 midnight is defined as the	Pre-Retrofit End lce Production 12:00 midnight 12:00 midnight 12:00 midnight 12:00 midnight 12:00 midnight	Pre-Retrofit Hours of Ice Production per Day 24 24 24 24 24 24 24	Post-Retrofit Begin Ice Production 6:00 PM 12:00 midnight 12:00 midnight 12:00 midnight	12:00 midnight 12:00 midnight sting period dur	24 24 ing this time ind			
					activity is not nece					nere.
					nis application), yield s. Ice is normally p					
				non peak penede		ioduced using (apacity of each	System.	÷ · · ·
Ice is made a	t this facility duri	ng the harvest se	ason only 43 v	veeks per year.	Therefore in the pre-	e-retrofit case, ic	e making hour	s per year are		
	e = (43 weeks/yea	r) x (7 days ice hours/year	production/week)	x (24 hours/day	y)			: : :		
The refrigerar	nt suction and di	ischarge setpoint	s/typical settings	were gathered f	rom the site contac	t		•		
		Pre-Retrofit Suction	Pre-Retrofit Discharge	Agrees with Observed Values During	Post-Retrofit Suction	Post-Retrofit Discharge	Agrees with Observed Values During			
Sy Cold rooms	stem	Pressure (psi) 21-22	Pressure (psi) 145-160	Site Visit No pre-visit	30-35	Pressure (psi) 125-135	Site Visit Yes	1		:
	n/vaccum tubes	21-22	145-160	No pre-visit	21-22		No ice-Making	Observed		• · · ·
······		Ť		:	, t		.			••
	ignates an input. gnates a <u>calculat</u> ates a result.			:				- 		

,

r	11. y										
1) Assumptions:											
There are 400 tons of ice store			1	1	I						
Pallets that arrive directly from	the field are normally iced with a	bout 1,000 lbs of ice per pa	let.					1			
Pallets that are then stored out	tdoors, require approximately 300	lbs ice/pallet-day.					-		[
The on-site contact estimates	hat pallets were stored outdoors	on average for one-to-two d	ays (1.5 days as	sumed for calcu	lations).					· · · · · · · · · · · · · · · · · · ·	
								•			
Therefore, to estimate the quar	ntity of ice delivered on average to	a single pallet kept outdoo	rs						<u>;</u>		
							- 10 - 1717 - 10 - 10 - 10 - 10 - 10 - 1		•	· · · · · · · · · · · · · · · · · · ·	
Lbs Re-Ice = (300 lbs re-ic	e/pallet-day) x (1.5 days)					++					
= 450	Lbs re-ice/pallet			• • • • • •		-+		····	•		<u> </u>
	······································		• 1	:		· · · · · · · · · ·		• • • • · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·	
The application states that 5.0	00,000 cartons of broccolli require	ice injection every year		•	• • • • • • • • • • • • • • • • • • • •	++		t ·· · ·-		·	i
	mates that production now requir		er vear be iced	4 · · · ·							•
	wing this retrofit, the production				two figuree)			•		·	
	that pallets on average hold 44		per year (ine in	Colari or these	into liguies).						
	es that roughly 20% of the pre-r		vitdoore	· · · · · · · · · · · · · · · · · · ·		+		l			
Lastly, the site contact estimat	es mai roughly 20% of the pre-i	Billon cartons were slored (• • • • • • •							
2) Impact Calculations:	+			• · · ·		+					
To estimate the number of pall		· · · · · · · · · · · · · · · · · · ·	+	t the second sec		++					
To estimate the number of pair	ets re-iced per year			• • • •					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			000	-		· • · · · · · · •		<u>↓</u>		······	·
	e/pallet) x (6,500,000 cartons/yea	ar) x (1 pallev44 cartons) x	20% re-ice rate	· · · · - · ·				÷ · · · · · · · · · · · · · · · · · · ·		·	·
= 13,295,455	Lbs re-ice/year		1	• • • • • • • • •		÷		ļ			
			· · · · · ·	• · · · · · · · · · · · · · · · · · · ·				····			
Converting to tons				÷		+					L
	1		-+								
	bs re-ice/year) x (1 ton/2,000 lb	s ice)	4	• • • • • • • • • • • • • • • • • • • •							· ·
= 6,648	Tons re-ice/year			•·····						¦ +	
	<u> </u>			<u>.</u>							
	iditional ice must be made that is			L		· · · · · · · · · · · · · · · · · · ·					
Application records indicate that	t 23 gallons of 32 °F water are s	pilled during product injection	n .							1	
		· · · · · · · · · · · · · · · · · · ·									
To estimate the equivalent ice	production associated with this sp	illed water (that must be rep	laced with 64 °F	make-up water)						
······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			. I			l		
Lbs equiv. ice = (23 gallons/pa	illet) x (6,500,000 cartons/year) x	(1 pallet/44 cartons) x (20	% re-ice rate) x	(8.34 lbs water	/gallon) x (64-	32 °F water diffe	rential) x (1 E	tu/Lbm °F wate	r) / 144 Btu/lb	ice heat of fus	ion
= 1,259,42	4 Lbs Equiv ice/year			ļ				ļ			
Converting to tons											
		4		L	·						
Tons Re-Ice = (1,259,424 lb	s equiv ice/year) x (1 ton/2,000	lbs ice)									
= 630	Tons equiv ice/year										
				•							
Finally, the energy consumption	n is estimated for making deferred	l ice (due to the retrofit).		÷ .							
Hard copy application records	indicate that ice production require	as 62 kWh/ton of ice produc	ed.	•							
			1								
Energy Impact = (6,648 tons r	e-ice/year + 630 tons equiv ice/y	ear) x (62 kWh/ton)		• •						;	
= 451,201	kWh/year									1	i
	on estimate for this measure is 43	10,532 kWh/year.		I.					······	T	
· · · · · · · · · · · · · · · · · · ·						T			·	<u> </u>	<u> </u>
Lastly, the demand estimate fr	om the application is evaluated us	ing the energy result.	·† ·	• • •			·	t			† [
	e is produced only 43 weeks per		on.	•••••		1		+	·	+	
	is produced using the pre-retrofit			edule.		-				+	+·
Ice generation canacity has be	en expanded since this retrofit, the	areby shifting neak hour ice	production to the	partial- and off	peak periods	+ +		†	t	+ - ·	tÌ
the generation capacity has be	en expanded since this rendin, the	story sintering peak nour ice	production to the	Farmer and OI	pour perioda.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u>├</u>	<u>+</u>	
Itaina antimata di sasual b	fine and ution (40 methods)	24 hours par dou violde 7.0	A hours) a mar	n demand imen	nt is potimated	Las follows				+	·····
Using estimated annual nours (of ice production (43 weeks/year,	24 nours per day, yields 7,2		u uemanu impa	Dentis estimated	as iuliuws			i	+	
				1							

Mean Demand = (4	451,201 kWh/year)/7,224 h	nours of ice production/yea										
= 6	52 KW	· · · · · · · · · · · · · · · · · · ·			4				1			
T	This serves as a lower bound	d (conservative) estimate of s	avings for the pea	ak hour.								
T	The application estimate of d	emand for this measure is 6	kW for the syste	m peak hour.								_
										1		
3) Conclusions:									1			
							1					
The purpose of the	e evaluation implemented fo	r this measure is to verify the	accuracy of app	lication impacts,	and to replace the	ose estimates	only in the ev	ent that a gross	error is detecte	d.		
All impact loads we	ere not necessarily included	in the above calculations (for	example, ice sha	ving, loading an	d delivery loads,	and make-up w	ater delivery lo	ads were exclu	ded from the eva	uation estimate	s).	
In a similar (though	h having an opposite effect) manner, these calculations	also do not take	into consideratio	n the fact that s	me product is	still stored ou	tdoors in the po	st-retrofit condit	ion.		
The calculations pe	erformed have generally veri	ified the accuracy of the app	cation form meth	ods. Both demai	nd and energy im	pact estiamtes	appear reliable	e.				

1) Advancements 2) Advancemen												
The rate action langesture of the cold room system provide in easing (if the measure is a result of the isotot an assumed to be resulted to the resolution of the isotot and assumed to be resulted to the resolution of the isotot and th	1) Assumptions:		L		<u>.</u>							
Execute loads an genical in both the pre- and portwork case. Additionally disrage to the constant loads as required this spreads and assumed to be negative. I make to be additionally the daw to the 200 hp key 1 (100 mpcs of thereino) Additional the maximum VK daw to the 200 hp key 1 (100 mpcs of thereino) Additional the maximum VK daw to the 200 hp key 1 (100 mpcs of thereino) Additional the maximum VK daw to the 200 hp key 1 (100 mpcs of thereino) Additional the maximum VK daw to the 200 hp key 1 (100 mpcs of thereino) Additional the maximum VK daw to the 200 hp key 1 (100 mpcs of thereino) Additional the additional to the pre-inditional to the sector 1 do to the spream Additional to the 200 hp key 1 (100 mpcs of thereino) Beglication compression tests in access of 300 kW to the spream Additional to the 200 hp key 1 (100 mpcs of thereino) Beglication compression tests in access of 300 kW to the spream Additional to the 200 hp key 1 (100 hp ke					e only unit servi	ng the cold room	ns (according to in	formation supplied by	the site contact).			
b) mget Calculation: Estimate in many AV date in 200 hp MM compressor Corporation (Corporation												
Example the maximum W Ger (bp 200 by Life) and compressor Compressor (b) = [200 hp) + 0.746 Whp) x (10.26 major efficiency) = 165 W maximum Appleading macross show compare lades in access of 200 W for the system Appleading the appleading post-training markets of 200 W for the system To estimate a control for the compressor energy uses of 200 W for the system FFM = [215.264 MW) was an the particle or order in 1.51.264 WW) was FFM = [215.264 MW) was an use of ball the appleading in the particle of the compressor energy uses of the lade operation/set on the particle order on a lade operation/set on the particle order of the system of the lade operation/set on the particle order of the lade operation/set of the lade operation/set of the system of the lade operation/set of the lade operation/set of the lade operation of the lade	Evaporator loads are id	entical in both the pre- and	d post-retrofit case. Addition	ally changes to the	condenser load	as a result of th	nis retrofit are assu	med to be insignificat	nt.		I	
Samaa te maufyum W Gar for the 200 hp value compressor compressor is 200 hp value of the source allow markers of 300 W for the system Addition compressor energy using for the measure in projunction with the meanum MV estimate, expresent full-cell hours an be lack-calculated. The application compressor energy using for the measure in projunction with the meanum MV estimate, expresent full-cell hours can be lack-calculated. FENA of 132.844 MVVVvest mark using a set of the compressor of the system full-cell hours can be lack-calculated. FENA of 132.844 MVVvest mark to a set of the compressor of the system full-cell hours can be lack-calculated. FENA of 132.844 MVVvest mark is a set of the compressor of the system full-cell hours can be lack-calculated. The set of the societation compressor energy using for the measure in projunction with the measurem MV estimate. FENA of 132.844 MVVvest is at setting read. The set of the cold costs hads, their vest used in the projection condition. The set of the cold costs hads their vest used in the projection condition. The set of the cost of costs hads their vest used in the projection condition. FENA of 132.844 MVVvest in a setting read. The set of the cost of the cost of costs hads their vest used in the projection condition. FENA of 132.844 MVVvest in the setting read. FENA of 132.8					1							
Example the maximum VV disk for the 200 to MM compressor Compressor IV - (200 hp x (0.746 KMhp) x (0.38 mptor efficiency) - (156 LVV) maximum Appleation compressor encours show compared to this enseres of 200 KW for the system - Appleation compressor encours show compared to this enseres of 200 KW for the system - Appleation compressor encours show compared to this enseres of 200 KW for the system - Appleation compressor encours show compared to this enseres of 200 KW for the system - Appleation compressor encours used to the control of 1.512.864 KW hyser. - The encourse of the load operation of the load operation/year in the particular of the load operation with 2.000 LW load haves years of the base ortifico). The associate and the particular of the load operation/year in the spot-encort particular of the load operation in the tool operation of the load operation/year in the particular of the load operation/year in the particular of the load operation/year in the particular of the load operation with 2.000 LW load haves years of the load operation with the odd operation with the differentiar and the spot-encort indiverse and the load operation of the load operation of the load operation encort with the differentiar and the load operation dinterest of	2) Impact Calculations:											
Compressor tor = (200 hp) × (0.746 White) × (10.96 mator efficiency) = 166 Window compressor loads in access of 300 W for this spripm Application records how compressor loads in access of 300 W for this spripm Application contractions of entry uses, for this maxes in acciliance of the section of the spripm application contractions of entry uses, for this maxes in a conjunction with the maximum W estimate, edivident fulload hours can be back-calculated the application contractions of entry uses, for this maximum # 5, 12		kW draw for the 200 hp M	&M compressor			•	· · · · · · · ·					
a 166 LWI machinum Application recent spread chast in access at 300 kW for this system. Ling the application compressor design access at 300 kW for this system. Using the application compressor design or the population to condition is 1712.646 kWhyear. Ling the application compressor design or the population to condition is 1712.646 kWhyear. D estimate equivalent to the data departs of the condition is 1712.646 kWhyear. Ling the application compressor design or the population to condition is a strate of the condition. F51/re (1,513.664 kWhyear/160 kW macmum - - = 9,132 Hour of full tada departs of the population and one application to estimate import, are oversited. - This result indicates that the cold room lases, this population is population to estimate import and one compressor results assess that the cold room compressor run segregrommethy 5.000 kWhyear (and one c					*							
a / 66 kW mathum Application receive spread pairs in access of 300 kW for the system. Using the application receive spread pairs in access of 300 kW for the system. Using the application receive spread pairs in the post-test of conducts with the mathum KW estimate, columnation to be back-calculated. To estimate equivation in the application receive spread pairs in the post-test of conducts. F51/H (1,515,864 kWhyser/164 kW mathum) = 0,132 Heur of ML load operation/year in the post-test of conducts. This sett indicates that the cost room loads, that were used in the application to estimate "report, are oversited. Application receive spread pairs in the post-test of conducts. EFU-1 (1,515,864 kWhyser/169 LW mathum) EFU-1 (1,515,864 kWhyser/169 LW mathum) EFU-1 (1,515,864 kWhyser/169 LW mathum) = 4,638 Jeour of the load operation/year in the post-test of conducts. EFU-1 (1,515,864 kWhyser/169 LW mathum) = 4,638 Jeour of the load operation/year in the post-test of conducts. Evaluation Compressor spread in the post-test of conducts. Rever, 118 Jeour of the load operation/year in the post-test of conducts. Evaluation Jeour of the load operation/year in the post-test of conducts. Evaluatin Discust	Compressor KW - (200	ha) x (0.746 kW/ha) x ((1/0.90 motor efficiency)	-+ •	· · · · · · · · · · ·	· · ·	· · · · · · · · ·					
Application records glow comprises rescue of 300 W for the system Using the application post-rectific comprises rescue in a meage in contraction with the maximum KV estimate, equivalent full-load hours can be back-rectivated To estimate equivalent full-load hours (EFLH) EFLH (1513.64 KWhyser/166 KW maximum e (1513.64 KWhyser/2005 I KW maximum e (1				-+	- ·· ·		······································					
Using the application post-retroft compressor energy use in the post-retroft condition with the maximum KV estimate, equivalent full-load hours can be back-calculated.			I and in oxeese of 30	W for this system	·····	-				· +		
The splication comprises or energy use in the post-retrofit condition is 1,513,864 KWMyear. To estimate equivalent full load hogs (EPLH) EPLH = (1,513,864 KWMyear)/66 KWM maximum = 0,512 For entropy 526 hours in an entrory exerc This result indicates that the cold noom loads, hail were used in the application is observed that the cold noom loads, hail were used in the application records assume that the cold noom loads, hail were used in the application is 0,000 kWMyear. This result indicates that the cold noom loads, hail were used in the application is 0,000 kWMyear. This result indicates that the cold noom loads, hail were used in the application is 0,000 kWMyear. EFLH = (1,138,864 KWMyear),3001 KW maximum = 4,888 Hours of full load operation/year in the post-retrofit condition While a drois fing records indicat 1,513,864 KWMyear = 530,000 KWMyear in the post-retrofit condition While a drois fing records indicat 1,513,864 KWMyear = 330,000 KWMyear in the post-retrofit bondition Nonise data support of full load form application with 5,000 full cad hours yields a more retrained condition. The asplication economic loads, hail were used to be application with 5,000 full cad hours yields a more retrained condition. The asplication economic loads in the post-retrofit bondition Nonise data support of full load form application with 5,000 full cad hours yields a more retrained condition. The asplication economic loads in the post-retrofit bondition Nonise data support bondition discharge is 153,864 KWMyear The application economic post-retrofit condition, discharge pressue is assumed to be 153,92 (eleng to 153,9	- Independent	cation records show comp	lessor loads in excess or so	J AVV IOI UIIS SYSIEI	<u>.</u>					·		
The splication comprises or energy use in the post-retrofit condition is 1,513,864 KWMyear. To estimate equivalent full load hogs (EPLH) EPLH = (1,513,864 KWMyear)/66 KWM maximum = 0,512 For entropy 526 hours in an entrory exerc This result indicates that the cold noom loads, hail were used in the application is observed that the cold noom loads, hail were used in the application records assume that the cold noom loads, hail were used in the application is 0,000 kWMyear. This result indicates that the cold noom loads, hail were used in the application is 0,000 kWMyear. This result indicates that the cold noom loads, hail were used in the application is 0,000 kWMyear. EFLH = (1,138,864 KWMyear),3001 KW maximum = 4,888 Hours of full load operation/year in the post-retrofit condition While a drois fing records indicat 1,513,864 KWMyear = 530,000 KWMyear in the post-retrofit condition While a drois fing records indicat 1,513,864 KWMyear = 330,000 KWMyear in the post-retrofit bondition Nonise data support of full load form application with 5,000 full cad hours yields a more retrained condition. The asplication economic loads, hail were used to be application with 5,000 full cad hours yields a more retrained condition. The asplication economic loads in the post-retrofit bondition Nonise data support of full load form application with 5,000 full cad hours yields a more retrained condition. The asplication economic loads in the post-retrofit bondition Nonise data support bondition discharge is 153,864 KWMyear The application economic post-retrofit condition, discharge pressue is assumed to be 153,92 (eleng to 153,9					ha maximum hit				· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
To estimate equivalent full lead oping (EFLH). EFLHE (1,513,864 KWhysa)/166 KW maximum Strate are or 67,270 Hours of full lead operation/year in the post-retroit condition The are or 67,270 Hours of full lead operation/year in the post-retroit condition The are or 67,270 Hours of full lead operation/year in the post-retroit condition File actual compressor rans approximately 5,000 full lead hours per year (a more rated) File full full lead for the cold room compressor runs approximately 5,000 full lead hours per year (a more rated) File full full lead for the cold room compressor runs approximately 5,000 full lead hours per year (a more rated) File full full lead for the cold room compressor runs approximately 5,000 full lead hours per year (a more rated) File full full lead for the cold room compressor runs approximately 5,000 full lead hours per year (a more rated) File full full lead operation/year in the post-retroit condition File full full lead operation in conjunction with 5,000 full lead hours years a more eliable post-retroit full ead operation/year in the post-retroit condition File actual compressor specifications in conjunction with 5,000 full lead hours years are stating over the base condition). File assumptions regarding hase use for the cod rooms is not adequately googrameted in the application submitted. Seale data support peet-retroit refigures for the door rooms is not adequately googrameted in the application approximate tas a full bear doores is not adequately googrameted in the application approximate tas a full bear doores is not adequately googrameted on even. The assumptions regarding hase use for the cod rooms is not adequately googrameted in the application approximate tas a function approximate tas a full bear doores is not adequately googrameted in the application approximate tas a full bear doored in the application approximate tas a full bear doored in the application approximate tas a full bear doored to applie to the application approximate tas a function of the d						estimate, equiv	alent full-load hou	rs can be back-calcul	neq.			
EFLH: (1,313,864 XWVyean/168 XW maximum = 9,132 Hours of full lead operation/year in the post-etroit condition There are only 2700 hours in an etroit regime.	ne application compre	ssor energy use in the po	est-retrotit condition is 1,513,	864 KWINYear.								
EFLH: (1,313,864 XWVyean/168 XW maximum = 9,132 Hours of full lead operation/year in the post-etroit condition There are only 2700 hours in an etroit regime.			÷			· · · · · · · · · · · · · · · · · · ·			· - i i			
S 132 Hours of Null load operation/year in the post-letrolit condition The are or of 8.750 hours in an entity year. Solution records assume that the cold norm compressor man approximately 5.000 full load hours per year (a more reasonable assumption) EFLH= (1.513,864 WM/year)(309.1 WM maximum = (4.989 Hours of Null coad peration/year in the post-letrolit condition Jang actual compressor specifications in conjunction with 5.000 full load hours yeids a more estable bost-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specification energy impact is not adequately documented in the application submitted hours a saured a submitted in the post-reight besite and the post-reight energy profile Life Hung of this measure is 248.015 KWM/year (approximately 16% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented in the application submitted hours and submitted hours a saured a submitted in the specification submitted hours a saured a submitted in the specification submitted hours a saured a submitted in the specification submitted hours of 320 pixed 152 pix discharge pressure The assumptions 192 pixed 152 pix discharge pressure The deliver of 320 pixed 152 pix dischargin pressure The deliver of 320 pixed 152 pix discha	o estimate equivalent f	ull load hours (EFLH)									· ···	
S 132 Hours of Null load operation/year in the post-letrolit condition The are or of 8.750 hours in an entity year. Solution records assume that the cold norm compressor man approximately 5.000 full load hours per year (a more reasonable assumption) EFLH= (1.513,864 WM/year)(309.1 WM maximum = (4.989 Hours of Null coad peration/year in the post-letrolit condition Jang actual compressor specifications in conjunction with 5.000 full load hours yeids a more estable bost-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specifications in conjunction with 5.000 full load hours yeids a more estable post-reight energy profile Evaluation Compressor specification energy impact is not adequately documented in the application submitted hours a saured a submitted in the post-reight besite and the post-reight energy profile Life Hung of this measure is 248.015 KWM/year (approximately 16% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented in the application submitted hours and submitted hours a saured a submitted in the specification submitted hours a saured a submitted in the specification submitted hours a saured a submitted in the specification submitted hours of 320 pixed 152 pix discharge pressure The assumptions 192 pixed 152 pix discharge pressure The deliver of 320 pixed 152 pix dischargin pressure The deliver of 320 pixed 152 pix discha			<u> </u>	-++-			• • • • • • • • • • • • • • • • • • • •					
There are only 5.250 hours in an entire year.				-++								
his result indicates that the cold nom loads, that were used in the application to estimate impacts, are over-fated. Application records assume that the cold nom compressor runs approximately 5.000 full load hours per year (a more reasonable assumption) EFLH = (1,513.864 KWhyeer)3001 KW maximum = 4,989 Hours of full load operation/year in the post-retroll condition Sang actual compressor specifications in conjunction with 5,000 full load hours yields a more feliable post-retroll energy profile Evaluation Compressor specifications in conjunction with 5,000 full load hours yields a more feliable post-retroll energy profile Evaluation Compressor (166 KW) x 5,000 hours/year = 830,000 KWhyear in the post-retroll condition While advice filing records indicate 1513.864 KWhyear = 830,000 kWhyear in the post-retroll condition While advice filing records indicate 1513.864 KWhyear = 830,000 kWhyear in the post-retroll condition While advice filing records indicate 1513.864 KWhyear = 830,000 kWhyear is to zeta support post-retroll retroll condition While in the pre-stroll condition, such adoptate pressure la essumed to the 153 psi (ance it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature Nili in the pre-stroll condition, advice day advice you this should not affect the differential Suction pressure differential of 10 psi. Suction pressure of 20 psi and 155 psi dischafte pressure. Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi dischafte pressure. Tons delivered = 197.6 BHP = 192. The baseline condition has an afficiency level of 188.8 BHP = 192. The baseline condition has an afficiency level of 198.8 BHP = 192. The classing condition condition, the addition of 192 BHP. To deliver 258.5 Tons refigeration = 0.76 BHP7 on The relative efficiency can be used to estimate to destinger 25.7 Fons refigeration = 0.76 BHP7 on The relative efficiency can be used to estimate base usage from post-retroll compressor reture				st-retrofit condition	+							
upplication records assume that the old room compressor runs approximately 5000 full load hours per year (a more reasonable assumption) Image: http://www.communications.com/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/compressor/communications/communicatication/communications/communications/communica	There	e are only 8,760 hours in a	an entire year.	_ _						_		
EPUH= (1,513.64 Whytep:0309.1 kW maximum = 4,898 Hours of full lead operation/yser in the post-retrofit condition Jaring actual compressor specifications in conjunction with 5,000 full load hours yields a more reliable post-retrofit energy profile Ervlatation Compressor Energy = (156 kW) x 5,000 hours/year = 830,000 kWhyear in the post-retrofit condition While advice filing records indicate 1,513,864 Whyvear = 830,000 kWhyear is a post-retrofit condition While advice filing records indicate 1,513,864 Whyvear he spplication energy impact for this measure is 249,015 kWhyear he spplication energy impact for this measure is 249,015 kWhyear mail is a upport post-retrofit condition, the discharge pressure is easured to the 153 pit ignore it is assumed to a 154 pit ignore is an assumed a suction pressure differential on to pit. Nile in the pre-retrofit condition, the differential can be determined as a function of Tons delivered and BHP Performance data lists conderging pressure retrieval differential can be determined as a function of 30 pit and 155 pit discharge pressure. Nile in the pre-retrofit condition, a method differential can be determined as a function of Tons delivered = 157.6 BHP = 188. Suction pressure of 20 pit and 155 pit discharge pressure. Tons delivered = 258.8 BHP = 188.8					L							
EFLH = (1.513.864 KWhyser/309.1 KW maximum = 4.898 Hours of full load operation/year in the post-retrolit condition Jang actual compressor specifications in conjunction with 5,000 full load hours yields a more reliable post-retrolit energy profile Evaluation Compressor 566 KW) x 5,000 hours/year = 580,000 KWhysen in the post-retrolit pondition. While advice filing records microare 1,513.854 KWhyser The application energy impact for this measure is 249,015 KWhysen (approximately 14% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented to the 153 psi (since 1 is assumed that lice-making occurs all day, though this may no any longer be true), and the suction temperature within in more retrolit condition. While in the pre-frequence data, the effect of this differential can be determined as a lunction of the size assumed that lice-making occurs all day, though this may no any longer be true), and the suction temperature with long thered in static and bettermined as a lunction of the delivered and BHP. The data support of 30 psi and 155 psi dischalge pressure time than dischalge, but this should not allered the differential. Suction pressure of 20 psi and 155 psi dischalge pressure. Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi dischalge pressure. Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi dischalge pressure. Tons delivered = 197.6 BHP = 188.8	his result indicates the	it the cold room loads, that	at were used in the applicatio	n to estimate impar	cts, are over-sta	ted.					i	
EFLH = (1.513.864 KWhyse(309.1 KW maximum = 4,898 Hours of full load operation/year in the post-retrofit condition Ising actual compressor specifications in conjunction with 5,000 full load hours yields a more reliable post-retrofit energy profile Evaluation Compressor Energy = 330,000 KWhyser in the post-retrofit poddition. While advice filing records indicate 1,513.864 KWhyser MWhyser in the post-retrofit poddition. The application energy impact for this measure is 249,015 kWhyser (approximately 14% savings over the base condition). Impact for this measure is 249,015 kWhyser. The assumptions regarding base use for the cold rooms is not adequately documented in the application sub-ritified. Impact for this measure is 249,015 kWhyser. In oid, measure as using pressure is a samed to be 153 psi (since it is assumed that lice-making occurs all day, though this may no any longer be true), and the suction temperature in information continons, the discharge pressure is assumed to retrofit on site in a scharge pressure is assumed to information gatered on-site. It loid, measure as a subition pressure differential can be determined as a lunction of Tons delivered and BHP. Performance add as lists condenging pressure mather than discharge, pressure. Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure. Tons delivered = 25.8.8 BHP = 192. The baseline conditions as an efficiency level of 198.8 HPV to deliver 25.8 To	pplication records assu	ume that the cold room co	mpressor runs approximately	5,000 full load hou	rs per year (a m	nore reasonable	assumption)					
a 6.698 Hours of full lead operation/year in the post-tetrofit condition Jaing actual compressor specifications in conjunction with 5,000 full load hours yields a more reliable post-tetrofit energy profile			1									
a 4.898 Hours of full lead operation/year in the post-retrofit condition Jaing actual compressor specifications in conjunction with 5,000 full lead hours yields a more reliable post-retrofit energy profile	EFLH = (1.51	3.864 kWh/year)/309 1 k	W maximum			· · · · · · · · · · · · · · · · · · ·						
Jang actual compressor specifications in conjunction with 5,000 full load hours yields a more reliable post-retrolit energy profile				st-retrofit condition		T .						
Evaluation Compressor Energy = (166 kW) x 5,000 hours/year = 830,000 kWhyear in the post-retrofit bondition While advice filing records indicate 1,513,864 kWhyear he application energy impact for this measure is 249,015 kWhyear (approximately 14% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented in the application submitted. In-sile data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 pi (sing) at a deguately documented in the application submitted. In-sile data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 pi (sing) at a deguately documented on-site). It loid, there is an assumed a suction pressure differential or 10 pst. Ut loid, there is an assumed a suction pressure data multication submitted. Performance data lists condensing pressure inter than discharge, but this should not affect the differential. Suction pressure of 20 psi and 155 psi discharge pressure: Ton delivered = 197.6 BHP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Ton delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The relative efficiency can be used to estimate base usage from rest-refringeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-refroit compressor results Pre-retroit compressor energy use = (0.960.74) x 830.000 kWhyear						· · · · · ·						
Evaluation Compressor Energy = (166 kW) x 5,000 hours/year = 830,000 kWhyear in the post-retrofit bondition While advice filing records indicate 1,513,864 kWhyear he application energy impact for this measure is 249,015 kWhyear (approximately 14% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented in the application submitted. In-sile data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 pi (sing) at a deguately documented in the application submitted. In-sile data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 pi (sing) at a deguately documented on-site). It loid, there is an assumed a suction pressure differential or 10 pst. Ut loid, there is an assumed a suction pressure data multication submitted. Performance data lists condensing pressure inter than discharge, but this should not affect the differential. Suction pressure of 20 psi and 155 psi discharge pressure: Ton delivered = 197.6 BHP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Ton delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The relative efficiency can be used to estimate base usage from rest-refringeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-refroit compressor results Pre-retroit compressor energy use = (0.960.74) x 830.000 kWhyear	Ising actual compresso	specifications in conjunc	tion with 5 000 full load hour	s vields a more rel	liable post-retrof	it energy profile				····		
Compressor Energy = (166 kW) x 5,000 hours/year = 830,000 kWh/year in the post-retrolit pondition While advice filing records indicate 1,513,864 kWh/year	sang actual compresso	apecincations in conjunc		0 10:00 0								
Compressor Energy = (166 kW) x 5,000 hours/year = 830,000 kWh/year in the post-retrofit condition While advice filing records indicate 1,513,804 kWh/year condition While advice filing records indicate 1,513,804 kWh/year condition The assignation energy impact for this measure is 249,015 kWh/year (approximately 14% savings over the base condition). condition The assignation sregarding base use for the cold rooms is not adequately documented in the application submitted. condition On-site data support post-retrofit retrigrant condisons, the discharge pressure is assumed to be 153 psi (since it is assumed) not is any no any longer be true), and the suction temperature while in the pre-retrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). condition Using Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP condition of the spatial scharge pressure: Tons delivered = 197, 6 BHP = 188 8 condition pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258,8 BHP = 192 cons refrigeration = 0.74 BHP/ton The baseline condition has an efficiency level of 198 BHP to deliver 258,8 Tons refrigeration = 0.74 BHP/ton cons refrigeration = 0.74 BHP/ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results cons refrigeration			+						- † †			
Energy = (166 kW) x 5,000 hours/year = 830,000 kWh/year in the post-retrolit condition While advice filing records indicate 1.513,804 kWh/year The asplication energy inpact for this measure is 249,015 kWh/year (approximately 14% savings over the base condition). The asplication energy inpact for this measure is 249,015 kWh/year (approximately 14% savings over the base condition). The asplication energy inpact for this measure is 249,015 kWh/year (approximately 14% savings over the base condition). The asplication energy inpact for this cold rooms is not adequately (ocumented in the application submited. On-site data support post-retrofit retrigerant conditions, the discharge pressure is assumed to be 153 psi (aince it is assumed that lide-making occurs all day, though this may no any longer be true), and the suclion temperature while in the pre-retrofit condition, discharge pressure is assumed to be 153 psi (aince it is assumed a suction pressure differential or 10 psi. Using Vilter annonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons retrigeration = 0.96 BHP/Ton The relative efficiency can be used to eștimate base usege from post-retrofit compressor results Pre-retrofit condition has an efficiency level of 192.8 BHP to deliver 258.8 Tons retrigeration = 0.74 BHP/Ton The relative efficiency can be used to eștimate base usege from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year								4			1	
= 830,000 kWhykyer in the post-retrofit bondition While advice filing records indicate 1,513,864 kWhyyear The application energy impact for this measure is 249,015 kWhyyear (approximately 14% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented in the application submitted. On-site data support pest-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 psi (since it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature while in the pre-retrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). Nil told, there is an assumed a suction pressure afterential of 10 psi. Jsing Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of the stage. BMP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BMP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 258.8 BMP = 192. The baseline condition has an efficiency level of 188.8 BMP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton. The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.960/74) x 830,000 kWh/year						i	ļ					
While advice filing records indicate 1,513,864 WWvyear The application energy impact for this measure is 249,015 kWhvyear (approximately 14% savings over the base condition). Image: saving the second structure is a saving to the cold rooms is not adequately documented in the application submitted. On-site data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 psi (since it is assumed to be 153 psi (since it is assumed to be 153 psi (since it is assumed a suction pressure of the refrigerant condition is 22 psi (according to information gathered on-site). Image: saving a suction pressure of the refrigerant condition is 22 psi (according to information gathered on-site). It told, there is an assumed a suction pressure data the effect of this differential can be determined as a function of Tons delivered and BHP. Image: saving a suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188 8 Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The baseline condition has an efficiency level of 188.8 BHP to deliver 258 8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Image: result to appressor results Pre-retrofit compressor energy use = (0.9607.4) x 830.000 kWhyger S00.000 kWhyger								···· +				
The application energy impact for this measure is 249,015 kWh/year (approximately 14% savings over the base condition). The assumptions regarding base use for the cold rooms is not adequately documented in the application submitted. Desite data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 psi (since it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature while in the pre-retrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathereb on site). It told, there is an assumed a suction pressure (differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 198.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton. The relative efficiency can be used to estimate base usage from post-retrofit compressor neergy use = (0.96/0.74) x 830,000 kWh/year.				-+		+ - + - + - + - + - + - + - +			· · • • • • • • • • • • • •			
The assumptions regarding base use for the cold rooms is not alcoharge pressure is assumed to be 153 psi (since it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature while in the pre-retrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). It is an assumed a suction pressure differential of 10 psi. Ising Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year	While	advice tiling records indi	cate 1,513,864 kWhyear		·· ····			····				
The assumptions regarding base use for the cold rooms is not alcoharge pressure is assumed to be 153 psi (since it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature while in the pre-retrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). It is an assumed a suction pressure differential of 10 psi. Ising Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year				+								
Dn-site data support post-retrofit retrigerant conditions, the discharge pressure is assumed to be 153 psi (since it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature while in the pre-feriofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). All told, there is an assumed a suction pressure differential of 10 psi. Jsing Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 192 BHP to deliver 258.8 Tons retrigeration = 0.76 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year	he application energy	impact for this measure is	249,015 kWh/year (approxin	nately 14% savings	over the base	condition).	· · · · · · · · · · · · · · · · · · ·		_			
Dn-site data support post-retrofit refrigerant conditions, the discharge pressure is assumed to be 153 psi (since it is assumed that ice-making occurs all day, though this may no any longer be true), and the suction temperature while in the pre-fetrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathere) on-site). Nile in the pre-fetrofit condition, discharge is 153 psi, and suction is 22 psi (according to information gathere) on-site). Image: section pressure differential of 10 psi. Jsing Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Image: section pressure rather than discharge, but this should not affect the differential. Suction pressure of 20 psi and 155 psi discharge pressure: Image: section pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 20 psi and 155 psi discharge pressure: Image: section pressure of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton. The baseline condition has an efficiency level of 182.8 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton. Image: section pressure results The relative efficiency can be used to estimate base usage from post-retrofit compressor results Image: section pressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year Succion pressor energy use = (0.96/0.74) x 830,000 kWh/year			L	· · · ·								
Athlie in the pre-retrolit condition, discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). Image: Condition discharge is 153 psi, and suction is 22 psi (according to information gathered on-site). All told, there is an assumed a suction pressure differential of 10 psi. Image: Condition pressure differential of 10 psi. Using Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Image: Condition pressure of 20 psi and 155 psi discharge pressure: Suction pressure of 20 psi and 155 psi discharge pressure: Image: Condition pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Image: Condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The baseline condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrolit compressor results Pre-retrolit compressor energy use = (0.96/0.74) x 830,000 kWh/year	The assumptions regar	ding base use for the cold	d rooms is not adequately do	cumented in the ap	plication submitt	ed.						
Nil told, there is an assumed a suction pressure differential of 10 psi. Jsing Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 258.8 Tons refrigeration = 0.36 BHP/Ton The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year							t ice-making occur	s all day, though this	may no any longer	be true), and the	suction temperation	ature 32 ps
Using Vilter ammonia compressor performance data, the effect of this differential can be determined as a function of Tons delivered and BHP. Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year				(according to inform	nation gathered	on-site).						
Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrolit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrolit compressor results Pre-retrolit compressor energy use = (0.96/0.74) x 830,000 kWh/year	All told, there is an ass	umed a suction pressure of	differential of 10 psi.	1						1		
Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 188.8 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year												
Performance data lists condensing pressure rather than discharge, but this should not affect the differential Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 192.8 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year	Jsing Vilter ammonia co	ompressor performance da	ata, the effect of this different	al can be determine	ed as a function	of Tons delivere	d and BHP.					
Suction pressure of 20 psi and 155 psi discharge pressure: Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi discharge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 192. BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year												
Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi dischatge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 188.8 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year												
Tons delivered = 197.6 BHP = 188.8 Suction pressure of 30 psi and 155 psi dischatge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 188.8 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year	Sucti	ion pressure of 20 psi and	155 psi discharge pressure:									
Suction pressure of 30 psi and 155 psi dischatge pressure: Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/ton The post-retrolit condition has an efficiency level of 188.8 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrolit compressor results Pre-retrolit compressor energy use = (0.96/0.74) x 830,000 kWh/year												
Tons delivered = 258.8 BHP = 192 The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year	Sucti		·									
The baseline condition has an efficiency level of 188.8 BHP to deliver 197.6 Tons refrigeration = 0.96 BHP/Ton The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year				= 192					++	·····		
The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year												
The post-retrofit condition has an efficiency level of 192 BHP to deliver 258.8 Tons refrigeration = 0.74 BHP/Ton The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year		baseline condition has an	efficiency level of 189 8 RHE	to deliver 197 6 T	ons refrigeration	= 0.96 BHP/Tor			• • • •	· · · · · · · · · ·		
The relative efficiency can be used to estimate base usage from post-retrofit compressor results Pre-retrofit compressor energy use = (0.96/0.74) × 830,000 kWh/year	ine	Dasenne condition nas an	an afficiency level of 100 P	D to deliver 36° e	Tone refrigeration	00 - 0 74 BUDA		·····				
Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year	The	posi-retroit condition has	an emclency level of 192 BI	nr 10 0ellvel 230.p	i vis reingerati		<u> </u>	· · · · · · · · · · · · · · · · · · ·		+-		
Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year			L				· · · · · · · · · · · · · · · · · · ·					
Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year = 1,076,757 kWh/year	The	relative efficiency can be	used to estimate base usage	morn post-retrofit of	compressor resu	IIS		· ···· ···· ···· ···				
Pre-retrofit compressor energy use = (0.96/0.74) x 830,000 kWh/year = 1,076,757 kWh/year			!!			; .			i			
= 1,076,757 KWh/year	Pre-retrofit	compressor energy use =	(0.96/0.74) x 830,000 kW	n/year		i	÷					
		=	1,076,757 kWh/year									
Inen, estimating the impacts	then estimation the im	nacte	+			· • • •	· · · · · · · · ·					
	nen, asunaung me m		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·····						

Compressor energy	impact = (1,076,757 kWh/year - 830,000 kWh/year)
	= 246,757 kWh/year
	This impact is comparable to the application estimate of 249,015 kWh/year
	With the current operation, where ice is not produced during the peak hour, savings will be larger due to the lower discharge pressure when no ice-making equipment are shut down.
	ate from the application is evaluated using the energy result.
	that Guadalupe cooling is closed 9 weeks per year.
It is assumed that the co	Id room will also be shut down over this period, vielding just 43 weeks of operation.
Using estimated annual I	nours of ice production (43 weeks/year, 24 hours per day, yields 7,224 hours), a mean demand impact is estimated as follows
Mean Demand = (246,7	57 kWh/year)/7,224 hours of operation/year
= 34	
	erves as a lower bound (conservative) estimate of savings for the peak hour.
	pplication estimate of demand for this measure is 134 kW for the system peak hour.
Note	hat the estimated connected load for the new compressor is only 166 kW.
The conservative deman	d estimate of 34 kW fails to adjust for the relatively large loads observed at the time of system peak.
The relative demand at t	he time of system peak is captured within the application records, where hourly evaporator loads and associated kW are reported for the cold rooms.
The rt	edian hourty load for the cold rooms is 270 tons, while the maximum load is 360 tons.
The r	edian hourly demand for the cold rooms is 203.15 kW, while the maximum demand is 309.1 kW.
The ri	tio of these two terms can be used to assess the expected demand during the peak hour:
Peak	Demand = (309.1 kW/203.15 kW) x 34 kW
	= 52 kW This demand impact estimate is considered more reliable than that supported by the application form.
	This certain in part estimate is considered in the support of the approximation in proved high stage compressor performance.
	The gre- vs post-retrofit compressor performance on the application is 0.97 vs 0.88, respectively, for this peak hour.
	It is unclear why the separation of compressor loads for the cold fooms would improve the performance lot the low temperature applications, such as ice making.
3) Conclusions:	
The summer of the sur-	uation implemented for this measure is to verify the accuracy of application impacts, and to replace those estimates only in the event that a gross error is detected.
All impost loads wate as	t necessarily included in the above calculations (for example, evaporator loads and condenser loads were excluded from the evaluation estimates).
All impact loads were no	t hecessarily included in the above calculations (for example, evaporation bass and contenser bass were excluded in the evaluation estimates). ed have generally verified the accuracy of the application form energy impacts. However, the demand impacts are thought to be in error.
The calculations perform	au have generally vehiced the approximation tent of the approximation of the denormal in post and the denormality of the

,

) Comments regarding the	application estin	nates:										ł	
be explication is for the rer	Jacament of two	n existing evano	rative towers wi	th a new large o	capacity evapora	ative tower. Ho	ever, the exist	ng units have	tot been repla	ced.	4		
be explication estimate end	cifice a new Ra	Itimore Air Coil (or Evanco mode	al 1170, while or	n-site records ide	entify this new (nit as a Crepa	ço 1100,the ⁼e	levated: tower				
here were significant incon	eletencies noted	in the applicatio	on spreadsheet	models. For this	s reason, evalua	ation analyses a	e restricted to	a review of the	se methods.				
nere were algrinount moon													
i													
) Summary of application e	sumates.								<u> </u>				
			Deal Deal	Impacto /kW/									
	Annual Energy		Peak Demand					•	·····				
inipaet certipetter	Pre-retrofit			Post-retrofit	· · · · · · · · · · · · · · · · · · ·				+				
old Room Compressors	1,513,864		309	286				•					
ligh Stage Compressors	4,249,586		888	888					+				
Condensers	490,035		130	87		•••		· · · · · · · · · · · · · · · · · · ·	+				
vaporators	516,303	516,303		71					·				
iquid Pump	65,403	65,403	9	9			· · · · · · · · · · · · · · · · · · ·	ļ					
Total	6,835,191		1,407	1,341				· · · · · · · · · · · · · · · · · · ·					
Savings	224,124	kwh	66	kWh				1			İ		
Savings	224,124												
he assumed condensing te		l	d east satisfit m	odel is the drivit	na narameter fo	r compressor sa	vinas						
he assumed condensing te	mperature used	in each pre- an	a posi-renom m	e above), the hi	ish class comp	ressor energy ic	ade are areate	r in the post-re	mofit case (tho	uch condensin	a temperature	s are reduce	d).
	Note, however,	according to the	application (se	and 60 °F tem	ign stage comp	tessor energy ic	add are greate	energy in 1 9	0 600 in these	two bins whi	la nost-retrofit	is 2 101 552	kWh.
			served in the 55	and 60 °F tem	perature ons, w	Allele the comp	neu pie-iettom	energy is 1,50	0,000 III (INBAG	the bills, will	b post retront	10 2,10 1,000	
	Looking at this	more carfully						+					
													· • • • • • • • • • • • • • • • •
High Stage Analysis	Condensing Te	emperature (°F)	Compress	sor kW/ton		ssor kWh		↓		w			
Temperature Bin	Pre-retrofit	Post-retrofit	Pre-retrofit	Post-retrofit	Pre-retrofit	Post-retrofit		ł					
Tompolatore Bill			0.74	0.81	697.440	760.439			l				
A PE Bio	85	90	U.74	0.01			and a first second s	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
	85	80	the second			1,341,113	aler i i i ener						
5 °F Bin	84	78	0.74	0.78	1,283,160	1,341,113			1				
60 °F Bin 55 °F Bin Difference	84 5 or 6	78 F	0.74 - 0.4 or 0.7	0.78 kW/ton	1,283,160 -120,952	1,341,113 kWh							
55 °F Bin Difference	84 5 or 6	78 4	0.74 - 0.4 or 0.7	0.78 kW/ton	1,283,160 -120,952	1,341,113 kWh		esults in poore	condenser pe	formance and	therefore a ne	t increase in	energy use.
55 °F Bin Difference	84 5 or 6	78 4	0.74 - 0.4 or 0.7	0.78 kW/ton	1,283,160 -120,952	1,341,113 kWh	temperature r	esults in poore	condenser pe	formance and bins the kW/to	therefore a ne	t increase in re larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6	78	0.74 - 0.4 or 0.7 ar temperature b	0.78 kW/ton ins does not ma	1,283,160 -120,952 ke sense. A dr	1,341,113 KWh rop in condense st for these two	bins, while to	colder outdoo	temperature	formance and bins the kW/to	therefore a ne n estimates a	t increase in e larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6	78	0.74 - 0.4 or 0.7 ar temperature b	0.78 kW/ton	1,283,160 -120,952 ke sense. A dr	1,341,113 KWh rop in condense st for these two	bins, while to	colder outdoo	temperature	formance and bins the kW/to	therefore a ne n estimates a	t increase in re larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6 The result withi The compresso	78 F n these particula r kW/ton figures Lower ambient	0.74 - 0.4 or 0.7 ar temperature b reported in the conditions should	0.78 kW/ton ins does not ma a pre-retrofit con ild yield lower k	1,283,160 -120,952 ke sense. A dr ndition are lowes W/ton, as was o	1,341,113 KWh op in condense st for these two observed for the	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in e larger (0.7	i energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6 The result within The compresso	78 F n these particula r kW/ton figures Lower ambient res at the time of	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions should of system peak	0.78 kW/ton ins does not ma e pre-retrofit con ald yield lower k have an inconsis	1,283,160 -120,952 ke sense. A dr ndition are lowes W/ton, as was o	1,341,113 KWh op in condense st for these two observed for the	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.1	i energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6 The result within The compresso	78 F n these particula r kW/ton figures Lower ambient res at the time of	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions should of system peak	0.78 kW/ton ins does not ma e pre-retrofit con ald yield lower k have an inconsis	1,283,160 -120,952 ke sense. A dr ndition are lowes W/ton, as was o	1,341,113 KWh op in condense st for these two observed for the	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6 The result within The compresso	78 F n these particula r kW/ton figures Lower ambient	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in s	0.78 kW/ton ins does not ma e pre-retrofit con ald yield lower k have an inconsis reater detail	1,283,160 -120,952 like sense. A dr dition are lower W/ton, as was c stent effect on th	1,341,113 KWh op in condense st for these two observed for the he cold room ar	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference	84 5 or 6 The result within The compresson nsing temperatu The following to	78 9F In these particula or kW/ton figures Lower ambient res at the time of able explores thi	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in s	0.78 kW/ton ins does not ma e pre-retrofit con ald yield lower k have an inconsis	1,283,160 -120,952 like sense. A dr dition are lower W/ton, as was c stent effect on th	1,341,113 KWh op in condense st for these two observed for the	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t inclease in re larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference Additionally, reduced conde Compressor System	84 5 or 6 The result within The compressor nsing temperatu The following to Condensing T	78 F n these particula r KW/ton figures Lower ambient res at the time (able explores thi emperature (°F)	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in s Compress	0.78 kW/ton ins does not ma e pre-retrofit con ald yield lower k have an inconsis greater detail sor kW/ton	1,283,160 -120,952 like sense. A dr dition are lower W/ton, as was c stent effect on th	1,341,113 KWh rop in condense st for these two boserved for the he cold room ar passor kW Post-retrofit	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.7	i energy use. 79 kW/ton).
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin*	84 5 or 6 The result within The compresson nsing temperatu The following to Condensing T Pre-retrofit	78 F n these particula r kW/ton figures Lower ambient res at the time of able explores this emperature (°F) Post-retrofit	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou- of system peak s difference in s <u>Compress</u> Pre-retrofit	0.78 kW/ton ins does not ma e pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton	1,283,160 -120,952 uke sense. A dr dition are lower W/ton, as was c stent effect on the Compre	1,341,113 KWh op in condense st for these two observed for the he cold room ar essor kW	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.	energy use. 79 kW/ton).
S5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin' Cold Room (20 °F Suction)	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 9 1	78 F n these particula n kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86	0.78 kW/ton ins does not ma pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79	1,283,160 -120,952 ke sense. A dr dition are lowes W/ton, as was c stent effect on th Compre Pre-retrofit	1,341,113 KWh rop in condense st for these two boserved for the he cold room ar passor kW Post-retrofit	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.7	energy use. 79 kW/ton).
5°F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) High Stage (10 °F Suction)	84 5 or 6 The result within The compresson nsing temperatur The following to Condensing T Pre-retrofit 91 91	78 F n these particula r kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions should of system peak s difference in s Compress Pre-retrofit 0.86 0.88	0.78 kW/ton ins does not ma pre-retrofit con ild yield lower k' have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88	1,283,160 -120,952 ke sense. A dr mition are lower W/ton, as was o stent effect on th <u>Compre</u> Pre-retrofit 309 888	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286 888	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.7	energy use. 79 kW/ton).
S5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin*	84 5 or 6 The result within The compresson nsing temperatur The following to Condensing T Pre-retrofit 91 91	78 F n these particula n kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions should of system peak s difference in s Compress Pre-retrofit 0.86 0.88	0.78 kW/ton ins does not ma pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79	1,283,160 -120,952 ke sense. A dr ndition are lower W/ton, as was c stent effect on th Compre Pre-retrofit 309	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.	energy use. 79 kW/ton).
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) digh Stage (10 °F Suction) Difference	84 5 or 6 The result within The compressor nsing temperatu The tollowing to Condensing T Pre-retrofit 91 91 6	78 F n these particula r KW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 7	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions should of system peak s difference in s Compress Pre-retrofit 0.86 0.88	0.78 kW/ton ins does not ma pre-retrofit con ild yield lower k' have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88	1,283,160 -120,952 ke sense. A dr mition are lower W/ton, as was o stent effect on th <u>Compre</u> Pre-retrofit 309 888	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286 888	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.	energy use. 79 kW/ton).
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) High Stage (10 °F Suction)	84 5 or 6 The result within The compressor nsing temperatu The tollowing to Condensing T Pre-retrofit 91 91 6	78 F n these particula r KW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 7	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions should of system peak s difference in s Compress Pre-retrofit 0.86 0.88	0.78 kW/ton ins does not ma pre-retrofit con ild yield lower k' have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88	1,283,160 -120,952 ke sense. A dr mition are lower W/ton, as was o stent effect on th <u>Compre</u> Pre-retrofit 309 888	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286 888	cold room (20	°F suction) sy	r temperature item.	bins the KW/to	n estimates a	t increase in re larger (0.7	energy use. 79 kW/ton).
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) digh Stage (10 °F Suction) Difference	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 6 outdoor temper	78 F n these particula r kW/ton figures Lower ambient res at the time c able explores thi emperature (°F) Post-retrofit 85 85 6 F rature condition.	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in s Compress Pre-retrofit 0.86 0.88 + 0.4 or 0.0	0.78 kW/ton ins does not ma a pre-retrofit con ild yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88	1,283,160 -120,952 ke sense. A dr ndition are lower W/ton, as was of stent effect on th <u>Compre</u> <u>Pre-retrofit</u> 309 888 + 23 or 0	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286 888 KW	bins, while to cold room (20 d high stage c	colder outdoc PF suction) sy ampressors, ye	temperature tem.	system is shar	ed.		
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) tigh Stage (10 °F Suction) Difference	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 6 outdoor temper	78 F n these particula r kW/ton figures Lower ambient res at the time c able explores thi emperature (°F) Post-retrofit 85 85 6 F rature condition.	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in s Compress Pre-retrofit 0.86 0.88 + 0.4 or 0.0	0.78 kW/ton ins does not ma a pre-retrofit con ild yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88	1,283,160 -120,952 ke sense. A dr ndition are lower W/ton, as was of stent effect on th <u>Compre</u> <u>Pre-retrofit</u> 309 888 + 23 or 0	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286 888 KW	bins, while to cold room (20 d high stage c	colder outdoc PF suction) sy ampressors, ye	temperature tem.	system is shar	ed.		
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) ligh Stage (10 °F Suction) Difference The peak bin is the 95 °F	84 5 or 6 The result within The compressor nsing temperatu The tollowing tr Condensing T Pre-retrofit 91 91 6 outdoor tempe The results with	78 F n these particula r KW/ton figures Lower ambient res at the time (able explores thi emperature (°F) Post-retrofit 85 85 F rature condition. hin these particu	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in s Compress Pre-retrofit 0.86 0.38 + 0.4 or 0.0 ular temperature	0.78 kW/ton ins does not ma a pre-retrofit con ild yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton	1,283,160 -120,952 ke sense. A dr mition are lower W/ton, as was of stent effect on th <u>Compre</u> <u>Pre-retrofit</u> 309 888 + 23 or 0 istent. A drop i	1,341,113 KWh rop in condense st for these two observed for the he cold room ar essor kW Post-retrofit 286 888 KW	bins, while to cold room (20 d high stage c	colder outdoc PF suction) sy ampressors, ye	temperature tem.	system is shar	ed.		energy use. 79 kW/ton).
5 °F Bin Difference dditionally, reduced conder Compressor System for the Peak Bin* cold Room (20 °F Suction) ligh Stage (10 °F Suction) Difference The peak bin is the 95 °F	84 5 or 6 The result within The compresson insing temperatur The following tr Condensing T Pre-retrofit 91 91 6 outdoor tempe The results withing the comparison the comparison	78 F n these particula n tw/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 5 F rature condition. hin these particular reduction in fan	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou- of system peak s difference in s <u>Compress</u> <u>Pre-retrofit</u> 0.86 0.88 + 0.4 or 0.0 ular temperature and nump eper	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower kl have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons	1,283,160 -120,952 ke sense. A dr dition are lowes W/ton. as was c stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system	1,341,113 KWh rop in condense st for these two beserved for the he cold room ar essor kW Post-retrofit 286 888 kW in condenser ter m.	bins, while to cold room (20 d high stage c d high stage c	colder outdoc PF suction) sy empressors, yr ts in no saving	temperature tem.	system is shar	ed.		
5 °F Bin Difference dditionally, reduced conder for the Peak Bin* cold Room (20 °F Suction) ligh Stage (10 °F Suction) Difference The peak bin is the 95 °F	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic	78 F n these particular rewith the time of the time o	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c	1,283,160 -120,952 ke sense. A dr idition are lowes w/ton, as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser syster	1,341,113 KWh rop in condense st for these two observed for the he cold room ar assor kW Post-retrofit 286 888 kW in condenser ter n. he fithe amount	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) digh Stage (10 °F Suction) Difference The peak bin is the 95 °F	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic	78 F n these particular rewith the time of the time o	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c	1,283,160 -120,952 ke sense. A dr idition are lowes w/ton, as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser syster	1,341,113 KWh rop in condense st for these two observed for the he cold room ar assor kW Post-retrofit 286 888 kW in condenser ter n. he fithe amount	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) digh Stage (10 °F Suction) Difference	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic is able to rejec Atthour to rejec	78 F n these particular rewr kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 5 F rature condition. hin these particu- reduction in fan t an equivalent direct condensin	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener quantity of heat g temperature is	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c while using app s achieved in th	1,283,160 -120,952 ke sense. A dr idition are lowes w/ton. as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system roximately one-fe	1,341,113 KWh rop in condense st for these two observed for the he cold room ar assor KW Post-retrofit 286 888 KW in condenser ter rh. he fit he amount ondition, the cor	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
S °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) High Stage (10 °F Suction) Difference	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic is able to rejec Atthour to rejec	78 F n these particular rewr kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 5 F rature condition. hin these particu- reduction in fan t an equivalent direct condensin	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener quantity of heat g temperature is	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c	1,283,160 -120,952 ke sense. A dr idition are lowes w/ton. as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system roximately one-fe	1,341,113 KWh rop in condense st for these two observed for the he cold room ar assor KW Post-retrofit 286 888 KW in condenser ter rh. he fit he amount ondition, the cor	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
5°F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) High Stage (10 °F Suction) Difference	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic is able to rejec Atthour to rejec	78 F n these particular rewr kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 5 F rature condition. hin these particu- reduction in fan t an equivalent direct condensin	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener quantity of heat g temperature is	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c while using app s achieved in th	1,283,160 -120,952 ke sense. A dr idition are lowes w/ton. as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system roximately one-fe	1,341,113 KWh rop in condense st for these two observed for the he cold room ar assor KW Post-retrofit 286 888 KW in condenser ter rh. he fit he amount ondition, the cor	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
5°F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) High Stage (10 °F Suction) Difference	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic is able to rejec Atthour to rejec	78 F n these particular rewr kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 5 F rature condition. hin these particu- reduction in fan t an equivalent direct condensin	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener quantity of heat g temperature is	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c while using app s achieved in th	1,283,160 -120,952 ke sense. A dr idition are lowes w/ton. as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system roximately one-fe	1,341,113 KWh rop in condense st for these two observed for the he cold room ar assor KW Post-retrofit 286 888 KW in condenser ter rh. he fit he amount ondition, the cor	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
5 °F Bin Difference Additionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) digh Stage (10 °F Suction) Difference The peak bin is the 95 °F The peak bin is the 95 °F The application estimates s The new condenser system 3) Conclusions:	84 5 or 6 The result within The compresson insing temperatur The following tr Condensing T Pre-retrofit 9.1 9.1 9.1 6 outdoor temperatur The results with how a dramatic is able to reject Atthough a rect The reduction,	78 F n these particula n twice particula res at the time of able explores this emperature (°F) Post-retrofit 85 85 7 rature condition. hin these particular reduction in fan t an equivalent of tuced condensin by one-half, of the particular table explores this table explores this tabl	0.74 - 0.4 or 0.7 ar temperature b s reported in the conditions shou- of system peak s difference in g Compress Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener quantity of heat g temperature in condenser energy	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower kl have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c while using app s achieved in th gy is not conside	1,283,160 -120,952 ke sense. A dr dition are lowes W/ton. as was c stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system roximately one-the e post-retrofit correction to be reliab	1,341,113 KWh rop in condense st for these two beserved for the he cold room ar essor kW Post-retrofit 286 888 kW in condenser ter maif the amount ondition, the content is.	bins, while to cold room (20 d high stage c high stage c nperature resu	colder outdoo F suction) sy ampressors, ye ts in no saving p energy.	temperature tem. t the receiver	system is shar	ed.		
5 °F Bin Difference Ndditionally, reduced conder Compressor System for the Peak Bin* Cold Room (20 °F Suction) digh Stage (10 °F Suction) Difference The peak bin is the 95 °F The peak bin is the 95 °F	84 5 or 6 The result withi The compresso nsing temperatu The following to Condensing T Pre-retrofit 91 91 91 6 outdoor tempe The results with how a dramatic Is able to rejec Although a rec The reduction,	78 F In these particular rewr kW/ton figures Lower ambient res at the time of able explores thi emperature (°F) Post-retrofit 85 85 5 F rature condition. hin these particu- reduction in fan t an equivalent fuced condensim by one-half, of of	0.74 - 0.4 or 0.7 a reported in the conditions shou of system peak s difference in g Compres: Pre-retrofit 0.86 0.88 + 0.4 or 0.0 ular temperature and pump ener quantity of heat g temperature is condenser energy	0.78 kW/ton ins does not ma a pre-retrofit con id yield lower k have an inconsis reater detail sor kW/ton Post-retrofit 0.79 0.88 kW/ton bins are incons gy for the new c while using app s achieved in th gy is not conside of the models s	1,283,160 -120,952 ke sense. A dr idition are lowes W/ton, as was of stent effect on th Compre Pre-retrofit 309 888 + 23 or 0 istent. A drop i pondenser system roximately one-te post-retrofit co sed to be reliab	1,341,113 KWh rop in condense st for these two boserved for the he cold room ar assor KW Post-retrofit 286 888 KW in condenser ter main condenser ter main the amount ordition, the cor the application	bins, while to cold room (20 d high stage c high stage c nperature resu of fan and pun npressors cont	ts in no saving energy.	temperature tem.	system is shar	while improvin		

Change Condensers and add ASD's

	+	 		
For this reason, the application impacts could not be verified, nor adapted for improvement.				
Due to the many problems encountered with this particular measure, no update to the application impacts a	TO FOROM PRODUCED	 	•	
Due to the many problems encountered with this particular measure, no update to the application impacts a	re recommended.			

Site ID#:	2888
Check #	62984
Measure	Suction Sectionalization Project
Measure Description:	The retrofit site is an agricultural processing and packaging plant with a refrigerated warehouse for storage. Separate refrigeration suction lines have been dedicated for hydrocooler units (allowing higher suction temperatures for this unique application). In addition, the application indicates that the retrofit should have included the installation of recirculation pump drums (which store and supply cold refrigerant to the evaporator coils), but a new, dedicated receiver tank for the hydrocoolers was installed instead.
	This retrofit allows for a closer approach temperature (differential between the refrigerant and the desired chilled water temperature), which reduces compressor loading and improves the compressor efficiency.
	This retrofit is stored in the MDSS as action code 469, Refrigeration Add/Change.
Summary of Calculations in the Original Application:	Estimates are provided for improved compressor efficiency of the dedicated hydrocooler compressors (caused by a higher suction temperature following the sectionalization retrofit).
Comments on Calculations:	Impacts based upon a temperature bin model and mean kW/ton savings, due to the raised suction temperature.
	Bin model is based upon mean savings of 0.063 kW/ton and a pre- retrofit condensing temperature of 85°F. Documentation does not appear to have adequate references for reproduction.
Evaluation Process	During an on-site inspection of this facility the hydrocoolers and warehouse were found to share a common suction. Both systems were running using the same 30 psi suction gas. The system (following retrofit) is designed to use either a common or split suction, with valving and receiver systems available to support either system operating strategy.
	Since the application calculations assume a common suction in the pre-retrofit condition, there are no savings associated with the retrofit performed. The site contact indicated that this system is normally run using a shared suction, not dedicated as suggested in the application.
Additional Notes:	An on-site inspection of this facility was conducted on September 23, 1996 with Charles Buick and Wayne Burke.

kW	kWh	Therm

Application	101	369,200	0
MDSS	101	369,200	0
Evaluation Estimates	0	0	0
Engineering Realization Rate	NA	0	NA
Customer Billing Summary			

Site ID#:	2909
Check #	62881
Measure	Install Bi-folding Doors to Replace Electric Air Curtains
Measure Description:	Automatic doors were installed at the entrance/exit to a refrigerated warehouse; action code 469. The installation of these auto-closing doors reduces infiltration of outside air into the warehouse and allowed the fans serving the existing air curtain system to be removed. Motors that operate the new automatic doors add load to the PG&E system.
Summary of Calculations in the Original Application:	A bin calculation (based on an ASHRAE calculation method) was used to estimate both pre- and post-retrofit infiltration impacts. Fan energy was modeled using an algorithm in conjunction with the business operating schedule. Similarly, motor energy to operate the automatic doors was estimated using an algorithm in conjunction with estimated forklift travel through each door.
Comments on Calculations:	Application review has shown that the ASHRAE infiltration calculations were incorrectly applied. Refer to the exhibits which for details surrounding the errors in this method.
Evaluation Process	: The warehouse operating schedule was verified. Pre-retrofit air curtain equipment operation was verified. Forklift travel through each door was verified. Amount of time that doors remain open was verified. Warehouse setpoint temperatures were verified and the refrigeration equipment were audited. All calculations were revised using updated information.
Additional Notes:	An on-site inspection of this facility was conducted with Dennis Krieg on October 1, 1996. The inspection included a thorough explanation of the characteristics and operation of the pre- and post-retrofit equipment, measured door operation since the installation, compressor and condenser make and model, and measured R-22 refrigerant conditions (discharge, suction and condensate).

	kW	kWh	Therm
Application	9.2	213,119	0
MDSS	9.2	213,119	0
Evaluation Estimates	79.94	175,202	0
Engineering Realization Rate	··· · · · · · · · · · · · · · · · · ·		
Customer Billing Summary			

Exhibit 2909-1 Mean Outdoor Temperatures by Month and Time of Day

	Mean Out	tdoor Temperature by Ti	me of Day
	12 Midnight-8:00 AM		4:00 PM-12 Midnight
Month	(°F)	8:00 AM-4:00 PM (°F)	(°F)
January	46	52	50
February	50	56	53
March	51	58	54
April	52	61	55
May	54	63	57
June	57	67	60
July	57	67	60
August	58	68	61
September	59	71	62
October	57	67	61
November	53	60	56
December	48	53	50

Average weather statistics were calculated using weather data from "Facility Design and Planning Engineering Weather Data",

Departments of the Air Force, the Army, and the Navy, July 1, 1978.

Site: A California weather station on the east shore of the Bay Area.

he contact prov	ided the sched	ule during which	h doors are in u	50.								
Daytype	Hour Doors Begin Use	Hour Doors are Closed	12 Midnight - 8:00 AM Hours/Day Doors Open	8:00 AM - 4:00 PM Hours/Day Doors Open	4:00 PM - 12 Midnight Hours/Day Doors Open	Average Days per Year per Daytype	12 Midnight - 8:00 AM Hours/Year Doors Open	8:00 AM - 4:00 PM Hours per Year Doors Open	4:00 PM - 12 Midnight Hours per Year Doors Open	Annual Hours per Year Doors Open		
londay	7:00 AM	5:00 AM	6	8	8	52.1	312.9	417.1	417.1	1147.1		
uesday	7:00 AM	5:00 AM	6	8	8	52.1	312.9	417.1	417.1	1147.1		
Vednesday	7:00 AM	5:00 AM	6	8	8	52.1	312.9	417.1	417.1	1147.1		
hursday	7:00 AM	5:00 AM	6	8	8	52.1	312.9	417.1	417.1	1147.1		
riday	7:00 AM	6:00 PM	1	8	2	52.1	52.1	417.1	104.3	573.6		
aturday	Never Open	Never Open	0	0	0	52.1	0.0	0.0	0.0	0.0		
iunday	8:00 PM	5:00 AM	5	0	4	52.1	260.7	0.0	208.6	469.3		
Total			30	40	38	365	1564	2086	1981	5631.4		
Daytype	Hour Doors Begin Use	Hour Doors are Closed	Holidays per Year per Daytype	12 Midnight - 8:00 AM Holiday Adjusted Hours/Year Doors Open	8:00 AM - 4:00 PM Holiday Adjusted Hours per Year Doors Open	4:00 PM - 12 Midnight Holiday Adjusted Hours per Year Doors Open	Annual Holiday Adjusted Hours per Year Doors Open	12 Midnight - 8:00 AM Fraction of Hours/Year Doors Open	8:00 AM - 4:00 PM Fraction of Hours per Year Doors Open	4:00 PM - 12 Midnight Fraction of Hours per Year Doors Open		
Monday	7:00 AM	5:00 AM	2	300.9	401.1	401.1	1103.1	0.72	0.96	0.96		
luesday	7:00 AM	5:00 AM	2	300.9	401.1	401.1	1103.1	0.72	0.96	0.96		
Vednesday	7:00 AM	5:00 AM	2	300.9	401.1	401.1	1103.1	0.72	0.96	0.96		
Thursday	7:00 AM	5:00 AM	2	300.9	401.1	401.1	1103.1	0.72	0.96	0.96		
riday	7:00 AM	6:00 PM	2	50.1	401.1	100.3	551.6	0.12	0.96	0.24		
Saturday	Never Open	Never Open	0	0.0	0.0	0.0	0.0	0.00	0.00	0.00		
Sunday	8:00 PM	5:00 AM	0	260.7	0.0	208.6	469.3	0.63	0.00	0.50		
Total			10	1514	2006	1913	5433.4	0.52	0.69	0.66		
The on-site con	lact estimated	the percentage	e of door openir	ngs that occur o	turing certain p	eriods of a typi	cal day in the	post-retrofit con	dition:			
Daytype	Hour Doors Begin Use	Hour Doors are Closed	Door Use	Percentage of Door Use 50%		12 Midnight - 8:00 AM Distribution of Door Use/Year 1,45		4:00 PM - 12 Midnight Fraction of r Door Use/Year 2.50	Check Total Fraction of Door Use/Year 7.15	Total Hours with Door r <u>Openings</u> 6.5		
NA	7:30 AM	2:00 PM	Very Busy	10%		1.45	5.20	2.30	1.13	3	<u> </u>	
NA	2:00 PM	5:00 PM	Less Busy	0%		+	<u>+</u>			1	<u> </u>	
	5:00 PM	6:00 PM	Doors Shut	40%		+		+	+	9	<u>├</u>	
NA NA	6:00 PM	3:00 AM	Busy									

The on-site co	ntact provided	the temperature	setpoints for	cold storage by	month.							
	January	February	March	April	Мау	June	July	August	September	October	November	December
Cold Storage Temperature												
(°F)	40	40	41	43	43	45	46	46	44	44	40	40
The on-site co	ntact provided t	he number of tin	nes each door	had opened sir	ice the installation	n was complet	ed on March	7, 1995				
		ty was conducte										
	Door #1	Door #2		Number of Days w/ Openings in 1995	Number of Days w/ Openings in 1996							
Number of Times Door Opened	200,092	244,741		299	273					·····		
Estimated Annual Door												
Openings	127,681 The number of	door openings	measured dur	ing the first 1.5	vears of operation	on is greater th	an the assum	intions used to r	calculate impacts	in the applica	tion (151 00P or	
												enings/yr).
	gnates an input.				· · · · · · · · · · · · ·							
	nates a calculat	ion.		· · · · ·	+ ·-· · -							
ireen designa	tes a result.	<u> </u>						<u>í</u>			1	

Baseline Calculations

				+		+										
			<u> </u>	t	ł											
	Cold Storage Temperature	Midnight - 8AM Mean Outdoor Temperature	Midnight - 8AM Mean Outdoor Temperature	Midnight - BAM Mean Outdoor Temperature	Mean Coincident Outdoor Temperature	Mean Coincident Outdoor Wet-	Mean Coincident Relative					Midnight - 8AM Qs/A	8AM - 4PM Q8/A	4PM - Midnight Qs/A		
Month	(°F)	(°F)	<u>(°F)</u>	(°F)	(°F)	bulb (°F)	Humidity	Dt	Dt	E	Pa	(tons/sqft)	(tons/sqft)	(tons/sqft)		
lanuary	40	46	52	50	49	46	80%	1	1	0.25	0.62	0.02	0.05	0.04		
ebruary	40	50	56	53	53	50 51	82%	1	1	0.25	0.55	0.04	0.07	0.06		
Aarch	41	51	58	54 55	54	52	77%	1	1	0.25	0.54	0.04	0.07	0.05		
April	43	52	61 63	57	58 58	53		<u> </u>	1	0.25	0.6	0.04	0.08	0.05		
Aey	43	54		60	61	56	72%	1	1	0.25	0.62	0.05	0.09	0.05		
lune		57	67	60	61	56	73%	1	1	0.25	0.59	0.04	0.1	0.06		
July	46	57	67	61		56	69%	1	1	0.25	0.59	0.04	0.09	0.06	L	
August	46	58	68		62			-	11	0.25	0.63	0.04	0.09	0.07		
September	44	59	71 67	62 61	64	57 56	66% 69%	1	1	0.25	0.59	0.06	0.15	0.09		
October	44	57			and classic, the Performance of the second s			!	· · · · · · · · · · · · · · · · · · ·	0.25	0.58	0.05	0.1	0.08		
vovember	40	53	60	56	56	52	78%	1	1	0.25	0.58	0.06	0.09	0.07		
December	40	48	53	50	50	47	80%	1	11	0.25	0.62	0.03	0.06	0.04		
+						• • • • • • • • • • • • • • • • • • • •										
Month	H (ft)	W (ft)	12 Midnight- 8:00 AM q (Btuh/Door)	8:00 AM-4:00 PM q (Btuh/Door)	4.00 PM-12 Midnight q (Btuh/Door)	# of Doors	12 Midnight- 800 AM qt (Btuh/2 doors)	8:00 AM-4:00 PM qt (Btuh/2 doors)	4:00 PM-12 Midnight qt (Btuh/2 doors)	Days per Month	Hours per Month Doors	8:00 AM-4:00 PM Hours per Month Doors Open (hours)	Hours per Month Doors	Assumed Equipment Efficiency	Monthly Load from Door Infiltration (ton-	Monthi Energy L from Do Infikratic
lanuary	14	12	76,851	192,128	153,702	2	115 277	288,192	230,554	31	129	170		(kW/ton)	hrs/month)	(kWh/mo
ebruary	14	12	173,265	303,213	259,897	2	259,897	454,820	389,845	28	116	154	183 147	1.00	8,449	8,44
March	14	12	176,473	308,828	220,591	2	264,710	463,242	330,887	31	129	170	163	1.00	13,116	13,11
April	14	12	158,826	317,652	198,532	2	238,239	476,478	297,799	30	124	165		1.00	13,894	13,89
May	14	12	192,128	345,831	192,128	2	288,192	518,746	288,192	31	129	170	157	1.00	12,920	12,92
lune	14	12	161,518	403,795	242,277	2	242,277	605,692	363,415	30	124	185	157	1.00	14,356	14,35
luiv	14	12	161,518	363,415	242,277	2	242,277	545,123	363,415	31	129	170	183	1.00	15,597	15,59
lugust	14	12	151,263	340,341	264,710	2	226,894	510,512	397,085	31	129	170		1.00	15,257	15,25
September	14	12	242,277	605,692	363,415	2	363,415	908,538	545,123	30	124	165	163 157	1.00	15,056	15,05
October	14	12	205,378	410,757	328,605	2	308,067	616,135	492,908	31	129	170	183	1.00	23,395	23,39
Vovember	14	12	246,454	369,681	287,530	2	369,681	554,521	431,294	30	124	185	157	1.00	18,723	18,72
December	14	12	115,277	230,554	153,702	2	172,915	345,831	230,554	31	129	170		1.00	17,105	17,10
Accember			113,277	230,554	100,702			043.031	230,334		129	170	183	1.00	9,885	9,88
										Total	1,514	2,006	1,913		Total	177,7
lue font design	nates an input			<u> </u>												
	ates a calcula	tion.		1								l	t		+	
Freen tont desi													t		+	+
													<u> </u>		t	+
													<u> </u>		t	<u> </u>
his calculation	uses the sam	e methodology	that was used	to prepare the	Customized In	centive applicat	on estimates,	and certain acc	epted assumpa	tions, as docur	hented below.					
	The calculation	methodology	s based upon	the 1994 ASHF	AE Refrigeration	on Systems and	Applications	andbook: Equa	tion (9) and (1	2), p26.3 throu	gh 26.5.					
	(9) qt = q x D	tx Dfx (1-E)		1												
	(12) q = 3790	x W x H^1.5)	x (US/A) X (1/H	() aita aat-biiat-		temperature	nuiremente hu	month								Ļ
	Space selpoini	temperature a	iccording to on	-site establishe	a cora storage		the pre-mints by	nonun.	neriod that the	facility in an		<u> </u>			f	1
	DC Decimal de	scribing the pe	ICONUNCTION OF THE	ne the doorway	ta uprent. Intis		bliebed flow	wase cuning the	Period that Th	a recenty is ope	aung					L
	UT: Doorway fi	ow tactor. This	S VELLING IS 1.0 H	n the pre-retrofi		ny siat fully 980	A NOW LONGING	a 224 180.		<u> </u>		·				ļ
	E: Air curtain e		THE VELLO IS O	25, indicating t	autoos dribi		the coincides	relative burnid	by and the seld	atomos lamos	antian inia - T	h	·			l
	Rs: Sensible h	eat ratios are t	ased upon the	monthly mean	OURGOOT GIV DU	lo temperature.			aria me cold	storage tempe	rawre, using T	aDie 7			L	
			ena roob to mpa	a, according to	ASHKAE HIgur	3.		<u> </u>							L	
	H: Door heigh							+								
		(ft)	l	1							L	1			1	
	W: Door width															
	q: Calculated	per door refrige	ration load for	fully establishe	d flow (Btuh)											
	q: Calculated p	oer door refrige	openings were	fully establishe retrofit with hig combined unde	h-speed folding	doors to reduc	e infiltration.									

Retrofit Calculations

Estimated ene	rgy required to	condition the i	nfiltration air v	ith the retrofit	fast-folding doo	re:												
	1) Estimates to	- hours when f	et folding door	s are open and	the facility is o	neratino												
Month	Cold Storage Temperature (*F)	Midnight - BAM Mean Outdoor Temperature (*F)	Midnight - BAM Meen Outdoor Temperature (*F)	Midnight - 8AM Mean Outdoor Temperature (*F)	Mean Coincident Outdoor Temperature (°F)	Mean Coincident Outdoor Wet- buib (*F)	Mean Coincident Relative Humidity	Dt	Dt	E when doors are open	<u>Re</u>	Midnight - 8AM Qa/A (tone/sqft)	8AM - 4PM Qa/A (tons/aqft)	4PM - Midnight Qs/A (tons/sqft)	H (ft)	W when doors are open (ft)		
lanuary	40	46	52	50	49	46	80%	1	0.60	0	0.62	0.02	0.05	0.04	14	12		
ebruary	40	50	56	53	53	50	82%	1	0.80	0	0.55	0.04	0.07	0.06	14	12		
Aarch	41	51	58	54 55	54 56	51 52	82%	1	0.80	0	0.54	0.04	0.07	0.05	14	12	·	
April	43 43	52 54	61 63	57	58	53	72%		0.80	0	0.62	0.05	0.09	0.05	14	12		
May June	45	57	67	60	61	56	73%	1	0.80	0	0.59	0.04	0.1	0.06	14	12		
July	46	57	67	60	61	56	73%	1	0.80	0	0.59	0.04	0.09	0.06	14	12		
August	46	58	68	61	62	56	69%	1	0.80	0	0.63	0.04	0.09	0.07	14	12		
September	44	59	71	62	64	57	66%	1	0.80	0	0.59	0.06	0.15	0.09	14	12		
October	44	57	67	61 56	<u>62</u> 56	56 52	69% 78%	1	0.80	0	0.58	0.05	0.1	0.08	14	12		
November	40	53 48	60 53	50	50	47	80%	1	0 80	ō	0.62	0.03	0.06	0.04	14	12		
December																		
	12 Midnight- 8:00 AM q when doors are open	8:00 AM- 4:00 PM q when doors are open (Btuh/Door)	4:00 PM-12 Midnight q when doors are open (Btuh/Door)	# of Doors	12 Midnight- 8 00 AM qt when doors are open (Btuh/2 doors)	8:00 AM- 4.00 PM qt when doors are open (Btuh/2 doors)	4 00 PM-12 Midnight qt when doors are open (Btuh/2 doors)	Fold Door Openings	8 00 AM- 4:00 PM Fast Fold Door Openings (Openings/Mo nth)	Fold Door Openings	Amount of Time Door Remains Open per Pass (seconds)	12 Midnight- 8:00 AM Hours per Month Doors Open (hours)	8:00 AM- 4:00 PM Hours per Month Doors Open (hours)	4:00 PM-12 Midnight Hours per Month Doors Open (hours)	Days per Month	Assumed Equipment Efficiency (kW/ton)	Monthly Load from Door Infiltration when doors are open (ton hre/month)	Monthly Energy Use from Door Infiltration when doors are open (kWh/mont)
Month January	(Btuh/Deor) 76,851	(Btuh/Door) 192,128	153,702	2	122,962	307,405	245,924	2,506	5,531	4,321	20	13.92	30.73	24.01	31	1.00	1,422	1,422
February	173,265	303,213	259,897	2	277,223	485,141	415,835	2,264	4,996	3,903	20	12.58	27.76	21.68	28	1.00	2,164	2,164
March	176,473	308,828	220,591	2	282,357	494,125	352,946	2,506	5,531	4,321	20	13.92	30.73	24.01	31	1.00	2,299	2,299
April	158,826	317,652	198,532	2	254,121	508,243	317,652	2,425	5,353	4,182 4,321	20	13.47	29.74	23.23	30	1.00	2,160	2,160
May	192,128	345,831	192,128	2	307,405	553,329 646,071	307,405 387,643	2,506 2,425	5,531 5,353	4,182	20	13.92	30.73	24.01	31	1.00	2,389	2,389
June	161,518	403,795 363,415	242,277	2	258,429	581,464	387,643	2,506	5,531	4,321	20	13.92	30.73	24.01	31	1.00	2,564	2,564
July August	151,263	340,341	264,710	2	242.020	544,546	423,536	2,506	5,531	4,321	20	13.92	30.73	24.01	31	1.00	2,523	2,523
September	242,277	605,692	363,415	2	387,643	969,107	581,464	2,425	5,353	4,182	20	13.47	29.74	23.23	30	1.00	3,963	3,963
October	205,378	410,757	328,605	2	328,605	657,211	525,768	2,506	5,531	4,321	20	13.92	30.73	24.01	31	1.00	3,116	3,116
November	246,454	369,681	287,530	2	394,326	591,489 368,886	460,047 245,924	2,425 2,506	5,353 5,531	4,182	20	13.47	29.74 30.73	23.23	30	1.00	2,799	2,799
December	115,277	230,554	153,702	2	104,443	300,000	243,324	2,500		4,021		10.02	30.73	£4.01	31	1.00	1,651	1,031
					+								+	+	+	+	Total	29,691
	+		+		1			1					1	1			· · · · · · · · · · · · · · · · · · ·	
	2) Estimates f	or hours when	fast-folding doc	ors are closed b	out the facility is	operating:												
Month	Cold Storage Temperature (*F)	Midnight - BAM Mean Outdoor Temperature (°F)	Midnight - 8AM Mean Outdoor Temperature (*F)	Midnight - 8AM Mean Outdoor Temperature (*F)	Mean Coincident Outdoor Temperature (*F)	Meen Coincident Outdoor Wet- bulb (°F)	Mean Coincident Relative Humidity	Dt	DI	E when doors are closed	Re	Midnight - 8AM Qs/A (tons/sqft)	8AM - 4PM Qs/A (tons/sqft)	4PM - Midnight Qe/A (tons/agft)	H (ft)	W when doors are closed (ft		
January	40	46	52	50	49	46	80%	1	0.80	0.95	0.62	0.02	0.05	0.04	14	15	ł	.
February	40	50	56	53	53	50	82%		0.80	0.95	0.55	0.04	0.07	0.06	14	15	 	l
March	41	51	<u>58</u> 61	54	56	52	77%	+	0.80	0.95	0.6	0.04	0.08	0.05	14	15		+
Ap ril May	43	54	63	57	58	53	72%	1	0.80	0.95	0.62	0.05	0.09	0.05	14	15		1
May June	45	57	67	60	61	56	73%	1	0.80	0.95	0.59	0.04	0.1	0.06	14	15		
July	46	57	67	60	61	56	73%	1	0.80	0.95	0.59	0.04	0.09	0.06	14	15	1	
August	46	58	68	61	62	56	69%		0.80	0.95	0.63	0.04	0.09	0.07	14	15	1	
September	44	59	71	62	64	57	66%		0.80	0.95	0.59	0.06	0.15	0.09	14	15	+	
	44	57	67 60	61 56	<u>62</u> 56	56	69% 78%	+	0.80	0.95	0.58	0.05	0.1	0.08	14	15	<u>+</u>	-+
October																		i
November	40	53						1	0.80	0.95	0.62	0.03						
	40	48	53	50	50	47	80%	1	0.80		0.62	0.03	0.06	0.04	14	15		

					·····	1	1		1	·			· · · · · · · · · · · · · · · · · · ·	1				
	12 Midnight- 8:00 AM q when doors are closed	8:00 AM- 4:00 PM q when doors are dosed	4.00 PM-12 Midnight q when doors are closed		12 Midnight- 6:00 AM qt when doora are closed (Btuh/2	8:00 AM- 4.00 PM qt when doors are closed (Btuh/2	4:00 PM-12 Midnight qt when doors are closed (Btuh/2					12 Midnight- 8:00 AM Houre per Month Doore Closed	8:00 AM- 4:00 PM Hours per Month Doors Closed	4:00 PM-12 Midnight Hours per Month Doors Closed	Daya per	Assumed Equipment Efficiency	Monthly Load from Door Infiltration when doors are closed (ton -	Monihiy Energy Use from Door infiltration when doors are closed
Month	(Btuh/Door)	(Btuh/Door)	(Btuh/Door)	# of Doors	doors)	doors)	doors)	-		ļ!	L	(houre)	(hours)	(hours)	Month	(kW/ton)		(kWh/month)
January	96,064	240,160	192,128	2	7,685	19,213	15,370			ļ	ļ	115	140	139	31	1.00	474	474
February	216,581	379,016	324,871	2	17,326	30,321	25,990				·	104	126	125	28	1.00	739	739
March	220,591	386,035	275,739	2	17,647	30,883	22,059				ļ	115	140	139	31	1.00	783	783
April	198,532	397,065	248,165	2	15,883	31,765	19,853		+		ļ	111	135	134	30	1.00	726	726
May	240,160	432,288	240,160	2	19,213	34,583	19,213		+	L		115	140	139	31	1.00	808	808
June	201,897	504,743	302,846	2	16,152	40,379	24,228				L	111	135	134	30	1 00	875	875
July	201,897	454,269	302,846	2	16,152	36,342	24,228			ا · · ·		115	140	139	31	1.00	857	857
August	189.078	425,426	330,887	2	15,126	34,034	26,471			ļ		115	140	139	31	1.00	846	846
September	302.846	757,115	454,269	2	24,228	60,569	36,342		.i		ļ	111	135	134	30	1.00	1,312	1,312
October	256,723	513.446	410,757	2	20,538	41,076	32,861			· · · · · · · · · · · · · · · · · · ·		115	140	139	31	1.00	1,053	1,053
November	308.067	462,101	359,412	2	24,645	36,968	28,753				l	111	135	134	30	1.00	965	965
December	144,096	288,192	192,128	2	11,528	23,055	15,370			L		115	140	139	31	1.00	556	556
Deede					1	[L							
										J	Totai	1,350	1,644	1,631			Total	9,994
Blue font desig	nales an input			-				•										
Red font design		n.			1				÷	ļ	L							
Green lont desi					i		·				L							
					í		l			ļ								l
This calculation	uses the same	methodology t	nat was used to	prepare the Cus	stomized Incenti	ve application e	stimates, and ce	rtain accepted	assumpations, a	documented b	NOW.							
			l		E Defrigerohen	Sustame and I	Polications Han	Abook Equation	(9) and (12).	26.3 through 2	65	+					+	<u> </u>
	The calculation	methodology is	a based upon tr	1994 ADTIN	T Nemgerauon	Systema and /		LOON LIGUID	1 1-7 1		F.F.		<u> </u>	+		+		
	(9)qt≠q x [Dt x D1 x (1-E)	L	<u> </u>		+	+ •	+			t			-			+	1
	(12) q = 3790) x W x H^1.5	x (Qa/A) x (1/	H8)									+				+	+
	Space setpoint	temperature a	acording to on-t	site established	CON SIOTAGE IO	inperature requ	irements by mo	mode los on a	tice hours with a	e automatic de		toe alarand		+		+		+
	Dt: Decimal der	scribing the per	centage of time	the doorway is	open. Inte val	ue is 1.0 when	Carculations are	made to an e	ritire hour with t	folding and up	Indiana Office	den comford until	-		4 / 4			
	Df: Doorway Ro	w factor. This	value ie 0.8 du	ing the periods	when the autor	mate doors are	open, marcaurig	some booked		deers are de	ording. U.S.IS	also appled whi	en ne automan	doore are clos	a (que to prou	nging warenon	an wears)	
	E: Door effective	enese. This v	alue is 1.0, duri	ng the period in	at the automati	c doors are ope	m, and 0.95 dur	nig are period i	and the automation and the cold sto	tage temperatu	a using Table	A house and a set of the	CONTRAC FOR TAB			+	+	+
	Rs: Sensible h	eat ratios are b	ased upon the	monthly mean of	outgoor any built	o uemperature, t	Te concident le				e, usery rable	f:	+	+			+	+
	Qs/A: Sensible		git of door area,	according to At	HHAL HOURS	<u>'</u>	+	+	+	<u>+</u>	<u>+</u>	+	+			+	+	
	H Door height	(ft).		<u> </u>	+			+	+		+	+	+	·		+	+	+
	W: Door width	(ft). The effect	tive doorway wit	th increases w	then the automa	ec doors are de	ployed to 15 ft.		+		+	+	t	+		+	+	
	q Calculated	per door refrige	eration load for	fully establishe	ed now (Btuh)		the Plane North		• • • • • • • • • • • • • • • • • • • •	t	+	+	+·				+	+
	# of Doors: Tw	warehouse	openings were	retrofit with hig	h-speed folding	poors to reduc	e innitration	+	-+	+	ł	+					+	+
	gt: Average ho	unly heat gain	for both doors o	combined under	normal operation	ojn (Brun)	s and condense				+			+			+	+

	gr iedaned to	condition the in							
Outdoor Temperature Bin (°F)	Cold Storage Temperature (°F)	Peak Hour Outdoor Temperature (°F)	Mean Coincident Outdoor Wet- bulb (°F)	Mean Coincident Relative Humidity	Dt		E	Pis	Peak Hour Qs/A (tons/sqit)
Peak Day	46	92	66	24%	1	1	0.25	0.92	0.3
oan Day									
Outdoor Temperature Bin (°F)	H (ft)	W (ft)	Peak Hour q (Btuh/Door)	# of Doors	Peak Hour qt (Btuh/2 doors)	Peak Hour Duration Doors Open (hours)	Assumed Equipment Efficiency (kW/ton)	Peak Hour Load from Door Infiltration (ton-hrs/hr)	Peak Hour Demand from Door Infiltration (kW)
Peak Day	14	12	776,866	2	1,165,299	1	1.00	97	97
Estimated ener	rgy required to	condition the in	nfiltration air wi	th the retrofit f	ast-folding door	<u>s:</u>			
	1) Estimates fo	r hours when fa	ast-folding doors	s are open and	the facility is c	perating:			
Outdoor Temperature	Cold Storage Temperature	Peak Hour Outdoor Temperature	Mean Coincident Outdoor Wet-	Mean Coincident Relative		Df	E when doors	Ps	Peak Hour Qs/A
Bin (°F)	(°F)	(°F)	bulb (°F)	Humidity	Dt	0.80	are open 0	0.92	(tons/sqft) 0.3
Peak Day	46	92	66	24%	1	0.80	0	0.92	0.3
Outdoor Temperature Bin (°F)	H (ft)	W when doors are open (ft)	Peak Hour q when doors are open (Btuh/Door)	# of Doors	Peak Hour qt when doors are open (Btuh/2 doors)	Peak Hour Fraction of Time Doors are Open (hours)	Assumed Equipment Efficiency (kW/ton)	Peak Hour Load from Door Infiltration when doors are open (ton- hrs/hr)	Peak Hour Demand from Door Infiltration when doors are open (KW
Peak Day	14	12	776,866	2	1,242,985	0.18	1.00	19	19
	2) Estimates fo	or hours when f	ast-folding door	s are closed b	ut the facility is	operating:			·····
Outdoor Temperature Bin (°F)	Cold Storage Temperature (°F)	Peak Hour Outdoor Temperature (°F)	Mean Coincident Outdoor Wet- bulb (°F)	Mean Coincident Relative Humidity	Di	Df 0.80	E when doors are closed	Pis 0.92	Peak Hour Qs/A (tons/sqft) 0.3
Peak Day	46	92	66	24%	1	0.80	0.95	0.92	0.3
Outdoor Temperature		W when doors are closed	are closed		Peak Hour qt when doors are closed (Btuh/2	Peak Hour Fraction of Time Doors Closed	Assumed Equipment Efficiency (kW/ton)	Monthly Load from Door Infiltration when doors are closed (ton-hrs/hr)	Peak Hour Demand from Door Infiltration when doors are closed (kW)
Bin (°F)	H (ft)	<u>(ft)</u>	(Btuh/Door)	# of Doors 2	doors) 77,687	(hours) 0.82	1.00	(ton-firs/fir) 5	5
	14	15	971,082						

		Hours per year	5,433	The endlanding							
	stimated air c			The application	estimate was	for 5,396 hours	per year.	·			
		urtain fan kW o	during oper	ation (all six fan	s)				· · ·		
	F	rom application	6. 88	kW			· · · · · · · · · · · · · · · · · · ·				
E	stimate of en	ergy use per ye	ar for all si	ix fans							·
		6.88 x 5433 =	37,382	kWh/year save	d			····=+ · · ·	· · · · · · · · · ·		
stimated energy	v required to	operate the p	ost-retrofit	fast-fold doors	(motor actuate	d):	·····			. 	· - · · · · · · · · · · · · · · · · · ·
				depends upon			r opens per	year (gather	ed during or	-site)	
				The application							
E	stimates were	e provided from	the applic	ation for the arr	nount of time ea	ich motor must	operate to	open and clo	se each aut	omatic de	por
		rom application rom application		seconds seconds			· · · - · · ·	·			
	stimates are	then made for t	he number	of hours per ye	ear spent openi	ng and closing	these fast-fo	ld doors			
	· * · · · · · · · · · · · · · · · ·	er year opening per year closing		hours hours							
Ē	stimates were	e provided from	the applic	ation for the kW	V/door required	during opening	and closing	of the fast-f	old doors	·	-
		rom application rom application		kW kW	4 • • • •						
Fi	inally, energy	estimates are	made for a	innual door moto	or use required	to operate both	doors				-

mated	demand at the time	or system pea			ian oyotoni.					
	The probability	of fan operatio	n at the tin	ne of system pe	ak is 1.0 in th	e pre-retrofit cor	dition			
	- Probability	or lair operatio								
		Probability on	1	The application	estimate also	assumed 100%	fan operation a	t the time of sy	stem peak	
									· · · · ·	
	Estimated air c	urtain fan kW d	uring opera	tion (all six fans	0					
									_	
	F	rom application	6.88	kW						
_	Estimate of on-	peak demand fo	or all six fai			-				
			6.88	kW						
			0.00							
			+	+			1		+	+
mated	I demand required to	operate the p	ost-retrofit	fast-fold doors	(motor actuate	d):			+	+
nateu	i demand required to			T		1				
	Motor operation	n to open and o	lose doors	depends upon t	he number of	times each door	opens at the tir	ne of system p	eak (gathered d	luring on-sit
	Seconds open	at system peak	649	seconds	ļ					
	S	econds opening	56	seconds/door	ļ		-			
		Seconds closing	111	seconds/door						
					the neek ener		poing those feet	fold dooro		
	Estimates are	then made for t	ne number	or nours during	the peak spen	t opening and cl	Using mese last			
		ak hour opening	0.01542	hours/door						
	Fraction of per	ak hour closing	0.03094			+				-
	Fraction of pe									
	Estimates were	e provided from	the applica	ation for the kW	/door required	during opening	and closing of t	he fast-fold doo	ors	
	kW to open	from application	0.478	kW						
	kW to close	from application	0.669	kW						
					L			-		
	Finally, deman	d estimates are	made for	door motor use	required to ope	arate both doors	during the peak	hour		
		1				dementie deser				
	(0.478 x	0.01542) x 2 =	= 0.015		use to open at					
-	(0.669 x	0.03094) x 2 =	= 0.041	kW additional	use to close a	utomatic doors				

	Exhibit 2	909-2			
Evalua	ation Energy and	Demand Impacts	5		
		Annual Energy Use (kWh)			
Impact Component	Pre-Retrofit	Post-Retrofit	Impact		
Open Door Infiltration	177,751	29,691	148,060		
Closed Door Infiltration	1_	9,994	-9,994		
Air Curtain Fans	37,382	-	37,382		
Automatic Door Motors	-	245	-245		
Total	215,133	39,930	175,202		
		Peak Hour Demand (kW)			
Impact Component	Pre-Retrofit	Post-Retrofit	Impact		
Open Door Infiltration	97.11	18.69	78.42		
Closed Door Infiltration	-	5.31	-5.31		
Air Curtain Fans	6.88	-	6.88		
Automatic Door Motors		0.06	-0.06		
Total	103.99	24.05	79.94		

Site ID#:	3103
Check #	62236
Measure	EMS for Lighting, anti-sweats, HVAC and condenser
Measure Description:	"EMS for lighting, ASW, HVAC & condenser"; action code 453, refrigeration EMS. The application form reviewed is incomplete (no calculations), however, during an on-site inspection of this grocery, information was gathered regarding the retrofit.
Summary of Calculations in the Original Application:	Very unclear records; no calculations are provided. Recommendations are made by PG&E reviewers, however, to drop the assumed pre-retrofit condensing temperature from 105 °F to 98 °F (for calculations surrounding floating head pressure controls that were installed). No invoices were attached to verify the equipment installed.
Comments on Calculations:	Because no calculations are contained within this particular application, the methods used to achieve results cannot be readily reviewed. Although the application of this particular EMS measure saves energy within the lighting, HVAC and refrigeration end uses, energy impacts are recorded in the MDSS under the refrigeration action code 453 only.
Evaluation Process	: An audit of this site yielded equipment holdings and the schedule of operation for those systems in both the pre- and post-retrofit condition (as affected by the EMS installation). These data are used to independently assess the savings for this site.
Additional Notes:	An on-site inspection of this facility was conducted with Pat Flannigan on September 27, 1996. The inspection included a thorough explanation of the characteristics and operation of the equipment before and after the installation of EMS controls. Additionally, an equipment inventory was conducted, and R-22 refrigerant conditions were measured during this inspection (discharge, suction and condensate temperatures).

	kW	kWh	Therm
Application	0	264,878	0
MDSS	0	264,878	0
Evaluation Estimates	8.65	264,878	0
Engineering Realization Rate		1.00	
Customer Billing Summary			

				s on at the	1 - 관계		친구들이 노벨한	
			time below	v on Jul.				
			weekdays					
			3-4 PM	100		i de la come		
			4-5 PM	100				
Lighting								
Technology	Number of		Total No.			No. of		
Category	Lamps per	Lamp	of Lamps	No. of	No. of Lamps	Lamps		
(Key)	Fixture	Wattage	Counted	Lamps On	on 24 Hours	Burned Out		on Notes
4 Ft. T12 MB	4	34	88	88	44	0	Main Sales	
8 Ft. T12 MB	2	60	436	436	218	0	Main Sales	Floor
4 Ft. T8 EB	3	30	81	81	40	0	Main Sales	
4 Ft. T8 EB	2	30	8	8	4	0	Main Sales	Floor
4 Ft. T8 EB	2	30	18	18	9	0	Main Sales	Floor
4 Ft. T8 EB	1	30	8	8	4	0	Deli Case	
8 Ft T8 EB	1	60	35	31	18	0	Back Storag	
4 Ft T8 EB	1	32	1	1	1	0	Back Storag	
4 Ft. T8 EB	2	30	76	76	38	0	Meat Depar	tment
Mercury lamp	1	200	12	12	6	0	Main Sales	Floor
Halogen Spots	1	50	8	5	4	3	Main Sales	Floor
	Linhting (De			a profession and a second s	Main Color Fl		Deet Detect	
Main Sales Floor			Aug. 05		Main Sales Flo	1		
Daytype	Start time	Stop time 0.25	Avg. On 100%		Daytype	Start time	Stop time	Avg.
All (open)	6 0.25		100%	ant de leasant an composition de la sec	All (open) All (closed)	6 0.25	0.25	100 50°
All (closed)	0.25	6	100%		All (closed)	0.25	6	50.
Back Storage (P	re-Retrofit)				Back Storage	(Post-Retrofi	t)	
Daytype	Start time	Stop time	Avg. On		Daytype	Start time	Stop time	Avg.
All (open)	8	0.25	100%		All (open)	8	0.25	100
All (closed)	0.25	8	100%		All (closed)	0.25	8	509
Meat Departmen	t (Pre-Retrof	t)			Meat Departm	ent (Post-Re	trofit)	
Daytype	Start time	Stop time	Avg. On		Daytype	Start time	Stop time	Avg.
All (open)	6	22	100%	· · · · · · · · · · · · · · · · ·	All (open)	6	22	100
All (closed)	22	6	100%		All (closed)	22	6	50
Deli Case (Pre-F	Petrofit)			· · · · · · · · · · · · · · · · · · ·	Deli Case (Po	st_Retrofit)		
	Start time	Stop time	Avg. On	. ·	Daytype	Start time	Stop time	Avg.
Daytype		<u> </u>	100%		All (open)	6	22	
All (open) All (closed)	6	22 6	100%		All (closed)	22	6	100
			1 11/11/26	,	LATER CONSERVE		i n	

Walk-in for Dairy		440	Square F	eet	40	Tempera	ture	+	Evap Far	kW.	24	Fon Cuel		hinunun?	
Walk-in for Produce		500	Square F		40	Tempera	· · · · · · · · · · · · · · · · · · ·		Evap Far		24	Fan Cycles or Continuous? Fan Cycles or Continuous?			
Walk-in for Frozen		312	Square F		-+0	Tempera			+ ···· · · · · · · · · · · · · · · · ·		24	Fan Cycles or Continuous?			
Walk-in for Meat	-	484	Square F		32		emperature		Evap Fan kW Evap Fan kW		24				
Walk-in for frozen		120	Square F		32	Tempera			Evap Far		24	· · · · · ·	es or Con		
Walk-in for Beverage/	Floral	120	Square F		JZ	Tempera			Evap Far				es or Con		
			Square r			rempera			суар гаг	KVV		Fan Cyci	es or Con	inuous?	
Display Type	Manuf	Single Deck	Multi Deck	Open	Strip Curtain Time (from:to)	Glass Door Reach In	Lineal Feet	Lamp Count	Lamps /Fixt	Watts /Lamp	Fixt length (feet)	Fixt Descrip	Number of Lamps Burned Out		
Vegetable	Hussman	V		V			40	60	2	40	4	T-12	0		
Iced Vegetable	Hussman	1		V			16	0							
Flowers	Hussman					\checkmark	9	6	1	55	6	T-12	0		
Dairy	Hussman		√	V			60	10	1	55	6	T-12	0		
Ice Cream	Hussman					1	72	12	1	55	6	T-12	3		
Frozen Food	Hussman					√	72	12	1	55	6	T-12	0		
Frozen Food	Hussman					√	9	3	1	55	6	T-12	3		
Frozen Food	Hussman					V	72	12	1	55	6	T-12	0		
Deli Cheese	Hussman			<u></u>			72	12	1	55	6	T-12	0		
Ice Cream	Hussman						8	1	1	55	6	T-12	0		
Vegetable Platforms	Hussman		,	<u> </u>			144	0							
Beverage	Hussman		√	1			58	9	1	55	6	T-12	0		
Sea Food	Hussman				<u> </u>		20 60	10 30	2	40	4'	T-12	0		
Meat Frozen Meat	Hussman Hussman		Υ	<u></u>	· · ·		36	0	2	40	4'	T-12	0		
riozen weat	nussman			V			- 30	V							
	(Dee Deter	=41			Meat Dis	مامير المسأمة	ine (Deet	Detection							
Meat Display Lighting	`				meat Dis	play Light	Start								
Daytype	Start time	Stop time	Avg. On		Daytype		time	Stop time	Avg. On						
All (open)	5	23	100%	w	All (open)	·····	5	23	100%					·····	
All (closed)	23	5	100%		All (close		23	5	0%			+			· •
	- 20		100 //			- /	20	<u> </u>	<u> </u>			+	·· · · · · · · · · · · · · · · · · ·		
Produce Display Light	ing (Pre-Re	trofit)			Produce I	Display Li	ighting (P	ost-Retro	fit)			· · · · · · · · · · · · · · · · · · ·		• ••	
	Start	Stop					Start	Stop			• • • • • • • • • • • • • • • • • • • •	•			
Daytype	time	time	Avg. On		Daytype		time	time	Avg. On						
All (open)	7	23	100%		All (open)		7	23	100%						
All (closed)	23	7	100%		All (close	d)	23	7	0%						
		Datas	<u>.</u>		Dein/E			Deat 5				 			
Dairy/Frozen Display			¥		Dairy/Fro	zen Displ			T(JIIOUR		· · · · · · · · · · · · · · · · · · ·				
Daytype	Start time	Stop time	Avg. On		Daytype		Start time	Stop time	Avg. On						
	2	<u>ume</u> 1	100%		All (open)		2	1	100%			 			
All (open)													 i		
All (closed)	1 1	2	100%		All (close	a)	1	2	0%			L			

Estimated ene	rgy impacts du	e to EMS control of the lighting	systems:				ļ	
	The overhead	lighting systems are controlled	by the EMS du	ring store after-	hours.	· · · · · · · · · · · · · · · · · · ·		
	17-00-0071 Mr. 107 117 117 117 117 117	hours of the night 50% of the		T		e the remaing	lights operate.	
		condition all store overhead light			The second	· · · · · · · · · · · · · · · · · · ·		
Lighting Technology Category (Key)	Number of Lamps per Fixture	Location Notes	Connected Load of the Lighting System (kW)	Pre-retrofit Annual Hours of Operation	Post-retrofit Annual Hours of Operation (Open)	Post-retrofit Annual Hours of Operation (Closed)	Annual Energy Impact	
4 Ft. T12 MB	4	Main Sales Floor	2.99	8,760	6,661	1,049	3,140	
8 Ft. T12 MB	2	Main Sales Floor	26.16	8,760	6,661	1,049	27,452	1
4 Ft. T8 EB	3	Main Sales Floor	2.43	8,760	6,661	1,049	2,550	
4 Ft. T8 EB	2	Main Sales Floor	0.24	8,760	6,661	1,049	252	
4 Ft. T8 EB	2	Main Sales Floor	0.54	8,760	6,661	1,049	567	
4 Ft. T8 EB	1	Deli Case	0.24	8,760	5,840	1,460	350	
8 Ft T8 EB	11	Back Storage	2.10	8,760	5,931	1,414	2,970	
4 Ft T8 EB	1	Back Storage	0.03	8,760	5,931	1,414	45	
4 Ft. T8 EB	2	Meat Department	2.28	8,760	5,840	1,460	3,329	
Mercury lamp	1	Main Sales Floor	2.40	8,760	6,661	1,049	2,519	
Halogen Spots	1	Main Sales Floor	0.40	8,760	6,661	1,049	420	
		Total	39.81				43,593	kWh
		s not reduce lighting system use S control of the overhead lightin				PM)		
·	Both the evalu							
	·			·	·			ļ
	gnates an input				•			
	inates a calcula			<u>.</u>	· · · · · · · · · · · · · · · · · · ·			
Green font des	signates a resu	1		1				

Estimated	energy impacts due to EMS contr	ol of the anti-sweat systems:
	Due to insufficient documenta	ation within this particular application, anti-sweat device connected load estimates were not available.
······································		ole, however, from an alternate paid year 1995 application (same store chain).
	Anti-Sweat Connected Load =	= 17.30 kW
	The EMS controls the anti-sw	veat heater operation by cycling on just 50% of the load for a particular 10 minute period.
		t loads, though just one circuit operates at a given time.
	In the pre-retrofit condition, a	inti-sweat heaters were all operated at once, 24 hours/day and 365 days per year (8,760 hours per year
		educes the coincident demand of these heaters by one-half.
	· · · · · · · · · · · · · · · · · · ·	17.30 noncoincident kW demand x 0.50
		8.65 kW
		The application estimate of demand for this measure is 0.0 kW.
		PG&E only allows energy savings for anti-sweat control devices, not demand.
		The evaluation estimate of 8.65 kW are, however, legitimately saved at this site.
	Estimated of energy savings	
	Anti-Sweat Energy Impact =	17.30 noncoincident kW demand x 8,760 hours/year x 0.50
	=	75,774 kWh/year saved
		The application energy estimate for this measure is unknown.
		PG&E only allows energy savings for anti-sweat control devices, not demand.
		The evaluation estimate of 8.65 kW are, however, legitimately saved at this site.

	During certain	hours of the night light	s within the dis	plays are shut c	off.			
	In pre-retrofit of	condition all store displa	ay lights operat	e 24 hrs/day an	d 365 days per	year.		
ixt Type	Lamps /Fixt	Display Type	Connected Load of the Lighting System (kW)	Pre-retrofit Annual Hours of Operation	Post-retrofit Annual Hours of Operation (Open)	Post-retrofit Annual Hours of Operation (Closed)	Annual Energy Impact	
T-12	2	Vegetable	2.40	8,760	5,840	2,920	7,008	
		Iced Vegetable	0.00	8,760	5,840	2,920	0	
T-12	1	Flowers	0.33	8,760	8,395	365	120	
T-12	1	Dairy	0.55	8,760	8,395	365	201	
T-12	1	Ice Cream	0.66	8,760	8,395	365	241	
T-12	1	Frozen Food	0.66	8,760	8,395	365	241	
T-12	1	Frozen Food	0.17	8,760	8,395	365	60	
T-12	1	Frozen Food	0.66	8,760	8,395	365	241	
T-12	1	Deli Cheese	0.66	8,760	8,395	365	241	
T-12	1	Ice Cream	0.06	8,760	8,395	365	20	
		Vegetable Platforms	0.00	8,760	8,395	365	0	
T-12	1	Beverage	0.50	8,760	8,395	365	181	
T-12	2	Sea Food	0.40	8,760	6,570	2,190	876	
T-12	2	Meat	1.20	8,760	6,570	2,190	2,628	
		Frozen Meat	0.00	8,760	6,570	2,190	0	
		Total	8.24				12,058	kWh
	Therefore EMS	s not reduce display ligh S control of the display	lighting systems	does not yield	demand saving	8		
	Both the evalu	ation and the application	on estimates inc	licate no demar	u impact during	the system pe	ак.	

For the c	ondenser and floating head pre-		application records	indicate that impact figures	were carefully scrutinized
	e, a combined analysis, using ap				
THEFEIOLE	, a complited analysis, using ap			neusures is specified beio	
	Measure	Energy Impact	Demand Impact	Source of impact	
	Overhead Lighting	43,593	0	Evaluation	
	Anti-Sweat Controls	75,774	8.65	Evaluation	
	Display Lighting	12,058	0	Evaluation	
	Adjustable Speed Drive	91,480	0	Application	
	Floating Head Pressure	40,700	0	Application	
	Tota	263,605	8.65		
		The application	specifies an energ	y impact of 264,878 kWh.	
····•		The application	specifies a demand	I impact of 0 kW.	

Site ID#:	3110
Check #	62100
Measure	EMS controlling anti-sweat devices in refrigerated cases
Measure Description:	"EMS - lighting and anti-sweats"; action code 453, refrigeration EMS, and action code 164, lighting EMS.
Summary of Calculations in the Original Application:	Estimates prepared for lighting and anti-sweat savings are based upon reduced system operation during nighttime hours (when the store is closed).
Comments on Calculations:	Calculations performed are well documented for this grocery site.
Evaluation Process	: Although the application form reviewed included an assessment of savings due to the control of overhead lights, only the portion of the retrofit associated with refrigeration controls is reviewed in this site report. Alternate analysis methods (though not presented here) were used to analyze Customized Incentives retrofit savings for lighting systems.
	An audit of this site yielded the schedule of operation for lighting systems in the refrigerated displays (in both the pre- and post-retrofit condition, as affected by the EMS installation). These data were used to supplement the savings calculations within the application by generating an independent assessment of the savings associated with the refrigerated case display light controls.
	An inspection of the compressor room also suggests that the EMS system is used to control additional components of the refrigeration system. No savings estimates were applied for, however, surrounding these additional controls. It is therefore likely, that the savings estimates provided in the application submitted have greatly underestimated the impacts associated with this EMS retrofit. Unfortunately, data available on-site did not support an assessment of these other refrigeration control strategies.
Additional Notes:	An on-site inspection of this facility was conducted with Kevin Sank on October 23, 1996. The inspection included an explanation surrounding the operation of the equipment before and after the installation of EMS controls. Additionally, a refrigeration compressor inventory was conducted, and R-502 refrigerant conditions were measured during this inspection (discharge, suction and condensate temperatures).

	kW	kWh	Therm
Application	0	75,781	0
MDSS	0	75,781	0
Evaluation Estimates	8.65	82,660	0
Engineering Realization Rate	-	1.09	
Customer Billing Summary	· · · · · · · · · · · · · · · · · · ·		

Although the on-site	e audit cor	ducted (did not in	clude a	thorough	examina	ation of t	he lightir	ng system	s servin	g store re	efrigeratic	n display	s,	
estimates of display													+ -		
											+				
Information gathere	d during th	e on-site	e indicate	d that f	reezer an	d bevera	ige displ	ay lights	are turne	d off for	7 hours	every nig	ght (11:00	PM til 6	:00 AM)
Lighting system est	imates for	just thos	se particu	ılar disp	ays are p	provided	below								
STORAGE AND DIS	PLAY CAS	ES				· ·									
Display Type	Manuf	Single Deck	Multi Deck	Open	Strip Curtain Time (from:to)	Glass Door Reach In	Lineal Feet	Lamp Count	Lamps /Fixt	Watts /Lamp	Fixt length (feet)	Fixt Descrip	Number of Lamps Burned Out		
Ice Cream	Hussman					\checkmark	72	12	1	55	6	T-12	3		
Frozen Food	ood Hussman					\checkmark	72	12	1	55	6	T-12	0		
Frozen Food	Hussman	1				\checkmark	9	3	1	55	6	T-12	3		
Frozen Food	Hussman)				\checkmark	72	12	1	55	6	T-12	0		
Ice Cream	Hussman					\checkmark	8	1	1	55	6	T-12	0		
Beverage	Hussman		1	V			58	9	1	55	6	T-12	0		
The pre- and post-r	retrofit sche	edules fo	or those li	ights are	as follov	vs			1		 				
Controlled Display Lig	hting (Pre-l	Retrofit)	:		Controlle	d Display	Lighting	(Post-Ret	rofit)	•					
Daytype	Start time	Stop time	Avg. On		Daytype		Start time	Stop time	Avg. On						
All (open)	6	23	100%		All (open)		6	23	100%						
All (closed)	23	6	100%		All (close	d)	23	6	0%						

	Anti Sweet Connected Lood	17.00	kW						
	Anti-Sweat Connected Load	= 17.30	<u>K¥¥</u>						
	The EMS controls the anti-s	weat heater o	peration by cyc	ling on just 50%	% of the load	for a partic	ular 10 minu	te period	
	Two circuits supply anti-swe								
	In the pre-retrofit condition,						davs per ve	ar (8 760 bc	urs ner vear
	The EMS duty cycle applied								urs per you
								11.148 - 10.886.000	
	Anti-Sweat Demand Impact	= 17.30 nonc	oincident kW de	emand x 0.50					and the state of t
		= 8.65	kW						
		The applica	ation estimate of	demand for th	is measure i	s 0.0 kW.			
		PG&E only	allows energy s	avings for anti-	sweat contro	l devices, no	ot demand.		
			tion estimate of					e.	
. -									
	Estimated of energy savings								
		1							
	Anti-Sweat Energy Impact	= 17.30 nonc	oincident kW de	emand x 8,760	hours/year	x 0.50			
		= 75,774	kWh/year s	aved					
		The applica	ation energy esti	mate for this m	neasure is co	mnarable 7	5 781 kWh		

Estimated ene	ergy impacts due	to EMS control of the	display lighting	systems:		····		
· · · ·	During certain	hting systems are contr hours of the night light condition all store displ	s within the dis	plays are shut o	off.	vear.		
Fixt Type	Lamps /Fixt	Display Type	Connected Load of the Lighting System (kW)	Pre-retrofit Annual Hours	Post-retrofit Annual Hours of Operation (Open)	Post-retrofit Annual Hours of Operation (Closed)	Annual Energy Impact	
T-12	1	Ice Cream	0.66	8,760	6,205	2,555	1,686	
T-12	1	Frozen Food	0.66	8,760	6,205	2,555	1,686	
T-12	1	Frozen Food	0.17	8,760	6,205	2,555	422	
T-12	1	Frozen Food	0.66	8,760	6,205	2,555	1,686	
T-12	1	Ice Cream	0.06	8,760	6,205	2,555	141	
T-12	1	Beverage	0.50	8,760	6,205	2,555	1,265	
· · · · · · · · · · · · · · · · · · ·		Total	2.70	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		6,886	kWh
		s not reduce display ligh						
		S control of the display			a second s			
	The savings p	rojected for display ligh	ting controls are	e in addition to	those projected	in the applicati	on.	
Blue font desi	ignates an input.				· ···.	, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
led font desig	gnates a calculat	ion.		• • • • • • • • • • • • • • • • • • • •			•	
ireen font de	signates a result			<u>.</u>			:	

Evaluation Evaluation					
Evaluation					
The application specifies an energy impact of 75,781 kWh					
nand impact of 0 kW.					

Site ID#:	3946
Check #	61634
Measure	Replacement of Refrigeration Equipment
Measure Description:	The retrofit site is a cold storage facility with an agricultural food processing plant contained within the refrigerated warehouse. The retrofit performed at this site consists of the replacement of older refrigeration equipment with new compressors, condensers, evaporators and controls; action code 469:
Summary of Calculations in the Original Application:	Estimates are provided for the refrigeration load difference of the replaced and new system. The application clearly documents both the new and replaced systems, and all assumptions regarding the operating hours required to maintain warehouse setpoint temperatures.
	The assumptions used to generate the estimates in this calculation, though based on very old pre-existing equipment, are conservative. Energy savings associated with evaporator defrost controls are not included in the savings estimates. Nor are demand savings claimed.
Comments on Calculations:	The new equipment are designed to meet the refrigerated warehouse loads while operating at optimal efficiency using modern energy management system (EMS) control strategies. The Hench EMS system provides both evaporator control using the 2T8 panel and compressor and condenser control using the Omni panel. Monitoring provides real-time measured condensing temperatures, indoor air temperatures at each evaporator, elapsed evaporator runtime, and outdoor dry bulb and wet bulb temperatures.
Evaluation Process	: Based on the sound engineering methods applied in the application, the evaluation analysis focuses on verification of the equipment installed rather than an analysis of the calculations performed.
Additional Notes:	An on-site inspection of this facility was conducted on October 5, 1996 with Fred Doty and Rick Pate (a PG&E representative).

	kW	kWh	Therm
Application	0	484,156	0
MDSS	0	484,156	0
Evaluation Estimates	0	484,156	0
Engineering Realization Rate	NA	1.0	NA
Customer Billing Summary			

Equipment Description	Number of Units	Notes	
M&M 100 hp compressor	1	Matches application.	
1&M 200 hp compressor	í i	Matches application.	
vaporative Condenser w/ 5 hp water pump & 25 hp fan	1	Matches application. 2 speed fan motor.	
Track Evaporators w/ 5 fans each @ 1/3 hp	12	Matches application.	
lench 2T8 and Omni EMS controls	1	Based on application records.	
pata were provided regarding the significant differences in	n evaporator defrost	ing pre-to-post retrofit.	
	n		
Data were provided regarding the significant differences in With the current system, defrost occurs jus The duration of each defrost is just 15 min	t once per day on a	verage, based on fan runtime monitoring.	
With the current system, defrost occurs jus The duration of each defrost is just 15 min	t once per day on a utes, using hot gas.	verage, based on fan runtime monitoring.	ciever for holding using hot gas
With the current system, defrost occurs jus The duration of each defrost is just 15 min No pumping is required. The evaporators a With the old evaporators (located at groun	t once per day on a utes, using hot gas. are located up high o d level), defrost requ	verage, based on fan runtime monitoring.	ior to hot gas defrosting.

Site ID#:	3970
Check #	62984
Measure	Floating Head Pressure Controls and Liquid Pressure Amplifier
Measure Description:	The retrofit site is a small 25,000 sq ft grocery. The retrofit performed is designed to lower the condensing temperature (and therefore discharge pressure), thereby improving the efficiency of compressors at this site. The retrofit measure includes the installation of two liquid pressure amplifiers (LPAs) to maintain adequate liquid pressure leading to the refrigerated cases and other end uses.
	Two 1/2 hp LPAs were installed next to each of two compressor racks, in-line with the condensate return feeding the store cases (located upstairs in the back of the store). Both compressor racks are R-502 Hussman systems. The LPA devices add pressure to the subcooled refrigerant, thereby eliminating the formation of flash gas.
	This retrofit is stored in the MDSS as action code 486, Booster Desuperheater.
Summary of Calculations in the Original Application:	A temperature bin model (of pre- and post-retrofit compressor energy use and compressor loading) was used to model this refrigeration system. Impact estimates assume that subcooling will account for a maximum 35 °F drop in condensing temperature, and that there is a 1% savings in energy for every degree of condenser temperature reduction. Calculations are based upon an assumed 5,883 hours of compressor operation per year.
Comments on Calculations:	The bin model provided indicates that there is a dramatic decrease in refrigeration case loads with a reduction in outdoor ambient conditions. The model also suggests, however, that the pre-retrofit condenser temperature is relatively constant, and only varies during the highest outdoor temperatures. If this is the case, then store case loads and compressor loads should not be affected by ambient conditions the store indoor temperature is constant (the primary case load) and a static condensing temperatures indicate a constant discharge pressure.
	Also, the condenser fan hp modeled is smaller in magnitude than actual equipment found at the site.
	In addition, although the application clearly states that 5,883 full load hours are assumed for both the low and medium temperature applications, the medium temperature bin analysis assumes a significantly lower load.
	Lastly, the medium temperature compressors are modeled as an R-22 system. An on-site inspection has shown that both compressor racks are charged with R-502.
Evaluation Process	The bin models were rerun with updated assumption regarding case loads as a function of outdoor temperature and full load hours of runtime. In addition, condenser fan loads were increased to

compensate for the increased hp observed.

Additional Notes: An on-site inspection of this facility was conducted on September 24, 1996 with Fred Zanotto.

During the on-site inspection equipment records were recorded and various temperature measurements performed to verify floating head pressure controls. During the visit outdoor ambient conditions were 74 °F, and condensing temperatures were 74-87 °F (depending on the location and time of each measurement), which is consistent with application assumptions surrounding postretrofit condensing temperatures.

	kW	kWh	Therm
Application	0	107,048	0
MDSS	0	107,048	0
Evaluation Estimates	0	147,887	0
Engineering Realization Rate	NA	1.38	NA
Customer Billing Summary	· · · · · · · · · · · · · · · · · · ·		

Input - HVAC Eqpt & Assumptions

Data used in these	calcualtions are pre	ovided below based	largely upon infor	mation gathered	during the on-site	or alternatively fi	rom the application	n.
	Equipment inver	tory ⊺						
Manufacturer	Model	Number of Units Installed	Notes		· · · · · · · ·			· · ·= ·
Hussman	PR4204RLKU	1	Low temperature	(LT) R-502 con	npressor rack; 2 re	ciprocating comp	ressors.	
Hussman	PR4005RSKU	1			compressor rack;			
Hussman	HACD-92-K	1	Air-cooled conde		· · · · · · · · · · · · · · · · · · ·		•••••	
Hussman	HACD-69-K	1	Air-cooled conde	nser, 6 fans @ C	.75 hp each.			
	First, various eq	uipment were record	led			· · · · · · · · · · · · · · · · · · ·	. <u> </u>	
Equipment	Amperage	Phase	Voltage	Efficiency	Power Factor	Maximum kW		
MT Compressor	87	3	220.0	0.87	0.85	32.39		
MT Compressor	87	3	220.0	0.87	0.85	32.39	_	
LT Compressor	64	3	220.0	0.87	0.85	23.83		
LT Compressor	64	3	220.0	0.87	0.85	23.83		
Blue font designates	s an input.		Ť.					
Red font designates	· · · · · · · · · · · · · · · · · · ·				,			¥
Green designates a		¥ :			• • • • • • • • • • • • • • • • • • • •			•

					i				k.			1		1	
	Weather data	from the appl	ication for Mol	fett Field wer	e used.	: : :					ł				
Dutdoor Dry Bulb emperature (°F)	Annual Observations per Bin (hours)	Annual Operating Hours (hours)	Pre-Retrofit Condensing Temperature (°F)	Full Load (tons)	Rated Efficiency (kW/ton)	Baseline Compressor Energy Use (kWh)	Condensing Temperature w/ Subcooling (°F)	Reduction in Condensing Temperature (°F)	Savings per Degree Condensing Reduction	Subcooling Savings (kWh)	Additional Condenser Fan Use to Reject Heat (kW)	LPA Use (kW)	Added Load (kWh)		
90	6	4	103	<u>1</u> 1.5	3.34	155	103	ō	1%	0		0.51	2		
85	24	16	97	11.5	3.34	620	97	0	1%	0		0.51	8		:
80	84	56	95	11.5	3.34	2,168	92	3	<u>1%</u>	65		0.51	29		
75	207	139	95	11.5	3.34	5,343	86	9	1%	481	0.6	0.51	159		1
70	535	360	95	11.5	3.34	13,810	80	15	1%	2071	0.6	0.51	410		i
65	1,076	723	95	11.5	3.34	27,775	75	20	1%	5555	0.6	0.51	824		Ι
60	1,754	1,179	95	11.5	3.34	45,276	69	26	1%	11772	0.6	0.51	1343		
55	1,975	1,327	95	11.5	3.34	50,980	63	32	1%	16314	0.6	0.51	1512	L	
50	1,545	1,038	95	11.5	3.34	39,881	60	35	1%	13958	0.6	0.51	1183		
45	934	628	95	11.5	3.34	24,109	60	35	1%	8438	0.6	0.51	715	L	
40	451	303	95	11.5	3.34	11,642	60	35	1%	4075	0.6	0.51	345		1
35	138	93	95	11.5	3. <u>34</u>	3,562	60	35	1%	1247	0.6	0.51	106		1
30	24	16	95	11.5	3.34	620	60	35	1%	217		0.51	8	L	
25	1	1	95	11.5	3.34	26	60	35	1%	9		0.51	0		
	8,754	5,883				225,966	kWh			64,202	kWh		6,645	kWh	1
		k	l i			Application e	stimate is 225	896 kWh.		Application es	stimate is 62,0	081 kWh.	Application es	timate is 4,08	89 kWh.
			-		į.		-	1						,	
]			l.				İ			

							1 h	,				1			
ļ	Weather data	from the appl	ication for Mot	fett Field were	used.	÷		*		:			· · · ·	· · · · · ·	
						i.					ł	t		i	
							Condensing				Additional			i	
outdoor Dry	Annual	A	Pre-Retrofit		Rated	Baseline	Temperature	Reduction in Condensing	Savings per	0.5	Condenser			í.	
Bulb mperature	Observations per Bin	Annual Operating	Condensing Temperature	Full Load	Efficiency	Compressor Energy Use	w/ Subcooling	Temperature	Degree Condensing	Subcooling Savings	Fan Use to Reject Heat		Added Load	1	
(°F)		Hours (hours)		(tons)	(kW/ton)	(kWh)	(°F)	(°F)	Reduction	(kWh)	(kW)	LPA Use (kW)		l	
90	6	4	105	26.0	1.27	133	103	2	1.25%	3	; <u>\K</u> YY	0.51	2	í	
	24	1.6	105	26.0	1.27	533	97	8	1.25%	53	1	0.51	8		
85 80	84	56	105	26.0	1.27	1,864	90	15	1.25%	350		0.51	29		
75	207	139	105	26.0	1.27	4,593	84	21	1.25%	1206	0.8	0.51	188	1	
70	535	360	105	26.0	1.27	11,872	78	27	1.25%	4007	0.8	0.51	485	i i	
65	1,076	723	105	26.0	1.27	23,877	72	33	1.25%	9849	0.8	0.51	976	i	
60	1,754	1,179	105	26.0	1.27	38,922	65	40	1.25%	19461	0.8	0.51	1590		
55	1,975	1,327	105	26.0	1.27	43,826	60	45	1.25%	24652	0.8	0.51	1791	l	
50	1,545	1,038	105	26.0	1.27	34,285	60	45	1.25%	19285	0.8	0.51	1401		
45	934	628	105	26.0	1.27	20,726	60	45	1.25%	11658	0.8	0.51	847	L	
40	451	303	105	26.0	1.27	10,008	60	45	1.25%	5629	0.8	0.51	409	f	
35 30	138	93	105	26.0	1.27	3,062	60	4 <u>5</u> 45	1.25%	1723	0.8	0.51	125	L	
30	24	16	105	26.0	1.27	533	60	45	1.25%	300		0.51	8	1 • · · · · · · · · · · · · · · · · · · ·	
25	1	1	105	26.0	1.27	22	60	45	1.25%	12	i	0.51	0	+	
	8,754	5,883	r i i i i i i i i i i i i i i i i i i i			(· · · · · · · · · · · · · · · · · · ·	kWh			98,189	kWh		7,859	kWh	
,		I	-			Application es	timate is 109	583 kWh.		Application es	stimate is 52,5	10 kWh.	Application e	timate is 2,	734 kWh.
								i i			+	.		⊢	
	onates an inpu									Gross Impact	90,330	kWh		÷	

Site ID#:	4519
Check #	63748
Measure	Energy Management System and Controls Optimization
Measure Description:	An Energy Management System (EMS) was installed at a large commercial refrigeration company; action code 453. The EMS controls refrigeration equipment that serve three warehouse buildings. Three engine rooms drive this R-717 ammonia system, though only two of these rooms are serviced by the new EMS system. This warehouse processes, cools and freezes vegetables and fish. The application states that the control system saves energy using the following strategies: floating head pressure, floating suction pressure, evaporator coil defrost optimization, and evaporator fan control.
Summary of Calculations in the Original Application:	Bin models were developed to estimate equipment energy use at this site including condensers, compressors, evaporators and other cooling equipment. Assumptions and model results are well documented.
Comments on Calculations:	The majority of the savings at this site are associated with improved compressor performance. Reduced condensing temperatures and reduced discharge temperatures are the parameters used in the calculations to dictate these savings. Reduced condensing temperatures effectively reduce the compressor energy requirements, while increasing the condenser energy use. Savings result because the head pressure (against which the compressor is working) is reduced. Reduced discharge temperatures also provide a reduction in the discharge pressure and a corresponding compressor savings.
	Calculations for warehouse impacts are based upon a pre-retrofit minimum condensing temperature of 85 °F, and a post-retrofit minimum condensing temperature of 70 °F.
	Calculations for blast freezer impacts are based upon a pre-retrofit minimum discharge temperature of 85 °F and a pre-retrofit minimum discharge temperature of 70 °F.
	Condenser energy use is modeled as a function of heat rejected.
	Impacts are not provided for either evaporator fan run-time reduction nor evaporator defrost optimization.
Evaluation Process	•: On-site records indicate that the suction pressure and discharge pressure settings have not changed since the EMS system was installed. This also means that condensing temperatures also have not changed (and that floating head pressure control was used prior to the EMS retrofit). Although this suggests that the compressor savings should not have been claimed, compressor savings were achieved at this site however, these savings were achieved by increasing the suction pressure on the warehouse loads. Compressor savings are actually achieved by reducing the pressure differential across the compressor, regardless of whether the cause of this reduction is associated with reduced discharge pressure or

increased suction pressure.

	Since the EMS was installed, ice production at this facility has increased dramatically. The refrigerant conditions used during ice production require both a high discharge pressure and a relatively low suction pressure. The high discharge pressure (and temperature) is needed to ensure that hot gas will "release" ice from the ice-machines. However, these conditions are <u>not</u> desirable for the warehouse loads. The EMS system has contributed to a design to tailor the warehouse suction setpoints for that particular load. During periods of ice production (all hours except the summer on- peak time-of-use period) there are substantial savings associated with this elevated suction pressure.
	Additionally, because condensing temperatures have not changed since the EMS system was installed, the condenser penalties modeled in the application estimates of savings are not applicable.
	The evaluation does not attempt to reproduce the bin models provided in the application, but instead uses alternate methods to validate those estimates.
Additional Notes:	An on-site inspection of this facility was conducted on October 5, 1996 with David Gros and Rick Pate, a PG&E representative.

	kW	kWh	Therm
Application	61	527,473	0
MDSS	61	527,473	0
Evaluation Estimates	61	527,473	0
Engineering Realization Rate	1.0	1.0	NA
Customer Billing Summary			

The contact p	rovided the sch	dule during which	ch ice is produced	at this facility		-		· · · · · · · · · · · · · · · · · · ·			!	n de la comune
me contact p	iovided the Sch				1	:			•		1	
	† · ·			Post-Retrofit						4	1	
		Post-Retrofit	Post-Retrofit	Hours of Ice								
		Begin Ice	End Ice	Production	1							
Daytype	Season	Production	Production	per Day								
Weekday	Summer*	6:00 PM	12:00 noon	16								
Neekday	Non-Summer	12:00 midnight	12:00 midnight	24	1	1			1			-
Saturday	All		12:00 midnight	24		•	ļ		•			
Sunday	All		12:00 midnight	24	1	1						1
	ــــــــــــــــــــــــــــــــــــ		·								- +-	
										2:00 noon to 6:00	РМ.	
			shifted from the									
Most of the tir	ne, ice productio	on needs can be	met during these	non-peak peri	ods. Ice is r	normally produ	ced using the r	naximum capacit	y of each sy	stern.		
					4							
This site "shut	s down" Decem	ber through Marc	ch every year. Du	uring this period	d, usage surr	ounding ice m	aking, vaccum	tubes, and press	ure cooling is	s suspended.	L	
						ļ						
"shut down" _	1(31 days in D	ecember) + (31 (days in January) -	+ (28 days in I	February) + ((31 days in Ma	arch)] x (24 hou	urs/day)				
	2,904	hours/year	ujo <u>ou</u> uu.j,	. (• • • • • • • • • • • • • • • • • • • •	
	2,004	ilouro, your	E I		•	· · · ·						+
Ouring the shi	it down period a	nd durna the sur	mmer on-peak pe	riod, suction te	mperatures of	an be raised (due to the susc	ension of ice ma	king and oth	er high pressure r	frigerant end us	es.
Jung no on			Ţ		42. .	1	1					+
	Site contact re	cords provided t	the following:				1		+			
				-	1	- ···	+				* · · · · · · · ·	
												1
			Post-Retrofit	Post-Retrofit								
			Suction	Discharge	1							
Sv	stem			Pressure (psi)	Notes							
Cold rooms		L	20	140		ieve 120 psi d	ischarge when	ever possible	-			
	vaccum tubes	pressure cooling		150	1				Ī			
	T		•			·						
	The ice produ	ction (etc) conditi	ions also apply to	pre-retrofit co	d room ope	ration during t	he periods whe	en those systems	are operati	ng.		
	In the post-ret	rofit condition, se	eparate suction (a	ind compresso	rs) are dedic	ated to the co	ld rooms durin	g all periods.				1
			T	· · · · · · · · · ·							1	
		•										
Blue font desi	gnates an input					-			1			
	nates a calcula				:	-		1			т : 	
		· · · · · · ·	,							,		

) Assumptions:		
ollowing the retrofit, the site contact estimates that 1200 hp of compressors are dedicated to the cold rooms (when		
then ice making equipment (or other high pressure discharge loads) were provided in the pre-retrofit case, this same l		
This added load is due to the difference in compressor efficiency caused by the higher discharge pre	ssure and the lower suction pressure.	
) Impact Calculations:		· · · · · · · · · · · · · · · · · · ·
he difference in hp required to meet load is applicable only during the hours that ice is produced in the post retrofit c	ondition.	
uring all other hours (the summer on-peak TOU period and the winter "shutdown" period), the discharge and suction	pressures are set for optimal cold room refrigeran	t conditions anyway.
stimating the connected load on the cold room compressor system in the pre-retrofit condition	• • • • • •	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
ompressor kW = (1575 hp) x (0.746 kW/hp) x (1/0.90 motor efficiency)		
= 1,306 kW maximum		
stimating the connected load on the cold room compressor system in the post-retrofit condition		
ompressor kW = (1200 hp) x (0.746 kW/hp) x (1/0.90 motor efficiency)		
= 995 kW maximum		
sing the application post-retrofit compressor energy usage for this measure in conjunction with the maximum compres	sor kW estimate, equivalent full-load hours can t	be back-calculated
The application compressor energy use in the post-retrofit condition is 1,549,182 kWh/year at one	facility.	
The application compressor energy use in the post-retrofit condition is 514 797 kWh/year at anothe	r facility.	
The application compressor energy use in the post-retrofit condition is 514,236 kWh/year for blast	freezing.	
The application compressor connected load is 1,759 kW.		
The application compression connected read in the tot	+ ··	
o estimate equivalent full load hours (EFLH)		
EFLH = ((1,549,182 kWh/year) + (514,797 kWh/year) + (514,236 kWh/year)) / 1 759 kW maximum	· · · · · · · · · · · ·	
= 1,466 Hours of full load operation/year in the post-retrofit condition		
	in the second second second second second second second second second second second second second second second	
o adjust for the "shut down" period, it is assumed that only 33% of normal compressor loads are observed during this	neriod	+ -
o adjust for the shut down period, it is assumed that only 33% of normal compression loads are observed during this	peniou	· · · · · · ·
	- · · · · · · · ·	
EFLH = [(EFLH x 4 months x 3) +(EFLH x 8 months)]/12 = 2,443 Adjusted compressor full load operation/year in the post-retrofit condition	· · ·	
= 2,443 Adjusted compressor full load operation/year in the post-reprotit condition		
This is a conservative estimate of compressor full load hours of operation.		
		· · · · ·
ext, the hours per year with ice making (or other compressor intensive activity) is estimated		
Hours ice making is restricted to all partial peak and off-peak periods during the summer season		
Hours = $(((31+30+31+31+30) \text{ days}) \times [(5/7 \times 18) + (2/7 \times 24)]$ hours/day) + $[(30+31+30)^{\circ}24]$		
= 5,200 Hours per year with high pressure discharge		
o calculate the impacts associated with a reduced compressor load		
Energy Impact = (5,200 hours / 8,760 hours) x 2,433 full load hours x (1,306 kW - 995 kW)		
= 450,768 kWh compressor savings per year.		
The application energy impact is 527,473 kWh/year in total		
These are the benefits resulting from just one implemented facility operational change, that has evo	ved as a result of the EMS retrofit.	
Other savings at the site, though not quantified here, will certainly contribute (for example, evapora	tor for controls , both sucling and defrect control	ale)

							;						
ecause there is no ice ma	aking at the tim	e of system pe	ak, there are no	peak savings	associated with	this particular	measure.						
	t		1			1	i						
	·		:				ł		!				
) Conclusions:			e e e e e e e e e e e e e e e e e e e								· •		
											-		
e purpose of the evaluat													
l impact loads were not r							ciuded from the	e evaluation estimat	es and conde	enser loads ar	e assumed to r	not change).	
he calculations performed							and the later of		!				
n-peak demand impacts,	though not real	ized for the me	easure explored t	nere, could not	t be rejected bas	ed upon this	analysis alone.				i		

Site ID#:	4521
Check #	57720
Measure	Ice Water Recovery System for Produce Injector System
Measure Description:	The retrofit site is a large agricultural cold storage facility, where produce are injected with ice and stored for a short period prior to being shipped to market. The retrofit performed at this site consists of an ice water recovery system for the produce injector system; action code 489:
	An ice-water slurry is applied, via an ice injector, to broccoli at the this cold storage facility. The pre-retrofit system looses all spilled ice and water which is simply drained away. An ice and water recovery system was installed to recycle this spilled slurry, thereby reducing make-up water requirements and ice production.
Summary of Calculations in the Original Application :	Estimates are provided for the quantity of water and ice lost per pallet as a forklift removes each pallet from the ice injector system 90 gallons of water and 30 lb of ice. The liquid recovered is then converted to equivalent ice recovered, 202 lb per pallet, and the annual volume of ice recovered 4,000 tons. Estimates are then provided for the annual refrigeration requirements at that plant to produce 4,000 tons of ice, and thus the savings 165,042 kWh/year. No demand savings are claimed.
Comments on Calculations:	The majority of the ice production savings for this retrofit is due to the reduction in make-up water that is added to the system. The injector actually delivers an ice-water slurry. Make-up water must be added, to maintain the necessary ratio of ice and water, and thus ensure appropriate delivery of ice to each pallet of product. By recovering 32 °F water, and thus reducing the requirements for 65 °F make-up water, less ice is melted to attain the desired slurry.
	The site contact indicated that ice production does not occur during the summer on peak period, thereby verifying the decision (made on the application) to exclude peak period impacts.
	The refrigeration system (compressors and condensers) serving this facility are maintained and operated by an adjacent (neighbor) company. Therefore, the PG&E account shown on the application is not the account where savings associated with the retrofit are realized. This affected the downstream billing analysis.

Evaluation Process:	Calculations are revised using data collected from the site contact regarding the quantity of ice delivered to each pallet, the reduction in make-up water, and verified assumptions from the application.
Additional Notes:	An on-site inspection of this facility was conducted on September 24, 1996 with Eloy. A follow-up interview was also conducted with Randy Ford for additional details.

Impact Re	esults for	Site I	D# 4521
-----------	------------	--------	---------

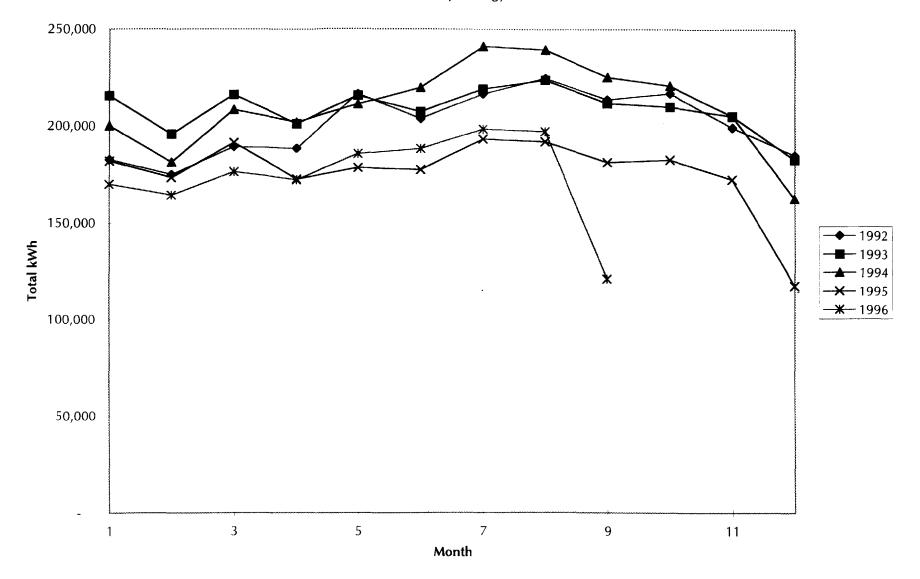
	kW	kWh	Therm
Application	0	165,042	0
MDSS	0	165,042	0
Evaluation Estimates	0	165,042	0
Engineering Realization Rate	NA	1.0	NA
Customer Billing Summary			

The contact r	rovided the schedul	e during which ice is	produced at this fac	li+					1
nie contact p	Noticed the scheduli	G Guing Writer ice is	produced at this lac		÷				
	<u>+</u>		•	Hours of Ice				- · ·	
		Begin Ice		Production	ĺ				
Daytype	Season	Production	End Ice Production						
Weekday	Summer*	6:00 PM	12:00 noon	16	· · · · · · · · · · · · · · · · · · ·				
Weekday	Non-Summer	12:00 midnight	12:00 midnight	24	+			· · · · · · · · · · · · · · · · · · ·	
Saturday	All	12:00 midnight	12:00 midnight	24	- · · · · ·			i	
Sunday	All	12:00 midnight	12:00 midnight	24	i.			±	
Sunday		12.00 midnight	12.00 midnight	24	- 		+	•	+ ·
• The PG&E	summer season is d	lefined as the period	May 1 to October 31	the summer on-peak costing	period during thi	s time includes	the hours 12:0	0 noon to 6:00	РМ.
	ng machine normally			ļ — — — — – į	i - · · · · ·				
	0 tons of ice storage				- · · ·				+
		- · · · · · · · ·	•		• · · · • • • • • • • • • • • • • • • •				+
Additional dat	ta contributing to the	calculations include	es the followina:		+		· + · · · · · · · · · · · · · · · ·		+
			· · · · · · · · · · · · · · · · · · ·	+ · + ·	•		+	÷	+
			1		- · · · · ·				
Parameter		Value Reported	Units of Parameter	Notes	-				
Cartons of Br	occoli Iced	2,000,000	cartons/year	Site contact unable to update	this application	record.	+		+
Cartons per P	198 Augusta Bassana and a sama a s	48	cartons/pallet	Provided by site contact.				•	
Pounds of Ice		1.000	lbs ice/pallet	Although a larger quantity is d	elivered the rer	nainder is snille	ed as water and	lice	
Particular and a 1977 Particular and a second second	make-up water	0.67	dimensionless	There has been a 2/3 reduction					+
Pre-Retrofit S		30	lbs ice/pallet	Based on application records.		Tator denvered		····	• • • • • • • • • • • • • • • • • • • •
Pre-Retrofit S	A second se	90	gallons/pallet	Based on application records.					
Ton Ice Conve		1.5	· · · · · · · · · · · · · · · · · · ·	Based on application records.					+
		32		based on application records.				i -	
	Temperature	65	۹ ۲		t			1	
	er Temperature	e Ref			÷			•	
	ater Conversion	8.34	lbs water/gallon	· · ·	÷			t	
Ice Heat of Fu		144	Btu/lb ice	· · · · · · · · ·			+	1	
kW Conversio	an daa saa sa	0.746	kW/hp			⊢ · · ·			
	ction Pressure	20.0	psi	Based on site contact records	+			÷	
	charge Pressure	155.0	psi	Based on site contact records	<u></u>				
	n and 85 Condensin	and the second second second second second second second second second second second second second second second	tons refrigeration	Based on application records					
	n and 85 Condensin		BHP	Based on application records		TT 15 at a set al			
	n and 95 Condensin		tons refrigeration	Based on application records					
	n and 95 Condensin		BHP	Based on application records	for remote amm	onia ice maker	rs.		
20 psi Suction	n and 87 Condensin	293.0	BHP	Based on 20 °F suction (per s	site contact) and	1 87 °F suction	(per applicatio	n).	
	n and 87 Condensin		tons refrigeration	Based on 20 °F suction (per :	site contact) and	1 87 °F suction	(per applicatio	n).	
Tons Refriger	ation Conversion	1.3	BHP/ton	Based on 20 °F suction. Appli	cation records a	are based on a	suction temper	ature of 15 °F,	yielding 1.42.
	Motor Efficiency	92%	% efficient	Based on application records.				1	
	· 								
Blue font des	ignates an input.					1			
	gnates a calculation.		1						1
	ates a result.		:					•	1

	· · · · · · · · · · · · · · · · · · ·						
1) Assumptions:							
There are 2,000,000 cartons of broccoli iced per year @ 48 cartons per pallet, or 41,667		· · · · · ·					
Pallets that arrive directly from the field are normally iced with about 1,000 lbs of ice per	pallet.						
Based on application records for the pre-retrofit condition, a slurry containing 90 gallons of	water and 30 lbs of ice was	normally spilled durin	ng the injection	of each pallet.		L	
According to those records, 100% of this spilled slurry was lost to the drain.	1						
	i						
With the ice recovery system in place, it is assumed that all of this spilled water and ice is							
The recovery of the the water reduces the quantity of make-up water that must be added	to the system, which in-turn	reduces the quantify	of ice melted	to achieve the	desired slurry	consistency.	
This in-turn reduces the quantify of ice melted to achieve the desired slurry consistency.	1 · · ·						
This in-turn reduces the quantify of ice melted to achieve the desired slu	irry consistency.					- .	
	÷ .						
· · · · · · · · · · · · · · · · ·							
2) Impact Calculations:							
For every ton of ice injected, additional ice must be made that is melted when make-up wa							
Application records indicate that 90 gallons of 32 °F water are spilled during product inject	tion						
		+				L	
To estimate the equivalent ice production associated with this spilled water (that must be	replaced with 65 °F make-up	water)				l	
						ļ · · · -	
Lbs equiv. ice = (90 gallons/pallet) x (2,000,000 cartons/year) x (1 pallet/48 cartons) x (8.34 lbs water/gallon) x (65-	32 °F water differen	tial) x (1 Btu/L	bm °F water)	/ 144 Btu/lb ic	e heat of fusio	n
= 7,167,188 Lbs Equiv ice/year	· · · ·						
	· · · ·						
Converting to tons	•						
						+	
Tons Ice = $(7, 167, 188 \text{ Ibs equiv ice/year}) \times (1 \text{ ton/2}, 000 \text{ Ibs ice})$	· · ·					•	
= 3,584 Tons equiv ice/year						<u>+</u>	
	1			· · · · •			
Additionally, spilled ice is recovered				-		•••••	
Lbs ice = (30 lbs ice/pallet) x (2,000,000 cartons/year) x (1 pallet/48 cartons)	T			· · · · ·			
$= 1,250,000 \text{ Lbs Equivice/year} \times (1 \text{ parter 46 cartons/})$	1					÷	
				-		Er in er	∔
Converting to tons	T					•	
	÷ •					•	
Tons Ice = (1,250,000 lbs ice/year) x (1 ton/2,000 lbs ice)						÷	
= 625 Ton ice/year		•				4	• • • • • • • • • •
						•	- ·
Summing all saved ice				·	· –		• • • • • • • • •
			t			ţ	··· ·
Tons Ice = (3,584 tons ice/year) + (625 tons ice/year)							
= 4,209 Tons ice/year			· · · •		• • • • • • • • • • • • • • • • • • • •	-	+
The application assumes 4,000 tons ice/year]		1				1
						±	
Finally, the energy consumption is estimated for making deferred ice (due to the retrofit).							⊨ · · · · · ·
Hard copy application records indicate that ice production requires 1.42 BHP/ton ice, while	evaluation results are based	on 1.3 BHP/ton ice	at 20 osi suctio	on.			⊷ · · · · · · · · · · ·
							1 -
Energy Impact = (4,209 tons ice/year) x (1.3 BHP/ton refrigeration) x (1.5 tons refrigeration)	ation/ton ice/24 hrs) x (24 hr	s/day) x (0.746 kW/	(hp) / (0.92 m	otor efficiency		•••• · · ·	
= 159,555 kWh/year		+** - <u>·</u>	· · · · · · ·		-	1	
The application estimate is 165,042 kWh/year.				· - ·			** • • •
						+	1
	• •	1				+	h

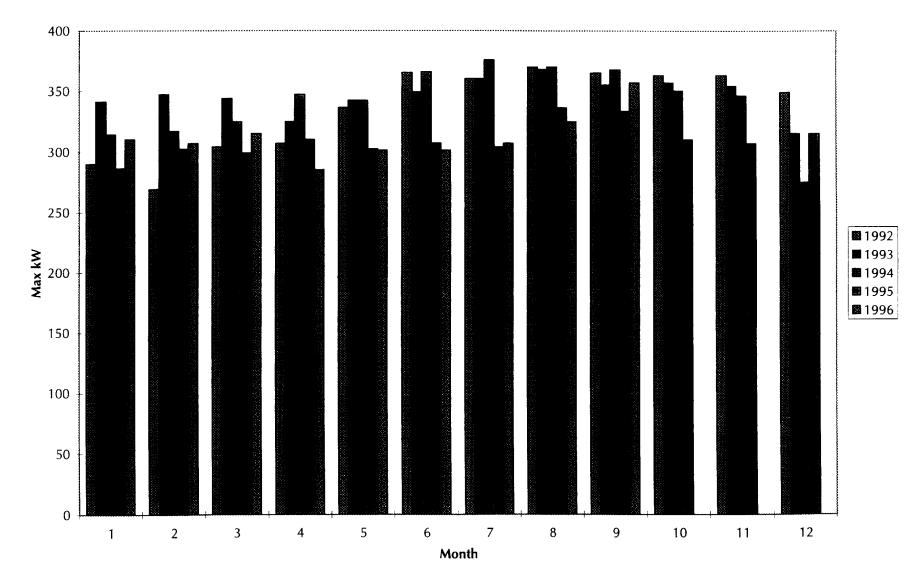
3) Conclusions:		· · _ · · _ · · · _ · · · · · · · ·				
The purpose of the evaluation All impact loads were not ne	on implemented for this n cessarily included in the	neasure is to verify above calculations (the accuracy of application i for example, ice shaving, loa	mpacts, and to replace thos ding and delivery loads, and	se estimates only in the event that d condenser loads were excluded fr	a gross error is detected.
The application impacts ther The calculations performed	efore are a conservative	estimate of savings	s		· · · · · · · · · · · · · · · · · · ·	····

Site ID#:	5499
Check #	60407
Measure	EMS for store lighting, case lighting, anti-sweats and condensers; VSD retrofit for the condenser fans
Measure Description:	"Installation of EMS/Refrigeration/lighting control" and variable speed drive for the condenser; action code 453, refrigeration EMS.
Summary of Calculations in the Original	Savings are estimated in this application for improved compressor efficiency resulting from a reduced minimum condensing temperature setpoint (from 85 °F to 70 °F).
Application:	Additionally, the EMS controls store overhead lights, and refrigerated case lights and anti-sweat heaters.
	Lastly, condensing fans have been retrofit with variable frequency drive (VSD) fan speed controls.
Comments on Calculations:	This application is well documented and clearly explains the proposed retrofit at this grocery store and all assumptions regarding the associated savings.
Evaluation Process	 An on-site audit of this facility has shown that all equipment specified in the application were installed and that the systems specified are currently controlled by the EMS.
	Condensing temperatures measured at the time of this audit indicate that a floating head control strategy is used for the condenser. Condensing temperature leaving the condenser (before liquid subcooling) ranged from 72 °F to 76 °F, while ambient dry bulb conditions were 62 °F. These measurements are consistent with application minimum condensing setpoint assumptions.
	The final impact verification consisted of a billing comparison. Billing records clearly show an impact following this retrofit that is at least as large as claimed savings. Impacts in the application were adopted as the evaluation estimate of savings.
Additional Notes:	An on-site inspection of this facility was conducted with Eric Hansen on October 18, 1996. The inspection included a thorough explanation of the characteristics and operation of the equipment before and after the installation of EMS controls. Additionally, an equipment inventory was conducted, and R-404A refrigerant conditions were measured during this inspection (discharge, suction and condensate temperatures).


,

	kW	kWh	Therm
Application	10.2	213,981	0
MDSS	10.2	213,981	0
Evaluation Estimates	10.2	213,981	0
Engineering Realization Rate	1.00	1.00	NA
Customer Billing Summary	11	388,502	

				······		· · · · · · · · · · · · · · · · · · ·							
Monthly Energy								!					
Site_ID Year	1 2	3	4 5	6	7	8	9	10	11	12	Calander	Oct-Sept	
5499 1992	182,724 174,890	189,280 188,4	12 216,497	203,768	216,408	224,772	213,591	216,822	199,274	185,173	2,411,611		
5499 1993	215,418 195,770	216,075 201,0	215,574	207,151	219,002	223,717	211,588	209,886	204,980	182,816	2,503,018	2,506,604	
5499 1994	200,061 181,440	208,341 201,9	43 211,216	219,819 [±]	241,081	239,433	225,246	220,779	204,952	162,870	2,517,181	2,526,262	101%
5499 1995	181,859 173,526	191,416 172,5	56 178,364	177,396	193,253	191,949	181,329	182,704	172,677	117,488	2,114,516	2,230,249	89%
5499 1996	170,055 164,309	176,378 172,	48 185,696	188,280	198,363	197,251	121,067				1,573,745	2,046,614	82%
Monthly Max Demand		•	1 '		1								
Site_ID Year	1 2	2 3	4 5	6	7	8	9	10	11	12	Maximum		
5499 1992	290 269	304	307 336	365	360	370	365	363	363	349		• · · · · · · · · · · · · · · · · · · ·	•
5499 1993	341 347	7 344	325 342	349	360	368	355	357	354	315		+··	
5499 1994	314 317	7 325	347 342	366	376	370	368	350	346	275			
5499 1995	286 302	2 299	310 302	307	304	336	333	310	307	315	336		
5499 1996	310 307	7 315	285 301	301	307	325	357				357	1	
*													
	f f												
					ſ								
Energy Comparison of C	alendar 1995 and Caler	ndar 1993:				Ī		1			•		
1993-1995=	388,502 kWh savin			Ì									
	Energy Comparable to,	and in fact exceeds t	ne claimed saving	gs of 213,981	kWh/year	į							
		-											
- 4	(2,503,018 kWh - 2,11		18 k Wh		ł	ļ							
		the 1993 bill.				l							
-	A calendar year 1993 v				t inspection	was not co	nducted unti	il December	of 1994.				
	Note that a 1992 or 19	94 base year yields a	similar savings e	stimate.								1	
											t		
		· · · · · · ·				į						1	1
Demand Comparison of	Calendar 1996 and Ca	lendar 1993:		1		1			-			L	
				â	:	ļ	1						• • •
Max 1993-1996=	11 kW				1	ļ					-		
	Demand comparable to	o the claimed savings	of 10.1 kW				ļ						
↓ ↓		-	į .	;		ļ	7				ļ	J	
	(368 kW - 357 kW) / 3		i i		1								
		the 1993 bill.		5. E		i	1						
	A calendar year 1993 v					ļ							
	Note that a comparisor	n with the 1995 peak	would have sugg	ested a larger	impact.	<u> </u>					• · · · · • • • • • • • • • • • • • • •		


Energy Chart

Demand Chart

Appendix C Billing Regression Analysis

.

C. BILLING REGRESSION ANALYSIS

This appendix documents the detailed analytical steps undertaken in the billing regression analysis of Pacific Gas and Electric Company's (PG&E's) 1995 Nonresidential Retrofit Program for the Commercial Sector (the Commercial Program). Both net and gross billing analysis models were implemented, however, the net model was unable to provide statistically valid results due to problems of multi-colinearity. This appendix begins with a discussion of the analysis periods and data sources used in the billing regression analysis. Then, the results of the data censoring that was applied to the billing analysis sample are provided. Next, the gross billing analysis regression model specification and SAE coefficients are presented, along with the relative precision calculations. Finally, the net billing analysis regression model specification and results are presented.

C.1 OVERVIEW

The key objective of the billing analysis is to determine the first-year program energy impacts. A statistical analysis is employed to model the differences of customers' energy usage between preand post-installation periods. The model is specified using actual customer billing data and independent variables that explain changes in customers' energy usage, including engineering estimates of program participation. This statistically adjusted engineering (SAE) analysis is consistent with the requirements of the Load Impact Regression Model (LIRM) defined in the California Public Utilities Commission's (CPUC's) Measurement and Evaluation Protocols (the Protocols).

The results of the billing regression analysis are estimated as ratios, termed "SAE coefficients," of realized impacts to engineering impact estimates. Realized impacts represent the fractions of the engineering estimates actually "observed" or "detected" in the statistical analysis of actual billing data. The SAE coefficients estimated in the billing analysis regression models are relative to the results of the evaluation-based engineering estimates, not the PG&E Program ex ante estimates. The SAE coefficients, the estimation of which is the topic of this appendix, are then used to estimate program impacts and realization rates relative to the ex ante estimates.

As discussed below, the billing regression analysis was conducted on a sample of telephone surveyed participants and nonparticipants. Because many Commercial Program participants installed measures under multiple end uses, one integrated billing analysis approach was used to model the Lighting, HVAC and Refrigeration end uses.

C.2 DATA SOURCES FOR BILLING REGRESSION ANALYSIS

The billing regression analysis for the 1995 Commercial Program Evaluation uses data from five primary data sources: the PG&E Management Decision Support System (MDSS) tracking database, the billing database, the telephone survey data, the engineering estimates of changes of usage between the pre- and post-installation periods, and the weather data tapes from PG&E's load research weather sites. A summary of the data elements used in the regression analysis are presented below.

C.2.1 Program Participant Tracking System

The participant tracking system for the Retrofit Express (RE), Retrofit Efficiency Options (REO) and Customized Incentives Programs was maintained as part of the MDSS. It contains program applications, rebate and technical information about installed measures, including measure

description, quantity, rebate amount, and ex ante demand, ad energy and therm savings estimates. The MDSS database is linked to the billing database and other program databases through PG&E's customers control numbers.

C.2.2 PG&E Billing Data

For this evaluation, the PG&E billing data were obtained from two different data sources within PG&E. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG&E's service territory, and was used in the sample design as described in *Appendix A: Sample Design*. The billing histories contained in this data base only run through September 1995.

The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG&E Load Data Services. This billing dataset contains bill readings that run through September 1996, and was therefore used in the billing regression analysis. In addition, the billing series from this database is the PG&E pro-rated monthly usage data, a series calculated by PG&E for each calendar month, from January 1992 to September 1996.

C.2.3 Weather Data

The hourly dry bulb temperature collected for 25 PG&E load research weather sites was used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site was linked to that customer by using the PG&E-defined weather site to PG&E local office mapping.

C.2.4 Telephone Survey Data

All available telephone surveys (except for the Canvass surveys, which do not collect detailed information regarding changes that have occurred at the premise) collected as part of the evaluation for the Commercial Sector Program were used in the billing regression analysis. Four telephone survey samples totaling 1,217 participants and 652 nonparticipants were collected for the Commercial Sector Evaluation. The 1,217 participant surveys included 614 Lighting participants, 487 HVAC participants, and 241 Refrigeration participants. Because of the significant levels of cross-over among participants across the Commercial Program end uses, one integrated billing regression model was developed to evaluate all three Commercial Program end uses.

The data collected in the telephone survey supplies information on energy-related changes at each site for the billing period covered by the billing regression analysis. For a detailed discussion of the telephone survey sample design and the final sample distribution, see *Appendix A: Sample Design*.

C.2.5 Engineering Estimates

Engineering estimates of savings were estimated for each of the 1,217 participants. Separate estimates were calculated for every measure installed under the Commercial Sector Program. The engineering estimates were calculated based on expected savings from the pre-installation technology to the post-installation technology. For some technologies, such as Central A/Cs installed in the HVAC program, the savings estimates will differ from the impact estimates. This is due to the impacts being calculated relative to a baseline efficiency, compared to the savings estimates which are based on a pre-existing unit's efficiency. *Appendix B: Engineering Detailed Computational Methods* discusses the calculation of the savings estimates used in the billing analysis in greater detail.

For all measures, customer-specific engineering estimates were used in the SAE billing regression model, except for some Customized Incentive measures. For customers with EMS and "Other HVAC" Customized Incentive measures who were not on-site audited, the impact estimates supporting the application were used as the engineering estimates for the SAE analysis. From the engineering analysis based on the on-site audited measures, it was determined that the application's energy estimate was reasonable and accurate for all but one EMS application (which was not part of the SAE analysis).

For the "Other HVAC" Customized Incentive measures, the measures can be so unique and the impact estimates so dependent on building characteristics and other equipment installed at the facility, that it is very difficult to estimate an impact without performing an on-site audit. However, the level of documentation provided along with the applications was sufficient to allow for an assessment of the quality of the impact calculations made. A review of the applications associated with the "Other HVAC" Customized Incentive measures indicated that the applications provided the best data for use in the SAE analysis. In other words, performing an engineering analysis based solely on the application, without an on-site audit, would result in reverting to the application's estimate.

C.3 DATA AGGREGATION AND ANALYSIS DATASET DEVELOPMENT

Because many measures installed under the Commercial Program affected multiple customer accounts within a unique site, the billing analysis had to be performed at the site level. Therefore, all account level data had to be aggregated up to the site level. In PG&E's billing data, an array of variables are defined to track a customer. These include the following:

- Control number, which is the finest level of aggregation, and is usually unique to a meter.
- Premise number, which is used to define a unique site, but can sometimes contain multiple buildings. The premise number may map to many control numbers, but a control number maps to a unique premise number.
- Corporation number, which is used to define a unique corporation, which can map to many premise numbers. A premise number maps to a unique corporation number.

Of the three, the premise number serves as the best indicator of a unique site. However, there are some premise numbers that contain multiple sites. To address this issue, service address was also used to help identify a unique site. If there was more than one service address for a premise number, it was broken out into multiple sites. Therefore, a unique site was defined as all of the control numbers within a unique combination of service address,¹ premise number, and corporation number. A unique Site ID was created based on this combination of address, premise, and corporation to serve as the key variable for linking data.

The billing data was provided at the control number level. Therefore, the monthly billing data was aggregated to the Site ID level. A concern with aggregating to the Site ID level is that there may be control numbers associated with a different premise number, service address, or corporation number that are in the same physical site and are being affected by the installed measures. If this is

¹ Because of potential data entry errors in the billing system, or inconsistencies in tracking service addresses in the billing system, only the first eight characters of the service address were used. Generally, this would contain the numeric portion of the address and the first few characters of the street name. For the large majority of records in the billing system, premise number and service address were unique.

the case, the billing analysis will have the effect of underestimating the impacts. This a topic that will be discussed further in the *Data Censoring* section below.

The telephone surveys were sampled at the Site ID level, and all questions were phrased to ask about all of the control numbers associated with the Site ID.

The engineering estimates of change were also aggregated to the Site ID level. However, prior to aggregating to the Site ID level, the installation dates for each individual measure were analyzed to ensure that only the impacts occurring within the billing analysis periods were being aggregated. The selection of analysis periods is discussed in the next section.

All data elements mentioned above were linked to the final analysis database by Site ID. Exhibits C-1 through C-4 below provide the sample frame that was available for the billing analysis for each end use (Lighting, HVAC, and Refrigeration) and also for nonparticipants. The sample sizes are provided by business type and technology (for participants). The values presented are the unique number of the Site IDs within a given segment.

						Bus	iness T	уре					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Compact Fluorescent	61	29	4	57	9	11	19	17	6	3	17	3	236
Incandescent to Fluorescent	5	-	-	4	-	1	-	2	2	-	2	-	16
Efficient Ballast	8	7	2	7	4	-	2	-	2	-	1	1	34
T8 Lamps and Electronic Ballasts	154	68	8	115	30	17	29	8	25	8	33	9	504
Optical Reflectors w/ Fluor. Delamp	75	32	5	34	13	11	10	1	10	5	7	4	207
High Intensity Discharge	8	7	2	13	1	1	-	1	15	5	5	7	65
Halogen	13	4	2	8	-	2	1	1	1	-	6	1	39
Exit Signs	38	12	3	29	2	5	5	1	2	1	7	1	106
Controls	28	2	3	34	1	1	5	2	4	1	6	5	92
Retrofit Express Total	177	80	9	120	42	27	33	21	34	14	42	15	614
Customized Incentives Program													
Compact Fluorescent													
Standard Fluorescent													
High Intensity Discharge													
Halogen													
Exit Signs													
Controls													
Other		808888		808888									188888
Customized Incentives Total	5	1	0	0	10	0	0	0	1	0	1	0	18
Tota	177	80	9	120	42	27	33	21	34	14	42	15	614

Exhibit C-1 Billing Analysis Sample Frame Pre-Censoring Indoor Lighting End-Use Technologies

Exhibit C-2 Billing Analysis Sample Frame Pre-Censoring HVAC End-Use Technologies

			تنسخوا بي الي ا			Bus	iness T	vpe					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program							-						
Central A/C	93	32	1	30	4	12	24	3	8	5	27	5	244
Variable Speed Drive HVAC Fan	16	11	1	2	-	-	-	1	-	-	-	1	32
Package Terminal A/C	2	-	-	7	-	2	-	15	-	-	-	-	26
Programmable Thermostat	53	12	-	14	-	7	7	2	3	3	15	1	117
Reflective Window Film	44	9	1	3	3	2	12	4	5	2	10	2	97
Water Chiller	1	1	-	1	-	-	1	-	-	-	2		6
Other RE Measures	1	1	-	1	1	1	1	-	-	-	1	-	7
Retrofit Express Total	170	52	3	49	8	19	37	23	13	8	40	7	429
Retrofit Efficiency Options Program													
Variable Frequency Drive	1	-	1	-	-	-	-	-	-	-	-	-	2
Water Chiller	-		-	1	-	-	2	-	-	-	1	-	4
CAV to VAV	1	-	-	-	-	-	-	-	-	-	-	-	1
Cooling Tower	-	-	-	1	-	-	-	-	-	-	-	-	1
Retrofit Efficiency Options Total	2	-	1	1	-	-	2	-	-	-	1	-	7
Customized Incentives Program													
HVAC Variable Speed Drive	2	1	-	-	1	-	-	-	-	-	1	-	5
High Efficiency Chiller	1	-	-	-	-	-	-	-	-	-	-	-	1
Energy Management System	8	-	2	17	1	-	2	1	1	-	-	•	32
Other CI Measures	9	-	1	4	-	-	5	-	2	-	1	1	23
Customized Incentives Total	20	1	3	20	2	-	6	1	2	-	2	1	58
Totai	190	53	6	68	10	19	43	24	15	8	43	8	487

Exhibit C-3 Billing Analysis Sample Frame Pre-Censoring Refrigeration End-Use Technologies

	Business Type												
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	l .	-		-	-	-	-	-	-	-	-	- :	- 1
Heatless Door		<u> </u>	-	-	2		-	-	•	-	-	-	2
Cooler/Freezer Door Gaskets	-	1	-	•	11	3	-	-	-	1	-	-	16
Auto Closer for Cooler/Freezer	-	1	-	-	2	1		1		1	-	-	6
Medium Temperature Case w/ Door		•		-	6	2	-	-		-	-	-	9
Strip Curtains for Walk-in	1	1	-	-	8	5	-	-	6	-	1		22
Low Temperature Case w/ Door	-	-	-	-	3	1		-	-	-	-	-	4
Night Covers for Display Cases		1			21	1		_	-	-		-	23
Compressor Upgrades	₽				- '					<u>س</u>			L
Mechanical Subcooler		<u> </u>		-	1	-	-	-		-	-		T 1
Multiplex Comprisor System	<u>∦-</u>		· · ·	-	1				<u> </u>	-			1
Adjustable Speed Drive	<u>∦</u>		-	-		-			1		-		1
Floating Head Pressure Controls	[<u> </u>					-			-	-		
Condenser Upgrades			1						L				L
Oversized Air-Cooled Condenser	╟─╌──	<u> </u>	- 1	-	1	-	-	-	-	-	-	-	1
Oversized Evaporative Condenser		<u> </u>			<u>-</u>	-	-	-	1	-		1	2
Evaporator Upgrades	i	l			I						L		L
Walk-in Cooler PSC Evaporator Motor	1	-	-	-	1	-	-	-	- 1	-	-	-	1
Display PSC Evaporator Motor	1	-	-		2	-	-	-	-	-		-	2
Other											•		
Anti-Sweat Heater Control	l .		.		1	<u> </u>	_			-			1
Suction Line Insulation			-	-		-	-		1	-			3
Display Case Electronic Ballast	<u>∦</u>	1	<u> </u>	-	4	-			1			-	6
Non-Electric Condensate Evaporator	3	4	1	2	17	120		1	1	3	12	1	165
Retrofit Express Total		8	1	2	63	128		1	8	4	13	2	235
Customized Incentives Program		<u> </u>		<u> </u>					L				
Compressor Upgrades													
Floating Head Pressure Controls		-	-	-	-	-	-	- I		- 1		-	- 1
Booster Desuperheaters	╢╴	<u> </u>		· .		-			<u>-</u>	<u> </u>	<u>† </u>		-
Condenser Upgrades	╟───	L	L	I		L	I	L	t	L	I	L	<u>ــــــــــــــــــــــــــــــــــــ</u>
Oversized Condensers	-	-	-	-	-	-	<u> </u>		-	<u> </u>	<u> </u>	- 1	- 1
Other	╟────	L	L			1		L	1	I	L	L	ل
Refrigeration EMS	╢	<u> </u>		<u> </u>	2		r		<u> </u>		<u> </u>	1	4
Refrigeration Add/Change	1	<u> </u>		-	-		-		<u> </u>	· ·	<u> </u>	$\frac{1}{1}$	2
Refrigeration Other	<u> </u>			<u> </u>	<u> </u>	<u> </u>	\vdash		1			<u>+ -</u>	2
Customized Incentives Total	1				2		-	-		-		2	7
Total	6	8	1	2	64	128	<u>├</u>	1	10	4	13	3	241

٦

Exhibit C-4 Billing Analysis Sample Frame Pre-Censoring Nonparticipants

			//e max			Bus	iness T	уре					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Total	75	130	2	28	190	35	28	16	58	6	34	50	652

C.4 ANALYSIS PERIODS

When the billing regression analysis is used to model the change of consumption attributable to the program measures, the first step is to isolate the pre- and post-installation periods for each customer in the analysis database so that the impact of these measures can be verified.

In accordance with the Protocols, participants are defined by the "paid date" instead of "installation date." Therefore, all customers actually installed measures in 1992, 1993, 1994 or 1995, with 1995 installations accounting for approximately two-thirds of total installations.

C.4.1 Selection of Installation Date

Although installation date is a field in the MDSS it is rarely collected (only 2 percent of the time). Because the "paid date" can be off by as much as 3 years from the installation date, another approach was developed to estimate installation date. For 68 percent of the MDSS records, a preand post-installation inspection date was collected. From these two variables, an interval containing the installation date could be determined. Another date field in the MDSS that is populated 100 percent of the time is the date the application was received by PG&E. This date always occurs after the pre-installation inspection date (when populated) and rarely exceeds the post-installation received date and post-installation inspection date are within a month of each other 78 percent of the time. Therefore, the application received date was used as a proxy for the installation date.

In addition, the telephone survey asked every participant to estimate the installation date. If the installation date provided through the self reported survey fell between the pre- and post-installation inspection dates, the customer reported date was used over the application received date.

C.4.2 Selection of Analysis Periods

Billing data were available from January 1992 through September 1996. To maximize the number of post installation months, a post period of October 1995 through September 1996 was used. Because the majority of installations occurred during 1995, the only feasible pre-periods were October 1992 through September 1993 and October 1993 through September 1994. Survey data gathered change information dating back from the beginning of 1993. Therefore, both preinstallation periods could be used. However, the further back the pre-installation period is chosen, the more likely there are to be changes that have occurred at the site. To minimize the number of changes that have occurred outside the program between the pre- and post-installation periods (and to minimize the errors associated with self-reported changes and dates the changes occurred), the October 1993 through September 1994 pre-installation period was selected.

The only disadvantage to selecting the more recent pre-installation period is that some participants may have actually installed the participating measure during or before the pre-installation period. There were no rebated Lighting or Refrigeration installations, and only 18 rebated HVAC installations (2 percent of HVAC) in the analysis sample that occurred prior to the pre-installation period. In addition, only 2 percent of the rebated Lighting and Refrigeration installations, and 8 percent of the rebated HVAC installations occurred during the pre-installation period.

For installations that occurred prior to the pre-installation period, the engineering impact is set to zero. For installation that occurred during either the pre- or post-installation period, the engineering impact is only aggregated over the months for which there is an impact that should be realized.

Exhibits C-5 through C-7 provide the cumulative participation by month for the participants that are part of the billing analysis sample frame.

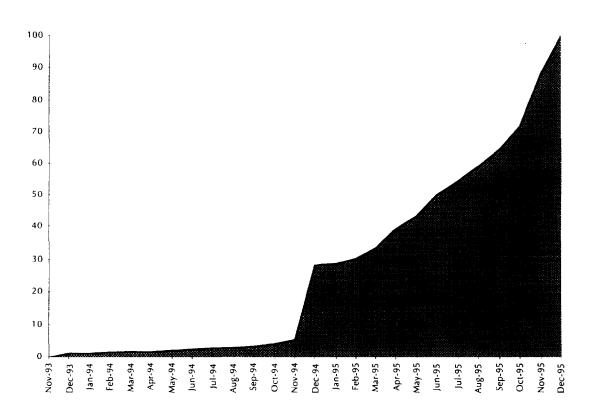


Exhibit C-6 Commercial HVAC Rebated Technologies By Estimated Installation Date

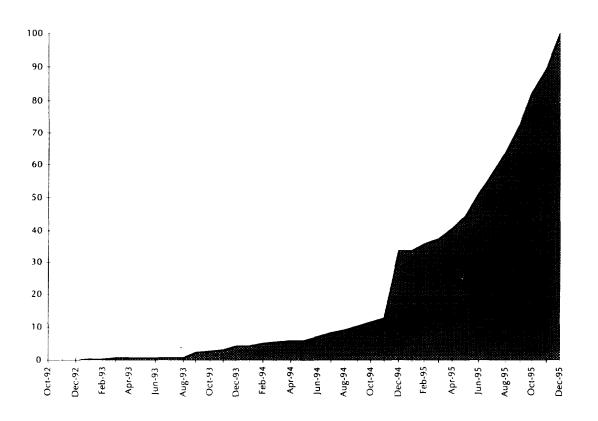
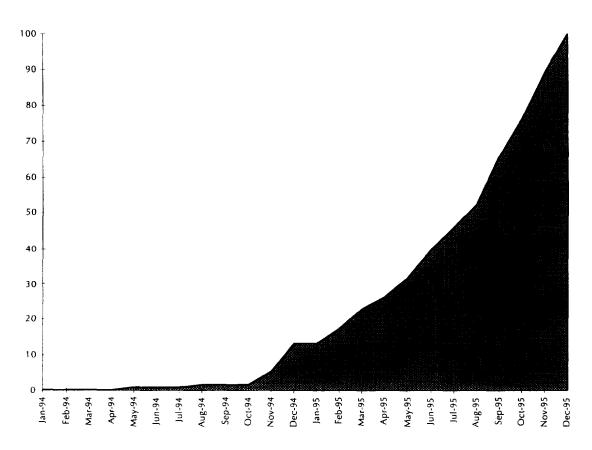



Exhibit C-7 Commercial Refrigeration Rebated Technologies By Estimated Installation Date

C.5 DATA CENSORING

Three types of data censoring screens were applied to the billing analysis sample frame to remove customers that have invalid billing data, that may not have had their bill properly aggregated to the Site ID level, or that were extremely large users.

C.5.1 Invalid Usage

For customers to be included in the final billing analysis, customers had to have billing data that met the following three criteria.

The pre- and post-installation annual bills had to have been comprised of at least six non-zero monthly bills. If there were seven or more monthly bills with zero energy, the customer was removed from the analysis. If there were between one and six monthly bills with zero energy, the remaining months were prorated to an annual estimate.

The pre-installation annual bill could not be more than three times or less than one third of the post-installation bill. If this occurred, the customer was removed from the analysis.

The pre-installation annual bill could not be more than twice or less than one half the postinstallation bill, unless the telephone survey responses indicated that the customer had a change at the site that may have caused an increase or decrease in usage, respectively. For example, if a customer doubled their usage and reported an increase in square footage, or an increase in employees, or an additional measure installed, the customer remained in the sample. However, if the customer reported no changes, or only changes that would indicate a decrease in usage, such as a removal of a measure, then the customer was removed from the analysis.

Exhibit C-8 presents the number of participants and nonparticipants that were deleted for each of the above criteria. Note that only 22 nonparticipants were deleted, whereas 123 participants were deleted. This is due to the fact that the nonparticipants were pre-screened to have relatively valid billing data prior to being selected into the nonparticipant survey sample frame. The participants, however, were often a census and no pre-screening was done on their billing data prior to being selected into the participant survey sample frame. Of the 123 participants, 87 were deleted due to the zero bill criteria.

Participant or Nonparticipant	Zero Monthly Bills >6?	Usage Doubled or Cut in Half, No Corresponding Change at Site?	Usage Tripled or Cut to a Third?	Number Removed From Analysis
NP	NO	NO	YES	4
NP	NO	YES	YES	3
NP	YES	NO	NO	3
NP	YES	NO	YES	3
NP	YES	YES	NO	1
NP	YES	YES	YES	8
TOTAL				22
Р	NO	NO	YES	17
Р	NO	NO	YES	3
Р	NO	YES	NO	2
Р	NO	YES	YES	7
Р	NO	YES	YES	6
Р	NO	YES	YES	1
Р	YES	NO	NO	2
Р	YES	NO	NO	8
Р	YES	NO	YES	5
Р	YES	NO	YES	2
Р	YES	YES	NO	5
Р	YES	YES	NO	5
Р	YES	YES	NO	1
Р	YES	YES	YES	38
Р	YES	YES	YES	21
TOTAL				123

Exhibit C-8
Distribution of Customers Removed from Billing Analysis
By Data Censoring Criteria
Customers with Invalid Billing Data

C.5.2 Large Customers

Customers whose annual post-installation energy consumption exceeded three million kWh were excluded from the billing analysis. Customers of this size were deleted for a number of reasons. First, there were 98 participants dropped for this reason, compared to only 10 nonparticipants. This indicated that the nonparticipants would not provide a good control for this group of participants. Very large customers are more likely to participate because they are more aware of the program, since they have more contact with PG&E representatives. Therefore, it is difficult to find a sample of nonparticipants that adequately represents these customers.

Large customers installing measures that provide relatively low levels of savings are particularly problematic in billing analyses of this type. It is very difficult to detect an annual impact even as large as 10,000 kWh in a customer's bill which exceeds 10 million kWh, for example. In addition, large customers are more likely to have made changes at the site, which could significantly affect their energy usage. If the model does not adequately capture all of these changes (possibly due to the unique nature of the change, or an error in the self-reported survey responses) it is likely that the coefficient on the program *energy* impact may reflect the change. While this is true of all customers, regardless of size, it is more of a concern for larger customers because the magnitude of their changes can have significant influence over the results of the model.

C.5.3 Aggregation to Site ID Level

As mentioned above, one concern with aggregating to the Site ID level is that there may be control numbers associated with a different premise number, service address, or corporation number that are in the same physical site and are being affected by the installed measures. If this is the case, the billing analysis will have the effect of underestimating the impacts. Therefore, a comparison was made between the engineering energy impact and the pre- and post-installation bills to identify any customers where this problem of bill aggregation may exist.

There were 148 participants that were identified as having total Commercial Sector Program energy impacts that were either more than 50 percent of their pre-installation usage or more than 100 percent of their post-installation usage. These 148 participants were further analyzed to determine whether the impact was large relative to usage because of a problem in aggregating the bill, or if the engineering estimates were just over-estimated, in which case the customer would not be removed from the billing analysis.

Three criteria were used to determine if there was a problem with aggregating the bill for these 148 participants. If a participant failed any of these criteria, the customer was removed from the analysis on the basis that the bills were not properly aggregated and the entire impact will not be detected in an analysis of the customer's billing data.

If the customer's annual kWh per square foot was in the bottom tenth percentile of all participants, the customer was removed.

If the customer's annual kWh per employee was in the bottom tenth percentile of all participants, the customer was removed.

The first billing data pull, which consisted of every nonresidential customer in PG&E's service territory over the period of January 1992 to September 1995, was compared to the second data pull, which is being used for the billing analysis. Customer bills from the first billing data pull were aggregated to the Site ID level in the same way described above. These annual aggregated bills were compared to the aggregated bills used in the analysis. If the aggregated bills from the first data pull were more than 50 percent larger than the bills being used in the billing analysis, the customer was removed. This would indicate that either not all of the control numbers that link to a site were provided in the second data pull or, more likely, since 1995 (when the first billing data was pulled and when the customer participated) there has been customer turnover at the site, and there are now additional premise numbers that no longer link to one unique site.

As a results of these three criteria, 102 of the 148 premises were removed. Of the 102 removed customers, 45 failed the invalid usage data screening checks as well. Therefore, only 57 premises were removed solely on these data screening criteria alone.

Exhibit C-9 presents the number of participants that were removed from the analysis for each of the above criteria.

Exhibit C-9 Distribution of Customers Removed from Billing Analysis By Data Censoring Criteria Customers with Billing Aggregation Problems

Low Usage per Sqft?	Low Usage Per Employee?	Low Usage Relative to 1995 Billing Data Pull?	Number of Participants Removed
YES	NO	NO	3
YES	YES	NO	1
YES	YES	YES	1
NO	NO	YES	5
NO	YES	NO	1
NO	YES	YES	2
YES	NO	NO	27
YES	NO	YES	11
YES	YES	NO	9
YES	YES	YES	7
NO	NO	YES	1 ·
NO	YES	NO	2
NO	YES	YES	1
YES	NO	NO	12
YES	NO	YES	2
YES	YES	NO	11
YES	YES	YES	6
TOTAL			102

C.5.4 Other Censoring

In addition to all of the above censoring, three other participants were removed from the analysis for the following reasons. One customer was removed from the analysis because the customer was noted as a "Z-Customer" in the MDSS. PG&E does not claim impacts on "Z-Coded" customers.

Another site had a retrofit performed that will affect a neighboring customer's utility bill. The refrigeration equipment (compressors and condensers) serving the participant are maintained and operated by a nonparticipant. The participant buys liquid ammonia from the nonparticipant via lines running under an adjacent road (driveway) and suction gas is returned to the nonparticipant following use. The impacts of this retrofit (which affect ice production) will be realized by the manufacturer of the liquid ammonia product, a nonparticipant. Therefore, the participating customer was removed from the analysis.

Finally, two other customers were identified as having added the rebated measure installed under the Commercial Program, causing a net increase in energy from the pre- to post-installation period. One of these customers was previously identified as being a large customer and deleted. Therefore, only one extra customer was removed.

Exhibit C-10 summarizes the total number of participants and nonparticipants that were removed from the billing analysis. Exhibits C-11 to C-14 present the final sample sizes used in the billing analysis by business type and technology for participants and by business type for nonparticipants.

Exhibit C-10
Distribution of Customers Removed from Billing Analysis
By Data Censoring Criteria

Participant or Nonparticipant	Zero Monthly Bills >6?	Usage Doubled or Cut in Half, No Corresponding Change at Site?	Usage Tripled or Cut to a Third?	PG&E's Z-Coded Customer?	Impact Affects NP Site?	Rebated Measure Increases Usage?	Large Customer?	Bill Not Aggregated Properly?	Number Removed From Analysis
NP	NO	NO	NO	NO	NO	NO	YES	NO	10
NP	NO	NO	YES	NO	NO	NO	NO	NO	4
NP	NO	YES	YES	NO	NO	NO	NO	NO	3
NP	YES	NO	NO	NO	NO	NO	NO	NO	3
NP	YES	NO	YES	NO	NO	NO	NO	NO	3
NP	YES	YES	NO	NO	NO	NO	NO	NO	1
NP	YES	YES	YES	NO	NO	NO	NO	NO	8
TOTAL									32
Р	NO	NO	NO	NO	NO	NO	NO	YES	57
Р	NO	NO	NO	NO	NO	NO	YES	NO	98
Р	NO	NO	NO	NO	NO	YES	YES	NO	1
Р	NO	'NO	NO	NO	NO	YES	NO	NO	1
Р	NO	NO	NO	NO	YES	NO	NO	NO	1
P	NO	NO	NO	YES	NO	NO	NO	NO	1
Р	NO	NO	YES	NO	NO	NO	NO	NO	17
Р	NO	NO	YES	NO	NO	NO	NO	YES	3
Р	NO	YES	NO	NO	NO	NO	NO	NO	2
Р	NO	YES	YES	NO	NO	NO	NO	NO	7
Р	NO	YES	YES	NO	NO	NO	NO	YES	6
Р	NO	YES	YES	NO	NO	NO	YES	NO	1
Р	YES	NO	NO	NO	NO	NO	NO	NO	2
Р	YES	NO	NO	NO	NO	NO	NO	YES	8
Р	YES	NO	YES	NO	NO	NO	NO	NO	5
Р	YES	NO	YES	NO	NO	NO	NO	YES	2
Р	YES	YES	NO	NO	NO	NO	NO	NO	5
Р	YES	YES	NO	NO	NO	NO	NO	YES	5
Р	YES	YES	NO	NO	NO	NO	YES	NO	1
Р	YES	YES	YES	NO	NO	NO	NO	NO	38
Р	YES	YES	YES	NO	NO	NO	NO	YES	21
TOTAL			*						282

Exhibit C-11 Billing Analysis Sample Used Post-Censoring Indoor Lighting End-Use Technologies

					/	Bus	iness T	ype					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Compact Fluorescent	46	20	2	47	8	10	15	13	5	3	12	2	183
Incandescent to Fluorescent	5	0	0	3	0	1	0	1	0	0	1	0	11
Efficient Ballast	5	7	1	4	4	0	1	0	1	0	1	0	24
T8 Lamps and Electronic Ballasts	109	53	2	95	29	13	25	6	16	8	22	6	384
Optical Reflectors w/ Fluor. Delamp	60	24	2	26	12	10	8	1	5	5	4	2	159
High Intensity Discharge	3	5	1	10	0	0	0	1	10	4	2	5	41
Halogen	8	3	1	7	1	2	1	1	1	0	5	1	31
Exit Signs	29	10	1	22	2	5	4	0	2	1	5	1	82
Controls	14	1	0	25	0	1	3	2	2	1	4	4	57
Retrofit Express Total	123	61	3	99	40	22	27	16	20	13	30	10	464
Customized Incentives Program													
Compact Fluorescent													
Standard Fluorescent													
High Intensity Discharge													
Halogen													
Exit Signs													
Controls													
Other													
Customized Incentives Total	5	0	0	0	9	0	0	0	1	0	0	0	15
Total	123	61	3	99	40	22	27	16	20	13	30	10	464

Exhibit C-12 Billing Analysis Sample Used Post-Censoring HVAC End-Use Technologies

						Bus	iness T	уре					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program										·····			
Central A/C	75	26	-	24	4	10	20	3	8	4	19	5	198
Variable Speed Drive HVAC Fan	12	10	-	2	-	-	-	•	-	-	-	1	25
Package Terminal A/C	2	-	-	7	-	2	-	13	-	-	-	-	24
Programmable Thermostat	36	10	-	13	-	6	7	2	2	2	10	1	89
Reflective Window Film	34	9	-	3	3	2	7	3	3	2	8	2	76
Water Chiller	-	1		1	-	-	-	-	-	-	2	-	4
Other RE Measures	-	1	-	-	1	1	-	-	~	-	•	-	3
Retrofit Express Total	131	45	-	41	8	17	27	19	11	7	30	7	343
Retrofit Efficiency Options Program													
Variable Frequency Drive	-	-	-	-	-	-	-	-	-	-	-	-	-
Water Chiller	-	-	-	1	-	-	-	-	-	-	-	-	1
CAV to VAV	-	-	-	-	-	-	-	-	-	-	-	-	-
Cooling Tower	-	-	-	1	•	-	-	-	-	-	-	-	1
Retrofit Efficiency Options Total	-	-	-	1	-	-	-	-	-	-	-	-	1
Customized Incentives Program													
HVAC Variable Speed Drive	1	-	-	-	1	-	-	-	-	-	-	-	2
High Efficiency Chiller	-	-	-	-	-	-	-	-	-	-	-	-	-
Energy Management System	4	-	-	14	1	-	-	-	1	-	-	-	20
Other CI Measures	2	-	1	1	-	-	-	-	1	-	-	-	5
Customized Incentives Total	7	-	1	15	2	-	-	-	1	-	-	-	26
Total	138	45	1	55	10	17	27	19	12	7	30	7	368

Exhibit C-13 Billing Analysis Sample Used Post-Censoring Refrigeration End-Use Technologies

						Bu	siness T	ype					
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program										•			
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	-	-	-	-	-	•	- 1		-
Heatless Door	-	-			2		-		-	<u> </u>			2
Cooler/Freezer Door Gaskets	-	1	•	-	11	3	-	-			•	-	16
Auto Closer for Cooler/Freezer	-	1	-		2	1	-	1	-	1 1	- 1		6
Medium Temperature Case w/ Door	-	-	-	-	6	1		-				-	7
Strip Curtains for Walk-in	1	1	-	-	7	5		-	1	<u> </u>	1	-	16
Low Temperature Case w/ Door	-	-	-	-	3	1	-						4
Night Covers for Display Cases	-	1		-	21	1				-		-	23
Compressor Upgrades							L		L		1		11
Mechanical Subcooler	-		-	-	1	-		-	-	-	- 1		1
Multiplex Compressor System			-		1	-			-	-		-	1
Adjustable Speed Drive	-	-	-	-	-	-	-	-	-	-	-		-
Floating Head Pressure Controls	-	-		-	-	-	-	-	-	-	-	-	-
Condenser Upgrades			I		L				I		L	L	
Oversized Air-Cooled Condenser	-	-	-	-	1	-	-	-	-	- 1	-	-	1
Oversized Evaporative Condenser	-	-	-	-	-	-	<u> </u>	-		-	-	-	
Evaporator Upgrades							L						
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	1	<u> </u>	<u> </u>	-		<u> </u>		-	1
Display PSC Evaporator Motor	•		-	-	2			-	-	- 1	-	-	2
Other							L			L	1		
Anti-Sweat Heater Control	-	-	-	-	1	•	-	-	-	-	-	-	1
Suction Line Insulation	1	-	-	-	1		-	-	-	<u> </u>	- 1	-	2
Display Case Electronic Ballast	-	1	-	-	4	-	-	-	-	<u>t</u> -	-	-	5
Non-Electric Condensate Evaporator	3	3	1	2	11	87		1	1	3	9		121
Retrofit Express Total	4	7	1	2	56	94	-	1	2	4	10	<u> </u>	181
Customized Incentives Program													-
Compressor Upgrades													
Floating Head Pressure Controls	-	•	-	-	-	-	-	-			-	-	- 1
Booster Desuperheaters	-	-	-		-	-		-		-		<u> </u>	1 -
Condenser Upgrades				L	1							4	
Oversized Condensers	-	-	-	-	-	-	-	-	-	-	-	- 1	F -
Other		•				•	•		•••••		B		•
Refrigeration EMS	-	-	-	-	2	-	-	-	-	· ·	•	- 1	2
Refrigeration Add/Change	1	-	-	-	-	-	-	-	-	-	•	-	1
Refrigeration Other	-	-	-	-		-		-	- 1	· ·		-	-
Customized Incentives Total	1	-	-	-	2	-	<u> </u>	-	-	İ .	1 -	- 1	3
Total	5	7	1	2	57	94	1 -	1	2	4	10	1.	183

Exhibit C-14 Billing Analysis Sample Used Post-Censoring Nonparticipants

		Business Type											
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Total	74	124	1	26	185	34	27	15	53	6	31	44	620

C.6 MODEL SPECIFICATION

The billing regression analysis for the Commercial Program Evaluation used two different multivariate regression models under an integrated framework of providing unbiased and robust model estimates in the commercial sector. The key feature of the approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variation in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for participants as a function of pre-installation year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group.

The resulting SAE coefficients are used to adjust the engineering estimates of expected annual energy impacts for the entire participant population. These impacts are presented in *Section 4* and are used to compute program realization rates.

C.6.1 Baseline Model

The baseline model explains post-installation energy usage as a function of the pre-installation energy usage, weather changes, and customer self-reports of factors that could affect energy usage. In order to isolate the program impact from the energy usage changes, only the comparison group is used to fit this model. The baseline model has the following functional form:

$$kWh_{post,i} = \sum_{j} (\alpha_{j} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i} + \sum_{k} \eta_{k}Chg_{i,k} + \varepsilon$$

Where

 $kWh_{post,i}$ and $kWh_{pre,i}$ are customer i's annualized energy usage for the post- and preinstallation periods, respectively;

 Δ CDD_i and Δ HDD_i are the annual change of cooling and heating degree days (base 65°F) between the post-installation year and pre-installation year;

 $E e_{i_i}$ is an indicator variable (0/1) for the ith customer, which equals 1 if the customer has electric heating;

 $Chg_{i,k}$ are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees and square footage;

 α_j is the indicator variable (0/1) for the jth business type, which equals 1 if the customer is in that business type and 0 otherwise;

 β , γ and ϕ are the estimated slopes on their respective independent variables. Separate slopes on pre-usage are estimated by business type; and,

 $\boldsymbol{\epsilon}$ is the random error term of the model.

For each customer in the analysis dataset, a post-installation predicted usage value is calculated using the parameters of the baseline models estimated for the 1994 to 1996 analysis period. They both take the same functional form with different segment-level intercept series (α_j) and slopes (β , γ and ϕ):

$$k\hat{W}h_{post,i} = F_{pre}(kWh_{pre,i}, \Delta CDD, \Delta HDD) = \sum_{i} (\alpha_{i} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i}$$

Exhibit C-15 summarizes the final baseline model results that were estimated using 620 customers, as discussed in the *Data Censoring* section. Exhibit C-15 summaries the independent variables used in the baseline model, together with the t-statistics and the sample sizes available for each parameter estimate used to predict the post-period usage. The final functional relation is estimated as follows:

Baseline Model (1994 to 1996):

$$\begin{split} k\hat{W}h_{96,i} &= -40834*OFF_LG+1349*OFF_SM-19849*RET_LG-120*RET_SM\\ &+942*SCHOOLS+5378*GROCERY+8461*SUPERMKT+4756*REST\\ &+10964*HEALTH+2403*HOTEL+4167*WAREHOUS+675*PERSONAL\\ &+4795*COMMUN+37895*MISCBT\\ &+1.13*OFF_LG4+0.91*OFF_SM4+0.99*RET_LG4+1.00*RET_SM4\\ &+1.00*SCHOOLS4+0.98*GROCERY4+0.98*SUPERMKT4+0.99*REST4\\ &+0.99*COLLEGE4+0.94*HEALTH4+1.02*HOTEL4+1.04*WAREHOUS4\\ &+0.94*PERSONAL4+0.95*COMMUN4+0.95*MISCBT4\\ &+0.0000456*CDD_{96-94,i}*kWh_{94,i}+0.0000324*HDD_{96-94,i}*kWh_{94,i} \end{split}$$

Parameter Descriptions	Analysis Variable Name	Units	Parameter Estimate	t-Statistic	Sample Size
Intercepts					
Large Office	OFF_LG	(0,1)	-40834	0.99	19
Small Office	OFF_SM	(0,1)	1349	0.07	55
Large Retail	RET_LG	(0,1)	19849	0.44	22
Small Retail	RET_SM	(0,1)	-121	0.01	102
Schools	SCHOOLS	(0,1)	942	0.04	26
Grocery	GROCERY	(0,1)	5378	0.33	127
Supermarket	SUPERMKT	(0,1)	8461	0.30	58
Restaruant	REST	(0,1)	4756	0.19	34
College/University	COLLEGE	(0,1)	0	-	1
Health Care	HEALTH	(0,1)	10964	0.50	27
Hotel/Motel	HOTEL	(0,1)	2403	0.07	15
Warehouse	WAREHOUS	(0,1)	4167	0.19	53
Personal Service	PERSONAL	(0,1)	675	0.01	6
Community Service	COMMUN	(0,1)	4795	0.25	31
Miscellaneous	MISCBT	(0,1)	37895	1.95	44
re Usage					
Large Office	OFF_LG4	kWh	1.13	27.16	19
Small Office	OFF_SM4	kWh	0.91	7.39	55
Large Retail	RET_LG4	kWh	0.99	26.44	22
Small Retail	RET_SM4	kWh	1.00	9.48	102
Schools	SCHOOLS4	kWh	1.00	33.42	26
Grocery	GROCERY4	kWh	0.98	8.90	127
Supermarket	SUPERMKT4	kWh	0.98	38.46	58
Restaruant	REST4	kWh	0.99	10.94	34
College/University	COLLEGE4	kWh	0.99	3.36	1
Health Care	HEALTH4	kWh	0.94	28.61	27
Hotel/Motel	HOTEL4	kWh	1.02	9.50	15
Warehouse	WAREHOUS4	kWh	1.04	53.01	53
Personal Service	PERSONAL4	kWh	0.94	4.37	6
Community Service	COMMUN4	kWh	0.95	25.30	31
Miscellaneous	MISCBT4	kWh	0.95	35.82	44
Veather Variables					
Change in HDD	HDD9694	HDD*kWh	0.0000324	1.06	620
Change in CDD	CDD9694	CDD*kWh	0.0000456	0.78	620

Exhibit C-15 Billing Regression Analysis Final Baseline Model Outputs

C.6.2 SAE Model

Using the predicted post-installation usage values estimated in the baseline model, a simultaneous equation model is specified to estimate the SAE coefficients on energy impact. The SAE simultaneous system can be described as follows:

$$kWh_{96,i} - F_{94}(kWh_{94}, \Delta CDD \ \Delta HDD) = \sum_{m} \beta_{m} Eng_{m} + \sum_{k} \eta_{k} Chg_{i,k} + \mu_{i}$$

The difference between predicted and actual usage in 1996 was used as the dependent variable in a SAE model. Based upon the estimated participation month, the pro-rated engineering estimates and change variables were used to explain the deviation of the actual usage from the predicted usage. As discussed above, the predicted usage is estimated using only the comparison group to forecast the 1996 usage as a function of 1994 usage and change of cooling and heating degree days from 1994 to 1996. This usage prediction presents what would have happened in the absence of the program.

C.7 BILLING REGRESSION ANALYSIS RESULTS

The coefficients of the engineering impact, termed the SAE coefficients, are used to calculate the expost gross energy impacts. Independent realization rates are estimated to provide PG&E with business type- and technology group-level results. Exhibit C-16 summarizes the final SAE model results that were estimated using 935 participants, as discussed in the *Data Censoring* section. Exhibit C-16 summaries the independent variables used in the SAE model, together with the t-statistics and the sample sizes available for each parameter estimate.

Parameter Descriptions	Units	Parameter Estimate	t-Statistic	Sample Size
SAE Coefficients		Littinace	(-Statistic	JIZC
Lighting End Use				
Office Flourescents	kWh	-1.00	14.67	116
Other Flourescents	kWh	-0.68	7.41	261
Controls	kWh	-1.38	2.09	57
Warehouse HIDs	kWh	0.02	0.07	10
School HIDS	kWh	0.02	0.30	10
Other RE Lighting	kWh	-1.26	2.15	119
Custom Lighting	kWh	-0.51	3.07	15
HVAC End Use		-0.51	3.07	13
Central A/Cs	kWh	-2.07	3.67	184
ASDs	kWh	-1.90	6.75	27
Chillers	kWh	-1.58	2.39	5
EMS	kWh	-1.03	8.38	20
Other Custom HVAC	kWh	-0.65	4.76	5
Office Thermostats	kWh	0.05	1.06	36
Other RE/REO HVAC	kWh	-0.90	2.89	153
Refrigeration				
Custom Refrigeration	kWh	-0.75	2.00	3
RE/REO Refrigeration	kWh	-0.53	1.98	181
Other End Uses	kWh			
Other	kWh	-1.71	2.90	62
Change Variables	kWh			
Cooling System Replacement	(0,1)*kWh	-0.03	0.70	10
Lighting System Replacement	(0,1)*kWh	-0.08	4.17	48
Change in Employees	(±1,0)*kWh	0.01	0.64	57
Square Foot Change	± sqft	4.42	2.37	27
Heating System Replacement	(0,1)*kWh	-0.07	0.04	4
Other Equipment Change	(0,1)*kWh	0.03	1.17	42
Remove Equipment	(0,1)*kWh	0.08	0.64	2
Refrigeration Replacement	(0,1)*kWh	0.00	0.01	3
Add Equipement	(0,1)*kWh	0.11	0.49	11
Other Additions	(0,1)*kWh	0.14	12.41	375

Exhibit C-16 Billing Regression Analysis Final Model Outputs

The dependent variable is the difference between the actual and predicted 1996 usage using the 1994 baseline model.

SAE coefficients are calculated for 16 different combinations of business type and measure. Primarily those measures that have broad participation and relatively high expected impacts were supported by separate SAE coefficients. In addition, a separate SAE coefficient was calculated for other Commercial Program measures outside Lighting, HVAC, and Refrigeration.

Attempts were made to estimate the SAE coefficients at a finer level of segmentation, but generally either one of two problems were encountered. First, available sample sizes were too small to

support a finer level of segmentation. Second, certain parameters were correlated with each other and needed to be combined into a single parameter (a standard econometric solution to solving the problem of colinearity). For example, it was determined that there was a high incidence of compact and standard fluorescent installations at the same site in office buildings. Therefore, there was enough correlation between the compact and fluorescent engineering estimates to warrant combining the two estimates into a single fluorescent estimate in the model.

All but three of the SAE coefficients are significant at the 95 percent confidence level (t-statistics greater than 1.96). In addition, all of the statistically significant SAE coefficients were the correct sign, and therefore were used in the calculation of the final ex post energy calculations. The three SAE coefficients that were not significant at the 95 percent confidence interval (HIDs in warehouses and schools, and thermostats in offices) were not used in the final ex post energy calculations. Because each of the insignificant SAE coefficients were also the wrong sign, they were set to zero. Therefore, no energy impacts are being claimed for these three segments.

All the of the HVAC technologies are represented in the SAE billing analysis, except for REO Variable Frequency Drives (VFD), REO CAV to VAV, and Customized Incentive Chillers, as shown in Exhibit C-12. Although these measures represent only ten percent of the energy impact, an approach needed to be developed for adjusting the engineering energy impact estimate for these measures.

The REO VFD measure is very similar to those installed under the RE and Customized Incentive programs, and the engineering estimate is calculated using the same approach. Therefore, engineering energy impact estimate for the REO VFD measure was adjusted by the SAE coefficient estimated for the RE and Customized Incentive measures.

Three approaches were considered for adjusting the engineering energy impact estimate for the REO CAV to VAV measure: (1) applying the Other RE HVAC SAE coefficient, (2) applying the Other Custom HVAC SAE coefficient, or (3) leaving the engineering estimate unadjusted. Because the REO CAV to VAV measure is usually installed in large businesses, typical of those installing Customized Incentive measures, the Other Custom HVAC SAE coefficient was used to adjust the engineering energy impact estimate for the REO CAV to VAV measure. This is also the most conservative approach since the SAE coefficient is only 0.65.

The engineering energy impact for Chillers was estimated differently for Customized Incentive applications than for RE and REO applications, due to the different types of businesses that install these measures. Therefore, the engineering energy impact estimate for Customized Incentive Chillers was left unadjusted, which is conservative compared to the alternative approach of applying the 1.58 SAE coefficient estimated for the RE and REO applications.

The SAE coefficient of 0.65 for Other Custom HVAC measures is based on a sample size of only five sites, compared to the 43 unique sites that installed "Other" Customized Incentive HVAC measures in 1995. In addition, these five sites represent only seven percent of the total ex ante energy impact contributed by these 43 sites. Also, one third of the customers installing "Other" Customized Incentive HVAC measures have usage over 3 million kWh per year, which are not represented in the SAE analysis.

The larger customers (usage over 3 million kWh per year), however, are very well represented in the on-site audit sample, for which calibrated engineering energy impacts were estimated. Sixteen sites, which represent 53 percent of the total ex ante energy impact, were on-site audited, one of which was included in the SAE billing analysis. The ratio of the engineering energy impact estimate to the ex ante estimate is 0.79 for the on-site audit sample. This can be directly compared to the SAE coefficient, because ex ante estimates were used as the engineering energy impact estimates for the billing analysis, as mentioned above.

Three approaches were considered for estimating the ex post gross energy impact for the "Other" Customized Incentive HVAC measures:

- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population.
- The 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate from the on-site audit sample could be applied to the ex ante estimate of gross energy impact for the population.
- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population that is most similar to the SAE sample, and the 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate could be applied to the population most similar to the on-site audit sample.

The approach of applying the SAE coefficient to the ex ante estimate of gross energy impact for the population, which is the most conservative method, was chosen for two reasons. First, the SAE coefficient provides a statistically adjusted result that is significant at the 95 percent confidence level. Second, the 0.79 ratio based on the on-site audit is very sensitive to a few individual on-site results. For example, the ratio of the engineering to ex ante estimate is 1.51 for the site with the largest energy impact. If the engineering estimate was set equal to the ex ante estimate for this customer, the overall ratio for all on-sites would be 0.64. Conversely, if the site with the second largest energy impact, which has a ratio of 0.41, had an engineering estimate set equal to the ex ante estimate set equal to the ex ante estimate, the overall ratio would be 0.95.

The SAE coefficient of 0.75 for Customized Incentive Refrigeration measures is based on a sample size of only three sites, compared to the 53 unique sites that installed Customized Incentive Refrigeration measures in 1995. Adjusting the engineering estimates of energy impact by 0.75 for all Customized Incentive measures should be considered conservative because it is likely that a sample size of three may not be representative of the population. An alternative approach would be to adjust only those measures that are similar to the three represented in the billing analysis, and leave the remaining measures unadjusted. It was found that the ratio of the engineering energy to the ex ante gross energy estimate was 98 percent over all 53 unique sites, and 94 percent for the three sites used in the SAE analysis. Because the ratio for the SAE sample is similar to the population's ratio and because the SAE coefficient was statistically significant at the 95 percent confidence level, the conservative approach of adjusting all Customized Incentive Refrigeration measures by 0.75 was chosen.

Impact estimates from the MDSS for other end uses were included in the model for customers that installed measures outside the Lighting, HVAC, and Refrigeration end uses. Although this result is statistically significant and the correct sign, it is not recommended that this value be used because the sample may not be representative of the population of participants installing these measures.

The majority of the change variables that were included in the model were not statistically significant at the 95 percent confidence level. Most of the parameter estimates are the correct sign, and those that are not have very low t-statistics. All but one variable, was determined solely on telephone survey responses. The change variable termed "other additions" was determined by comparing the predicted estimate of post-installation usage, based on the baseline model, to the actual post-installation usage. If the predicted usage is less than the actual post-installation usage, it is likely that some change occurred at the premise that would cause the usage to increase. An analysis of these customers revealed that two thirds of them indicated through the telephone survey that some change did occur at the premise. However, almost half of these customers did not provide a date for when the change occurred. Therefore, the "other additions" variable was

created in an attempt to capture other changes that would cause usage to increase, which were not explained by the other independent variables in the model.

The final SAE coefficients for the Lighting, HVAC, and Refrigeration end uses are provided in Exhibits C-17 through C-19, respectively. The SAE coefficients are multiplied by the evaluation estimates of gross energy impact to calculate the gross ex post energy impacts.

Exhibit C-17
Commercial Indoor Lighting Gross Energy Impact SAE Coefficients
By Business Type and Technology Group

Business Type						SAE	Coeffic	ients_					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Compact Fluorescent	1.00	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	
Incandescent to Fluorescent	1.00	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	
Efficient Ballast	1.00	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	
T8 Lamps and Electronic Ballasts	1.00	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	
Optical Reflectors w/ Fluor. Delamp	1.00	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	
High Intensity Discharge	1,26	1.26	1.26	0.00	1.26	1.26	1.26	1.26	0.00	1.26	1.26	1.26	
Halogen	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	
Exit Signs	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	
Controls	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	
Retrofit Express Total													
Customized Incentives Program													
Compact Fluorescent	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
Standard Fluorescent	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
High Intensity Discharge	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
Halogen	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
Exit Signs	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
Controls	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
Other	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	
Customized Incentives Total													
Total													

Exhibit C-18 Commercial HVAC Gross Energy Impact SAE Coefficients By Business Type and Technology Group

Business Type						SAE	Coeffic	ients					
Program and Technology Group	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Central A/C	2.069	2.069	2.069	2.069	2.069	2.069	2.069	2.069	2.069	2.069	2.069	2.069	
Variable Speed Drive HVAC Fan	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	
Package Terminal A/C	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	
Programmable Thermostat	0.000	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	
Reflective Window Film	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	
Water Chiller	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	
Other Measures	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	
Retrofit Express Total													
Retrofit Efficiency Options Program													
Variable Frequency Drive	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	
Water Chiller	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	1.582	
CAV to VAV	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	
Cooling Tower	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	0.898	
Retrofit Efficiency Options Total							د مدین ایک میں انقادی	<u></u>					
Customized Incentives Program													
HVAC Variable Speed Drive	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	1.901	
High Efficiency Chiller	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Energy Management System	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	
Other Measures	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	
Customized Incentives Total													
Total			n an an an an an an an an an an an an an		a godi a ann						. hana		

Exhibit C-19 Commercial Refrigeration Gross Energy Impact SAE Coefficients By Business Type and Technology Group

Business Type						SAE	Coeffic	ients					
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Heatless Door	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Cooler/Freezer Door Gaskets	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Auto Closer for Cooler/Freezer	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Medium Temperature Case w/ Door	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Strip Curtains for Walk-in	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Low Temperature Case w/ Door	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Night Covers for Display Cases	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Compressor Upgrades													at a cara ta ta
Mechanical Subcooler	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Multiplex Comprssor System	0.526		0.526									0.526	
Adjustable Speed Drive	0.526			0.526		0.526	0.526				0.526		
Floating Head Pressure Controls	0.526		0.526	0.526	0.526	0.526	0.526	0.526		0.526	0.526	0.526	
Condenser Upgrades										0.010			1000000
Oversized Air-Cooled Condenser	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Oversized Evaporative Condenser			0.526					0.526	0.526	0.526	0.526	0.526	
Evaporator Upgrades													*******
Walk-in Cooler PSC Evaporator Motor	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Display PSC Evaporator Motor	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Other													0000000000
Anti-Sweat Heater Control	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	0.526	
Suction Line Insulation	0.526		0.526		0.526		0.526	0.526				0.526	00000
Display Case Electronic Ballast	0.526		0.526						0.526			0.526	
Non-Electric Condensate Evaporator			0.526										388886
Retrofit Express Total													131334313
Customized Incentives Program	1000000		1000000	000000	100000		000000	100000		000000	боюжнони	нонононон	010101010101
Compressor Upgrades													
Floating Head Pressure Controls	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	
Booster Desuperheaters	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	
Condenser Upgrades													
Oversized Condensers	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	
Other													
Refrigeration EMS	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	
Refrigeration Add/Change	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	0.753	
Refrigeration Other	0.753			0.753				0.753	0.753		0.753	0.753	
Customized Incentives Total													
Total		186886	1212202	000000	10000							1800888	

C.7.1 Relative Precision Calculation

Relative precision at 90 percent and 80 percent confidence levels for the adjusted gross energy impact estimates are calculated for each of the SAE analysis segments. As mentioned above, there are a total of sixteen analysis segments that were explicitly modeled, and the relative precision estimates based upon the model output are presented in Exhibit C-20 below. In order to calculate

the total program level adjusted gross impact and relative precision, the segment-level results were weighted by their unadjusted engineering energy impact estimates in the following equations.

Total Adjusted Energy Impact = $\sum_{i} \beta_{i} Eng_{i}$

Where β_i and Eng, are the SAE coefficients and unadjusted engineering impact estimates for segment i, respectively. The program level standard error can be estimated as:²

$$StdErr = \sqrt{\sum_{i} (CV_{i} * \beta_{i} * Eng_{i})^{2}}$$

Where $CVi = (std(\beta i)/\beta i)$ is the coefficient of variation in segment i, estimated in the billing regression model. Finally, the relative precision at 90 percent and 80 percent confidence levels were calculated as

 $RP = \frac{t * StdErr}{Total Adj. Energy Impact}$

Where t equals 1.645 and 1.282 for the 90 percent and 80 percent confidence levels, respectively.

 $^{^2}$ This procedure assumes that the samples in different segments are independent and can be treated as strata in a stratified sampling.

	Exhibit C-	-20
Relative	Precision	Calculation

SAE Analysis Level	Engineering Gross Energy Impact Estimate (MWh)	SAE Coefficient	t-Statistic	Relative Precision at 80%	Relative Precision at 90%
Lighting End Use	······				
Office Flourescents	51,455	1.00	14.67	9%	11%
Other Flourescents	76,591	0.68	7.41	17%	22%
Controls	5,318	1.38	2.09	61%	79%
Warehouse HIDs	4,306	0.00	•	-	•
School HIDS	815	0.00	-	-	-
Other RE Lighting	17,534	1.26	2.15	60%	77%
Customized Incentives Lighting	10,242	0.51	3.07	42%	54%
Total	166,261	0.83		13%	16%
IVAC End Use					
Central A/Cs	878	2.07	3.67	35%	45%
ASDs	8,971	1,90	6.75	19%	24%
Chillers	2,966	1.58	2.39	54%	69%
EMS	10,290	1.03	8.38	15%	20%
Other Customized Incentives HVAC	18,668	0.65	4.76	27%	35%
Office Thermostats	1,332	0.00	-	-	-
Other RE/REO HVAC	6,087	0.90	2.89	44%	57%
Total	49,192	1.03		12%	15%
Refrigeration					
Customized Incentives Refrigeration	18,206	0.75	2.00	64%	82%
RE/REO Refrigeration	8,566	0.53	1.98	65%	83%
Total	26,772	0.68		51%	65%

C.8 NET BILLING ANALYSIS

In addition to conducting a billing analysis to estimate gross energy impacts, a net billing analysis was performed, with the objective of estimating SAE coefficients that could be applied to gross engineering estimates to calculate net energy impact. The net billing analysis model specification differs from the gross billing analysis model, which used two different multivariate regression models (a baseline model using a control group and an SAE model using participants). Instead, the net billing analysis model runs one integrated model combining both the participants and nonparticipants.

A disadvantage of combining both participants and nonparticipants into one model of net energy savings is that the resulting sample is not random. In particular, participants self-select into the program and therefore may not be randomly distributed. As a result, there are certain unobserved characteristics that influence the decision to participate. If these characteristics are not accounted for in the model, the net savings model could produce biased coefficient estimates.

One solution to this problem is to include an Inverse Mills Ratio in the model to correct for selfselection. This method was developed by Heckman (1976, 1979³) and is used by others (Goldberg and Train, 1996⁴) to address the problem of self-selection into energy retrofit programs. The Mills Ratio technique assumes that the unobserved factors that are influencing participation are distributed normally. The influence of these unobserved factors on participation can be approximated by a Mills Ratio which itself is distributed normally. Using the Mills Ratio corrects for the self-selection bias in the net savings regression as the unobserved factors affecting participation are now controlled for in the model. As a result, standard regression techniques should produce unbiased coefficient estimates.

Goldberg and Train (1996) develop the technique of using an additional Mills Ratio in the savings regression to account for the possibility that participation is correlated with the size of energy savings. The second Mills Ratio is interacted with a measure of energy savings, which allows the amount of net savings to vary with participation. The rationale for the second term is that those customers who have potentially large savings are more likely to participate in the program. Consequently, the unobserved factors that are influencing participation are also affecting the amount of savings. The additional Mills Ratio accounts for the fact that amount of savings will be correlated with participation.

To correct for self-selection, a probit model of program participation is estimated separately for each of the Lighting, HVAC, and Refrigeration retrofit programs. Upon estimation, the parameters of the participation model are then used to calculate an Inverse Mills Ratio for both participants and nonparticipants. This Mills Ratio is then included in the net savings regression that combines both participants and nonparticipants. If the Mills Ratio controls for those unobserved factors that determine participation, and the other model assumptions are met, then the net savings model can then be estimated as if participation in the program is randomly determined.

Using the Inverse Mills Ratio to correct for selection relies on several assumptions. First, the net savings due to the program, whether expressed as naturally occurring savings or a net-to-gross ratio, must be normally distributed. In addition, the Mills Ratio must not be highly correlated with the other independent variables used in the net billing regression. In this application, both of these assumptions are found to be violated. Net savings due to the program is biased upward toward large customers and is not distributed normally. The Mills Ratio term used in the net savings regression is also found to be highly correlated with other independent variables, which introduces multi-collinearity into the model. As a result of these violations, the regression analysis using the Mills Ratio technique does not yield reliable estimates in this application. A description of the methods used for this application are given in the following sections. *Section C.8.1* describes the data and variables used for the probit participation model and *Section C.8.2* gives the estimation results. *Section C.8.4* gives the estimation results from the Net Billing Model.

³<u>Heckman, I.</u> 'The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models.", Annals of Economic and Social Measurement, Vol. 5, pp. 475-492, 1976.

Heckman, I. "Sample Selection Bias as a Specification Error." Econometrica, Vol. 47, pp. 153-161, 1979.

⁴ <u>Goldberg, Miriam and Kenneth Train.</u> 'Net Savings Estimation: An analysis of Regression and Discrete Choice Approaches', prepared for the CADMAC Subcommittee on Base Efficiency by Xenergy, Inc. Madison, WI, March 1996.

C.8.1 Probit Model of Participation

The first stage of calculating the Mills Ratio is to develop a probit model of program participation. The probit model is a discrete choice model with a dependent variable of either zero or one reflecting whether or not an event occurred. In this case, individuals received a value of one if they participated in the retrofit program and a zero otherwise. The sample includes all 1,217 participants and 652 nonparticipants, and includes information obtained from the telephone surveys as well as billing data. All of these 1,869 survey respondents were used to estimate the participants in the HVAC program. Of the 1,869, 614 are participants in the Lighting program. For those customers with missing information, an average value is assigned based on both building type and program participation.

For each of the three retrofit programs, the participation model specification is the same:

Participation = $\alpha + \beta' X + \gamma' Y + \vartheta' Z + \varepsilon$

A description of the explanatory variables is given in Exhibit C-21. The dependent variable PARTICIPATION has a value of one if the customer participated in the 1995 Retrofit program and a zero if they did not participate. The independent variables used are those characteristics that are likely to influence program participation. The first set of variables (X) used in the participation probit describe the customer's business activity. These consist of indicator variables for various building types. The second group of variables (Y) reflect the building characteristics. These include customer size and energy use as well as recent changes in high energy equipment. The third group of variables (Z) contain information on participation in other PG&E programs. Finally, the error term (ε) is assumed to be normally distributed for the probit specification.

Exhibit C-21 Explanatory Variables Description

Variable		Variable		
Name	Units	Туре	Description	
ADDLIGHT	0,1	Y	Customer added light equipment since 1/93	
AVGUSE	Kwh	Y	Average monthly electricity use over 1992-1994	
ADDCOOL	0,1	Y	Customer added cooling equipment since 1/93	
ADDREF	0,1	Y	Customer added refrigeration equipment since 1/93	
ARCOOL	0,1	Y	Cooling equipment was added and removed since 1/93	
ARLIGHT	0,1	Y	Lighting equipment was added and removed since 1/93	
ARREF	0,1	Y	Refrigeration equipment was added and removed since 1/93	
CCHGPGE	0,1	Y	Cooling change was part of a PG&E program	
LCHGPGE	0,1	Y	Lighting change was part of a PG&E program	
COLLEGE	0,1	x	College	
COMMSERV	0,1	x	Community service building	
GROCERY	0,1	X	Grocery	
HEALTH	0,1	X	Health Care Building	
HOTEL	0,1	x	Hotel	
MISCCOM	0,1	X	Miscellanious commercial building	
OFFICE	0,1	X	Office building	
PERSONAL	0,1	X	Personal service building	
RESTRNT	0,1	X	Restaurant	
SCHOOL	0,1	x	School	
RETAIL	0,1	x	Retail Building	
WAREHSE	0,1	X	Warehouse	
MEDCUST	0,1	Y	Medium sized customer, based on electricty use	
LARGCUST	0,1	Y	Large sized customer, based on electricity use	
LIGHT95	0,1	Y	Lighting change done in 1995 or later	
COOL95	0,1	Y	Cooling change done in 1995 or later	
HEAT95	0,1	Y	Heating change done in 1995 or later	
OTHER95	0,1	Y	Other equipment change done in 1995 or later	
GASHEAT	0,1	Y	Customer has gas heating	
ELECHEAT	0,1	Υ	Customer has electric heating	
DUALHEAT	0,1	Y	Customer has dual heating	
HAWARE	0,1	Z	Customer is an HVAC part and became aware of the PG&E program	
			either before or at the same time the new equipment was selected	
LAWARE	0,1	Z	Customer is an lighting part and became aware of the PG&E program either before or at the same time the new equipment was selected	
			entre serve of at the same time the new equipment was selected	

C.8.2 Probit Estimation Results

The results of the probit estimation for each program are given in Exhibits C-22, C-23, and C-24.

Variable	Coefficient	Standard	Significance
Name	Estimate	Error	Level
ADDLIGHT	-0.21	0.17	22%
AVGUSE	0.00	0.00	1%
ADDCOOL	0.02	0.17	91%
ADDREF	-0.25	0.26	34%
ARCOOL	0.08	0.15	58%
ARLIGHT	-1.02	0.17	1%
ARREF	-0.34	0.27	22%
CCHGPGE	0.47	0.28	10%
LCHGPGE	-0.13	0.20	51%
COLLEGE	-0.36	0.31	24%
COMMSERV	-0.10	0.14	50%
GROCERY	-1.51	0.13	10%
HEALTH	-0.65	0.17	16%
HOTEL	-0.29	0.21	1%
MISCCOM	-1.17	0.15	8%
OFFICE	-0.22	0.12	2%
PERSONAL	-0.45	0.20	1%
RESTRNT	-1.17	0.14	1%
SCHOOL	-0.52	0.13	1%
RETAIL	-0.66	0.13	2%
WAREHSE	-0.39	0.17	2%
MEDCUST	0.41	0.08	1%
LARGCUST	0.58	0.10	1%
LIGHT95	-0.11	0.24	66%
COOL95	0.10	0.27	70%
HEAT95	0.34	0.27	21%
OTHER95	-0.36	0.25	14%
GASHEAT	0.18	0.10	6%
ELECHEAT	-0.06	0.11	60%
DUALHEAT	0.14	0.29	63%
HAWARE	-0.65	0.09	1%

Exhibit C-22 Lighting Program Probit Estimation Results

Variable	Coefficient	Standard	Significance
Name	Estimate	Error	Level
	0.13	0.24	59%
ADDLIGHT			3%
AVGUSE	0.00	0.00	20%
ADDCOOL	-0.33	0.26	84%
ADDREF	-0.09	0.46	<u>04%</u> 1%
ARCOOL	-0.71	0.26	
ARLIGHT	0.07	0.20	73%
ARREF	-0.30	0.53	58%
CCHGPGE	1.33	0.44	1%
LCHGPGE	0.56	0.24	2%
COLLEGE	-1.12	0.48	2%
COMMSERV	-0.50	0.23	3%
GROCERY	-2.16	0.24	1%
HEALTH	-0.37	0.24	11%
HOTEL	-0.39	0.3	19%
MISCCOM	-1.74	0.26	1%
OFFICE	-0.24	0.19	20%
PERSONAL	-0.70	0.29	2%
RESTRNT	-1.43	0.22	1%
SCHOOL	-0.70	0.20	1%
RETAIL	-1.07	0.21	1%
WAREHSE	-0.81	0.26	1%
MEDCUST	-0.13	0.12	25%
LARGCUST	-0.11	0.15	46%
LIGHT95	0.31	0.28	26%
COOL95	-0.63	0.55	25%
HEAT95	-0.26	0.44	56%
OTHER95	-0.11	0.36	75%
GASHEAT	0.62	0.16	1%
ELECHEAT	0.40	0.18	3%
DUALHEAT	0.33	0.43	45%
LAWARE	-0.79	0.12	1%

Exhibit C-23 HVAC Program Probit Estimation Results

Variable	Coefficient	Standard	Significance
Name	Estimate	Error	Level
ADDLIGHT	-0.08	0.32	80%
AVGUSE	0.00	0.00	62%
ADDCOOL	-0.06	0.33	86%
ADDREF	-0.16	0.27	56%
ARCOOL	-0.51	0.34	13%
ARLIGHT	-0.29	0.26	27%
ARREF	0.44	0.24	7%
CCHGPGE	0.66	0.62	29%
LCHGPGE	0.39	0.30	20%
COLLEGE	-0.66	0.60	23%
COMMSERV	-1.52	0.42	1%
GROCERY	-0.38	0.14	1%
HEALTH	-6.56	0.83	99%
HOTEL	-1.00	0.44	2%
MISCCOM	-1.00	0.23	1%
OFFICE	-1.09	0.24	1%
PERSONAL	-1.81	0.67	1%
RESTRNT	0.80	0.16	1%
SCHOOL	-0.85	0.23	1%
RETAIL	-0.90	0.21	1%
WAREHSE	-0.50	0.27	7%
MEDCUST	-0.33	0.14	2%
LARGCUST	-0.35	0.15	2%
LIGHT95	0.77	0.30	1%
COOL95	0.81	0.40	4%
HEAT95	0.21	0.41	60%
OTHER95	-0.32	0.52	54%
GASHEAT	-0.28	0.13	4%
ELECHEAT	-0.33	0.16	4%
DUALHEAT	0.16	0.46	73%
LAWARE	-0.86	0.21	1%
HAWARE	-1.48	0.36	1%

Exhibit C-24 Refrigeration Program Probit Estimation Results

In general, the estimation results conform to expectations. For the Lighting probit, customer size as reflected by energy use has a positive impact on program participation. In addition, those customers with gas heating and with a recent cooling equipment change are also more likely to participate. All of the building type variables have negative coefficient estimates, which reflects the fact that each building type has more nonparticipants than participants included in the sample. Finally, recent additions and removals in lighting equipment as well as changes in HVAC equipment have a negative effect on program participation.

For the HVAC probit, large customers based on average monthly electricity use tend to participate in the program. Recent changes in lighting and cooling due to PG&E programs also have a positive impact on program participation. As with the lighting model, all of the building types have negative coefficient estimates.

For the Refrigeration model, smaller customers tend to participate more relative to the mediumand large-sized customers. In addition, restaurants are more likely to participate in the program while other business types are less likely to participate. Recent changes in cooling and lighting equipment also tend to increase participation.

Upon estimation, the coefficient estimates are used to calculate the Inverse Mills Ratio for use in the net savings regression. The product of all of the independent variables and respective coefficient estimates are used in the following calculation

Mills Ratio = = $\phi(Q)/\Phi(Q)$ (for participants) = $-\phi(Q)/\Phi(-Q)$ (for nonparticipants) $Q = \alpha + \beta'X + \gamma'Y + \vartheta'Z$

where ϕ is the standard normal probability density function and Φ is the standard normal cumulative density function. Again, this Mills Ratio is used as a measure of the influence that unobserved factors have on program participation. In the following sections, the Mills Ratio is included in the net billing regression as an additional explanatory variable to correct for the problem of self-selection into the Lighting program.

C.8.3 Net Billing Model

The net billing regression analysis for the Commercial Program Evaluation uses a model specification similar to the baseline model used in the gross billing analysis, with three significant differences.

- Both participants and nonparticipants are used in the model.
- The engineering impact estimates are included as independent variables in the model. For nonparticipants, these values are all zero.
- The Mills Ratio is entered into the model in two ways. First, the three Mills Ratios, corresponding to each end use, are included as independent variables. Second, the three Mills Ratios are interacted with the total engineering impact estimate for each corresponding end use.

The resulting SAE coefficients on the energy impacts are then used to adjust the engineering estimates of expected annual energy impacts for the entire participant population to estimate the net ex post energy impacts. The net billing analysis model has the following functional form:

$$\begin{split} kWh_{post,i} &= \sum_{j} (\alpha_{j} + \beta_{j} kWh_{pre,i}) + \gamma (\Delta CDD_{i}) * kWh_{pre,i} + \phi (\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i} + \sum_{k} \eta_{k} Chg_{i,k} \\ &+ \sum_{m} (\rho_{m} Eng_{m,i}) + \delta_{1} Mills_{light,i} + \delta_{2} Mills_{HVAC,i} + \delta_{3} Mills_{refrig,i} + \delta_{4} Mills_{light,i} * Eng_{light,i} + \delta_{5} Mills_{HVAC,i} Eng_{HVAC,i} \\ &+ \delta_{6} Mills_{refrig,i} Eng_{refrig,i} + \varepsilon \end{split}$$

Where

 $kWh_{post,i}$ and $kWh_{pre,i}$ are customer i's annualized energy usage for the post- and preinstallation periods, respectively;

 Δ CDD_i and Δ HDD_i are the annual change of cooling and heating degree days (base 65°F) between the post-installation year and pre-installation year;

 $E e_{i_i}$ is an indicator variable (0/1) for the ith customer, which equals 1 if the customer has electric heating;

 $Chg_{i,k}$ are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees and square footage;

Eng_{mi} are the engineering impact estimates for technology m, customer i;

Mills Higher is the Mills Ratio for the Lighting end use for customer i;

Mills_{HVACi} is the Mills Ratio for the HVAC end use for customer i;

Mills refrige is the Mills Ratio for the Refrigeration end use for customer 1;

Englight, is the engineering estimate for all Lighting technologies for customer i;

Eng_{HVAC}, is the engineering estimate for all HVAC technologies for customer i;

Engrenizi is the engineering estimate for all Refrigeration technologies for customer i;

 α_{j} is the indicator variable (0/1) for the jth business type, which equals 1 if the customer is in that business type and 0 otherwise;

 β , γ and ϕ are the estimated slopes on their respective independent variables. Separate slopes on pre-usage are estimated by business type; and,

 ρ_m are the SAE coefficients for the engineering impact estimates for technology m;

 δ are the coefficients on the individual Mills ratios, and on the Mills ratios interacted with the engineering energy impacts;

 ϵ is the random error term of the model.

This model was run with the same set of 620 nonparticipants and 935 participants that were used in the gross billing analysis model. The results of the model are presented below. The parameter estimates, t-statistics and sample sizes are presented for all of the SAE coefficients and Mills ratios.

		Parameter		Sample
Parameter Descriptions	Units	Estimate	t-Statistic	Size
SAE Coefficients				
Lighting End Use				
Office Flourescents	kWh	-0.35	0.75	116
Other Flourescents	kWh	-0.70	1.40	261
Controls	kWh	-0.60	0.83	57
Warehouse HIDs	kWh	0.08	0.14	10
School HIDS	kWh	0.13	0.23	10
Other RE Lighting	kWh	-0.05	0.07	119
Customized Incentives Lighting	kWh	-0.47	0.92	15
HVAC End Use				
Central A/Cs	kWh	-3.64	3.41	184
ASDs	kWh	-2.53	2.40	27
Chillers	kWh	-1.85	1.76	5
EMS	kWh	-2.20	3.17	20
Other Customized Incentives HVAC	kWh	-1.31	1.60	5
Office Thermostats	kWh	-0.83	0.85	36
Other RE/REO HVAC	kWh	-1.70	1.75	153
Refrigeration				
Customized Incentives Refrigeration	kWh	5.78	2.08	3
RE/REO Refrigeration	kWh	4.72	2.02	181
Other End Uses	kWh			
Other	kWh	-2.18	3.94	62
Mills Ratios				
Single Mills				
Lighting	unitless	-3083	1.18	1555
HVAC	unitless	2980	1.08	1555
Refrigeration	unitless	4051	1.00	1555
Double Mills, Interacted with Impact				
Lighting	kWh	0.07	0.33	464
HVAC	kWh	0.54	1.56	368
Refrigeration	kWh	-1.92	2.21	183

Exhibit C-25 Net Billing Regression Analysis Final Model Outputs

It was found that there was a significant problem of multi-collinearity with the net billing model. The double Mills ratios (the Mills ratio interacted with the engineering energy impacts) were found to be extremely highly correlated with the corresponding engineering energy impacts. Exhibit C-26 below presents the correlation of estimates between the double Mills and the engineering energy impacts.

Exhibit C-26 Correlation Between Double Mills Ratios and Energy Impact Estimates

	Dou	ble Mills Rati	Ratios		
Parameter Descriptions	Lighting	HVAC	Refrigeratio		
Engineering Energy Impact Estimates					
Lighting End Use					
Office Flourescents	-0.99	-0.06	-0.014		
Other Flourescents	-0.98	-0.11	-0.0132		
Controls	-0.50	-0.04	-0.0121		
Warehouse HIDs	-0.91	-0.07	-0.0137		
School HIDS	-0.78	-0.06	-0.0109		
Other RE Lighting	-0.65	-0.09	-0.01		
Customized Incentives Lighting	-0.95	-0.06	-0.0061		
HVAC End Use					
Central A/Cs	-0.06	-0.85	-0.0035		
ASDs	-0.12	-0.96	-0.008		
Chillers	-0.05	-0.81	-0.004		
EMS	-0.08	-0.98	-0.008		
Other Customized Incentives HVAC	-0.10	-0.99	-0.0075		
Office Thermostats	-0.05	-0.87	-0.0054		
Other RE/REO HVAC	-0.09	-0.95	-0.0066		
Refrigeration					
Customized Incentives Refrigeration	-0.01	0.00	-0.9916		
RE/REO Refrigeration	-0.01	-0.01	-0.9936		
Other End Uses					
Other	0.07	-0.02	-0.003		

As a result of the multi-collinearity problem, the majority of the SAE coefficients in the net billing model are insignificant at the 95 percent confidence level. In addition, the high correlation between the double Mills Ratios and the engineering impact estimates results in relatively meaningless parameter estimates. For example, because the HVAC double Mills Ratio is 99 percent negatively correlated with the "other Custom HVAC" energy impact estimate, the SAE coefficient on the energy impact will tend to become more negative as the parameter estimate on the Mills Ratio becomes more positive. Therefore, because of the positive parameter estimate of 0.54 on the HVAC double Mills Ratio, we see the SAE coefficient on the "other Custom HVAC" energy impact being driven down to a value of -1.31 (from -.65 in the gross billing analysis). This would indicate a net ex post impact estimate that is twice as large as the gross ex post impact estimate. Conversely, the negative parameter on the Refrigeration double Mills Ratio is causing the SAE coefficient on the refrigeration energy impacts to become positive.

A number of alternative model specifications were implemented, however all suffered from the problem of multi-collinearity. Therefore, the results of the net billing analysis were not incorporated into the final net ex post energy impact estimates. *Appendix D* discusses the results of the net to gross analysis that was conducted to estimate the final net ex post energy impact estimates.

Appendix D Net-to-Gross Analysis

D. NET-TO-GROSS METHOD

In this appendix, the methods used to derive net-to-gross (NTG) results for the evaluation of PG&E's 1995 Commercial RE and Customized Incentives Programs are presented. After a brief discussion of data sources, estimates of free-ridership and spillover from participant self-reports are discussed.

D.1 DATA SOURCES

Data used in the NTG analysis include 236 telephone surveys from refrigeration end use participants and 201 telephone surveys from refrigeration end use nonparticipants surveyed in October 1996.

D.2 SELF-REPORT-BASED ESTIMATES OF FREE-RIDERSHIP

The RE and Customized Incentives participants surveyed installed or adopted the following measures. (Some participants installed more than one measure.)

Measure	N
Cooler or Freezer with Non-Electric Condensate Evaporator	165
Night Covers for Display Case	23
Strip Curtains for Walk-in Boxes	21
New Refrigeration Case with Glass or Acrylic Doors	10
Cooler or Freezer Door Gasket	16
Auto-Closer for Cooler or Freezer	6
Other Measures	13
Custom	6

Because free-ridership often varies by technology, results were calculated for each technology group. However, caution should be employed in interpreting the analysis results, given the small group sizes for some technology groups.

D.2.1 Methods for Scoring Free-Ridership

Multiple methods were used in scoring free-ridership. The methods used vary slightly from each other and elaborate on the technique described in the work plan. All of them use participant responses to survey questions regarding the timing of and reasons for equipment replacement actions. The complete text of the participant surveys may be found in *Appendix S-1*.

Six methods were used in this analysis. Each is described below.

Method 1 is the method described in the work plan. If the customer indicated that he had not been shopping for new refrigeration equipment before becoming aware of the program, he was scored initially as a net participant. A customer was then classified as a free-rider if he met the following two conditions: (1) stated that he would have installed high-efficiency equipment within the year and had already selected the equipment; and (2) stated that he would have purchased high-efficiency equipment if the program had not existed.

To be classified as a free-rider under *Method 2*; a customer must have: (1) stated that he became aware of the program *after* making an equipment selection; (2) stated that he had already decided to purchase high-efficiency equipment before becoming aware of the program; and (3) stated that he would have purchased high-efficiency equipment if the program had not existed. As a consistency check, if a customer indicated that he would not have replaced the equipment (an unprompted response), free-ridership was scored as "0" for the site. This method generates high NTG ratios because of the final condition that must be met in order to be scored as a free-rider. Most customers reported that they would not have replaced equipment and hence were scored as net participants.

With *Method 3*, if the customer stated that he would have purchased high-efficiency equipment if the program had not existed, he was scored as a free-rider. Additional questions were used to "override" this preliminary assignment. If he answered that he hadn't considered purchasing new equipment before becoming aware of the program or hadn't yet decided on equipment, then the site was rescored as a net participant. If the customer indicated that he had not been shopping but had been approached by a vendor/contractor, then free-ridership was set at "0." As a last check, information volunteered by customers was used to revert the customer back to free-ridership status, if appropriate.

Method 4 is identical to Method 3 except deferred free-riders¹ (PD500 = 3) are assigned a NTG ratio of "0.5."

Method 5 is similar to the method described in the work plan except additional questions are used to validate results. If the customer indicated that he had not been shopping for new refrigeration equipment before becoming aware of the program, he was scored initially as a net participant. A customer was then classified as a free-rider if he met the two conditions stated in Method 1. If the customer stated that the most important factor in his decision to install the equipment was the rebate, free-ridership was set to "0." However, if, when asked why he hadn't installed the equipment prior to participating, the customer stated that he was planning to, the site was scored as a free-rider.

Method 6 is similar to Methods 1 and 5, except that customers citing information and referral services associated with the program as the most important factor in deciding to install the equipment were scored as net participants. An opportunity to revert to free-ridership status was also allowed with this method.

D.2.2 Free-Ridership Results

NTG results weighted by avoided cost (AC) and calculated by subtracting the free-ridership rates obtained through each of the methods described above are presented in Exhibit D-1. Results are presented overall and by segment. Measures classified as "other" include glass or acrylic doors for low-temperature case, low-heat/no-heat refrigeration case doors, humidistat control, case lighting

¹ Deferred free-riders are those who were planning on installing energy-efficient equipment prior to becoming aware of the program but whose purchase was accelerated by the program.

electronic ballast, insulate bare suction line, multiplex compressor system, subcooler, and floating head pressure controller.

				RE Measure	5				
	New Cases	Nonelectric Condensate Evaporator	Auto- Closers	Night Covers	Strip Curtains	Gaskets	Other	Custom	Overall
N	10	165	6	23	21	16	13	6	260
% Avoided Cost	2.4%	1.6%	0.5%	0.5%	0.4%	0.2%	5.5%	85.8%	91.3%
Method 1	1.00	0.753	0.880	0.699	0.871	0.434	0.983	0.385	0.508
Method 2	1.00	0.806	1.00	0.753	0.893	0.703	0.995	0.719	0.782
Method 3	0.687	0.717	0.961	0.868	0.439	0.717	0.831	0.333	0.455
Method 4	0.687	0.687	0.927	0.771	0.646	0.661	0.822	0.359	0.471
Method 5	1.00	0.784	0.880	0.721	0.852	0.434	0.983	0.385	0.509
Method 6	1.00	0.737	0.880	0.691	0.852	0.434	0.983	0.385	0.507

Exhibit D-1 NTG Weighted by Avoided Cost

Overall, weighted NTG results range from a low of 0.455 for Method 3 to a high of 0.782 for Method 2. Results obtained using Method 1 (initially proposed in the workplan) were consistent with those from the other methods, and the Method 1 result of 0.508 overall NTG was used as the basis for subsequent adjustment for spillover.

D.3 SELF-REPORT-BASED ESTIMATES OF SPILLOVER

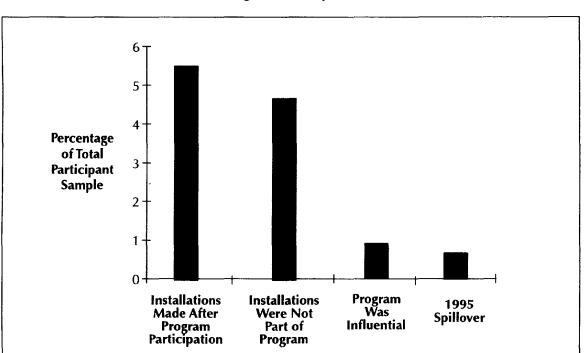
Refrigeration spillover can be defined as refrigeration efficiency improvements implemented outside the program but influenced by the program. Preliminary estimates of refrigeration spillover rates were generated by analyzing responses to a combination of questions asked of 236 participants and 201 nonparticipants.

D.3.1 Methods for Scoring Spillover

The integrated approach to estimating refrigeration spillover is summarized below.

All survey respondents were asked if they had installed refrigeration equipment outside the program since January 1993. Participants who answered "yes" to the first question were asked if these changes were made after participating in the program. Nonparticipants, and participants who said the changes were made after participation, were asked if they made the equipment changes through a PG&E program.

Participants who passed the first two screening questions and had not changed out refrigeration equipment through a PG&E program, and nonparticipants who passed the first two screening questions and were aware of the program at the time of equipment purchase, were asked how influential the program was in their decision. Those who said that the program had influenced their decision2 were included in the preliminary estimate of program spillover.

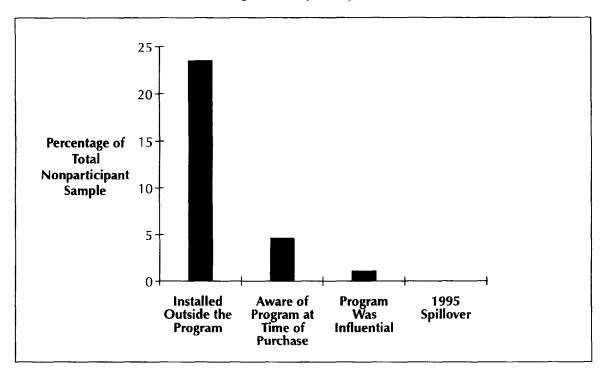

² "To what extent did participating in the program influence your additional equipment selection?" Values of 2, 3, 4, and 5 (slightly influential to very influential) were considered to demonstrate program influence on the purchase.

Survey-based estimates were applied to the refrigeration participant population and the refrigeration nonparticipant population along with estimates of impact per site, resulting in a final spillover impact.

It should be noted that this analysis provides a preliminary indication of spillover rates and more in-depth analysis is required to quantify spillover impacts.

D.3.2 Spillover Result – Participants

Results of the sequential analysis of survey responses to estimate a participant spillover rate of 0.42 percent are illustrated in Exhibit D-2.



Twenty-nine surveyed participants (12 percent of the total participant sample) reported that since January 1993 they had added refrigeration equipment. Forty-five percent of those participants who added equipment (6 percent of the total participant sample) added the equipment after participating in the program. Thirty-eight percent (5 percent of the total participant sample) did not install the equipment through the program. Two of these respondents (0.85 percent of the total participant sample) reported the program influenced their additional refrigeration equipment installations. Of these two, one installed additional refrigeration in 1995. One of 236 participants yields an initial unweighted spillover rate of 0.42 percent for 1995.

D.3.3 Spillover Results-Nonparticipants

Results of the sequential analysis of survey responses to estimate nonparticipant spillover are illustrated in Exhibit D-3.

Exhibit D-3 Refrigeration Spillover Indicators Program Nonparticipants

Fifty of 201 program nonparticipants reported making refrigeration changes outside the program, of which 47 respondents confirmed their installations were not done through the program. Nine respondents (4 percent of the total nonparticipant sample) reported they were aware of the program before they purchased the equipment. Of these 9, 2 respondents reported their knowledge of the program was influential on their equipment selection. Neither of these 2 respondents installed their refrigeration equipment in 1995, indicating there was no 1995 program spillover within the nonparticipant sample, according to our definition.

Because the levels of self-reported spillover were low for participants and nonexistent for nonparticipants, it was decided not to apply a correction for spillover. One minus the self-reported rate of free-ridership (0.508) was therefore used as the self-reported NTG ratio for Refrigeration overall, with the corresponding measure-specific NTG ratios used for individual technologies.

Appendix E Results Tables

Commercial Refrigeration Ex Ante Gross Energy Impacts By Business Type and Technology Group

Business Type						MDSS Gree	ss Energy 1	mpacts (kV	Vh)		ita taka ta 126 ya		
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program	<u> </u>	·			· · · ·								
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	- 1	44,521	-	-	-	-	-	-	- 1	44,521
Heatless Door	-	-	-	-	S5,595	-	-	-	•	-	-	-	55,595
Cooler/Freezer Door Gaskets	-	23,194	-	-	66,147	30,926	-	-	-	-	-	- 1	120,267
Auto Closer for Cooler/Freezer	-	55,457		-	70,756	1,912	-	1,912	-	-	-	•	130,038
Medium Temperature Case w/ Door	1,718	8,018	•		144,378	4,582	-	-	•	-		-	158,695
Strip Curtains for Walk-in	531	983		1,781	34,162	2,954	-	-	18,272	-	-	215,799	274,483
Low Temperature Case w/ Door	-	-		-	354,537	-	-	-	8,904	-	-	-	363,441
Night Covers for Display Cases	-	10,916		-	369,671	3,184	-	-	-	-	-		383,771
Compressor Upgrades			· · · · · · · · · · · · · · · · · · ·	1		·		1				i	·
Mechanical Subcooler	-	-		-	8,570	-	-	-		-	-	-	8,570
Multiplex Compressor System	-	-	-	-	180,060		-	-		-	-	7,550	187,610
Adjustable Speed Drive			-	-		· ·	-	-	5,764	-	-		5,764
Floating Head Pressure Controls			•		· ·	-	-	-		•	-	863,286	863,286
Condenser Upgrades			L	1	1		L	1	l	L	L		·
Oversized Air-Cooled Condenser	-	-		-	34,551	-	-			-	-		34,551
Oversized Evaporative Condenser	-	-	-	-	-		-			-	-	542,614	542,614
Evaporator Upgrades				L	1	1	L		·	L	l	۰	•
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	12,482	l .	-	· ·			-	13,869	26,352
Display PSC Evaporator Motor	-	-	-	-	28,723	-	-	-		-	-		28,723
Other				L		J	L	L			L	L	L
Anti-Sweat Heater Control	-	- 1	-		31,020	-	-	1.	•	-	-	- 1	31,020
Suction Line Insulation	-		-	-	50,331	239	-	-	8,313	-	-	3,001	61,885
Display Case Electronic Ballast	8,546	37,835	-	-	66,832	· ·	-	-	4,236	-	-		117,448
Non-Electric Condensate Evaporator	22,324	12,557	4,186	4,186	111,618	389,269	2,790	8,371	8,371	1,395	30,695	4,004	599,768
Retrofit Express Total	33,119	148,960	4,186	5,967	1,663,953	433,066	2,790	10,284	53,862	1,395	30,695	1,650,125	4,038,402
Customized Incentives Program					•			•				• • • • • • • • • • •	
Compressor Upgrades									.				
Floating Head Pressure Controls	-	-	-	-	85,673	-	-	•	-	-	-	-	85,673
Booster Desuperheaters	-	-	-	-	107,048		-	-	-	-	-	•	107,048
Condenser Upgrades													
Oversized Condensers	-	-	-	-	244,994	-	-		-	-	-	-	244, 9 94
Other													
Refrigeration EMS	-	-	-	-	3,551,579	-	-	-	-	-	-	1,427,795	4,979,374
Refrigeration Add/Change	484,156	-	•	-	-	-	-	-	213,119		-	1,272,871	1,970,146
Refrigeration Other	-	-	-	-	11,021,897	•	•	-	-	-	-	165,042	11,186,939
Customized Incentives Total	484,156	•	-	-	15,011,191	•	-	-	213,119	-	-	2,865,708	18,574,174
Total	517,275	148,960	4,186	5,967	16,675,144	433,066	2,790	10,284	266,981	1,395	30,695	4,515,833	22,612,576

Commercial Refrigeration Ex Ante Net Energy Impacts By Business Type and Technology Group

Business Type						MDSS Net	Energy Im	pacts (kWh			<u> </u>		·
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program	Γ												
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	28,939	•	-	-	-	-	-	-	28,939
Heatless Door	-	-	-	-	36,137	-	-	-	-	-	-	-	36,137
Cooler/Freezer Door Gaskets	-	17,396	-	-	47,033	21,476	-	-	•	-	-	-	85,905
Auto Closer for Cooler/Freezer	-	41,593	-	-	47,712	1,434	-	1,434	•	-	•	-	92,174
Medium Temperature Case w/ Door	1,117	5,212	•	-	93,845	2,978	-	-	•	-		•	103,152
Strip Curtains for Walk-in	345	639	-	1,158	22,205	1,920		-	11,877	-	•	140,269	178,414
Low Temperature Case w/ Door	-	•	•	-	230,449	-	-	-	5,788	-	-	•	236,237
Night Covers for Display Cases	-	7,096	-	-	240,286	2,070	-	-	-	-	-	-	249,451
Compressor Upgrades													
Mechanical Subcooler	-	•	-	-	5,570	-	-	-	•	-		-	5,570
Multiplex Compressor System	-	-	-	-	117,039	-	-	-			-	4,907	121,946
Adjustable Speed Drive	-	•	-	-	•	•	-	-	3,747		•	•	3,747
Floating Head Pressure Controls	-	-	-	-	-		-	•	-	-	•	561,136	561,136
Condenser Upgrades													•
Oversized Air-Cooled Condenser	-	-	-	- 1	22,458	-	-	-	-		· ·	-	22,458
Oversized Evaporative Condenser	-		-	-	-			-	-		-	352,699	352,699
Evaporator Upgrades		A		.					·			.	h
Walk-in Cooler PSC Evaporator Motor	•	-		-	8,114		-	-	-	· ·		9,015	17,129
Display PSC Evaporator Motor	-		-	-	18,670	•	-	-			-	· ·	18,670
Other		dea		L	4	(L	· · · · ·			<u> </u>	
Anti-Sweat Heater Control	-	-	-	-	20,163	-	-	-	· ·	-	-	-	20,163
Suction Line Insulation		-	-		32,715	155	-	-	5,404	-	-	1,951	40,225
Display Case Electronic Ballast	5,555	24,593	-	-	43,441	-	-	-	2,754	-	-	-	76,341
Non-Electric Condensate Evaporator	16,185	9,418	3,139	3,139	78,691	275,767	1,953	5,999	5,581	1,046	21,905	2,742	425,567
Retrofit Express Total	23,201	105,945	3,139	4,297	1,093,467	305,801	1,953	7,434	35,150	1,046	21,905	1,072,720	2,676,059
Customized Incentives Program													
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	64,255	-	-	-	-	-	-	-	64,255
Booster Desuperheaters	-	-	-		80,286	-	-	•	-	-		-	80,286
Condenser Upgrades				•									
Oversized Condensers	•	-	•		183,746	-	•	-	-	-	-	-	183,746
Other		·····		•	·	*****		·					
Refrigeration EMS	-	-	-	-	2,663,684	•	-	-	- 1	-	-	1,070,846	3,734,531
Refrigeration Add/Change	363,117		-	-	-	-	-		159,839		- 1	954,653	1,477,610
Refrigeration Other	-		•	-	8,266,423	-	-	-	•	-	- 1	123,782	8,390,205
Customized Incentives Total	363,117		-	-	11,258,394	-	-	-	159,839	-	<u> </u>	2,149,281	13,930,632
Total	386,318	105,945	3,139	4,297	12,351,861	305,801	1,953	7,434	194,989	1,046	21,905	3,222,001	16,606,690

Commercial Refrigeration Unadjusted Engineering Gross Energy Impacts By Business Type and Technology Group

Business Type	<u> </u>				First-Ye	ar Unadjust	ed Gross E	nergy Impa	cts (kWh)				
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-		-	88,380	-	-	· ·	- 1		-	•	88,380
Heatless Door	-	-	-		38,734	-	-	-	- 1	-	-	•	38,734
Cooler/Freezer Door Gaskets	-	56,457	-		161,007	75,276	-	-	-		-	-	292,740
Auto Closer for Cooler/Freezer	-	102,515	-	-	130,795	3,535	-	3,535	•	-	-	•	240,380
Medium Temperature Case w/ Door	2,418	11,284	-	-	203,193	6,448	-	-	-	-	-	-	223,343
Strip Curtains for Walk-in	6,678	12,352	-	22,388	429,386	37,133	-		229,670	-	-	2,712,422	3,450,029
Low Temperature Case w/ Door	-	-			703,799	-	-		17,676	•	-	-	721,475
Night Covers for Display Cases	-	13,114	-	-	444,087	3,825	-			-	-		461,025
Compressor Upgrades		•	.	·		•		L	•		· · · · - ·		
Mechanical Subcooler	-	- 1	-	-	10,320		-	· 1	-	-	-	-	10,320
Multiplex Compressor System	-	-	-	-	200,912			-	· ·	-	· ·	8,424	209,336
Adjustable Speed Drive	-		-	-	-	•	-	-	7,710	-	-		7,710
Floating Head Pressure Controls	-	-	-					· ·	-	-		1,040,522	1,040,522
Condenser Upgrades		h				L			L		·	•	M
Oversized Air-Cooled Condenser	-	-	-	-	41,850		•		- 1	•		-	41,850
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	- 1	-		659,123	659,123
Evaporator Upgrades			L	• • • • • • • • • • • • • • • • • • • •					L4				******
Walk-in Cooler PSC Evaporator Motor	-	-	•		15,039	-	-	-	· ·	-	•	16,710	31,749
Display PSC Evaporator Motor	-	-	-		34,669	-	-	-	•		-	-	34,669
Other								·	•••••••••••••••••••••••••••••••••••••••				
Anti-Sweat Heater Control		-	-	-	51,737	-		· ·	-	-	-		51,737
Suction Line Insulation	· ·	-	-	-	61,815	294	-		10,210	•		3,686	76,005
Display Case Electronic Ballast	11,934	52,836	•	-	93,330		-		5,916	-	-	-	164,016
Non-Electric Condensate Evaporator	26,896	15,129	5,043	5,043	134,480	468,999	3,362	10,086	10,086	1,681	36,982	5,043	722,830
Retrofit Express Total	47,926	263,687	5,043	27,431	2,843,533	595,510	3,362	13,621	281,268	1,681	36,982	4,445,929	8,565,972
Customized Incentives Program	[
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	•	85,673	-		-	· ·	-	-	-	85,673
Booster Desuperheaters			-	-	147,887	-	-	-	-	-	-	-	147,887
Condenser Upgrades													
Oversized Condensers		· ·	-	-	244,994	-	-	-	- 1	-	-	-	244,994
Other													
Refrigeration EMS	-	-	-	-	3,742,294	-	-		·]	-	-	527,473	4,269,767
Refrigeration Add/Change	484,156	-	-	-	•		-		175,202	•	-	903,671	1,563,029
Refrigeration Other	-	-	-	-	11,729,547	-	•	-	-	-	-	165,042	11,894,589
Customized Incentives Total	484,156	0	0	0	15,950,395	0	0	0	175,202	0	0	1,596,186	18,205,939
Total	532,082	263,687	5,043	27,431	18,793,928	595,510	3,362	13,621	456,470	1,681	36,982	6,042,115	26,771,911

Commercial Refrigeration Gross Energy Impact SAE Coefficients By Business Type and Technology Group

Rusinges Tran	e SAE Coefficients												
Business Type	<u> </u>					SAE	Coemc	ients				[]	
Program and Technology	Office	Retail	College/ University	school	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	[otal
Retrofit Express Program				<u> </u>				<u> </u>					
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Heatless Door	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Cooler/Freezer Door Gaskets	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Auto Closer for Cooler/Freezer	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Medium Temperature Case w/ Door	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Strip Curtains for Walk-in	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Low Temperature Case w/ Door	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Night Covers for Display Cases	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Compressor Upgrades										•			
Mechanical Subcooler	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Multiplex Compressor System	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Adjustable Speed Drive	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Floating Head Pressure Controls	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Condenser Upgrades											.		
Oversized Air-Cooled Condenser	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Oversized Evaporative Condenser	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Evaporator Upgrades													
Walk-in Cooler PSC Evaporator Motor	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Display PSC Evaporator Motor	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Other													
Anti-Sweat Heater Control	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Suction Line Insulation	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Display Case Electronic Ballast	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Non-Electric Condensate Evaporator	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Retrofit Express Total							<u></u>						
Customized Incentives Program													
Compressor Upgrades													
Floating Head Pressure Controls	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Booster Desuperheaters	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Condenser Upgrades													
Oversized Condensers	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Other	L	0				0							
Refrigeration EMS	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Refrigeration Add/Change	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Refrigeration Other	0.75	_0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Customized Incentives Total				·									
Total	x	and the s					ba gin di la			ي الم	te in the first	2 . i	

Commercial Refrigeration Ex Post Gross Energy Impacts By Business Type and Technology Group

Business Type					Fi	rst-Year Gr	oss Energy	Impacts (k	Wh)				
Program and Technology	Office	Retail	College/ Jniversity	chool	Grocery	Restaurant	Health Care	1otel/Motel	Narehouse	Personal Service	Community Service	Misc.	fotal
Retrofit Express Program		ii		L									
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door				. I	46.454	- 1		<u> </u>			r . –	1.1	46,454
Heatless Door	-		-	<u> </u>	20,359			-		-	-	- 1	20,359
Cooler/Freezer Door Gaskets	-	29,675	-		84,628	39,566	-	-		-	-		153,86
Auto Closer for Cooler/Freezer	-	53,883	-	· .	68,748	1,858	-	1,858		-	-	- 1	126,34
Medium Temperature Case w/ Door	1,271	5.931	-	<u> </u>	106,801	3.389	-		-	-		<u> </u>	117,39
Strip Curtains for Walk-in	3,510	6,492	-	11,767	225,692	19.518	-	-	120,718	-	-	1,425,690	1,813,31
Low Temperature Case w/ Door			-		369,928		•	-	9,291		-		379,21
Night Covers for Display Cases		6,893	-	-	233,419	2,010	-	-	-	-	-	-	242,32
Compressor Upgrades		L		1		L		1	I I		•		
Mechanical Subcooler		-	-	<u> </u>	5,424	-	-	-	- 1	-	- 1	- 1	5,424
Multiplex Compressor System		•	•		105,603	-	-	-	-	•	-	4,428	110,03
Adjustable Speed Drive	-	•			-		•		4,052	-	-		4,052
Floating Head Pressure Controls		-	-	· · ·			-	-	-		· · ·	546,914	546,91
Condenser Upgrades				L	L	1		I	L		1		
Oversized Air-Cooled Condenser	-	-	-	-	21,997	· ·	-		-	-	-	-	21,997
Oversized Evaporative Condenser	-	-	-	-	-	· ·	-		-	-		346,445	346,44
Evaporator Upgrades				L	L	L		L	L		L	ł	L
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	7,905	· ·	-	-	- 1		-	8,783	16,68
Display PSC Evaporator Motor	-		-	-	18,223	-	-	-	- 1	-	-		18,22
Other				•	·	L					•	1	I
Anti-Sweat Heater Control	-	-	-	-	27,194	-	-	- 1	-	-	-	<u> </u>	27,19
Suction Line Insulation	-	-	-	-	32,491	154	-	-	5,367	-	-	1,937	39,94
Display Case Electronic Ballast	6,273	27,771	-	-	49,056		-		3,110		-	· ·	86,20
Non-Electric Condensate Evaporator	14,137	7,952	2,651	2,651	70,685	246,513	1,767	5,301	5,301	884	19,438	2,651	379,93
Retrofit Express Total	25,191	138,598	2,651	14,418	1,494,604	313,009	1,767	7,159	147,839	884	19,438	2,336,847	4,502,4
Customized Incentives Program								•					
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	64,488	-	-	-	-	-	-	-	64,484
Booster Desuperheaters	•	•		•	111,318	•	-	•		-	•	· ·	111,31
Condenser Upgrades					*****								
Oversized Condensers	-	-	-	-	184,412	· ·	-		-	-	- 1	-	184,41
Other													
Refrigeration EMS	•	-	-	-	2,816,899	· ·	-	-	- 1	-	· .	397,039	3,213,9
Refrigeration Add/Change	364,434	-	-	-	-	-	-	-	131,878	-	-	680,211	1,176,5
Refrigeration Other	•	-	-	-	8,829,065	-	-	-	-	-	· · ·	124,230	8,953,2
Customized Incentives Total	364,434	0	0	0	12,006,181	0	0	0	131,878	0	0	1,201,481	13,703,9
Total	389,624	138,598	2,651	14,418	13,500,785	313,009	1,767	7,159	279,717	884	19,438	3,538,328	18,206,3

Commercial Refrigeration Net-to-Gross Adjustments By Business Type and Technology Group

During Tay										e Net-to-Gross Adjustments											
Business Type						et-to-G	ross Ad	ustmen	its												
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total								
Retrofit Express Program																					
Refrigeration Load Reduction																					
Low Temperature Glass/Acrylic Door	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	أككت								
Heatless Door	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Cooler/Freezer Door Gaskets	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43									
Auto Closer for Cooler/Freezer	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88									
Medium Temperature Case w/ Door	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00									
Strip Curtains for Walk-in	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87									
Low Temperature Case w/ Door	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00									
Night Covers for Display Cases	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70									
Compressor Upgrades								·													
Mechanical Subcooler	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Multiplex Compressor System	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Adjustable Speed Drive	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Floating Head Pressure Controls	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Condenser Upgrades .								L													
Oversized Air-Cooled Condenser	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Oversized Evaporative Condenser	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Evaporator Upgrades		L				L	L	L				·									
Walk-in Cooler PSC Evaporator Motor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Display PSC Evaporator Motor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Other		· · · · · ·						,													
Anti-Sweat Heater Control	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Suction Line Insulation	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Display Case Electronic Ballast	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98									
Non-Electric Condensate Evaporator	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75									
Retrofit Express Total			· . ·				ingen. Anter des la														
Customized Incentives Program																					
Compressor Upgrades																					
Floating Head Pressure Controls	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39									
Booster Desuperheaters	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39									
Condenser Upgrades			-	-			-														
Oversized Condensers	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39									
Other							-		-												
Refrigeration EMS	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39									
Refrigeration Add/Change	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39									
Refrigeration Other	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39									
Customized Incentives Total						2															
Total	alate direct	an mining									·										

Commercial Refrigeration Ex Post Net Energy Impacts By Business Type and Technology Group

Business Type					F	irst-Year N	et Energy	Impacts (k	Wh)				
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	45,664	-	-	-	-	-	-	-	45,664
Heatless Door		-	-	-	20,013	-	-	-		-	-	-	20,013
Cooler/Freezer Door Gaskets	-	12,879	•		36,728	17,172	•		-	•	t -	-	66,77 9
Auto Closer for Cooler/Freezer	•	47,417	-	-	60,498	1,635		1,635	-	-	-	-	111,186
Medium Temperature Case w/ Door	1,271	5,931		-	106,801	3,389	-		-	-	-	-	117,392
Strip Curtains for Walk-in	3,057	5,655	-	10,249	196,578	17,000	-		105,145	-	-	1,241,776	1,579,460
Low Temperature Case w/ Door	-	-	-	-	369,928	-	•	•	9,291	-	-	-	379,218
Night Covers for Display Cases	-	4,818	-	-	163,160	1,405			-	-	-	-	169,383
Compressor Upgrades									<u></u>				
Mechanical Subcooler	-	-		-	5,332	-	-		-	-	- T	-	5,332
Multiplex Compressor System			-	-	103,807	•				-	-	4,353	108,160
Adjustable Speed Drive	-		-	-	-				3,984	-		-	3,984
Floating Head Pressure Controls	-	-	•	-	-	-	-	-	-	-	-	537,616	537,616
Condenser Upgrades			.					<u></u>	L		•···	· · · · · · · · · · · · · · · · · · ·	#
Oversized Air-Cooled Condenser	-		-	-	21,623	-	-	-	-	-	- 1		21,623
Oversized Evaporative Condenser	-	-	-	-	-		-		-	•	-	340,555	340,555
Evaporator Upgrades			L					•	·		4	L	n
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	7,770		-		-	-	- 1	8,634	16,404
Display PSC Evaporator Motor	•	-	-	-	17,913	-	-	-	-		1 -	-	17,913
Other							L		•			.	•
Anti-Sweat Heater Control	-	-	-	-	26,731	-	-	-	-	-	-	-	26,731
Suction Line Insulation	-	-		-	31,938	152	-	· ·	5,275	-	-	1,905	39,270
Display Case Electronic Ballast	6,166	27,299		-	48,222	-	-	-	3,057		-	-	84,744
Non-Electric Condensate Evaporator	10,645	5,988	1,996	1,996	53,226	185,624	1,331	3,992	3,992	665	14,637	1,996	286,088
Retrofit Express Total	21,139	109,987	1,996	12,245	1,315,932	226,377	1,331	5,627	130,744	665	14,637	2,136,834	3,977,515
Customized Incentives Program													
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	24,828	-	-	· ·	-	-	-		24,828
Booster Desuperheaters	-	-		-	42,857	-	-	•	-	-	-	-	42,857
Condenser Upgrades													
Oversized Condensers		-	-	-	70,999	-	-	· ·	-	-	-	-	70,999
Other													
Refrigeration EMS	-	-	-	-	1,084,506	-			-		•	152,860	1,237,366
Refrigeration Add/Change	140,307	-	-	-	-	•	-		50,773	-	-	261,881	452,961
Refrigeration Other	-	-	-	-	3,399,190	•	-		-	-	-	47,829	3,447,019
Customized Incentives Total	140,307	0	0	0	4,622,380	0	0	0	50,773	0	0	462,570	5,276,030
Total	161,446	109,987	1,996	12,245	5,938,312	226,377	1,331	5,627	181,517	665	14,637	2,599,404	9,253,545

Commercial Refrigeration Gross Energy Impact Realization Rates By Business Type and Technology Group

Business Type													
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-		-	-	1.04	-	-	-	-	-	-	-	1.04
Heatless Door	-	-	-	-	0.37	-	-	-	-	-	-	-	0.37
Cooler/Freezer Door Gaskets	-	1.28	-	•	1.28	1.28	-	-	-	-	-	-	1.28
Auto Closer for Cooler/Freezer	-	0.97	-	-	0.97	0.97	-	0.97	-	-	-	-	0.97
Medium Temperature Case w/ Door	0.74	0.74	-	-	0.74	0.74	-	-	-	-	-	-	0.74
Strip Curtains for Walk-in	6.61	6.61	-	6.61	6.61	6.61	-	-	6.61	-	-	6.61	6.61
Low Temperature Case w/ Door	-	•	-	-	1.04	-	-	-	1.04	-	-	-	1.04
Night Covers for Display Cases	-	0.63	•	-	0.63	0.63	-	-	-	-	-	-	0.63
Compressor Upgrades							•				•		
Mechanical Subcooler	-	-	-	-	0.63	-	-	-	-	-	-	-	0.63
Multiplex Compressor System	-	-	•	-	0.59	-	-	-	-	-	-	0.59	0.59
Adjustable Speed Drive	-	-	-	-	-	-	-	-	0.70	-	-	-	0.70
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	0.63	0.63
Condenser Upgrades		L				.			•	•		1	
Oversized Air-Cooled Condenser	-	-	-	-	0.64	-	-	-	-	-	-	-	0.64
Oversized Evaporative Condenser	-		-	-		-	-	-	-	-	-	0.64	0.64
Evaporator Upgrades		<u> </u>					/_		*****	•	1	_	
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	0.63	-	<u> </u>	-	-	-	- 1	0.63	0.63
Display PSC Evaporator Motor	-	-	-	-	0.63	-	-	-	-	-	-	-	0.63
Other	· · · · · ·			,			1	L	k		1	<u> </u>	
Anti-Sweat Heater Control	-	-	-	-	0.88	-	-	-	-	-	-	-	0.88
Suction Line Insulation	-	-	-	-	0.65	0.65	-	-	0.65	-	-	0.65	0.65
Display Case Electronic Ballast	0.73	0.73	-	-	0.73	-	-		0.73	-	-	-	0.73
Non-Electric Condensate Evaporator	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.66	0.63
Retrofit Express Total	0.76	0.93	0.63	2.42	0.90	0.72	0.63	0.70	2.74	0.63	0.63	1.42	1.11
Customized Incentives Program												<u>. </u>	
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	0.75	-	-	_	-	-	-	-	0.75
Booster Desuperheaters	-	-	-	-	1.04	-	-	-	-	-	-	-	1.04
Condenser Upgrades												<u></u>	u
Oversized Condensers	- 1	-	-	-	0.75	-	-		-	-	-	-	0.75
Other	h				L	·			L			L	u
Refrigeration EMS	-		-	-	0.79	-	-	-	-	-	-	0.28	0.65
Refrigeration Add/Change	0.75	-	-	-	-	-	-		0.62	-	-	0.53	0.60
Refrigeration Other	-	-	-	-	0.80	-	-	-	-	-	-	0.75	0.80
Customized Incentives Total	0.75	-	-	-	0.80	-	-	-	0.62	-	<u> </u>	0.42	0.74
Total	0.75	0.93	0.63	2.42	0.81	0.72	0.63	0.70	1.05	0.63	0.63	0.78	0.81

Commercial Refrigeration Net Energy Impact Realization Rates By Business Type and Technology Group

Business Type													
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction	1												
Low Temperature Glass/Acrylic Door	-	-	-	-	1.58	-	-	-	-	-	-	-	1.58
Heatless Door	-	-	-	-	0.55	-	-	-	-	-	-	-	0.55
Cooler/Freezer Door Gaskets	-	0.74	-	-	0.78	0.80	-	-	-	-	-	-	0.78
Auto Closer for Cooler/Freezer	-	1.14	-	-	1.27	1.14	-	1.14	-	-	-	-	1.21
Medium Temperature Case w/ Door	1.14	1.14	-	-	1.14	1.14	-	-	-	-	-	-	1.14
Strip Curtains for Walk-in	8.85	8.85	-	8.85	8.85	8.85	-	-	8.85	-	-	8.85	8.85
Low Temperature Case w/ Door	-	-	-	-	1.61	-	-	-	1.61	-	-	-	1.61
Night Covers for Display Cases	- 1	0.68	-	-	0.68	0.68	-	-	-	-	-	-	0.68
Compressor Upgrades				•									
Mechanical Subcooler	- 1	-	-	-	0.96	-	-	-	-	-	-	-	0.96
Multiplex Compressor System	-	- 1	-	-	0.89	-	-	-	-	-	-	0.89	0.89
Adjustable Speed Drive	-	-	-	-	-	-	-	-	1.06	-	-	-	1.06
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	0.96	0.96
Condenser Upgrades			•	•			4	L					
Oversized Air-Cooled Condenser	- 1	-	-	-	0.96	- 1	-	-	-	-	-	-	0.96
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	-	-	-	0.97	0.97
Evaporator Upgrades										•	•	•	
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	0.96	-	-	-	-	-	-	0.96	0.96
Display PSC Evaporator Motor	- 1	-	-	-	0.96	-	-	-	-	-	-	-	0.96
Other	ļ		•	.	A							L	
Anti-Sweat Heater Control		-	-	-	1.33	-	-	-	-	-	-	-	1.33
Suction Line Insulation	- 1	-	-	-	0.98	0.98	-	-	0.98	-	-	0.98	0.98
Display Case Electronic Ballast	1.11	1.11	-	-	1.11	-	-	-	1.11	-	-	-	1.11
Non-Electric Condensate Evaporator	0.66	0.64	0.64	0.64	0.68	0.67	0.68	0.67	0.72	0.64	0.67	0.73	0.67
Retrofit Express Total	0.91	1.04	0.64	2.85	1.20	0.74	0.68	0.76	3.72	0.64	0.67	1.99	1.49
Customized Incentives Program		<u> </u>											
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	0.39	-	-	-	-	-	-	-	0.39
Booster Desuperheaters	-	-	-	-	0.53	-	-	-	•	-	-	-	0.53
Condenser Upgrades				<u> </u>							I.,		
Oversized Condensers	-	-	-	-	0.39	-	-	-	-	-	-	-	0.39
Other			•							<u> </u>			
Refrigeration EMS	-	-	-	-	0.41	-	-	-	-	-	-	0.14	0.33
Refrigeration Add/Change	0.39	-	-	-	-	-	-	-	0.32	-	-	0.27	0.31
Refrigeration Other	-	-	-	-	0.41	-	-	-	-	-	-	0.39	0.41
Customized Incentives Total	0.39	-	-	-	0.41	-	-	-	0.32	-	-	0.22	0.38
Total	0.42	1.04	0.64	2.85	0.48	0.74	0.68	0.76	0.93	0.64	0.67	0.81	0.56

Commercial Refrigeration Ex Ante Gross Demand Impacts By Business Type and Technology Group

Business Type													
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	5	-	-	-	-	-	-	-	5
Heatless Door	-	-	-	-	3	-	-	-	-	-	-	-	3
Cooler/Freezer Door Gaskets	-	3	-	-	7	3	-	-	-	-	-	-	14
Auto Closer for Cooler/Freezer	-	19	-	-	24	1	-	1	-	-	-	-	44
Medium Temperature Case w/ Door	0	1	-	-	17	1	-	-	-	-	-	-	18
Strip Curtains for Walk-in	0	0	-	0	4	0	-	-	2	-	-	28	36
Low Temperature Case w/ Door	-	-	-	-	41	-	-	-	1	-	-	-	42
Night Covers for Display Cases	-	-	-	-	-	-	-	-	-	-	-	-	0
Compressor Upgrades					Å	1	L				I		
Mechanical Subcooler	-	-	-	-	6	-	-	-	-	-	-	-	6
Multiplex Compressor System	-	-	-	-	54	-	-	-	-	-	-	2	56
Adjustable Speed Drive	-	-	-	-	-	-	-	-	-	-	-	-	0
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	-	0
Condenser Upgrades		L	L					L	I	I	L	L	u
Oversized Air-Cooled Condenser	-	-	-	-	5	-	-	-	-	-	-	-	5
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	-	-	-	117	117
Evaporator Upgrades					1					L	l	L	u
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	1	-	-	-	-	-	-	1	1
Display PSC Evaporator Motor	-	-	-	-	1	-	-	-	-	-	-	-	1
Other					L	(L	I	L			и
Anti-Sweat Heater Control	-	-	-	-	2	-	-	-	-	-	-	-	2
Suction Line Insulation	-	-	-	-	-	-	-	-	-	-	-	-	0
Display Case Electronic Ballast	1	4	-	-	6	-	-	-	0	-	-	-	11
Non-Electric Condensate Evaporator	2	1	0	0	8	28	0	1	1	0	2	0	44
Retrofit Express Total	3	27	0	1	185	34	0	1	4	0	2	148	405
Customized Incentives Program										• <u>••••</u> •••		L	
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	-	0
Booster Desuperheaters	-	-	-	-	-	-	-	-	-	-	-	-	0
Condenser Upgrades												I	Ш.,
Oversized Condensers	-	-	-	-	30	-	-	-	-	-	-	-	30
Other		L	L		L		,					L	u
Refrigeration EMS	-	-	-	-	85	-	-	-	-	-	-	85	170
Refrigeration Add/Change		-	-	_	-		-	-	9	-	-	369	378
Refrigeration Other	-	-	-	-	532	-	_	-	-	-	-		532
Customized Incentives Total	0	0	0	0	647	0	0	0	9	0	0	454	1,110
Total	3	27	0	1	832	34	0	1	14	0	2	602	1,515

Commercial Refrigeration Ex Ante Net Demand Impacts By Business Type and Technology Group

Business Type					First	-Year D	Demand	Impacts	s (kW)				
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	3	-	-	-	-	~	-	-	3
Heatless Door	-	-	-	-	2	-	-	-	-	-	-	-	2
Cooler/Freezer Door Gaskets	-	2	-	-	5	2	-	-	-	-	-	-	10
Auto Closer for Cooler/Freezer	-	14	-	-	16	0	-	0	-	-	-	-	31
Medium Temperature Case w/ Door	0	1	-	-	11	0	-	-	-	-	-	-	12
Strip Curtains for Walk-in	0	0	-	0	3	0	-	-	2	-	-	18	23
Low Temperature Case w/ Door	-	-	-	-	26	-	-	-	1	-	-	-	27
Night Covers for Display Cases	-	-	-	-	-	-	-	-	-	-	-	-	-
Compressor Upgrades		<u> </u>			L		L			•			
Mechanical Subcooler	-	-	-	-	4	-	-	-	-	-	-	-	4
Multiplex Compressor System	-	-	-	-	35	-	-	-	-	-	-	1	36
Adjustable Speed Drive	-	-	-	-	-	-	-	-	-	-	-	-	-
Floating Head Pressure Controls	-	-	-	-	-	-	- 1	-	-	-	-	-	-
Condenser Upgrades		I	1		1		J	L				<u> </u>	
Oversized Air-Cooled Condenser	-	-	-	-	3	-	-	-	-	-	-	-	3
Oversized Evaporative Condenser	-		-	-	-	-	-	-	-	-	-	76	76
Evaporator Upgrades		L			"L.,	·	L	L	1	4	1		
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	0	-	-	_	-	- 1	-	0	1
Display PSC Evaporator Motor	-	-	-	-	1	-	-	-	-	-	-	-	1
Other		L		ł	<u>, </u>	·	I	1	1	J	L		
Anti-Sweat Heater Control	-	-	-	-	2	-	-	-	-	-	-	-	2
Suction Line Insulation	-	-	-	-	-	-	-	-	-	-	-	-	-
Display Case Electronic Ballast	1	2	-	-	4	-	-	-	0	-	-	-	7
Non-Electric Condensate Evaporator	1	1	0	0	6	20	0	0	0	0	2	0	31
Retrofit Express Total	2	20	0	0	122	24	0	1	3	0	2	96	269
Customized Incentives Program		<u>. </u>	<u></u>	<u> </u>	<u></u>		<u> </u>	L	I	4	<u>kov</u>		
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	-	-
Booster Desuperheaters	-	-	-	-	-	-	-	-	-	-	-	-	-
Condenser Upgrades													
Oversized Condensers	-	-	-	-	22	-	-	-	-	-	-	-	22
Other													
Refrigeration EMS	-	-	- 1	-	64	-	-	-	-	-	-	64	128
Refrigeration Add/Change	-	-	-	-		-	-	-	7	-	-	277	284
Refrigeration Other	-	-	-	-	399	-	-	-	-	-	-	-	399
Customized Incentives Total	-	-	-	-	485	-	-	-	7	-	-	341	833
Total	2	20	0	0	607	24	0	1	10	0	2	437	1,102

Commercial Refrigeration Ex Post Gross Demand Impacts By Business Type and Technology Group

Business Type				First-	Year Un	adjustec	l Gross	Deman	l impac	ts (kW)			
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	10	-	-	-	-	-	-	-	10
Heatless Door	-	-	-	-	4	-	-	-	-	-	-	-	4
Cooler/Freezer Door Gaskets	-	6	-	-	18	9	-	-	-	-	-	-	33
Auto Closer for Cooler/Freezer	-	17	-	-	21	1	-	1	-	-	-	-	39
Medium Temperature Case w/ Door	0	1	-	-	23	1	-	-	-	-	-	-	25
Strip Curtains for Walk-in	1	1	-	3	49	4	-	-	26	-	-	310	394
Low Temperature Case w/ Door	-	-	-	-	80	-	-	-	2	-	-	-	82
Night Covers for Display Cases	-	-	-	-	-	-	-	-	-	-	-	-	0
Compressor Upgrades					·			•					•
Mechanical Subcooler	-	-	-	-	6	-	-	-	-	-	-	-	6
Multiplex Compressor System	-	-	-	-	23	-	-	-	-	-	-	1	24
Adjustable Speed Drive	-	-	-	-	-	-	-	-	1	-	-	-	1
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	-	0
Condenser Upgrades		•	L		1		L			L	.	1	u;
Oversized Air-Cooled Condenser	-	-	-	-	5	-	-	-	-	-	-	-	5
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	-	-	-	75	75
Evaporator Upgrades			1		J		L			•			
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	2	-	-	-	-	-	-	2	4
Display PSC Evaporator Motor	-	-	-	-	4	-	-	-	-	-	-	-	4
Other			L			<u>.</u>	<u> </u>						u
Anti-Sweat Heater Control	-	-	-	-	6	-	- 1	-	-	-	-	-	6
Suction Line Insulation	-	-	-	-	7	0	-	-	1	-	-	0	9
Display Case Electronic Ballast	1	6	-	-	11	-	-		1	-	-	-	20
Non-Electric Condensate Evaporator	3	2	1	1	15	52	0	1	1	0	4	1	81
Retrofit Express Total	6	34	1	3	285	67	0	2	32	0	4	388	822
Customized Incentives Program			A		<u></u>	<u></u>	<u> </u>	.					' <u></u>
Compressor Upgrades													
Floating Head Pressure Controls		-	-	-	- 1	-	-	-	-	-	-	-	0
Booster Desuperheaters	-	-	-	-	-	-	-	-	-	-	-	-	0
Condenser Upgrades			.		<u>I</u>	<u> </u>	<u> </u>	L		1	J	<u>.</u>	u .
Oversized Condensers	-	-		-	25	-	-	-	-	-	-	-	25
Other			1	·	<u> </u>	<u>I</u>		1		L	· · · · ·		u
Refrigeration EMS	-	-	-	-	138	-	-	-	-	-	- 1	61	199
Refrigeration Add/Change	-		-	-	-	-	-	-	80	-	-	186	266
Refrigeration Other	-	-	_ ·	-	397	-	-	-		-	-	-	397
Customized Incentives Total	0	0	0	0	559	0	0	0	80	0	0	247	886
Total	6	34	1	3	844	67	0	2	112	0	4	635	1,708

Commercial Refrigeration Ex Post Net Demand Impacts By Business Type and Technology Group

Business Type													
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	10	-	-	-	-	-	-	-	10
Heatless Door	-	-	-	-	4	-	-	-	-	-	-	-	4
Cooler/Freezer Door Gaskets	-	3	-	-	8	4	-	-	-	-	-	-	15
Auto Closer for Cooler/Freezer	-	15	-	-	19	1	-	1	-	-	-	-	34
Medium Temperature Case w/ Door	0	1	-	-	23	1	-	-	-	-	-	-	25
Strip Curtains for Walk-in	1	1	-	2	43	4	-	-	23	-	-	270	343
Low Temperature Case w/ Door	-	-	-	-	80	-	-	-	2	-	-	-	82
Night Covers for Display Cases	-	-	-	-	-	-	-	-	-	-	-	-	0
Compressor Upgrades			·	•	·		·						u
Mechanical Subcooler	-	-	-	-	6	-	-	-	-	T -	-	-	6
Multiplex Compressor System	-	-	-	-	23	-	-	-	-	-	-	1	23
Adjustable Speed Drive	-	-	-	-	-	-	-	-	1	-	-	-	1
Floating Head Pressure Controls	-	-	-	-	- 1	-	-	-	-	-	-	-	0
Condenser Upgrades		k	·	L	1						1	1	u
Oversized Air-Cooled Condenser	-	-	- 1	-	5	-	- 1	-	-	-	-	-	5
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	-	-	-	73	73
Evaporator Upgrades			L	L	<u> </u>	L	L 1	L					u
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	2	-	-	-	-	-	-	2	4
Display PSC Evaporator Motor	-	-	- 1	-	4	-	- 1	-	-	-	-	-	4
Other		I	4	L	1		L	L				L	13
Anti-Sweat Heater Control	-	-	-	-	6	-	-	-	-	-	-	-	6
Suction Line Insulation	-	-	-	-	7	0	-	-	1	-	-	0	9
Display Case Electronic Ballast	1	6	-	-	11	-	-	-	1	-	-	-	20
Non-Electric Condensate Evaporator	2	1	0	0	11	39	0	1	1	0	3	0	61
Retrofit Express Total	5	28	0	3	261	48	0	1	28	0	3	347	725
Customized Incentives Program										<u>.</u>			
Compressor Upgrades													
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	-	0
Booster Desuperheaters	-	-	-	-	-	-	_	-	-	-	-	-	0
Condenser Upgrades		L	L	k	1	I		L	1	1			1
Oversized Condensers	-	-	- 7	-	10	-	- 1	-	-	-	-	-	10
Other	l	I	<u> </u>	L	11	<u>. </u>	i	L	L		I	1	u
Refrigeration EMS	-	-	-	-	53	-	-	-	-	-	-	23	76
Refrigeration Add/Change	-	-	-	-	-	-		-	31	-	-	72	102
Refrigeration Other	-	-		-	153	-	-	-	-	_	-	-	153
Customized Incentives Total	0	0	0	0	215	0	0	0	31	0	0	95	341
Total	5	28		3	476	48	0	1	59	0	3	442	1,066

Commercial Refrigeration Gross Demand Impact Realization Rates By Business Type and Technology Group

Business Type													
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	1.98	-	-	-	-	-	-	-	1.98
Heatless Door	-	-	-	-	1.37	-	-	-	-	-	-	-	1.37
Cooler/Freezer Door Gaskets	-	2.46	-	-	2.46	2.46	-	-	-	-	-	-	2.46
Auto Closer for Cooler/Freezer	-	0.88	-	-	0.88	0.88	-	0.88	-	-	-	-	0.88
Medium Temperature Case w/ Door	1.39	1.39	-	-	1.39	1.39	-	-	-	-	-	-	1.39
Strip Curtains for Walk-in	11.03	11.03	-	11.03	11.03	11.03	-	-	11.03	-	-	11.03	11.03
Low Temperature Case w/ Door	-	-	-	-	1.98	-	-	-	1.98	-	-	-	1.98
Night Covers for Display Cases	-	-	-	-	-	-	-	-	-	-	-	-	-
Compressor Upgrades									•		k		·
Mechanical Subcooler	-	-	-	-	1.00	-	-	-	-	-	-	-	1.00
Multiplex Compressor System	-	-	-	-	0.43	-	~	-	-	-	-	0.43	0.43
Adjustable Speed Drive	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	- 1	-
Condenser Upgrades	1			<u></u>		J	L			. <u> </u>	<u> </u>		
Oversized Air-Cooled Condenser	- 1	_	-	- 1	1.01	- 1	-	-	-	-	-	-	1.01
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	-	-	-	0.64	0.64
Evaporator Upgrades				<u> </u>		L				L	L		
Walk-in Cooler PSC Evaporator Motor	- 1	-	-	-	2.59	-	-	-	-	-	-	2.59	2.59
Display PSC Evaporator Motor	-	-	-	-	2.76	-	-	-		-	-	-	2.76
Other				<u> </u>			I		I	L		L	
Anti-Sweat Heater Control	-	-	-	-	2.49	_	-	-	-	-	-	-	2.49
Suction Line Insulation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Display Case Electronic Ballast	1.79	1.79	-	-	1.79	-	-		1.79	-	-	-	1.79
Non-Electric Condensate Evaporator	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.93	1.84
Retrofit Express Total	2.03	1.25	1.84	5.80	1.54	1.99	1.84	1.35	7.28	1.84	1.84	2.62	2.03
Customized Incentives Program				<u></u>	<u></u>	<u> </u>			I		<u> </u>	<u></u>	
Compressor Upgrades	J			,		,	r	r	r			<u>r</u>	
Floating Head Pressure Controls	-	-	-	-	-	-		-	-	-	-	-	<u> </u>
Booster Desuperheaters	-	-	-	-	-	~	-	-	-	-	-	-	-
Condenser Upgrades	ļ					r	r	r				.	
Oversized Condensers	<u> - </u>	-	-	-	0.82	-	-	-	-	-	-	-	0.82
Other	 	,		·		·			,				
Refrigeration EMS	-	-	-	-	1.61	-	-	-	-	-	-	0.72	1.17
Refrigeration Add/Change	-	-	-	-	-	-	-	-	8.69	-	-	0.50	0.70
Refrigeration Other	<u> </u>	-	-	-	0.75	-	-	-	-	-	-	-	0.75
Customized Incentives Total	-]	-	-	-	0.86	-	-	-	8.69	-	-	0.54	0.80
Total	2.03	1.25	1.84	5.80	1.02	1.99	1.84	1.35	8.23	1.84	1.84	1.06	1.13

Commercial Refrigeration Net Demand Impact Realization Rates By Business Type and Technology Group

Business Type					Net De	emand Ir	mpact R	ealizati	on Rate	s		<u></u>	
Program and Technology	Office	Retail	College/ University	School	Grocery	Restaurant	Health Care	Hotel/Motel	Warehouse	Personal Service	Community Service	Misc.	Total
Retrofit Express Program													
Refrigeration Load Reduction													
Low Temperature Glass/Acrylic Door	-	-	-	-	2.99	-	-	-	-	-	-	-	2.99
Heatless Door	-	-	-	-	2.08	-	-	-	-	-	-	-	2.08
Cooler/Freezer Door Gaskets	-	1.43	-	-	1.50	1.54	-	-	-	-	-	-	1.50
Auto Closer for Cooler/Freezer	-	1.03	-	-	1.14	1.03	-	1.03	-	-	-	-	1.09
Medium Temperature Case w/ Door	2.14	2.14	-	-	2.14	2.14	-	-	-	-	-	-	2.14
Strip Curtains for Walk-in	14.77	14.77	-	14.77	14.77	14.77	-	-	14.77	-	-	14.77	14.77
Low Temperature Case w/ Door	-	-	-	-	3.04	-	-	-	3.04	-	-	-	3.04
Night Covers for Display Cases	-	-	-	-	-	-	-	-	-	-	-	-	-
Compressor Upgrades						·			•			·	
Mechanical Subcooler	-	-	-	-	1.51	-	-	-	-	-	-	-	1.51
Multiplex Compressor System	-	-	-	-	0.65	-	-	-	-	-	-	0.65	0.65
Adjustable Speed Drive	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Floating Head Pressure Controls	-	-	-	-	-	-	-	-	-	-	-	-	-
Condenser Upgrades													
Oversized Air-Cooled Condenser	-	-	-	- 1	1.53	-	-	-	-	-	-	-	1.53
Oversized Evaporative Condenser	-	-	-	-	-	-	-	-	-	-	-	0.97	0.97
Evaporator Upgrades				h <u></u>			·	•	.	.		·	L
Walk-in Cooler PSC Evaporator Motor	-	-	-	-	3.92	-	-	-	-	-	-	3.92	3.92
Display PSC Evaporator Motor	-	-	-	-	4.17	-	-	-	-	-	-	-	4.17
Other				L.,	•	·		•	.	•		· · · · ·	-
Anti-Sweat Heater Control	-	-	-	-	3.77	-	-	-	-	-	-	-	3.77
Suction Line Insulation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Display Case Electronic Ballast	2.70	2.70	-	-	2.70	-	-	-	2.70	-	-	-	2.70
Non-Electric Condensate Evaporator	1.91	1.85	1.85	1.85	1.97	1.96	1.98	1.94	2.08	1.85	1.94	2.12	1.96
Retrofit Express Total	2.46	1.39	1.85	6.97	2.15	2.04	1.98	1.46	9.87	1.85	1.94	3.60	2.69
Customized Incentives Program			<u></u>							• • • • •			
Compressor Upgrades	l												
Floating Head Pressure Controls	- 1	-	- 1	- 1	-	-	-	-	-	-	-	-	-
Booster Desuperheaters	-	-	-	-	-	-	-	-	-	-	-	-	-
Condenser Upgrades													
Oversized Condensers	-	-	-	-	0.42	-	-	-	-	-	-	-	0.42
Other								•	•				
Refrigeration EMS	-	-	-	-	0.83	-	-	-	-	-	-	0.37	0.60
Refrigeration Add/Change	-	-	-	-	-	-	-	-	4.46	~	-	0.26	0.36
Refrigeration Other	-	-	-	-	0.38	-	-	-	-	-	-	-	0.38
Customized Incentives Total	-	-	-	-	0.44	- 1	-	-	4.46	-	-	0.28	0.41
Total	2.46	1.39	1.85	6.97	0.78	2.04	1.98	1.46	6.05	1.85	1.94	1.01	0.97

Appendix F Summary of Gross Program Impacts by Costing Period

F. SUMMARY OF GROSS PROGRAM IMPACTS BY COSTING PERIOD

Ex post program gross demand and energy impacts are summarized by time-of-use (TOU) costing periods in Exhibit F-1, in order to support Pacific Gas and Electric Company's (PG&E's) cost-effectiveness calculations. The adjustment factors presented in Exhibit F-1 were obtained from Tables 3-7 and 3-8 of PG&E's Advice Filing 1978-G/1608-D, dated October 1, 1996. The gross demand and energy impacts by costing period reported in Exhibit F-1 are calculated by multiplying the program's ex post gross demand and energy impact by the corresponding adjustment factor.

Exhibit F-1 Ex Post Gross Demand and Energy Savings by Costing Period For Commercial Refrigeration Technologies

	Time-of-Use Impact Distribution											
PG&E Cost Period	Program kW Savings Coincident with System Max in Period	kW Adjustment Factor	kWh Savings	kWh Adjustment Factor								
Summer On-Peak: May 1 to Oct. 31 12:00 PM - 6:00 PM Weekdays	1,708	1.00	1,820,638	0.10								
Summer Partial Peak: May 1 to Oct. 31 8:30 AM - 12:00 PM & 6:00 PM - 9:30 PM Weekdays	1,161	0.68	1,638,574	0.09								
Summer Off-Peak: May to Oct. 31 9:30 PM - 8:30 AM	2,357	1.38	6,190,168	0.34								
Winter Partial Peak: Nov. 1 to April 31 8:30 AM - 9:30 PM Weekdays	1,264	0.74	2,548,893	0.14								
Winter Off-Peak: Nov. 1 to April 31 9:30 PM - 8:30 AM Other	1,144	0.67	6,008,105	0.33								

Appendix G Final Refrigeration Waiver

PACIFIC GAS & ELECTRIC COMPANY REQUEST FOR RETROACTIVE WAIVER FOR 1995 COMMERCIAL EEI RETROFIT PROGRAMS, REFRIGERATION END USE

Program Background

Pacific Gas & Electric Company (PG&E) fielded DSM programs to the Commercial sector (among others) during 1995. The primary purpose of the 1995 Commercial Program (Programs) was to promote the installation of energy efficient equipment retrofits. The Programs offered a variety of energy efficient refrigeration measures from prescriptive freezer curtains and doors to custom non- prescriptive refrigeration measures¹. The impact evaluation associated with this waiver is designed to assess the actual load impacts resulting from the refrigeration measures rebated during 1995².

Summary of PG&E Request

This waiver requests two deviations from the Protocols³ for PG&E's 1995 Commercial Sector Evaluation, refrigeration end use. PG&E seeks approval to: (1) use self-report analysis results to estimate net-to-gross effects if the regression model yields statistically insignificant results; and (2) specify the Designated Unit of Measure (DUOM) for refrigeration.

Proposed Waiver

PG&E seeks CADMAC approval to:

(1) Allow the use of self-report survey analysis results to estimate net-to-gross effects (adjusted for free-ridership and spillover) for measures where the regression-based end use load impact savings for refrigeration measure estimates are not significant at the 90 percent confidence level⁴. PG&E will use the self-report method in addition to the Protocols-accepted method. We will compare and report the results of both methods in the impact report, clearly indicating which method we choose to assess our actual net load impacts.

PG&E will ask a series of sequentially-ordered questions in the participant and nonparticipant telephone surveys to probe for customers' likely actions in the absence of the program. Several recent studies⁵ have demonstrated the feasibility of using an ordered set of questions to determine

¹ For 1995, refrigeration measures were rebated under the 1994-95 Retrofit Express, the 1994-95 Retrofit Efficiency Options, and the 1993-94 Customized Incentive Programs.

² PG&E is claiming Shareholder Incentives in the amount of 1,907,739 for the Refrigeration end-use. This end-use represents approximately 6% of the commercial sector and 3% of the entire nonresidential sector.

³ Protocols and Procedures for the Verification of Costs, Benefits, and Shareholder Earnings for Demand-Side Management Programs

⁴ If the gross LIRM fails to identify significant results, the NTG LIRM is even less likely to yield statistically significant results.

⁵ For example: Northeast Utilities Conservation and Load Management Department, *Energy Action Program Report on 1994 Measure Installations Impact Evaluation - Final Report*, June 1996, Prepared by RLW Analytics, Inc. and The Nicholas Group; New England Power Service Company, *1995 Commercial Industrial Free Rider Study*, July 1996, Prepared by Hagler Bailly Consulting, Inc.; and Baltimore Gas and Electric Company, *Evaluation of the Commercial Efficient HVAC Rebate Program*, June 1996, Prepared by Quantum Consulting, Inc. All of these studies discuss the use of self reports to estimate freeridership. In addition, last year's PG&E *1994 Commercial HVAC Impact Evaluation*; (Report #CIA-96-SB01, CEC#312) March 1996; Prepared by SBW Consulting and Ridge & Associates also discussed methodologies for self report analysis of NTG ratios.

probable customer activity. Our goal is to remove as much subjectivity from the scoring as possible in order to approximate a quantifiable estimate of net-to-gross effects. Tabulated results will be used to present point and interval estimates of free ridership.

Parameters and Protocol Requirements

The Protocols Table 5 defines net load impacts as the difference between the participant load impacts and the comparison group load impacts. Table C-4 for Commercial end uses states that the End Use Consumption or Load Impact Model will be either a LIRM or CE model. Both models require statistical based modeling.

Rationale

Commercial refrigeration is a small end use (598 unique participants) where much of the impact comes from custom measures (84% from 54 participants). It cannot support the large samples needed for multivariate modeling approaches. The low levels of participation together with the diversity of measures increases the statistical "noise" in the LIRMs to a point where gross impacts are anticipated to be statistically undetectable.

Furthermore, PG&E's commercial customers are constantly surveyed. While it would be hypothetically possible to do a canvass survey to identify nonparticipants that installed program qualifying measures outside of the program, such a survey of the nonparticipant population for this small end use would place an unreasonable burden on PG&E customers and could adversely affect customer relations.

(2) Use the DUOM of "load impact per project" for the refrigeration end use.

Parameters and Protocol Requirements

Table C-6 does not specify a DUOM for refrigeration measures since refrigeration was not specified as an end use.

Rationale

No DUOM has been designated for refrigeration in Table C-4 of the Protocols because refrigeration was not included as an end use. The use of the "load impact per project" DUOM is the same DUOM used for the Gas Cooking end use in Table C-4. In addition, the PG&E tracking system tracks the measure installation on a per project basis, where per project represents all refrigeration measures per customer per application.

Although the DUOM is on a "per project (per customer per application)" basis, our analysis will capture the diversity of program participation by stratifying the sample by size of expected savings. Per unit savings derived from each strata will be reconstructed in the final analysis to get an estimate of overall savings.

Conclusion

PG&E is seeking a retroactive waiver to clearly define, in advance, acceptable methods for performing the 1995 Commercial refrigeration impact evaluation. Recommendations in this waiver are designed to maximize the quality and value of evaluation results. The proposed waiver allowing the use of self-report analysis reflects a realization that commercial sector refrigeration variability and sample sizes do not support other proposed approaches. The waiver concerning the refrigeration end use DUOM attempts to supply a useful unit for comparison where none exists in the Protocols. Appendix H Protocol Tables 6 & 7

H. PROTOCOL TABLES 6 AND 7

1995 COMMERCIAL ENERGY EFFICIENCY INCENTIVES PROGRAM EVALUATION OF REFRIGERATION TECHNOLOGIES

PG&E STUDY ID #330

This Appendix presents Tables 6 and 7 for the above referenced study as required under the "Protocols and Procedures for the Verification of Cost, Benefits, and Shareholder Earnings from Demand Side Management Programs" (the Protocols), as adopted by the California Public Utility Commission (CPUC) Decision 93-05-063, Revised January 1996 Pursuant to Decisions 94-05-063, 94-10-059, 94-12-021, and 95-12-054.

Table 6 Assumptions

In some instances, interpretation of the Protocols allows for a variety of results to be presented. For the refrigeration technologies, the interpretation of these terms are:

- Items 1.A, 1.B, 2.C, 3.C: The change model of estimates did not require an evaluation of base usage for these technologies.
- Item 2.B: The per-unit gross and net impacts required by the Protocols specify a constant term in the denominator. This value was taken directly from Table E-3 of the Technical Appendix of the Annual Summary Report on Demand Side Management Programs in 1995 and 1996, revised in December 1996.
- Items 6 and 7: The number of measures reported are the purchased number in the MDSS. As such, they reflect a variety of units of measure, including square feet, horsepower, tons, linear feet, lamps, total heat rejected, gaskets, etc.

The Table 7 synopsis of analytical methods applied follows Items 1 through 7 of Protocol Table 6.

During the process of obtaining approval for the Request for Waiver, a Draft Request for Waiver proposed reverting to calibrated engineering estimates of impact if the SAE billing regression analysis resulted in statistically insignificant SAE coefficients. In addition, in this Draft Request for Waiver, it was proposed to present two Table 6 exhibits, one based on calibrated engineering estimates, and another based on SAE adjusted estimates of impact. Although this Draft Request for Waiver was not approved, and even though the SAE analysis resulted in statistically significant SAE coefficients, a second Table 6 is provided for Items 1 through 5 (items 6 and 7 do not change) based on calibrated engineering estimates for impact. This second Table 6 is referenced as Table 6-2 below.

Protocol Table 6
Items 1-5
PG&E Refrigeration Study ID #330

	Table Item		Relative	Precision
ltem Number	Description	Estimate	90% Confidence	80% Confidence
1.A†	Pre-installation usage, Base usage, and Base usage per designated unit* of measurement.	N/A	N/A	N/A
1.B†	Impact Year usage, Impact year usage per designated unit* of measurement.	N/A	N/A	N/A
2.A	Gross Peak kW (Demand) Impacts	1,708	76%	59%
	Gross kWh (Energy) Impacts	18,206,378	65%	51%
	Gross thm (Therm) Impacts	N/A	N/A	N/A
	Net Peak kw (Demand) Impacts	1,066	77%	60%
	Net kWh (Energy) Impacts	9,253,545	66%	52%
	Net thm (Therm) Impacts	N/A	N/A	N/A
2.B	Per designated unit* Gross Demand Impacts	2.41	76%	59%
	Per designated unit* Gross Energy Impacts	25,643	65%	51%
	Per designated unit Gross Therm¥ Impacts	N/A	N/A	N/A
	Per designated unit* Net Demand Impacts	1.50	77%	60%
	Per designated unit* Net Energy Impacts	13,033	66%	52%
	Per designated unit Net Therm¥ Impacts	N/A	N/A	N/A
2.C†	Percent change in usage (relative to base usage) of the participant group and comparison group.	N/A	N/A	N/A
2.D	Gross Demand Realization Rate	1.13	76%	59%
	Gross Energy Realization Rate	0.81	65%	51%
	Gross Therm¥ Realization Rate	N/A	N/A	N/A
	Net Demand Realization Rate	0.97	77%	60%
	Net Energy Realization Rate	0.56	66%	52%
	Net Therm¥ Realization Rate	N/A	N/A	N/A
3.A	Net-to-Gross ratio based on Avg. Load Impacts	0.51	10%	8%
3.B	Net-to-Gross ratio based on Avg. Load Impacts per designated unit* of measurement.	0.51	10%	8%
3.C†	Net-to-Gross ratio based on Avg. Load Impacts as a percent change from base usage	N/A	N/A	N/A
4.A	Pre-installation Avg. (mean) Sq. Foot (participant group)			e Million and a signature
	Pre-installation Avg. (mean) Sq. Foot (comparison group)		e de la color	
	Pre-installation Avg. Hours of Operation (participant group)			
	Pre-installation Avg. Hours of Operation (comparison group)			
4.B	Post-installation Avg. (mean) Sq. Foot (participant group)			
	Post-installation Avg. (mean) Sq. Foot (comparison group)			
	Post-installation Avg. Hours of Operation (participant group)			
	Post-installation Avg. Hours of Operation (comparison group)			in a sur danah

The change model estimates of impact did not require an evaluation of base usage
There were no estimated therm impacts for this end use.
The per designated unit used was refrigeration measures installed.
Shaded cells were not evaluated because per designated unit calculations did not use these estimates.

Protocol Table 6-2
Based on Calibrated Engineering Estimates
Items 1-5
PG&E Refrigeration Study ID #330

	Table Item		Relative	Precision
item Number	Description	Estimate	90% Confidence	80% Confidence
1.At	Pre-installation usage, Base usage, and Base usage per designated unit* of measurement.	N/A	N/A	N/A
1.Bt	Impact Year usage, Impact year usage per designated unit* of measurement.	N/A	N/A	N/A
2.A	Gross Peak kW (Demand) Impacts	1,708	76%	59%
	Gross kWh (Energy) Impacts	26,771,911	76%	59%
	Gross thm (Therm) Impacts	N/A	N/A	N/A
	Net Peak kw (Demand) Impacts	1,066	77%	60%
	Net kWh (Energy) Impacts	14,576,640	77%	60%
	Net thm (Therm) Impacts	N/A	N/A	N/A
2.B	Per designated unit* Gross Demand Impacts	2.41	76%	59%
	Per designated unit* Gross Energy Impacts	37,707	76%	59%
	Per designated unit Gross Therm¥ Impacts	Ń/A	N/A	N/A
	Per designated unit* Net Demand Impacts	1.50	77%	60%
	Per designated unit* Net Energy Impacts	20,530	77%	60%
	Per designated unit Net Therm¥ Impacts	N/A	N/A	N/A
2.Ct	Percent change in usage (relative to base usage) of the participant group and comparison group.	N/A	N/A	N/A
2.D	Gross Demand Realization Rate	1.13	76%	59%
	Gross Energy Realization Rate	1.18	76%	59%
	Gross Therm¥ Realization Rate	N/A	N/A	N/A
	Net Demand Realization Rate	0.97	77%	60%
	Net Energy Realization Rate	0.88	77%	60%
	Net Therm¥ Realization Rate	N/A	N/A	N/A
3.A	Net-to-Gross ratio based on Avg. Load Impacts	0.54	10%	8%
3.B	Net-to-Gross ratio based on Avg. Load impacts per designated unit* of measurement.	0.54	10%	8%
3.Ct	Net-to-Gross ratio based on Avg. Load Impacts as a percent change from base usage	N/A	N/A	N/A
4.A	Pre-installation Avg. (mean) Sq. Foot (participant group)			
	Pre-installation Avg. (mean) Sq. Foot (comparison group)			
	Pre-installation Avg. Hours of Operation (participant group)			
<u> </u>	Pre-installation Avg. Hours of Operation (comparison group)			
4. B	Post-installation Avg. (mean) Sq. Foot (participant group)			
	Post-installation Avg. (mean) Sq. Foot (comparison group)			
	Post-installation Avg. Hours of Operation (participant group)			
	Post-installation Avg. Hours of Operation (comparison group)			

The change model estimates of impact did not require an evaluation of base usage
There were no estimated therm impacts for this end use.
The per designated unit used was refrigeration measures installed.
Shaded cells were not evaluated because per designated unit calculations did not use these estimates.

	Number of Measures Paid in 1995		
Program and Technology Group Description	All Participants (Item 6.B)	Participant Sample (Item 6.A)	Comparison Group (Item 6.C)
tetrofit Express Program	(nem o.b)		(11011 0.0)
Refrigeration Load Reduction			
Low Temperature Glass/Acrylic Door	60	0	0
Heatless Door	214	140	32
Cooler/Freezer Door Gaskets	140	102	7
Auto Closer for Cooler/Freezer	68	26	, 7
Medium Temperature Case w/ Door	554	210	33
	8,938	3,645	0
Strip Curtains for Walk-in	490	257	1
Low Temperature Case w/ Door		1,412	0
Night Covers for Display Cases	3,375	1,412	0
Compressor Upgrades	10	2	0
Mechanical Subcooler	18		-
Multiplex Compressor System	149	10	0
Adjustable Speed Driver	15	15	2
Floating Head Pressure Controls	1,898	-	500
Condenser Upgrades			
Oversized Air-Cooled Condenser	45	45	0
Oversized Evaporative Condenser	4,043	1,756	6
Evaporator Upgrades			
Walk-in Cooler PSC Evaporator Motor	4	-	0
Display PSC Evaporator Motor	286	238	0
Other			
Anti-Sweat Heater Control	133	133	0
Suction Line Insulation	4,660	1,152	2,000
Display Case Electronic Ballast	1,608	258	0
Non-Electric Condensate Evaporator	430	227	0
Total for Retrofit Express:	27,127	9,627	2,588
ustomized Incentives Program			
Compressor Upgrades			
Floating Head Pressure Controls	1	-	
Booster Desuperheaters	1	1	
Condenser Upgrades			
Oversized Condensers	1	1	
Other			
Refrigeration EMS	18	6	
Refrigeration Add/Change	4	4	
Refrigeration Other	39	1	
Total for Customized Incentives:	64	13	0
TOTAL:	27,191	9,640	2,588

Protocol Table 6 Item 6: Refrigeration Measure Count Data PG&E Study ID #330

Protocol Table 6
Item 7.A: Refrigeration Market Segment Data
by Business Type
PG&E Study ID # 330

	Refrig	eration
Business Type	# of Part.	% of Part.
Office	14	2%
Retail	75	13%
Col/Univ	3	1%
School	4	1%
Grocery	239	40%
Restaurant	208	35%
Health Care/Hospital	2	0%
Hotel/Motel	6	1%
Warehouse	11	2%
Personal Service	1	0%
Community Service	18	3%
Misc. Commercial	17	3%
TOTAL:	598	100%

	Refrigeration		
Industry (3-Digit SIC Code)	# of Part.	% of Part.	
581	208	35%	
541	186	31%	
554	63	11%	
546	26	4%	
866	13	2%	
422	12	2%	
549		2%	
592	10	2%	
652	10	2%	
701	6	1%	
072	5	1%	
514	5	1%	
594	5	1%	
821	4	1%	
542	3	1%	
543	3	1%	
832	3	1%	
799	2	0%	
805	2	0%	
• 829	2	0%	
864	2	0%	
498	1	0%	
504	1	0%	
518	1	0%	
519	1	0%	
531	1	0%	
533	<u> </u>	0%	
553	1	0%	
	<u> </u>	0%	
<u> </u>		0%	
	1		
599	1	<u> </u>	
650	1		
752	1	0%	
782	1	0%	
783	 	0%	
784	1	0%	
824	1	0%	
835	1	0%	
002	0	0%	
074	0	0%	
075	0	0%	
076	0	0%	
078	0	0%	
411	0	0%	
413	0	0%	
415	0	0%	

Protocol Table 6 Item 7.B: Refrigeration Market Segment Data by 3-Digit SIC Code PG&E Study ID # 330

	Refrige	eration
Industry (3-Digit SIC Code)	# of Part.	% of Part.
417	0	0%
421	0	0%
423	0	0%
431	0	0%
449	0	0%
451	0	0%
458	0	0%
472	0	0%
473	0	0%
478	0	0%
481	0	0%
483	0	0%
484	0	0%
492	0	0%
493	0	0%
495	0	0%
501	0	0%
502	0	0%
503	0	0%
505	0	0%
506	0	0%
507	0	0%
508	0	0%
509	0	0%
511	0	0%
512	0	0%
516	0	0%
517	0	0%
521	0	0%
523	0	0%
525	0	0%
526	0	0%
539	0	0%
540	0	0%
544	0	0%
551	0	0%
552	0	0%
555	0	0%
556	0	0%
557	0	0%
559	0	0%
560	0	0%
561	0	0%
563	0	0%
564	0	0%
565	0	0%
503		

Protocol Table 6 Item 7.B: Refrigeration Market Segment Data by 3-Digit SIC Code PG&E Study ID # 330

	Refrigeration		
ndustry (3-Digit SIC Code)	# of Part.	% of Part.	
566	0	0%	
569	0	0%	
572	0	0%	
573	0	0%	
591	0	0%	
593	0	0%	
596	0	0%	
598	0	0%	
602	0	0%	
603	0	0%	
606	0	0%	
609	0	0%	
614	0	0%	
615	0	0%	
616	0	0%	
621	0	0%	
631	0	0%	
632	0	0%	
633	0	0%	
636	0	0%	
641	0	0%	
651	0	0%	
653	0	0%	
655	0	0%	
662	0	0%	
672	0	0%	
702	0	0%	
703	0	0%	
703	0	0%	
721	0	0%	
722	0	0%	
723	0	0%	
724	0	0%	
725	0	0%	
725	0	0%	
729		0%	
731	0	0%	
731	0	0%	
733	0	0%	
734	0	0%	
735	0	0%	
736	0	0%	
737	0	0%	
738	0		
	0	0%	
753	0	0%	

Protocol Table 6 Item 7.B: Refrigeration Market Segment Data by 3-Digit SIC Code PG&E Study ID # 330

	Protocol Table 6
Item 7.B:	Refrigeration Market Segment Data
	by 3-Digit SIC Code
	PG&E Study ID # 330

	Refrigeration	
ndustry (3-Digit SIC Code)	# of Part.	% of Part.
754	0	0%
762	0	0%
769	0	0%
781	0	0%
791	0	0%
792	0	0%
793	0	0%
794	0	0%
801	0	0%
802	0	0%
804	0	0%
806	0	0%
807	0	0%
808	0	0%
809	0	0%
811	0	0%
822	0	0%
823	0	0%
830	0	0%
833	0	0%
836	0	0%
839	0	0%
841	0	0%
842	0	0%
861	0	0%
862	0	0%
863	0	0%
869	0	0%
871	0	0%
872	0	0%
873	0	0%
874	0	0%
913	0	0%
919	0	0%
921	0	0%
922	0	0%
931	0	0%
941	0	0%
943	0	0%
944	0	0%
951	0	0%
953	0	0%
962	0	0%
964	0	0%
		0%
971	0	11%

PROTOCOL TABLE 7

1995 COMMERCIAL ENERGY EFFICIENCY INCENTIVES PROGRAM EVALUATION OF REFRIGERATION TECHNOLOGIES PG&E STUDY ID #330

The purpose of this section is to provide the documentation for data quality and processing as required in Table 7 of the California Public Utility Commission (CPUC) Evaluation and Measurement Protocols (the Protocols). Although other important considerations are addressed throughout this section, major topics are organized and presented in the same order as they are listed in Table 7 for ease of reference and review. When responses to the items are discussed in detail elsewhere in the report, only a brief summary will be given in this section to avoid redundancy.

A. OVERVIEW INFORMATION

1. Study Title and Study ID Number

Study Title: Evaluation of PG&E's 1995 Nonresidential Energy Efficiency Incentives (EEI) Program for Commercial Sector Refrigeration Technologies.

Study ID Number: 330

2. Program, Program Year and Program Description

Program: PG&E Nonresidential EEI Program, Commercial Sector.

Program Year: Rebates Received in the 1995 Calendar Year.

Program Description:

The Nonresidential EEI Program offered by PG&E has two components: the Retrofit Express (RE) Program and the Customized Incentive Program.

The RE Program offers fixed rebates to PG&E's customers that install specific gas or electric energyefficient equipment in their facilities. The RE Program covers most common energy-saving measures: lighting, air conditioning, refrigeration/food service, and motors. To receive a rebate, the customer is required to submit proof of purchase along with the application. This Program is primarily marketed to small and medium commercial, industrial, and agricultural customers. The maximum total rebate amount of the RE Program is \$300,000 per account. This includes participation in any combination of the lighting, air conditioning, refrigeration/food service, and motor program options.

The Customized Incentives Program offers financial incentives to customers who undertake large or complex projects that save gas or electricity. These customers must submit calculations for the projected first year energy savings, along with an application, prior to the start of the customers' installation of high-efficiency equipment. The maximum total incentive amount for the Customized Program is \$500,000 per account. The minimum qualifying incentive amount is \$2,500 per project.

3. End Uses and/or Measures Covered

End Use Covered: Refrigeration Technologies.

Measures Covered: For the list of RE and Customized Incentives Program measures covered in this evaluation, refer to the report Sections 2.1 and 2.2, and more specifically in Exhibit 4-1. The measure classification provided is consistent with PG&E program tracking recrods strored in the Management Decision Support System (MDSS).

4. Methods and Models Used

The PG&E Commercial Refrigeration Technologies consisted of three key analysis components: engineering analysis, billing data regression analysis, and net-to-gross analysis. This integrated approach reduces a complicated problem to manageable components, while incorporating the comparative advantages of each analysis method. This approach describes per-unit net impacts as follows:

Net Impact = (Gross Impact) x (SAE Realization Rate) x (Net-to-Gross)

Gross impact -- The gross impact estiamtes were modeled using distinct approaches for the RE and Customized Incentives Programs. However, both approaches yielded energy impacts based on an entire year of refrigeration end-use consumption, and a separate demand impact that represents end-use consumption during the summer on-peak period.

RE impacts were estimated based on a review and subsequent revisions to the engineering algorithms used by PG&E to develop ex ante impacts (algorithms were taken from the 1995 Advice Filing¹). A detailed discussion of the RE gross impact approach is provided in the *Section 3.2.2,* and presentation of each measure-specific algorithm assessment is found in *Appendix B, Section B.5.*

Customized Incentives impacts were estimated based on a thorough review and subsequent update of each refrigeration application that was submitted and paid in 1995. A detailed discussion of the Customized Incentives gross impact approach is provided in the Section 3.2.3, and presentation of each application-specific assessment is found in Appendix B, Sections B.4 and B.6.

SAE Realization Rates – The SAE Realization Rates were estimated based on a Statistically Adjusted Engineering (SAE) analysis using cross-sectional time series data and incorporating prior engineering estimates. As a result, the SAE realization rates could be defined as the percentage of a savings estimate that is detected or realized in the statistical analysis of actual changes in energy usage. The SAE realization rates were then applied to an impact estimate based upon the program baseline, equipment purchased under the program, and typical weather. A detailed discussion of the final SAE model specification can be found in *Section 3.3*.

Net-to-Gross – The net-to-gross (NTG) ratio adjusts the program baseline, derived using estimates of free-ridership and spillover (associated with the program). The refrigeration end-use NTG

¹ PG&E 1995 Customer Energy Efficiency Programs Advice Letter No. 1867-G/1481-E, filed October 1994.

ratio's were calculated based on survey self-report using a representative nonparticipant sample to account for naturally occurring conservation. The NTG analysis approach is presented in detail in *Section-3.4,* and a thorough discussion surrounding the methods used to score those results is provided in *Appendix D*.

5. Participant and Comparison Group Definition

Participant

Participants are defined as those PG&E commercial customers who received PG&E rebates in the 1995 calendar year for installing at least one refrigeration measure under the Nonresidential EEI Program.

Comparison Group

The comparison group for this study is defined as a group of PG&E commercial customers who did not receive any refrigeration end-use rebates in the 1995 calendar year under the Nonresidential EEI Program, and who share as many characteristics as possible with the commercial sector participant group in terms of annual usage and business type distribution. Customers who participated in the previous years or those who simply participated by installing a non-refrigeration end-use measure, are eligible for the comparison group.

6. Analysis Sample Size

The final analysis dataset has 2,025 observations based upon 2,025 telephone survey completes (of which 241 were refrigeration end-use participants, and the remaining 1,784 served as a comparison group for that sample). In addition, 18 on-site audits were conducted at refrigeration end-use participant sites, 13 of which were conducted at Customized Incentives sites (for use in application review/analysis). The distribution of the sample by business type and technology is presented in *Appendix A*.

B. DATABASE MANAGEMENT

1. Data Description and Flow Chart

The Evaluation of PG&E Commercial Refrigeration Technologies was based on a telephone survey sample dataset, that was derived using a census to achieve a representative customer profile. Onsite audit data were collected primarily within the Customized Incentives Program, providing a basis for revisions to the application-based estimates of savings.

All data elements mentioned above were linked to the final analysis database through the unique customer identifier -- the evaluation 'site_id' variable. For this evaluation, the analysis database served as a centralized tracking system for each customers' billing history, program participation, and sampling status, which helped to reduce data problems such as account mis-match, double counting, or repeated customer contacts. Exhibit A illustrates how each key data element was used to create the final analysis database for the Evaluation.

2. Key Data Elements and Sources

A complete list of data elements and their sources can be found in *Section 3.1.1* and *Appendix C*. The key analysis data elements and their sources are listed below:

Program Participant Tracking System. The participant tracking system for the RE and Customized Incentives programs was maintained as part of the PG&E MDSS. It contains program application,

rebate, and technical information about installed measures, including measure description, quantity, rebate amount, and ex ante demand, energy, and therm saving estimates.

PG&E Billing Data. Initially, the PG&E billing data were obtained from two PG&E data sources. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG&E's service territory, and was used in the sample design as described in *Appendix A*. The billing histories contained in this database only run through September 1995.

The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG&E's Load Data Services.² This billing dataset contains bill readings that run through September 1996, and was therefore used in the billing regression analysis. In addition, the billing series from this database is the PG&E pro-rated monthly usage data, a series calculated by PG&E for each calendar month, from January 1992 to September 1996.

Telephone Survey Data. Two telephone survey samples (241 participants and 1,784 comparison group customers) were collected as part of this evaluation. They were designed to be representative of the population of each business type. The telephone survey supplies information on customer decision-making, equipment operating characteristics, equipment stocks, and energy-related changes at each site for the billing period covered by the statistical billing analysis.

On-Site Audit Data. On-site audit data were specifically collected (as part of the refrigeration enduse evaluation) for the Customized Incentives participant group only. This sample contributes sitespecific equipment details, and better estimates of operating schedules and equipment profiles (than are provided in the application records). There were a total of 18 participant on-site audits conducted for this refrigeration end-use evaluation, 13 of which were used to evaluate Customized Incentives applications.

Weather Data. The hourly dry bulb temperature collected for 25 PG&E load research weather sites is used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site is linked to that customer by using the PG&E-defined weather site to PG&E's local office mapping.

Other data elements include PG&E program marketing data, PG&E internal SIC code mapping/segmentation scheme, program procedural manuals and other industry standard data sources.

3. Data Attrition Process

All data elements mentioned above were first validated and then merged together to form the final analysis dataset. Records with out-of-range or questionable data were either deleted or flagged to ensure that only those records with sufficient data, both in terms of data quality and representativeness, were used in the analysis. The key data attrition decisions are summarized in *Appendix C*, Section 5.

4. Internal Data Quality Procedures

The Evaluation contractor for this project, Quantum Consulting Inc. (QC), has performed extensive data quality control on all categories of program data, including utility billing data, program

 $^{^{2}}$ A preliminary analysis has concluded that the monthly usage and bill read date information in these two datasets is consistent.

tracking data, telephone survey data, and on-site audit data. QC's data quality procedures are consistent with PG&E's internal database guidelines and the guidelines established in the Protocols.

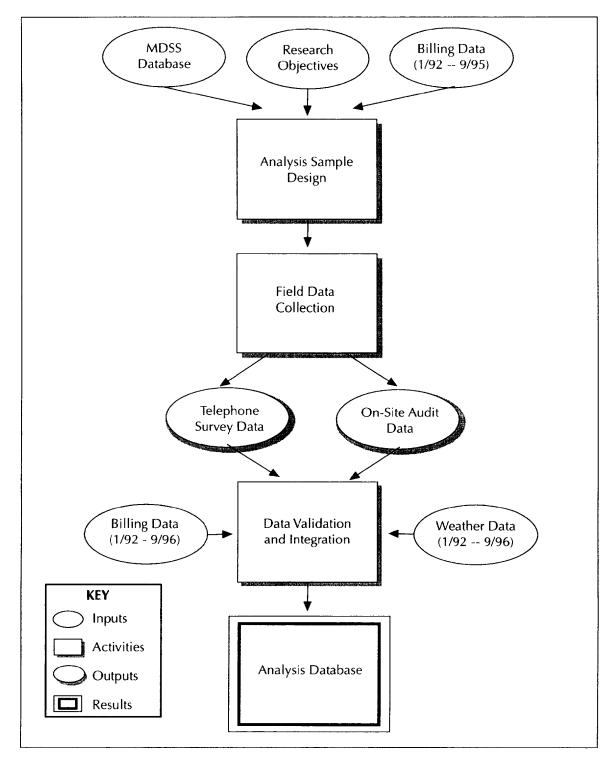


Exhibit A Analysis Database Development

Throughout the course of sample design and creation, survey data collection, and data analysis, several data quality assurance procedures were in place to insure that all energy usage data used in analysis and all telephone survey data collected was of high quality and would prove useful in later analysis. The stages of data validation undertaken and the methods employed are detailed below:

Pre-Survey Usage and Account Characteristic Data Validation. The goal of this stage of data validation was to screen out customers who had unreasonable or unreliable usage data, or who had changes in key elements of their billing data over the 1992 to 1995 period. Accounts for which changes were observed in account numbers, service addresses, SIC codes, electric rate schedules, electric meter numbers, or corporation and premise identification variables, were excluded from sample eligibility. Usage data reliability screening first eliminated from sample accounts which experienced service interruptions, exhibited inconsistent read dates, or for which bills were estimated. Additionally, based on comparisons of account usage between years, and between different months in the same year, customers with unusual usage patterns such as unusually high variation in monthly or yearly usage were given special attention and, in some cases, excluded from the sample frame. A more detailed discussion of the steps undertaken in the pre-survey usage and account characteristics data validation, is provided in the discussion of survey sample creation in *Appendix A*.

Real Time Survey Data Validation. Survey data collection was performed using QC's 24 station Computer Aided Telephone Interviewing (CATI) center. Data entry applications, programmed using SAS/AF software, employed logical branching routines and real-time data validation procedures to insure that survey questions were appropriate for each customer's situation and that recorded responses were reasonable and logical. Data entry applications also performed real time range checks and field protection for out of range values during the data collection process thereby affording an additional means of ongoing data validation. Finally, because SAS/AF was used to program the data collection software, the survey data was on-line in the form of a SAS dataset continuously throughout the course of data collection. This allowed for the generation of frequency distributions and cross-tabs on data at regular stages throughout the survey fielding to facilitate QC's internal early detection and correction of data entry errors.

Final Survey Data Validation. Following the completion of survey data collection, all data was subjected to a final stage of validation and cleaning during which illogical responses were identified and corrected or flagged, and corrections were made to any mis-coding of data not detected in earlier stages of cleaning and validation. All activities undertaken in the course of survey were documented in accordance with QC's Enumerated Quality Assurance Logs and Standards (EQUALS) survey data collection documentation protocols.

5. Unused Data Elements

Without exception, all data collected specifically for the Evaluation were utilized in the analysis.

C. SAMPLING

1. Sampling Procedures and Protocols

The sample design for the Commercial Refrigeration Evaluation was based upon analysis of 1995 program participation data and PG&E billing data. The goal of the sample design was to achieve the most efficient utilization of project resources in order to estimate the first-year gross and net impacts in a manner that met the sample size and evaluation accuracy requirements defined by the Protocols.

Quantum Consulting Inc.

The telephone survey sample was selected based upon a census of the program participants, while the comparison group was drawn in a stratified fashion, in an attempt to achieve a customer profile similar to the participant sample. For example, the comparison group sample frame included business types and usage strata that were similar to the participant population.

The customer segment is defined primarily by the business types, which were determined based upon the MDSS database (for participants), and the Second Standard Industrial Classification (SIC2) code—which represents building activity—from the billing dataset (for the comparison group). Within each business type, the annual energy consumption is used as a proxy to group customers into usage bins, and sample points are selected to reflect the underlying distribution of the participant population.

The sampling unit for both participant and comparison groups was defined as customer premise. A premise is defined as all billing accounts that correspond to the same location and customer. The final participant sample frame consists of 2,560 premises drawn from the eligible population of 5,694 program participants who were paid in 1995 from both the RE and Customized Incentives programs.

The comparison group sample frame consists of 4,153 customers drawn from the eligible population of 172,354 commercial customers that satisfied all of the screening criteria used in construction of the sample frame. In drawing the sample frame, targets are established for each business type and usage segment, so that the sample frame distribution, by business type and usage segment, is the same as that of the participant population.

The process of reduction to the eligible sample involved the elimination of customers that had 1) moved during the period of interest; or 2) had billing records with significant missing data. Customers were further screened to identify those who had high-quality data for each month, for all three years of the analysis window.

Finally, the achieved samples and their distributions can be found in *Appendix A*. Based on the total energy usage, the samples relative precision was estimated to be 6 percent at the 90 percent level. The procedures used in the relative precision calculation and a summary of how the Evaluation sample design meets the Protocols' requirement in terms of sample size and relative precision are presented in *Appendix A*.

2. Survey Information

Telephone survey instruments are presented in the *Survey Appendix*, *Section S-1* (for participants) and *Section S-2* (for comparison group customers). Participant and comparison group customer's survey response frequencies are presented in *Section S-9*. Finally, reasons for refusals are presented in *Section S-10*.

3. Statistical Descriptions

As mentioned above, a complete set of participant and comparison group customer response frequencies are presented in *Survey Appendix S-9*. In addition, statistics on usage and engineering impact variables that were used in the billing data regression models are also presented in *Appendix C*.

D. DATA SCREENING AND ANALYSIS

A detailed discussion of the billing data regression data analysis is presented in *Appendix C*. The statistical billing model described in this section incorporates analysis for three distinct end uses,

Quantum Consulting Inc.

lighting, HVAC and refrigeration (for Study ID's 324, 326 and 330, respectively). Specific procedures and modeling issues are discussed below.

1. Outliers, Missing Data and Weather Adjustment

Three types of data censoring screens were applied to the billing analysis sample frame to remove customers that have invalid billing data, that may not have had their bill properly aggregated to the Site ID level, or that were extremely large users.

Invalid Usage

For customers to be included in the final billing analysis, customers had to have billing data that met the following three criteria.

The pre- and post-installation annual bills had to have been comprised of at least six non-zero monthly bills. If there were seven or more monthly bills with zero energy, the customer was removed from the analysis. If there were between one and six monthly bills with zero energy, the remaining months were prorated to an annual estimate.

The pre-installation annual bill could not be more than three times or less than one third of the post-installation bill. If this occurred, the customer was removed from the analysis.

The pre-installation annual bill could not be more than twice or less than one half the postinstallation bill, unless the telephone survey responses indicated that the customer had a change at the site that may have caused an increase or decrease in usage, respectively. For example, if a customer doubled their usage and reported an increase in square footage, or an increase in employees, or an additional measure installed, the customer remained in the sample. However, if the customer reported no changes, or only changes that would indicate a decrease in usage, such as a removal of a measure, then the customer was removed from the analysis.

Appendix C presents the number of participants and nonparticipants that were deleted for each of the above criteria. Note that only 22 nonparticipants were deleted, whereas 123 participants were deleted. This is due to the fact that the nonparticipants were pre-screened to have relatively valid billing data prior to being selected into the nonparticipant survey sample frame. The participants, however, were often a census and no pre-screening was done on their billing data prior to being selected into the participants. Of the 123 participants, 87 were deleted due to the zero bill criteria.

Large Customers

Customers whose annual post-installation energy consumption exceeded three million kWh were excluded from the billing analysis. Customers of this size were deleted for a number of reasons. First, there were 98 participants dropped for this reason, compared to only 10 nonparticipants. This indicated that the nonparticipants would not provide a good control for this group of participants. Very large customers are more likely to participate because they are more aware of the program, since they have more contact with PG&E representatives. Therefore, it is difficult to find a sample of nonparticipants that adequately represents these customers.

Large customers installing measures that provide relatively low levels of savings are particularly problematic in billing analyses of this type. It is very difficult to detect an annual impact even as large as 10,000 kWh in a customer's bill which exceeds 10 million kWh, for example. In addition, large customers are more likely to have made changes at the site, which could significantly affect their energy usage. If the model does not adequately capture all of these changes (possibly due to the unique nature of the change, or an error in the self-reported survey responses) it is likely that

the coefficient on the program *energy* impact may reflect the change. While this is true of all customers, regardless of size, it is more of a concern for larger customers because the magnitude of their changes can have significant influence over the results of the model.

Aggregation to Site ID Level

As mentioned above, one concern with aggregating to the Site ID level is that there may be control numbers associated with a different premise number, service address, or corporation number that are in the same physical site and are being affected by the installed measures. If this is the case, the billing analysis will have the effect of underestimating the impacts. Therefore, a comparison was made between the engineering energy impact and the pre- and post-installation bills to identify any customers where this problem of bill aggregation may exist.

There were 148 participants that were identified as having total Commercial Sector Program energy impacts that were either more than 50 percent of their pre-installation usage or more than 100 percent of their post-installation usage. These 148 participants were further analyzed to determine whether the impact was large relative to usage because of a problem in aggregating the bill, or if the engineering estimates were just over-estimated, in which case the customer would not be removed from the billing analysis.

Three criteria were used to determine if there was a problem with aggregating the bill for these 148 participants. If a participant failed any of these criteria, the customer was removed from the analysis on the basis that the bills were not properly aggregated and the entire impact would not be detected in an analysis of the customer's billing data.

If the customer's annual kWh per square foot was in the bottom tenth percentile of all participants, the customer was removed.

If the customer's annual kWh per employee was in the bottom tenth percentile of all participants, the customer was removed.

The first billing data pull, which consisted of every nonresidential customer in PG&E's service territory over the period of January 1992 to September 1995, was compared to the second data pull, which is being used for the billing analysis. Customer bills from the first billing data pull were aggregated to the Site ID level in the same way described above. These annual aggregated bills were compared to the aggregated bills used in the analysis. If the aggregated bills from the first data pull were more than 50 percent larger than the bills being used in the billing analysis, the customer was removed. This would indicate that either not all of the control numbers that link to a site were provided in the second data pull or, more likely, since 1995 (when the first billing data was pulled and when the customer participated) there has been customer turnover at the site, and there are now additional premise numbers that no longer link to one unique site.

As a results of these three criteria, 102 of the 148 premises were removed. Of the 102 removed customers, 45 failed the invalid usage data screening checks as well. Therefore, only 57 premises were removed solely on these data screening criteria alone.

Appendix C presents the number of participants that were removed from the analysis for each of the above criteria.

Other Censoring

In addition to all of the above censoring, three other participants were removed from the analysis for the following reasons:

One customer was removed from the analysis because the customer was noted as a "Z-Customer" in the MDSS. PG&E does not claim impacts on "Z-Coded" customers.

Another site had a retrofit performed that will affect a neighboring customer's utility bill. The refrigeration equipment (compressors and condensers) serving the participant are maintained and operated by a nonparticipant. The participant buys liquid ammonia from the nonparticipant via lines running under an adjacent road (driveway) and suction gas is returned to the nonparticipant following use. The impacts of this retrofit (which affect ice production) will be realized by the manufacturer of the liquid ammonia product, a nonparticipant. Therefore, the participating customer was removed from the analysis.

Finally, two other customers were identified as having added the rebated measure installed under the Commercial Program, causing a net increase in energy from the pre- to post-installation period. One of these customers was previously identified as being a large customer and deleted. Therefore, only one extra customer was removed.

Appendix C summarizes all of these data screening criteria and provides the pre- and post-censoring sample sizes by technology and business type.

2. Background Variables

Background variables, such as interest rates, unemployment rates and other economic factors, were not explicitly modeled in the final model. However, the effect of these factors was explicitly accounted for when a cross-sectional time series model was used with a comparison group. This is based on the assumption that the comparison group was equally impacted by the same set of background variables.

3. Data Screen Process

As explained in *Appendix C*, the final model was fitted in two steps. The first step is to estimate a baseline model to develop the relationship between the pre-installation year usage and the post-installation year usage, followed by an SAE model to estimate the SAE realization rates based on the engineering estimates of program impacts. Section 1 above describes in detail all of the data screening criteria. *Appendix C* also details the number of customers that were screened for each criteria.

4. Regression Statistics

The billing regression analysis for the lighting program uses two different multivariate regression models under an integrated framework of providing unbiased and robust model estimates in the commercial sector. The key feature of our approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variations in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for both participants and the comparison group, as a function of pre-installation-year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group. The outputs of the baseline model are presented in *Appendix C*.

The estimated SAE realization rates are used to adjust the engineering estimates of expected annual energy impacts for the entire participant population. The regression statistics for the final SAE

model are presented in the following exhibits and a more detailed discussion can be found in *Appendix C*.

	8 Jul 24 -	Parameter	t-Statistic	Sample Size
Parameter Descriptions	Units	Estimate	t-Statistic	Size
SAE Coefficients				
Lighting End Use	1.5.6.01	1.00	4 4 6 7	110
Office Flourescents	kWh	-1.00	14.67	116
Other Flourescents	kWh	-0.68	7.41	261
Controls	kWh	-1.38	2.09	57
Warehouse HIDs	kWh	0.02	0.07	10
School HIDS	kWh	0.11	0.30	10
Other RE Lighting	kWh	-1.26	2.15	119
Custom Lighting	kWh	-0.51	3.07	15
HVAC End Use				
Central A/Cs	kWh	-2.07	3.67	184
ASDs	kWh	-1.90	6.75	27
Chillers	kWh	-1.58	2.39	5
EMS	kWh	-1.03	8.38	20
Other Custom HVAC	kWh	-0.65	4.76	5
Office Thermostats	kWh	0.05	1.06	36
Other RE/REO HVAC	kWh	-0.90	2.89	153
Refrigeration				
Custom Refrigeration	kWh	-0.75	2.00	3
RE/REO Refrigeration	kWh	-0.53	1.98	181
Other End Uses	kWh			
Other	kWh	-1.71	2.90	62
Change Variables	kWh			
Cooling System Replacement	(0,1)*kWh	-0.03	0.70	10
Lighting System Replacement	(0,1)*kWh	-0.08	4.17	48
Change in Employees	(±1,0)*kWh	0.01	0.64	57
Square Foot Change	± sqft	4.42	2.37	27
Heating System Replacement	(0,1)*kWh	-0.07	0.04	4
Other Equipment Change	(0,1)*kWh	0.03	1.17	42
Remove Equipment	(0,1)*kWh	0.08	0.64	2
Refrigeration Replacement	(0,1)*kWh	0.00	0.01	3
Add Equipement	(0,1)*kWh	0.11	0.49	11
Other Additions	(0,1)*kWh	0.14	12.41	375

Exhibit B Final SAE Model Output

The dependent variable is the difference between the actual and predicted 1996 usage using the 1994 baseline model.

SAE coefficients were calculated for 16 different combinations of business type and measure. Primarily those measures that have broad participation and relatively high expected impacts were supported by separate SAE coefficients. In addition, a separate SAE coefficient was calculated for other Commercial Program measures outside Lighting, HVAC, and Refrigeration.

Attempts were made to estimate the SAE coefficients at a finer level of segmentation, but generally either one of two problems were encountered. First, available sample sizes were too small to support a finer level of segmentation. Second, certain parameters were correlated with each other and needed to be combined into a single parameter (a standard econometric solution to solving the problem of colinearity). For example, it was determined that there was a high incidence of compact and standard fluorescent installations at the same site in office buildings. Therefore, there was enough correlation between the compact and fluorescent engineering estimates to warrant combining the two estimates into a single fluorescent estimate in the model.

All but three of the SAE coefficients are significant at the 95 percent confidence level (t-statistics greater than 1.96). In addition, all of the statistically significant SAE coefficients were the correct sign, and therefore were used in the calculation of the final ex post energy calculations. The three SAE coefficients that were not significant at the 95 percent confidence interval (HIDs in warehouses and schools, and thermostats in offices) were not used in the final ex post energy calculations. Because each of the insignificant SAE coefficients were also the wrong sign, they were set to zero. Therefore, no energy impacts are being claimed for these three segments.

All of the HVAC technologies are represented in the SAE billing analysis, except for REO Variable Frequency Drives (VFD), REO CAV to VAV, and Customized Incentive Chillers. Although these measures represent only ten percent of the energy impact, an approach needed to be developed for adjusting the engineering energy impact estimate for these measures.

- The REO VFD measure is very similar to those installed under the RE and Customized Incentive programs, and the engineering estimate is calculated using the same approach. Therefore, engineering energy impact estimate for the REO VFD measure was adjusted by the SAE coefficient estimated for the RE and Customized Incentive measures.
- Three approaches were considered for adjusting the engineering energy impact estimate for the REO CAV to VAV measure: (1) applying the Other RE HVAC SAE coefficient, (2) applying the Other Custom HVAC SAE coefficient, or (3) leaving the engineering estimate unadjusted. Because the REO CAV to VAV measure is usually installed in large businesses, typical of those installing Customized Incentive measures, the Other Custom HVAC SAE coefficient was used to adjust the engineering energy impact estimate for the REO CAV to VAV measure. This is also the most conservative approach since the SAE coefficient is only 0.65.
- The engineering energy impact for Chillers was estimated differently for Customized Incentive applications than for RE and REO applications, due to the different types of businesses that install these measures. Therefore, the engineering energy impact estimate for Customized Incentive Chillers was left unadjusted, which is conservative compared to the alternative approach of applying the 1.58 SAE coefficient estimated for the RE and REO applications.

The SAE coefficient of 0.65 for Other Custom HVAC measures is based on a sample size of only five sites, compared to the 43 unique sites that installed "Other" Customized Incentive HVAC measures in 1995. In addition, these five sites represent only seven percent of the total ex ante energy impact contributed by these 43 sites. Also, one third of the customers installing "Other" Customized Incentive HVAC measures have usage over 3 million kWh per year, which are not represented in the SAE analysis.

The larger customers (usage over 3 million kWh per year), however, are very well represented in the on-site audit sample, for which calibrated engineering energy impacts were estimated. Sixteen sites, which represent 53 percent of the total ex ante energy impact, were on-site audited, one of which was included in the SAE billing analysis. The ratio of the engineering energy impact

estimate to the ex ante estimate is 0.79 for the on-site audit sample. This can be directly compared to the SAE coefficient, because ex ante estimates were used as the engineering energy impact estimates for the billing analysis, as mentioned above.

Three approaches were considered for estimating the ex post gross energy impact for the "Other" Customized Incentive HVAC measures:

- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population.
- The 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate from the on-site audit sample could be applied to the ex ante estimate of gross energy impact for the population.
- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population that is most similar to the SAE sample, and the 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate could be applied to the population most similar to the on-site audit sample.

The approach of applying the SAE coefficient to the ex ante estimate of gross energy impact for the population, which is the most conservative method, was chosen for two reasons. First, the SAE coefficient provides a statistically adjusted result that is significant at the 95 percent confidence level. Second, the 0.79 ratio based on the on-site audit is very sensitive to a few individual on-site results. For example, the ratio of the engineering to ex ante estimate is 1.51 for the site with the largest energy impact. If the engineering estimate was set equal to the ex ante estimate for this customer, the overall ratio for all on-sites would be 0.64. Conversely, if the site with the second largest energy impact, which has a ratio of 0.41, had an engineering estimate set equal to the ex ante estimate, the overall ratio would be 0.95.

The SAE coefficient of 0.75 for Customized Incentive Refrigeration measures is based on a sample size of only three sites, compared to the 53 unique sites that installed Customized Incentive Refrigeration measures in 1995. Adjusting the engineering estimates of energy impact by 0.75 for all Customized Incentive measures should be considered conservative because it is likely that a sample size of three may not be representative of the population. An alternative approach would be to adjust only those measures that are similar to the three represented in the billing analysis, and leave the remaining measures unadjusted. It was found that the ratio of the engineering energy to the ex ante gross energy estimate was 98 percent over all 53 unique sites, and 94 percent for the three sites used in the SAE analysis. Because the ratio for the SAE sample is similar to the population's ratio and because the SAE coefficient was statistically significant at the 95 percent confidence level, the conservative approach of adjusting all Customized Incentive Refrigeration measures by 0.75 was chosen.

Impact estimates from the MDSS for other end uses were included in the model for customers that installed measures outside the Lighting, HVAC, and Refrigeration end uses. Although this result is statistically significant and the correct sign, it is not recommended that this value be used because the sample may not be representative of the population of participants installing these measures.

The majority of the change variables that were included in the model were not statistically significant at the 95 percent confidence level. Most of the parameter estimates are the correct sign, and those that are not have very low t-statistics. All but one variable, was determined solely on telephone survey responses. The change variable termed "other additions" was determined by comparing the predicted estimate of post-installation usage, based on the baseline model, to the actual post-installation usage. If the predicted usage is less than the actual post-installation usage, it is likely that some change occurred at the premise that would cause the usage to increase. An

analysis of these customers revealed that two thirds of them indicated through the telephone survey that some change did occur at the premise. However, almost half of these customers did not provide a date for when the change occurred. Therefore, the "other additions" variable was created in an attempt to capture other changes that would cause usage to increase, which were not explained by the other independent variables in the model.

5. Model Specification

The model specifications are presented in *Appendix C*. Specific model specification issues are further discussed below:

Cross-sectional Variation. The final model specification recognizes the potential heterogeneity problem in the model and uses the following procedures to eliminate the impacts of the cross-sectional variation: (1) observations with highest usage values were removed in the model to reduce the overall variance of the sample in terms of usage and size; and (2) independent variables were all intercepted with the pre-installation usage to ensure that change of independent variable will be proportional to the usage value.

Time Series Variation. The key factors to control for the time series variation in the final model are: (1) use of the comparison group to define the relationship of the energy consumption between two different time periods and (2) eliminate the multiple time period interactions by only one yearly pre-installation period and one yearly post-installation period for each stage.

Self-selection. Self-selection is not treated explicitly in the billing regression analysis. The reasons for excluding such a correction is based on the following considerations: (1) the objective of the billing regression analysis is to estimate the program gross energy impacts, where self-selection bias is believed to have a limited effect on the regression result (when both cross-sectional and time series data are used), and (2) the existing self-selection correction procedures all have serious flaws in their underlying assumptions. For example, the Mills ratio approach was attempted, but resulted in serious multi-collinearity problems between the double inverse Mills ratio variable and the engineering estimates of impact.

Collinearity. Various statistical tests (such as COLLIN and VIF options in SAS) were used to check multiple collinearity problem among independent variables in the model to ensure that the final parameter estimates are robust.

Net Impact. As mentioned in the Self-selection section, a net billing model was implemented using the double inverse Mills ratio approach, but resulted in problems with multi-colinearity that were uncorrectable. Therefore, a gross billing analysis model was used and adjusted by a net-to-gross ratio using discrete choice and self report methods.

6. Measurement Errors

For the billing data regression analysis, the main source of measurement errors is the telephone survey. Our approach has been to proactively stop the problem before it happens so that statistical corrections are kept to a minimum.

Measurement errors are a combination of random and non-random error components that plague all survey data. The non-random error frequently takes the form of systematic bias, which includes, but is not limited to, ill-formed or misleading questions and mis-coded study variables. In this project, we have implemented several controls to reduce the systematic bias in the data. These steps included (1) thorough auditor/coder training; (2) instrument pretest; and (3) crossvalidation between on-site audit data and telephone survey responses. The random measurement error, such as data entry error, has no impact on estimating mean values because the errors are typically unbiased. For the measures that were modeled in the billing regression analysis, the impact of random unbiased measurement errors was accounted for as part of the overall standard variance in the parameter estimate.

7. Autocorrelation

The autocorrelation problem exists if the residuals in one time period are correlated with the residuals in the previous time period. Since the final model is based on a yearly pre- and post-installation period comparison with only one year in each period, the autocorrelation problem was unlikely to occur under this scenario, as was confirmed by examining the Durbin-Watson statistic for these models.

8. Heteroskdasticity

See discussion above.

9. Collinearity

See discussion above.

10. Influential Data Points

See discussion above.

11. Missing Data

See discussion above.

12. Precision

The precision calculation for the gross SAE realization rates are presented in *Section 3*. Relative precision's for net estimates were calculated using the following procedure:

- First, NTG ratios, N_i, were computed for all technology groups that were represented in the telephone survey.
- Then, the program level NTG and program level standard error for the NTG were calculated using the classic stratified sample techniques. The program level NTG was a weighted average of technology level NTG values with adjusted gross impacts per technology group providing the weights.³ The functional relation can be best described in the following equations:

$$\overline{N} = \Sigma_{i} w_{i} * \overline{N}_{i} \text{ with } w_{i} = MWh_{i}$$

StdErr_{NTG} = $\sqrt{\Sigma_{1}((w_{i})^{2} * \text{StdErr}_{i}^{2})}$

³ Technology groups with no standard errors were excluded from this calculation.

where N = Net-to-Gross Value i = Technology Group w = Weight

• Then, the relative precision⁴ for the program NTG value for energy was calculated and combined with the relative precision of the gross energy impact to yield an overall relative precision for the net energy impacts:

$$RP_{NTG_Energy} = \frac{t_{\alpha=10} * StdErr}{NetMWH}$$
$$RP_{NetEnergy} = \sqrt{RP^{2}_{NTG_Energy} + RP^{2}_{GrossEnergy}}$$

• Finally, the relative precision net demand impacts was calculated using a scaled version of the relative precision for the net energy impact. The sample sizes of the on-site audits and telephone surveys served as the scalars:

$$RP_{NetDemand} = RP_{NetEnergy} * \sqrt{\frac{N_{OnSite}}{N_{Telephone}}}$$

• Per-unit NTG relative precision's appearing in Table 6 (Items 1-5) were calculated in a similar fashion.

E. DATA INTERPRETATION AND APPLICATION

The program net-to-gross analysis was conducted based on a survey self-report analysis. For a detailed NTG analysis discussion, see *Appendix D*.

Self Report Method

The self-report method used to score free-ridership uses participant responses to survey questions regarding the timing of and reasons for equipment replacement actions. The complete text of the participant surveys may be found in *Survey Appendix S-1*. Questions used for the self-report analysis are summarized in *Appendix D*.

As described in *Appendix D*, a series of questions was posed to program participants. If the customer indicated that he had not been shopping for new refrigeration equipment before becoming aware of the program, he was scored initially as a net participant. A customer was then classified as a free-rider if he (1) stated that he would have installed high-efficiency refrigeration within the year and had already selected the refrigeration equipment; and (2) stated that he would have purchased high-efficiency refrigeration equipment if the program had not existed.

 $^{^{4}}$ The example shown is for the 90 percent confidence level. Relative precision was also calculated at the 80 percent confidence level.

The net-to-gross ratio using the self-report method relied only on free ridership and did not include any estimate of spillover.