Customer Energy Efficiency Program Measurement and Evaluation Program

EVALUATION OF PACIFIC GAS & ELECTRIC COMPANY'S 1995 NONRESIDENTIAL ENERGY EFFICIENCY INCENTIVES PROGRAM FOR COMMERCIAL SECTOR HVAC TECHNOLOGIES

PG&E Study ID number: 326

March 1, 1997

## Measurement and Evaluation Customer Energy Efficiency Policy & Evaluation Section Pacific Gas and Electric Company San Francisco, California

#### Disclaimer of Warranties and Limitation of Liabilities

As part of its Customer Energy Efficiency Programs, Pacific Gas and Electric Company (PG&E) has engaged consultants to conduct a series of studies designed to increase the certainty of and confidence in the energy savings delivered by the programs. This report describes one of those studies. It represents the findings and views of the consultant employed to conduct the study and not of PG&E itself.

Furthermore, the results of the study may be applicable only to the unique geographic, meteorological, cultural, and social circumstances existing within PG&E's service area during the time frame of the study. PG&E and its employees expressly disclaim any responsibility or liability for any use of the report or any information, method, process, results or similar item contained in the report for any circumstances other than the unique circumstances existing in PG&E's service area and any other circumstances described within the parameters of the study.

All inquiries should be directed to:

Lisa K. Lieu Revenue Requirements Pacific Gas and Electric Company P. O. Box 770000, Mail Code B9A San Francisco, CA 94177



# EVALUATION OF PG&E'S 1995 NONRESIDENTIAL ENERGY EFFICIENCY INCENTIVES PROGRAM FOR COMMERCIAL SECTOR HVAC TECHNOLOGIES

PG&E STUDY ID#: 326

# FINAL REPORT

March 1, 1997

Submitted to

Mary O'Drain Market Planning and Research Pacific Gas & Electric Co. 123 Mission Street, Room 2365 San Francisco, CA 94177

Prepared by

QUANTUM CONSULTING INC. 2030 Addison Street Berkeley, CA 94704

## TABLE OF CONTENTS

| Section |                                                                                  | Page |
|---------|----------------------------------------------------------------------------------|------|
| 1       | Executive Summary                                                                | 1-1  |
|         | 1.1 Evaluation Summary                                                           | 1-1  |
|         | 1.2 Major Findings                                                               | 1-4  |
|         | 1.3 Major Recommendations                                                        | 1-5  |
| 2       | Introduction                                                                     | 2-1  |
|         | 2.1 The Retrofit Express Program                                                 | 2-1  |
|         | 2.2 The Retrofit Efficiency Options Program                                      | 2-1  |
|         | 2.3 The Customized Incentives Program                                            | 2-2  |
|         | 2.4 Evaluation Overview                                                          | 2-2  |
|         | 2.4.1 Objectives                                                                 | 2-3  |
|         | 2.4.2 Timing                                                                     | 2-3  |
|         | 2.4.3 Role Of Protocols                                                          | 2-4  |
|         | 2.5 Report Layout                                                                | 2-4  |
| 3       | Methodology                                                                      | 3-1  |
|         | 3.1 Integrated Evaluation Approach                                               | 3-1  |
|         | 3.1.1 Data Sources                                                               | 3-1  |
|         | 3.1.2 Gross Impact Estimates                                                     | 3-5  |
|         | 3.1.3 Net-to-Gross Estimates                                                     | 3-7  |
|         | 3.2 Engineering Methods                                                          | 3-7  |
|         | 3.2.1 Overview of the Evaluation Approach                                        | 3-7  |
|         | 3.2.2 Evaluation Approach: Variable Speed Drives and<br>Central Air Conditioning | 3-8  |
|         | 3.2.3 Calculate RE and REO High-Efficiency Chiller Impacts                       | 3-12 |
|         | 3.2.4 Evaluation Approach: Retrofit Express and Retrofit<br>Efficiency Options   | 3-13 |
|         | 3.2.5 Evaluation Approach: Customized Incentives                                 | 3-13 |
|         | 3.3 Billing Regression Analysis                                                  | 3-14 |
|         | 3.3.1 Data Sources for Billing Regression Analysis                               | 3-14 |
|         | 3.3.2 Data Aggregation and Analysis Dataset Development                          | 3-16 |
|         | 3.3.3 Analysis Periods                                                           | 3-16 |
|         | 3.3.4 Data Censoring                                                             | 3-16 |
|         | 3.3.5 Model Specification                                                        | 3-18 |
|         | 3.3.6 Billing Regression Analysis Results                                        | 3-20 |
|         | 3.3.7 Self-Selection                                                             | 3-22 |
|         | 3.3.8 Relative Precision Calculation                                             | 3-24 |

## TABLE OF CONTENTS

| Section |                                          | Page                 |  |  |
|---------|------------------------------------------|----------------------|--|--|
|         | 3.4 Net-to-Gross Method                  | 3-25                 |  |  |
|         | 3.4.1 Data Sources                       | 3-25                 |  |  |
|         | 3.4.2 Self-Report-Based Estimates of F   | ree-Ridership 3-25   |  |  |
|         | 3.4.3 Self-Report-Based Estimates of S   | pillover 3-26        |  |  |
|         | 3.4.4 Use of Discrete Choice Models      | to Estimate NTG 3-27 |  |  |
| 4       | Evaluation Results                       |                      |  |  |
|         | 4.1 Ex Post Gross Impact Results         | 4-1                  |  |  |
|         | 4.2 Net-to-Gross Adjustments             | . 4-4                |  |  |
|         | 4.3 Ex Post Net Impacts                  | 4-6                  |  |  |
|         | 4.4 Realization Rates                    | 4-8                  |  |  |
|         | 4.4.1 Gross Realization Rates for Energy | rgy Impacts 4-8      |  |  |
|         | 4.4.2 Gross Realization Rates for Der    | nand Impacts 4-11    |  |  |
|         | 4.4.3 Gross Realization Rates for The    | rm Impacts 4-12      |  |  |
|         | 4.4.4 Net Realization Rates              | 4-13                 |  |  |
|         | 4.5 Overview of Realization Rates        | 4-17                 |  |  |
| 5       | Recommendations                          | 5-1                  |  |  |
|         | 5.1 Evaluation Methods                   | 5-1                  |  |  |
|         | 5.2 Measures Offered                     | 5-2                  |  |  |

## LIST OF EXHIBITS

| Exhibit    |                                                                                                             | Page |
|------------|-------------------------------------------------------------------------------------------------------------|------|
| 1-1        | Summary of Gross Evaluation Results<br>Commercial HVAC Applications                                         | 1-1  |
| 1-2        | Summary of Net Evaluation Energy Results<br>Commercial HVAC Applications                                    | 1-2  |
| 1-3        | Summary of Net Evaluation Demand Results<br>Commercial HVAC Applications                                    | 1-3  |
| 1-4        | Summary of Net Evaluation Therm Results<br>Commercial HVAC Applications                                     | 1-4  |
| 3-1        | Nested Sample Design                                                                                        | 3-3  |
| 3-2        | Commercial Sector Data Collection<br>For the Indoor HVAC End Use                                            | 3-4  |
| 3-3        | Method for Estimating Impacts                                                                               | 3-6  |
| 3-4        | Key Characteristics for DOE-2.1E Prototypes                                                                 | 3-9  |
| 3-5        | Business Type Mapping                                                                                       | 3-9  |
| 3-6        | Engineering Estimates of CAC Energy Savings                                                                 | 3-10 |
| 3-7        | Engineering Estimates of VSD Energy Savings                                                                 | 3-11 |
| 3-8        | Equation for Estimating CAC Demand Savings                                                                  | 3-12 |
| 3-9        | Billing Analysis Sample Used<br>Post-Censoring<br>Indoor Lighting End-Use Technologies                      | 3-17 |
| 3-10       | Billing Analysis Sample Used<br>Post-Censoring<br>Nonparticipants                                           | 3-18 |
| 3-11       | Billing Regression Final Model Outputs                                                                      | 3-21 |
| 3-12       | Relative Precision Calculation                                                                              | 3-24 |
| 3-13       | NTG Weighted by Avoided Cost                                                                                | 3-26 |
| 4-1        | Ex Post Gross Energy Impacts<br>By Business Type and Technology Group<br>For HVAC Technologies Paid in 1995 | 4-2  |
| <b>4-2</b> | Ex Post Gross Demand Impacts<br>By Business Type and Technology Group<br>For HVAC Technologies Paid in 1995 | 4-3  |
| 4-3        | Ex Post Gross Therm Impacts<br>By Business Type and Technology Group                                        | 4-4  |
| 4-4        | NTG Adjustments by Technology Group                                                                         | 4-5  |

## LIST OF EXHIBITS

| Exhibit |                                                                                                                       | Page |
|---------|-----------------------------------------------------------------------------------------------------------------------|------|
| 4-5     | Ex Post Net Energy Impacts<br>By Business Type and Technology Group<br>HVAC Technologies Paid in 1995                 | 4-6  |
| 4-6     | Ex Post Net Demand Impacts<br>By Business Type and Technology Group<br>HVAC Technologies Paid in 1995                 | 4-7  |
| 4-7     | Ex Post Net Therm Impacts<br>By Business Type and Technology Group<br>HVAC Technologies Paid in 1995                  | 4-8  |
| 4-8     | Gross Energy Impact Realization Rates<br>By Business Type and Technology Group<br>HVAC Technologies Installed in 1995 | 4-9  |
| 4-9     | Gross Demand Impact Realization Rates<br>By Business Type and Technology Group<br>HVAC Technologies Paid in 1995      | 4-11 |
| 4-10    | Gross Therm Impact Realization Rates<br>By Business Type and Technology Group<br>HVAC Technologies Paid in 1995       | 4-13 |
| 4-11    | Net Energy Impact Realization Rates<br>By Business Type and Technology Group                                          | 4-14 |
| 4-12    | Net Demand Impact Realization Rates<br>By Business Type and Technology Group                                          | 4-15 |
| 4-13    | Net Therm Impact Realization Rates<br>By Business Type and Technology Group                                           | 4-16 |
| 4-14    | Commercial HVAC Impact Summary<br>By Technology Group                                                                 | 4-18 |

## APPENDICES TABLE OF CONTENTS

~

.

| Appendix |                                                    | Page |
|----------|----------------------------------------------------|------|
| A        | Sample Design                                      | A-1  |
| В        | Engineering Detailed Computational Methods         | B-1  |
| С        | Billing Regression Analysis                        | C-1  |
| D        | Net-to-Gross Method                                | D-1  |
| E        | Results Tables                                     | E-1  |
| F        | Summary of Gross Program Impacts by Costing Period | F-1  |
| G        | Protocol Tables 6 & 7                              | G-1  |

.

## SURVEY APPENDICES TABLE OF CONTENTS

| Appendix |                                                  | Page   |
|----------|--------------------------------------------------|--------|
| S-1      | HVAC & Lighting Participant Survey Instrument    | S-1-1  |
| S-2      | HVAC & Lighting Nonparticipant Survey Instrument | S-2-1  |
| S-3      | HVAC & Lighting Canvass Survey Instrument        | S-3-1  |
| S-4      | HVAC & Lighting On-Site Survey Instrument        | S-4-1  |
| S-5      | Refrigeration Participant Survey Instrument      | S-5-1  |
| S-6      | Refrigeration Nonparticipant Survey Instrument   | S-6-1  |
| S-7      | HVAC & Lighting Call Disposition                 | S-7-1  |
| S-8      | Refrigeration Call Disposition                   | S-8-1  |
| S-9      | Survey Response Frequencies                      | S-9-1  |
| S-10     | Survey Refusal Comments                          | S-10-1 |

## 1. EXECUTIVE SUMMARY

This section presents a summary of the impact results for the commercial Heating, Ventilating and Air-Conditioning (HVAC) technologies offered under the Pacific Gas & Electric Company's (PG&E's) 1995 Nonresidential Energy Efficiency Incentives (EEI) Programs. This evaluation covers HVAC technologies retrofits that were performed at PG&E customer facilities, for all rebates paid in 1995. These retrofits were performed under three different PG&E programs, the Retrofit Express (RE), Retrofit Efficiency Options (REO), and Customized Incentives Programs. The results are presented in three sections: evaluation results summary (covering the numerical results of the study), major findings, and major recommendations.

## 1.1 EVALUATION SUMMARY

The evaluation results are summarized in terms of energy savings (kWh), demand savings (kW), therms impacts, and realization rates, the ratio of the evaluation results (ex post) to the program design estimates (ex ante). These results are presented on a gross and net basis (i.e., before and after accounting for customer actions outside the program). Exhibit 1-1 presents the gross energy, demand, and therm savings results, together with the gross realization rates.

| Exhibit 1-1                         |
|-------------------------------------|
| Summary of Gross Evaluation Results |
| Commercial HVAC Applications        |

|                                 |                  |                  |                     | G               | ross Impact     | s                   |                    |                    |                     |
|---------------------------------|------------------|------------------|---------------------|-----------------|-----------------|---------------------|--------------------|--------------------|---------------------|
|                                 |                  | Energy           | -                   |                 | Demand          |                     |                    | Therm              |                     |
| Program and<br>Technology Group | Ex Ante<br>(kWh) | Ex Post<br>(kWh) | Realization<br>Rate | Ex Ante<br>(kW) | Ex Post<br>(kW) | Realization<br>Rate | Ex Ante<br>(Therm) | Ex Post<br>(Therm) | Realization<br>Rate |
| Retrofit Express                | 14,033,280       | 18,745,534       | 1.34                | 3,178           | 2,088           | 0.66                | 0                  | 0                  | NA                  |
| Retrofit Efficiency Options     | 6,688,386        | 4,934,528        | 0.74                | 1,581           | 758             | 0.48                | 0                  | 0                  | NA                  |
| Customized Incentives           | 31,168,215       | 27,196,121       | 0.87                | 2,417           | .1,292          | 0.53                | 2,057,723          | 2,056,662          | 1.00                |
| Total                           | 51,889,884       | 50,876,182       | 0.98                | 7,176           | 4,138           | 0.58                | 2,057,723          | 2,056,662          | 1.00                |

The ex ante numbers presented above in Exhibit 1-1 and below in Exhibits 1-2, 1-3 and 1-4 were obtained from PG&E's Management Decision Support System (MDSS), PG&E's participant database. The values presented are identical to those filed in Table E-3 of the Technical Appendix of the Annual Summary Report on Demand Side Management Programs in 1995 and 1996, revised in December 1996.

These results illustrate the following key points about the gross commercial HVAC impacts:

More than half of program energy savings and all of the program therm savings are from HVAC technologies installed through the Customized Incentives Program. The RE program accounted for the largest share of demand impacts, however. This apparent disproportionate distribution of energy and demand impacts between the two programs is a direct result of the measures offered and the associated operation of these measures. For example, Energy Management Systems (EMS), offered through the Customized program have tremendous energy impacts, but virtually all off peak.

Overall ex post gross impacts were only slightly lower than the ex ante gross estimates for energy and therms, but were more than 40 percent lower for demand. This is primarily the result of adjustments to operating conditions for measures that were assumed in the ex ante analysis to have large peak period demand impacts.

Of the programs and impacts evaluated, only energy impacts for the RE program were found to be substantially greater than assumed ex ante. Higher-than-predicted savings observed in the statistical analysis of billing data for variable speed drive (VSD) HVAC fan motors were largely responsible for this high realization rate. Savings estimates for this measure were based on DOE-2.1E Models calibrated to end-use metered data collected for installed measures. Coupled with the knowledge that the impacts were based on calibrated models, the high realization rate indicates that the additional savings is most likely due to assumptions of the existing case, mainly the size of the existing fan. In Section 5 a recommendation is made to explore this with future evaluation activities.

Evaluation of therm impacts was limited to the Customized Incentives Program; for these measures, gross therm impacts very closely matched the ex ante estimates.

Exhibits 1-2, 1-3, and 1-4 present the net energy, demand, and therm impact results, together with the net realization rates, at the same levels presented in Exhibit 1-1. These results reflect the gross realization rates as well as the ex ante and ex post net-to-gross (NTG) ratios for HVAC measures in the RE, REO, and Customized Incentives programs. While the NTG adjustments apply equally to energy and demand impacts, their overall effect depends on the relative contribution of impact of the measures to which they are applied.

|                             | Gross      | Net-to                   | -Gross Adjusti | nents                   | Net        |
|-----------------------------|------------|--------------------------|----------------|-------------------------|------------|
| Technology Group            | (kWh)      | Free Ridership<br>(1-FR) | Spillover      | NTG Ratio<br>(Unitless) | -<br>(kWh) |
|                             |            | EX ANTE                  |                |                         |            |
| Retrofit Express            | 14,033,280 | 0.57                     | 0.10           | 0.67                    | 9,402,355  |
| Retrofit Efficiency Options | 6,688,386  | 0.57                     | 0.10           | 0.67                    | 4,481,217  |
| Customized Incentives       | 31,168,215 | 0.65                     | 0.10           | 0.75                    | 23,376,167 |
| Total                       | 51,889,884 | 0.62                     | 0.10           | 0.72                    | 37,259,739 |
|                             |            | EX POST                  |                |                         |            |
| Retrofit Express            | 18,745,534 | 0.85                     | 0.00           | 0.85                    | 15,986,522 |
| Retrofit Efficiency Options | 4,934,528  | 0.80                     | 0.00           | 0.80                    | 3,970,487  |
| Customized Incentives       | 27,196,121 | 0.85                     | 0.00           | 0.85                    | 23,225,487 |
| Total                       | 50,876,182 | 0.85                     | 0.00           | 0.85                    | 43,182,496 |
|                             | REALIZ     | ATION RATES (Ex          | Post/Ex Ante)  |                         |            |
| Retrofit Express            | 1.34       | NA                       | NA             | NA                      | 1.70       |
| Retrofit Efficiency Options | 0.74       | NA                       | NA             | NA                      | 0.89       |
| Customized Incentives       | 0.87       | NA                       | NA             | NA                      | 0.99       |
| Total                       | 0.98       | NA                       | NA             | NA                      | 1.16       |

#### Exhibit 1-2 Summary of Net Evaluation Energy Results Commercial HVAC Applications

For energy, the ex post net impacts exceed the ex ante design estimates by 16 percent. The following points apply:

- The ex ante NTG ratio was 0.67 for the RE and REO programs and 0.75 for the Customized Incentives Program.
- The ex post NTG ratio—for both the RE and Customized Incentives programs as well as for all HVAC measures—averaged 0.85, which is larger than the corresponding ex ante value of 0.72. For the RE program, which also had high ex post energy impacts, this led to a net realization rate of almost 1.7. As previously discussed, this was driven by the high impacts associated with the VSD measures.
- While both the REO and the Customized Incentives measures had net realization rates of less than 1.0, the high gross and net realization rates for the RE program led to higher-thananticipated program-wide net impacts.

|                             | Gross | Net-to                   | o-Gross Adjusti | nents                   | Net   |
|-----------------------------|-------|--------------------------|-----------------|-------------------------|-------|
| Technology Group            | (kW)  | Free Ridership<br>(1-FR) | Spillover       | NTG Ratio<br>(Unitless) | (kW)  |
|                             |       | EX ANTE                  |                 |                         |       |
| Retrofit Express            | 3,178 | 0.57                     | 0.10            | 0.67                    | 2,129 |
| Retrofit Efficiency Options | 1,581 | 0.57                     | 0.10            | 0.67                    | 1,059 |
| Customized Incentives       | 2,417 | 0.65                     | 0.10            | 0.75                    | 1,813 |
| Total                       | 7,176 | 0.60                     | 0.10            | 0.70                    | 5,001 |
|                             |       | EX POST                  |                 |                         |       |
| Retrofit Express            | 2,088 | 0.81                     | 0.00            | 0.81                    | 1,700 |
| Retrofit Efficiency Options | 758   | 0.75                     | 0.00            | 0.75                    | 572   |
| Customized Incentives       | 1,292 | 0.85                     | 0.00            | 0.85                    | 1,103 |
| Total                       | 4,138 | 0.82                     | 0.00            | 0.82                    | 3,376 |
|                             | REALI | ZATION RATES (Ex         | Post/Ex Ante)   |                         |       |
| Retrofit Express            | 0.66  | NA                       | NA              | NA                      | 0.80  |
| Retrofit Efficiency Options | 0.48  | NA                       | NA              | NA                      | 0.54  |
| Customized Incentives       | 0.53  | NA                       | NA              | NA                      | 0.61  |
| Total                       | 0.58  | NA                       | NA              | NA ·                    | 0.68  |

#### Exhibit 1-3 Summary of Net Evaluation Demand Results Commercial HVAC Applications

For demand, the higher ex post NTG ratio across all programs is not sufficient to offset the low (0.58) gross realization rate. As noted previously, the evaluation results found that ex ante estimates overstated demand impacts for several HVAC measures, particularly those installed through the Customized Incentives Program.

|                             | Gross     | Net-to                   | o-Gross Adjustr | nents                   | Net          |  |
|-----------------------------|-----------|--------------------------|-----------------|-------------------------|--------------|--|
| Program                     | (therm)   | Free Ridership<br>(1-FR) | Spillover       | NTG Ratio<br>(Unitless) | -<br>(therm) |  |
|                             |           | EX ANTE                  |                 | •                       |              |  |
| Retrofit Express            | 0         | NA                       | NA              | NA                      | 0            |  |
| Retrofit Efficiency Options | 0         | NA                       | NA              | NA                      | 0            |  |
| Customized Incentives       | 2,057,723 | 0.65                     | 0.10            | 0.75                    | 1,543,292    |  |
| Total                       | 2,057,723 | 0.65                     | 0.10            | 0.75                    | 1,543,292    |  |
|                             |           | EX POST                  |                 |                         |              |  |
| Retrofit Express            | 0         | NA                       | NA              | NA                      | 0            |  |
| Retrofit Efficiency Options | 0         | NA                       | NA              | NA                      | 0            |  |
| Customized Incentives       | 2,056,662 | 0.85                     | 0.00            | 0.85                    | 1,756,389    |  |
| Total                       | 2,056,662 | 0.85                     | 0.00            | 0.85                    | 1,756,389    |  |
|                             | REALIZ    | ATION RATES (Ex          | Post/Ex Ante)   |                         |              |  |
| Retrofit Express            | NA        | NA                       | NA              | NA                      | NA           |  |
| Retrofit Efficiency Options | NA        | NA                       | NA              | NA                      | NA           |  |
| Customized Incentives       | 1.00      | NA                       | NA              | NA                      | 1.14         |  |
| Total                       | 1.00      | NA                       | NA              | NA                      | 1.14         |  |

## Exhibit 1-4 Summary of Net Evaluation Therm Results Commercial HVAC Applications

Since ex post gross therm impacts are almost exactly equal to the ex ante estimate, the net therm realization rate is due entirely to the difference between the ex post and ex ante NTG ratios for Customized Incentives measure.

Detailed presentation and discussion of the above findings can be found in Section 4.

## 1.2 MAJOR FINDINGS

Overall, PG&E's ex ante estimates for the commercial HVAC technologies paid under the 1995 programs understated energy impacts for RE measures, but overstated them for REO and Customized Incentives measures. A single HVAC measure—VSDs for HVAC fan motors—was found to account for most of the higher-than-expected energy impact for the RE program. In addition, both gross and net ex post demand impacts attributable to the installation of HVAC measures were substantially lower than predicted.

Because of the complexity of the application forms and the process for estimating net impacts for Customized Incentives measures, substantial differences were found between the ex ante and net gross impacts for a number of sites. While the more extreme variations tended to cancel each other out, the overall result was to lower ex post impacts.

## 1.3 MAJOR RECOMMENDATIONS

Recommendations that would enhance future program performance and evaluation are summarized below, and are presented in more detail in *Section 5*.

**Energy Management Systems (EMS)** are an effective means of reducing energy consumption, but require a knowledgeable operator to achieve those savings. EMSs used to monitor and control complicated HVAC plants require significant operator input, ideas, and operational decisions to achieve savings. EMSs cannot be expected to save energy without adequate system commissioning. PG&E should require commissioning for these systems (or other complicated measures) and offer incentives based on a performance contract. On-site investigations conducted as part of this evaluation effort have shown that performance contracts are an effective means of ensuring savings from installation of a particular system.

**Application Engineering Review** is a necessary component of the submittal process, and can be used to effectively screen applications that have significant analysis errors. In some instances, large errors were observed in the Customized Incentives applications submitted, resulting in inaccurate reporting of project impacts. Since applications submitted for the Customized Incentives Program (or other current programs like Nonresidential New Construction and Advanced Performance Options) can result in relatively large incentives (often based on impact achieved), it is recommended that a more intensive application review be used to capture these anomalies.

Analysis of Reasonableness of Savings should be another method used to assess errors in the application savings estimates. For example, the Customized Incentives application includes this type of comparison information within Attachment 7, where measure savings are compared against both the baseline quantity used and also against total billing records for the site. However, in some instances, these valuable data do not appear to be used in an effort to reject claimed savings.

**Rebates Offered for Infrequently Operated Systems -** Measures are sometimes installed that are either redundant systems (in case the primary system fails or requires repair), or are strictly peaking systems (coming on-line only on rare occasions). Due to the potentially low impacts for such retrofits, PG&E should consider rejecting rebates for equipment that meet these criteria.

**Demand Impact information for VSD measures** - Very large impacts were observed for the Variable Speed Drive measures installed under the program. For both the ex ante and engineering estimates, the assumption is made that at peak loads there is zero demand impact since the VSD is operating at 100 percent load. If the existing fans are oversized, there will indeed be a demand impact since the VSD will only operate the fan at the level required to meet space conditioning needs. This would also result in greater predicted energy savings since the VSD is operating below the curve it was calibrated to. Future evaluation activities should include the collection of frequency as well as demand data to better determine the peak level ofd VSD operation.

## 2. INTRODUCTION

This report summarizes the impact evaluation of Pacific Gas & Electric Company's (PG&E's) Nonresidential Energy Efficiency Incentives (EEI) Program for commercial sector HVAC technologies (the HVAC Evaluation). These technologies are covered by three separate program options: the Retrofit Express (RE), Retrofit Efficiency Options (REO), and the Customized Incentives Programs. The evaluation effort covers customers who were paid rebates under these programs in 1995. The programs are summarized below.

### 2.1 THE RETROFIT EXPRESS PROGRAM

The RE program offered fixed rebates to customers who installed specific electric energy-efficient equipment. The program covered the most common energy saving measures and spans lighting, air conditioning, refrigeration, motors, agricultural applications, and food service. Customers were required to submit proof of purchase with these applications in order to receive rebates. The program was marketed primarily to small- and medium-sized commercial, industrial, and agricultural customers. The maximum rebate amount, including all measure types, was \$300,000 per account. No minimum amount was required to qualify for a rebate.

HVAC end-use rebates were offered in the program for the following technologies:

- High-efficiency central air-conditioning units in various capacity ranges
- Variable speed drive HVAC fans
- High-efficiency package terminal air-conditioning units
- Programmable thermostats, bypass timers and electronic timeclocks
- Reflective window film
- Water chillers of various capacity ranges
- Direct evaporative cooler units, evaporative condensers and evaporative cooling towers

### 2.2 THE RETROFIT EFFICIENCY OPTIONS PROGRAM

The REO program included nine HVAC technologies, which can be summarized in the four bullets below:

- Variable frequency drive supply fans
- Installation of high efficiency water chillers
- Variable air volume supply systems, which replace constant air volume supply systems
- Evaporative cooling towers

The REO program targeted commercial, industrial, agricultural, and multifamily market segments most likely to benefit from these selected measures. Customers were required to submit calculations for the projected first-year energy savings along with their application prior to installation of the high efficiency equipment. PG&E representatives worked with customers to identify cost-effective improvements, with special emphasis on operational and maintenance measures at the customers' facilities. Marketing efforts were coordinated among PG&E Divisions, emphasizing local planning areas with high marginal electric costs to maximize program benefits.

### 2.3 THE CUSTOMIZED INCENTIVES PROGRAM

The Customized Incentives Program offered financial incentives to CIA customers who undertook large or complex projects that save gas or electricity. These customers were required to submit calculations for projected first-year energy impacts with their applications prior to installation of the project. The maximum incentive amount for the Customized Incentives Program was \$500,000 per account, and the minimum qualifying incentive was \$2,500 per project. The total incentive payment for kW, kWh, and therm savings was limited to 50 percent of direct project cost for retrofit of existing systems. Since the program also applied to expansion projects, the new systems incentive was limited to 100 percent of the incremental cost to make new processes or added systems energy efficient. Customers were paid 4¢ per kWh and 20¢ per therm for first-year annual energy impacts. A \$200 per peak kW incentive for peak demand impacts required that savings be achieved during the hours PG&E experiences high power demand.

The following Customized Incentives technologies were analyzed as part of the evaluation:

- HVAC variable speed drive
- High efficiency chiller
- Energy management systems (EMS)
- Other miscellaneous Customized Incentives measures which included
  - Installation of various energy efficient motors
  - Installation of various HVAC controls
  - Various technologies (i.e., precoolers, economizers and pipe insulation) added to increase system efficiency

As a result of program design, many of the measures installed were similar to or the same as those for the RE program, but were installed in larger and more complex projects.

#### 2.4 EVALUATION OVERVIEW

The impact evaluation described in this report covers all HVAC technologies installed at commercial accounts, as determined by the Management Decision Support System (MDSS) sector code, that were included under the RE, REO, and Customized Incentives programs and for which rebates were *paid* during calendar year 1995. As a result, the evaluation includes measures offered under PG&E programs filed in program years from 1992 through 1995.

The impact evaluation results in both gross and net impacts, and compares these estimates to the program design estimates.

## 2.4.1 Objectives

The objectives of the evaluation were originally stated in the Request for Proposals (RFP), refined during the project initiation meeting, and documented in the evaluation research plan. These research objectives are as follows:

- Determine first-year net energy, demand, and therm impacts by business type and technology group for RE, REO and Customized Incentives HVAC technologies paid in 1995, and overall impacts for the commercial sector as required by the California Public Utilities Commission (CPUC) protocols.
- Compare evaluation results with PG&E's (ex ante) estimates, and investigate and explain any discrepancies between the two.
- Assess free-ridership and spillover rates, and investigate and explain differences between evaluation and program design estimates.
- Provide recommendations to strengthen the RE and REO programs.
- Create an impact sample subset of participants for future retention monitoring as required by the CPUC protocols.
- Complete tables 6, 7, and 11 of the Protocols.

Results are segmented by technology and building type. Technologies are defined by measures offered by the RE, REO, and Customized Incentives programs. Building types for the commercial market sector, as defined by PG&E, are office, retail, college and university, schools, grocery, restaurant, health care, hotel/motel, warehouse, personal service, customer service, and miscellaneous.

The difference between gross and net impacts is the behavior that affected customers' participation. Adjustments were made to the gross estimate of savings for customers that would have installed energy-efficient measures anyway, despite the program (free-riders). Spillover rates, defined as energy-efficient measures installed outside the program (as a result of the presence of the program), were also estimated, but were not used to adjust the program impacts.

The evaluation investigated and, where possible, explains differences between program design estimates and evaluation results.

#### 2.4.2 Timing

The 1995 Commercial HVAC Impact Evaluation began in December 1995, completed the planning stage in December 1996, executed data collection between mid-March and early November 1996, and completed the analysis and reporting phase in January 1997.

#### 2.4.3 Role of Protocols

This evaluation was conducted under the rules specified in the "Protocols and Procedures for the Verification of Cost, Benefits, and Shareholder Earnings from Demand Side Management Programs" (the Protocols).<sup>1</sup> The Protocols control most aspects of the evaluation. They specify the minimum sample sizes, the required precision, data collection techniques, certain minimum analysis approaches, and formats for documenting and reporting results to the CPUC. This evaluation has endeavored to meet all Protocol requirements.

#### 2.5 REPORT LAYOUT

This report presents the results of the above evaluation. It is divided into five sections, plus appendices. Sections 1 and 2 are the Executive Summary and the Introduction. Section 3 presents the Methodology of the evaluation. It is supported in detail by Appendices A through D. Section 4 presents detailed results and discussion and is supported by Appendix E. Section 5 presents recommendations for improving the evaluation, the program measures, the program tracking system, and the CPUC Protocols. Appendix F provides impacts by Time-of-Use costing periods. The survey appendices provide the survey and on-site data collection instruments, and the survey call dispositions, frequencies, and refusal comments.

<sup>&</sup>lt;sup>1</sup> California Public Utilities Commission Decision 93-05-063, Revised January 1996 Pursuant to Decisions 94-05-063, 94-10-059, 94-12-021, and 95-12-054.

## 3. METHODOLOGY

In this section, the methods used to conduct the 1995 Pacific Gas & Electric Company (PG&E) Commercial HVAC Technologies Evaluation (the HVAC Evaluation) are presented. This section begins with an overview of the evaluation approach. This is followed by more detailed discussions of the specific engineering, billing regression, and net-to-gross (NTG) analysis approaches used in the evaluation. Additional detail on these three approaches is supplied in *Appendices B, C* and *D*, respectively.

#### 3.1 INTEGRATED EVALUATION APPROACH

This overview of the integrated evaluation approach begins by presenting the data sources and the sample design approach used for the HVAC evaluation. An overview of how the engineering and statistically adjusted engineering (SAE) estimates are used together to derive gross energy, demand and therm impacts follows. The final section discusses how the net-to-gross estimates are used to derive net program impacts.

#### 3.1.1 Data Sources

The HVAC Evaluation used data supplied by PG&E to develop a nested sample design plan for the collection of additional data required in each analysis.

#### Existing Data

All available data supplied by PG&E were used in the analysis of the HVAC program. Of particular importance were PG&E's historical billing data, program participant data (Management Decision Support System [MDSS]), paper copies of Retrofit Express (RE), Retrofit Efficiency Options (REO), and Customized Incentives applications, other program-related data, and industry standards information. Each of the existing data sources is described briefly below.

**Program Participant Tracking System** - The participant tracking system data, maintained in the PG&E MDSS, contains program project and technical information about measure installation. It also provides expected impact estimates based upon the ex ante engineering algorithms. This information was used to create sample designs for data collection and to leverage calibrated impact estimates from the telephone sample to the entire participant population.

**Program Marketing Data** - PG&E program marketing data contain detailed descriptions of program marketing and application procedures, together with details on the measures offered. This data source also provides a general description of measures accepted by the program.

**PG&E Billing Data** - The PG&E nonresidential billing database contains monthly energyconsumption information for all commercial customers in PG&E's service territory. It also contains demographic data for all customers, and the on-peak and off-peak monthly energy usage for customers who receive services on demand or time-of-use (TOU) rates. This information is used to calibrate the engineering estimates to actual pre- and post-installation energy usage. **PG&E 1995 Customer Energy Efficiency Programs Advice Filing**<sup>1</sup> - This report documents the ex ante earnings claims, including specific information on the derivation of per-unit ex ante savings estimates and the assumptions that go into those estimates. This documentation often includes assumptions such as operating hours and operating factors, by fixture type. This document supplies the best information available on ex ante estimates and assumptions, thus facilitating knowledge-based comparisons to ex post estimates.

**State and Industry Standards/Information** - In order to establish baseline levels and new equipment performance levels, State and industry standards information from the California Energy Commission and organizations such as the American Society of Heating, Refrigeration and Airconditioning Engineers (ASHRAE) and American National Standards Institute (ANSI) was used, together with information from manufacturers. For all applicable measures, Title 24 standards were used to define baseline efficiencies.

**Copies of RE, REO and Customized Incentives Paper Application Files** - QC requested and received complete copies of application files for a random 50 RE participants and all REO and Customized Incentives participants. The RE files were used to verify the entries in the MDSS electronic files and to identify additional information that could be extracted from the file to improve the analysis. The REO applications provided additional information not found in the MDSS, predominantly on attached equipment invoices. Customized Incentives files associated with sites selected for On-Site surveys provided detailed information on how the application estimate was computed. These applications were assessed to determine what information needed to be collected or verified during the On-Site survey.

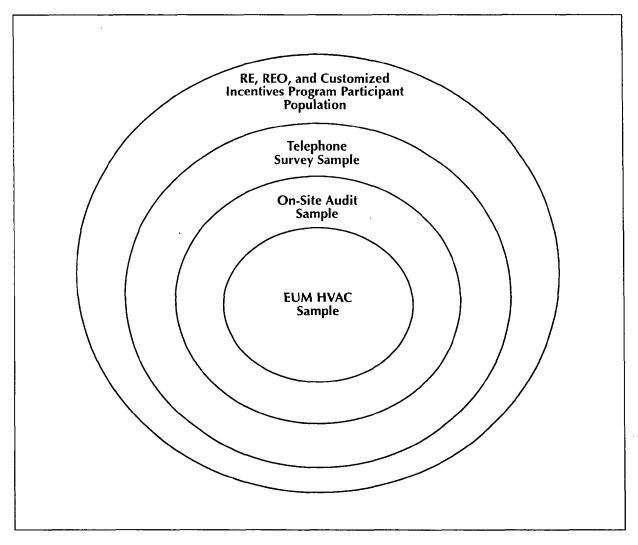
#### Nested Sample Plan Design

The impact analysis plan is based upon a nested sample design approach. In the integrated evaluation approach, a core HVAC end-use metered (EUM) sample is leveraged to a larger audit sample, which in turn, is leveraged to a less expensive telephone survey sample. The MDSS database program application information is then used to leverage results to the entire participant population. This approach, as shown in Exhibit 3-1, results in the efficient use of information contributing to the final impact results.<sup>2</sup>

HVAC EUM data (represented by the innermost circle in Exhibit 3-1) supply the most accurate source of data used to calibrate the engineering estimates. For variable speed drives, EUM data is the most important source of calibration information, due to a wide range of operating scenarios.

The on-site audit sample (represented by the band around the innermost circle in Exhibit 3-1) is designed to support the telephone sample for the largest participation segments. This sample contributes equipment details that are site-specific, and better estimates of operating hours, operating factors and other technical factors that are difficult to collect over the telephone. The on-site sample itself is not designed to be statistically representative, but rather to support the estimate of detailed engineering parameters collected within the segments with the highest projected impact.

A significantly larger telephone survey sample (represented in Exhibit 3-1 by the second band from the core circle), is designed to be representative of the participant population by technology and


<sup>&</sup>lt;sup>1</sup> PG&E 1995 Customer Energy Efficiency Programs Advice Letter No. 1867-G/1481-E, filed October 1994.

 $<sup>^2</sup>$  For a detailed description of the allocation of each of these sample types by technology and building type refer to Appendix A.

business type. The telephone survey supplies information on participant decision-making, energyrelated changes at each site for the billing period covered by the billing analysis, and data for estimating the NTG adjustments.

The participant population (represented by the outermost circle in Exhibit 3-1), is based upon information in the MDSS, and provides information needed to generalize estimated per-unit impact estimates for the telephone-surveyed sample (to the entire population of program participants). Using the population to leverage impact estimates corrects for potential bias in the sample selection process, especially in terms of the actual distribution of installed measures.

Exhibit 3-1 Nested Sample Design



### **Primary Collected Data**

Data was collected from both participant and nonparticipant samples in order to support the integrated evaluation approach. The sample design developed for the data collection plan complies with the Protocols and meets the program evaluation objectives. In this evaluation, the sampling unit is a customer site, which defines a unique service address. The final sample sizes

for the telephone, on-site, lighting logger, and EUM are summarized in Exhibit 3-2 by end-use element.

|                                      |               | Commercial           |                   |                     |                                 |             |  |  |
|--------------------------------------|---------------|----------------------|-------------------|---------------------|---------------------------------|-------------|--|--|
| Program                              | End Use       | Telephone<br>Surveys | On-Site<br>Audits | End-Use<br>Metering | Time-of-Use<br>(TOU)<br>Loggers | Combination |  |  |
|                                      | Lighting      | 18                   | 1                 | 0                   | 0                               | 0           |  |  |
| Custom                               | HVAC          | <b>58</b>            | 32                | 0                   | 0                               | 0           |  |  |
|                                      | Refrigeration | 7                    | 16                |                     | 1                               | 1           |  |  |
|                                      | Lighting      | 600                  | 227               | 5                   | 108                             | 112         |  |  |
| Retrofit                             | HVAC          | 434                  | 107               | 20                  | 13                              | 31          |  |  |
|                                      | Refrigeration | 235                  | 16                | 0                   | 1                               | 1           |  |  |
|                                      | Lighting      | 614                  | 228               | 5                   | 108                             | 112         |  |  |
| Total                                | HVAC          | 487                  | 137               | 20                  | 13                              | 31          |  |  |
|                                      | Refrigeration | 241                  | 18                |                     | 2                               | 2           |  |  |
| Total Participants (Unique Sites)    |               | 1,217                | 380               | 20                  | 108                             | 126         |  |  |
| Total Nonparticipants (Unique Sites) |               | 808                  | 36                | 0                   | 0                               | 0           |  |  |
| Total (Unique                        | Sites)        | 2,025                | 416               | 20                  | 108                             | 126         |  |  |

#### Exhibit 3-2 Commercial Sector Data Collection For the Indoor HVAC End Use

**Telephone Survey Sample** - For each segment, the retrofit program sample design allocated the sample in proportion to the program-avoided cost by segment. This sample design yields analysis data that are concentrated with the segments with the highest impact, in order to obtain the best estimate of impact for the largest portion of the population.

In addition, a census was attempted for the largest customers. This sample allocation, combined with the random sampling techniques used in other segments, produces a stratified random telephone survey sample representing the program-participant population (paid in 1995). Annual energy consumption values were used to group customers into five usage/size strata based upon a Dalenius-Hodges procedure. The comparison group customers are then selected to mirror the underlying distribution of the participant target population by size and business type. (For the customers in the largest size strata, a census was attempted both for among participants and nonparticipants.) A nonparticipant sample was developed based upon on the business type and usage strata distribution that resulted from the participant sample allocation.

Telephone surveys were collected for a total of 2,025 customers, 487 of which were HVAC participants. There were 808 customers in the comparison group (451 as the original lighting and HVAC comparison group, 201 as the supplemental refrigeration comparison group, and 156 outside the program retrofitters found through the canvass survey).

**On-Site Audit Sample** - Similar to the telephone survey sample, this sample was also structured to be approximately proportional to the program segment-level avoided costs. A total of 416 on-site surveys were conducted in the commercial sector, with 380 participants and 36 comparison group customers.

**End-Use Metering** - This sample is not intended to be a random sample, nor strictly proportional to the program-avoided cost. A total of 20 participant sites were end-use metered to provide load data for Central Air-Conditioner (CAC) and Variable Speed Drive (VSD) installations.

### 3.1.2 Gross Impact Estimates

Per participant gross energy, demand, and therm impacts were developed for specified time-of-use (TOU) costing periods, using engineering and statistically adjusted engineering (SAE) estimates. Steps detailed in this section are displayed in Exhibit 3-3.

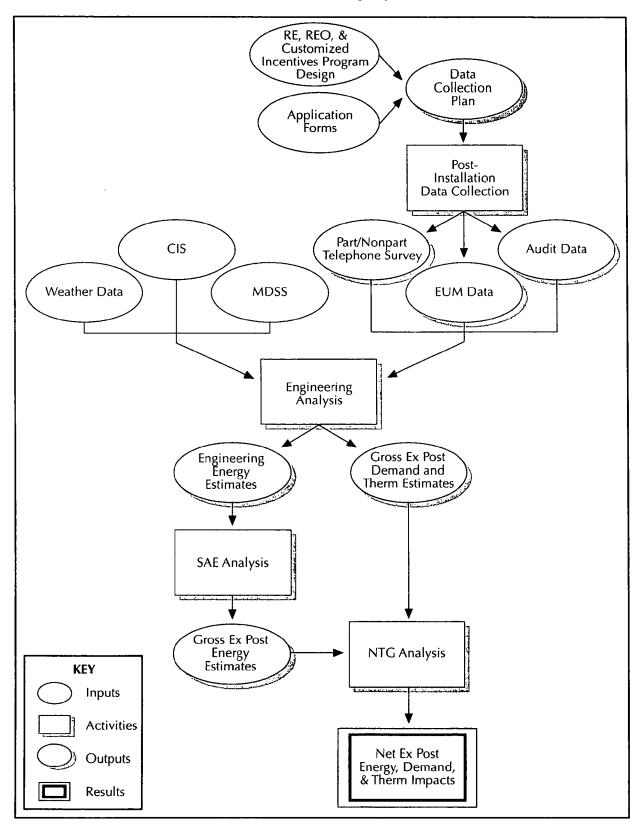
#### **Gross Energy Estimates**

Gross energy estimates were developed using two distinct analysis steps. Engineering estimates were first developed for each participant. These estimates were then adjusted using billing dataderived SAE coefficients.

Gross, unadjusted engineering impacts were developed for each retrofit measure. The engineering methods used are described in greater detail in *Section 3.2*. Gross impacts were developed for CAC and VSD using calibrated DOE-2.1E simulations. These simulations were carried out for Office and Retail business types and then leveraged to additional business types using telephone survey data and MDSS information. Ideally, estimates for all business types and measures would be generated based on calibrated models, given sufficient resources. Given the resources for this project, the optimal solution was to leverage the calibrated models from the Office and Retail business types to all other business types and adjust the results with the SAE analysis.

In addition, site specific engineering impact estimates were generated for 32 selected applications and 47 associated MDSS line items. For all other measures, such as Reflective Window Film and Evaporative Coolers, the algorithms used to generate the ex ante estimates were extensively reviewed and modified to include new and more accurate information. A complete evaluation of each of these algorithms and the associated new algorithms are included in Appendix B, Standard Measures. These modified algorithms were then used to produce participant specific estimates of impact.

Statistical analysis was then used to determine the fraction of the unadjusted engineering estimates actually observed or "realized" in customer billing data. The per-unit engineering energy impacts, combined with the units installed, form the input to the billing regression analysis, or SAE analysis. In the SAE analysis, the engineering estimates are compared to billing data using regression analyses, in order to adjust for behavioral factors of occupants and other unaccounted for effects. The outputs of the analysis are SAE-adjusted estimates of program energy savings.


### Gross Demand Estimates

Gross demand estimates are based solely upon unadjusted hourly engineering estimates. Whenever possible, engineering demand estimates were developed using EUM or site survey data in conjunction with the methods used for the gross energy estimates.

### Gross Therm Estimates

Like gross demand estimates, therm estimates are not adjusted using SAE coefficients For each TOU costing period, therm estimates were aggregated using methods similar to energy estimates.

Exhibit 3-3 Method for Estimating Impacts



## 3.1.3 Net-to-Gross Estimates

The NTG analysis is designed to adjust gross program impacts for free-ridership and the actions taken by PG&E customers outside the HVAC program. Self-reported data were used to estimate the percentage of free-riders in the program; that is, the number of participants who would have undertaken the energy efficiency action promoted by the program in the absence of the program. This self-reported estimate of program NTG was not adjusted for the effects of program spillover, where energy efficiency actions taken outside the program are claimed

Application of the final NTG adjustments, by technology, yields net program impacts. Each step is taken to achieve final net results is explained in the remainder of this section, starting with the engineering analysis.

### 3.2 ENGINEERING METHODS

The engineering approach that supports realized gross impacts in the HVAC evaluation is presented in this section. This presentation summarizes the more detailed discussion of engineering methods in Appendix B, and specific section within that appendix are cited as appropriate in the remainder of this section. The following topics are discussed:

- First, an overview of the engineering approach is presented.
- Then, details surrounding the development of impacts for central air-conditioners and variable speed drive fan motors are discussed, as well as a brief discussion of the methods used for high efficiency chillers.
- An overview of the methods used and the engineering estimates developed for other RE and REO measures is then presented.
- Next, the methods used and the engineering estimates developed for the Customized Incentives Program are summarized.

### 3.2.1 Overview of the Evaluation Approach

The Commercial HVAC engineering analysis consisted of the analysis of three separate PG&E programs: Retrofit Express (RE), Retrofit Efficiency Options (REO) and Customized Incentives. Where measures offered in different programs are similar (such as variable speed drives), identical analysis methods were applied across all programs.

Listed below are various RE and REO measures and an overview of the evaluation approach used for each:

**Central Air-Conditioners** - Estimates were derived using computer energy use simulations (DOE-2.1 E) which were calibrated to billing data (see *Section B.3*).

**Variable Speed Drives for HVAC Fans** - This measure was offered in all of the PG&E programs. However, a single method was used to develop estimates, using DOE-2.1E simulations which were calibrated to EUM data (see *Section B.3*).

**Water Chillers** - Impacts were developed using data gathered from on-site audits, application data, and DOE-2 simulations (see Section B.3).

**Cooling Towers** - The analysis method used data gathered from on-site audits, along with ex ante calculations, to develop engineering estimates.

**Other Measures** - A detailed review of the algorithms used to develop ex ante impacts was performed for the other RE/REO measures.

As a result of program design, many of the measures installed in the Customized Incentives Program were similar to or the same as those for the RE and REO programs, but were installed in larger and more complex projects. For this reason, many of the analysis methods used are similar to those employed in the RE and REO program evaluations. Additionally, on-site audits and detailed application reviews were performed for a select number of Customized Incentives applications.

### 3.2.2 Evaluation Approach: Variable Speed Drives and Central Air Conditioning

Demand and energy savings for the program measures associated with Central Air Conditioners (CAC) and Variable Speed Drives (VSDs) for supply fans were determined on a per unit basis using the DOE-2 building energy simulation program. The analysis combines detailed on-site audit data with information from telephone surveys to supply reliable engineering estimates. These estimates are then used as input to a statistically-adjusted engineering (SAE) regression model using billing data.

The engineering estimates for CAC and VSD were developed as follows:

- Develop DOE-2 models
- Calibrate DOE-2 models
- Create undiversified and diversified energy models
- Calculate CAC energy savings
- Calculate VSD energy savings
- Calculate water chiller energy savings
- Compute energy and demand impacts

On-site audit data were used to develop DOE-2 models of offices and retail facilities that participated in the program. These models were then calibrated using end-use-metered (EUM) and billing data in conjunction with California Energy Commission (CEC) weather data adjusted for local conditions<sup>3</sup>. The resulting hourly estimates were diversified and leveraged to additional business types using telephone survey data of operating hours. Finally, the DOE-2.1E model estimates were regenerated using current CEC approved weather data and Title 24 baseline equipment efficiencies to compute program impacts.

### **Develop DOE-2 Models**

Audit and billing data were analyzed to determine the number of DOE-2.1E prototypes needed to represent typical participating office and retail facilities. The primary variables reviewed were conditioned square footage and the ratio of summer usage<sup>4</sup> to conditioned square footage.

<sup>&</sup>lt;sup>3</sup> This approach is consistent with the approach used for the 1994 HVAC program year evaluation.

<sup>&</sup>lt;sup>4</sup> Total premise kWh for the months of June, July and August, 1996.

Across business types, the VSD measure was clearly installed in larger facilities compared to the CAC measure. Within measures, only CACs in retail facilities need to be divided into categories, large and small. The small prototype typically represents a single owner operated business, while the larger prototype represents a larger chain store such as a Target K-Mart. Key characteristics for each of the five resulting prototypes are detailed in Exhibit 3-4.

| File             | Office VSD   | Retail VSD   | Office CAC   | Small Retail CAC | Large Retail CAC |  |  |
|------------------|--------------|--------------|--------------|------------------|------------------|--|--|
| Sample Size      | 5            | 8            | 31           | 9                | 8                |  |  |
| Total Sq Ft      | 40,948       | 80,745       | 12,477       | 4,201            | 80,745           |  |  |
| Slab             | 21,224       | 65,693       | 9,045        | 4,034            | 65,693           |  |  |
| Total Wall       | 17,680       | 20,532       | 7,324        | 4,236            | 20,532           |  |  |
| Frame            | 28%          | 0%           | 34%          | 5%               | 0%               |  |  |
| Block            | 72%          | 100%         | 66%          | 95%              | 100%             |  |  |
| Frame Insulation | R-13         | -            | R-11         | R-7              | -                |  |  |
| Block Insulation |              | R-0          | <u>R-11</u>  | R-0              | R-0              |  |  |
| Roof Area        | 21,224       | 65,693       | 9,045        | 4,034            | 65,693           |  |  |
| Roof             | <u>R-19</u>  | R-19         | R-11         | R-11             | R-19             |  |  |
| Ceiling Height   | 8            | 16           | 9            | 14               | 16               |  |  |
| Window           | 5,284        | 437          | 1,496        | 389              | 437              |  |  |
| Window Type      | Single Clear | Single Clear | Single Clear | Single Clear     | Single Clear     |  |  |
| Cooling BTUH     | N/A          | N/A          | 403128       | 135046           | 2595841          |  |  |
| Occupants        | 160          | 906          | 86           | 57               | 906              |  |  |
| Cool Thermostat  | 72           | 73           | 73           | 75               | 73               |  |  |

#### Exhibit 3-4 Key Characteristics for DOE-2.1E Prototypes

## Calibrate DOE-2 Models

To ensure that the modeled results were accurate and reasonable, models were calibrated to EUM and billing data. Lighting loads and schedules were incorporated into the models based on audit data and schedule data gathered through phone surveys. Calibration was performed by comparing DOE-2.1E simulation output run using the adjusted weather data from with the EUM and billing data.

### Create Undiversified and Diversified Energy Models

Using the calibrated DOE-2.1E prototypes discussed above, undiversified energy usage estimates were created by setting the HVAC system to operate 24 hours a day. Other operational aspects of the building, such as lighting and miscellaneous equipment schedules, were based on audit data and information calculated in the lighting analysis. For both CAC and VSD, the calibrated DOE-2 models were run using the adjusted CEC weather data in each climate zone. The weather data covered October 1, 1995, through September 30, 1996, the post-retrofit period used in the SAE model.

The DOE-2 models provide simulated annual energy used, at an hourly level, for Retail and Office sites in all climate zones with program participation. All other business types are mapped to either the Office, Small Retail, or Large Retail prototype as shown in Exhibit 3-5.

#### Exhibit 3-5 Business Type Mapping

| OFFICE               | SMALL RETAIL <sup>5</sup> | LARGE RETAIL |
|----------------------|---------------------------|--------------|
| Office               | Small Retail              | Large Retail |
| Community Service    | Personal Service          | Grocery      |
| Health Care Hospital | Restaurant                | Warehouse    |
| Hotel/Motel          | Miscellaneous Commercial  | -            |
| College/University   | -                         | -            |
| School               | -                         | -<br>-       |

The simulated undiversified cooling and fan energy use was diversified for each business type by hourly operating factors (the percentage of HVAC systems operating during a specified time) gathered through telephone surveys. For the School business type, the diversified load was multiplied by 27percent for June, July, and August to reflect the large reduction in occupancy in schools during those months.

### Calculate CAC Energy Savings

The diversified CAC energy model produced an annual equivalent full load hour (EFLH) estimate for each business type and climate zone, where EFLH is defined as the total annual usage, divided by the connected load for the CAC unit. Energy savings estimates for each site in the SAE sample were calculated using estimated EFLH, total tons retrofit, post retrofit EER and an assumed existing EER. Energy savings were computed for each participant in the SAE sample using the equation in Exhibit 3-6.

#### Calculate VSD Energy Savings

The diversified VSD energy model results were used to produce an estimate of annual kWh usage per installed horsepower by business type and climate zone. This was accomplished for each of the three equipment types (constant volume, inlet vane, and variable speed drive). Energy savings estimates were computed as the difference of the diversified constant-volume and inlet-vane cases to the diversified VSD case.

Based on previous analysis, constant-volume fans were assumed to make up 70 percent of the pre-retrofit conditions while the remaining sites were assumed to be Inlet-vane systems. This was computed based on the advice filing, which states a 19 percent reduction in savings for the constant volume case, due to the presence of existing inlet vane fan systems.

Energy savings estimates for each site in the SAE sample were calculated using estimated per horsepower usage and total retrofit horsepower for each fan system. For the majority of the participants, the existing fan type was not known, so the assumed distribution of 70 percent constant volume and 30 percent inlet vane was used. The energy savings were computed for each participant in the SAE sample using the equation in Exhibit 3-7. For all other participants the existing fan type was used and the appropriate baseline usage of either 100 percent constant volume or 100 percent inlet vanes was used.

 $<sup>^{5}</sup>$  This classification was used for CAC sites only. These business types were mapped to the Large Retail model in the case of VSDs.

| P                     |                                                              |
|-----------------------|--------------------------------------------------------------|
| kWh <sub>sav, i</sub> | = $U * \{EFLH_j * T * 12 * (1/EER_1 - 1/EER_{MDSS})\}$       |
| Where                 |                                                              |
| kWh <sub>sav, i</sub> | = Annual energy impact for participant "i" (kWh/yr.)         |
| U                     | = Number of units installed                                  |
| EFLHj                 | = Diversified Equivalent Full Load Hours for business type j |
| Т                     | = Number of tons installed per unit                          |
| 12                    | = Conversion of tons to kBtuh                                |
| EER <sub>1</sub>      | = Pre-retrofit EER                                           |
| EER <sub>MDSS</sub>   | = Post-retrofit EER                                          |
|                       |                                                              |

## Exhibit 3-6 Engineering Estimates of CAC Energy Savings

Exhibit 3-7 Engineering Estimates of VSD Energy Savings

| kWh <sub>sav, i</sub> | = | $U * [kWh_{j} - \{(kWh_{j,cv} * 0.30) + (kWh_{j,iv} * 0.70)\}\}$                                               |
|-----------------------|---|----------------------------------------------------------------------------------------------------------------|
| Where                 |   |                                                                                                                |
| kWh <sub>sav,i</sub>  | = | Annual energy impact for participant "i" (kWh/yr.)                                                             |
| υ                     | = | Number of retrofit Horsepower                                                                                  |
| kWh <sub>j</sub>      | = | Annual diversified energy use per horsepower for business type j (kWh/yr.) for fans with variable speed drives |
| kWh <sub>j,iv</sub>   | = | Annual diversified energy use per horsepower for business type j (kWh/yr.) for inlet vane fans                 |
| kWh <sub>j,cv</sub>   | = | Annual diversified energy use per horsepower for business type j (kWh/yr.) for constant volume fans            |

## Compute Energy and Demand Impacts

,

The final step in the analysis of CAC and VSD measures was the calculation of energy and demand impacts for each. The energy savings estimates described above were based on weather

data for dates between October 1, 1995, through September 30, 1996, and were used as inputs to the SAE analysis. The following steps were taken to convert the energy *savings* estimates to *impact* estimates:

- Current CEC weather data<sup>6</sup> were used to generate the calibrated DOE-2.1E energy estimates, instead of actual adjusted CEC weather data.
- CAC impact estimates were computed using minimum efficiencies defined by Title 24, rather than the existing equipment efficiencies.

Peak demand impacts were calculated for CAC only, since VSD impacts are assumed to be zero under peak conditions. CAC peak demand impacts were based on an undiversified peak duty cycle calculated from EUM data. For each metered CAC unit, the five highest weekday duty cycles occurring between 3:00 PM and 4:00 PM were selected as representing peak duty cycles. The average of these duty cycles across all metered CAC units was 88.7 percent.

Except for Schools, Coincident Diversity Factors (CDF) were computed as the product of the peak duty cycle and the weekday 3:00 PM to 4:00 PM operating factor used in the energy analysis. For schools, the telephone survey reported peak operating factor of 27 percent was used to compute the CDF.

| kW <sub>sav, i</sub> | = | U * {CDF <sub>j</sub> * T * 12 * (1/EER <sub>1</sub> - 1/EER <sub>MDSS</sub> )}       |
|----------------------|---|---------------------------------------------------------------------------------------|
| Where                |   |                                                                                       |
| kW <sub>sav, i</sub> | = | Peak demand impact for participant "i"                                                |
| U                    | = | Number of units installed                                                             |
| CDF <sub>i</sub>     | = | Coincident Diversity Factor, computed as 0.887 times the hour 3-4 PM operating Factor |
| Т                    | = | Number of tons per installed unit                                                     |
| EER <sub>1</sub>     | = | Baseline EER                                                                          |
| EER <sub>MDSS</sub>  | = | Post-retrofit EER                                                                     |

Exhibit 3-8 Equation for Estimating CAC Demand Savings

### 3.2.3 Calculate RE and REO High-Efficiency Chiller Impacts

Savings and impact estimates associated with high efficiency chillers were computed by leveraging off of the CAC program estimates. This approach was used since it would produce consistent, reasonably accurate estimates of change in energy consumption to be adjusted by the SAE analysis.

<sup>&</sup>lt;sup>6</sup> Approved for use with the 1992 and 1995 Energy Efficiency Standards for Residential and Nonresidential Buildings. Referred to on magnetic media as CZxxRV2.WY2, where xx indicates the climate zone.

Energy estimates of savings were then computed by leveraging on the Office EFLH values from the chiller and CAC simulations. This was accomplished by calculating the ratio of chiller EFLH to Office CAC EFLH values for each climate zone with participation. This ratio was then used in conjunction with the method developed for CAC estimates (See Section B-3).

## 3.2.4 Evaluation Approach: Retrofit Express and Retrofit Efficiency Options

For RE and REO measures other than CAC and VSDs, the evaluation approach was based on an assessment, adjustment and recalculation of the algorithms and input assumptions used to develop the ex ante impacts. Since many of the same measures were offered in both the RE and REO programs, the adjusted methods developed for evaluating a measure in one program were applied to other programs. The aim of the evaluation was to either confirm or correct the methods and inputs used in the ex ante estimates.

When applicable, the engineering algorithms used by PG&E to develop ex ante impacts for RE measures were reviewed thoroughly (algorithms were taken from the 1995 Advice Filing<sup>7</sup>). Ex ante impacts were re-calculated using methods and inputs listed in the Advice Filing. This involved an assessment of the method used and the associated input data. Any numeric or logic errors were identified and corrected during the process of re-calculation. For several measures, such as direct Evaporative coolers, a new method was used in place of the method in Advice Filing.

Evaluation impacts were then generated using the adjusted method or new method. When possible, inputs and methods were verified using either sources referenced in the Advice Filing or alternate sources. For all of the measures reviewed, a complete assessment, including the identification of errors, the recommendations for correcting theses errors or the new method developed are detailed in *Appendix B, Section B.6*.

### 3.2.5 Evaluation Approach: Customized Incentives

The evaluation of Customized Incentives applications focused on sites which claimed the highest avoided cost under the program. The following describe the steps used in the evaluation process:

- Applications were first ranked according to the total claimed avoided cost for the facility.
- On-site audits were performed for 28 of the sites with the highest avoided cost.
- A comparison was made between on-site audit data and data found in the MDSS.
- If there was a discrepancy found between the audit data and the ex ante impacts then one or all of the following were developed:
  - DOE-2.1E simulations
  - Temperature bin models
  - Spreadsheet-based algorithms

See Section B.7 for detailed information regarding the development of impacts for each Customized Incentives participant.

<sup>&</sup>lt;sup>7</sup> PG&E 1995 Customer Energy Efficiency Programs Advice Letter No. 1867-G/1481-E, filed October 1994.

## 3.3 BILLING REGRESSION ANALYSIS

The key objective of the billing analysis is to determine the first-year program energy impacts. A statistical analysis is employed to model the differences in customers' energy usage between preand post-installation periods. The model is specified using actual customer billing data and independent variables that explain changes in customers' energy usage including engineering estimates of program participation. This statistically adjusted engineering (SAE) analysis is consistent with the requirements of the Load Impact Regression Model (LIRM) defined in the California Public Utilities Commission's (CPUC's) Measurement and Evaluation Protocols (the Protocols).

The results of the billing regression analysis are estimated as ratios, termed "SAE coefficients," of realized impacts to engineering impact estimates. Realized impacts represent the fractions of the engineering estimates actually "observed" or "detected" in the statistical analysis of actual billing data. The SAE coefficients estimated in the billing analysis regression models are relative to the results of the evaluation-based engineering estimates, not the PG&E Program ex ante estimates. The SAE coefficients are then used to estimate program impacts and realization rates relative to the ex ante estimates.

As discussed below, the billing regression analysis was conducted on a sample of telephone surveyed participants and nonparticipants. Because many Commercial Program participants installed measures under multiple end uses, one integrated billing analysis approach was used to model the Lighting, HVAC and Refrigeration end uses. *Appendix C* discusses the billing regression analysis in more detail.

## 3.3.1 Data Sources for Billing Regression Analysis

The billing regression analysis for the 1995 Commercial Program Evaluation used data from five primary data sources: the PG&E Management Decision Support System (MDSS) tracking database, the billing database, the telephone survey data, the engineering estimates of changes of usage between the pre- and post-installation periods, and the weather data tapes from PG&E's load research weather sites. A summary of the data elements used in the regression analysis are presented below.

### Program Participant Tracking System

The participant tracking system for the Retrofit Express (RE), Retrofit Efficiency Options (REO) and Customized Incentives Programs was maintained as part of the MDSS. It contains program applications, rebate and technical information about installed measures, including measure description, quantity, rebate amount, and ex ante demand, and energy and therm savings estimates. The MDSS database is linked to the billing database and other program databases through PG&E's customers control numbers.

## PG&E Billing Data

For this evaluation, the PG&E billing data were obtained from two different data sources within PG&E. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG&E's service territory, and was used in the sample design as described in *Appendix A*. The billing histories contained in this data base only run through September 1995.

The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG&E Load Data Services. This billing dataset contains bill readings that run through September 1996. In addition, the billing series from this database is the PG&E pro-rated

monthly usage data, a series calculated by PG&E for each calendar month, from January 1992 to September 1996.

#### Weather Data

The hourly dry bulb temperature collected for 25 PG&E load research weather sites was used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site was linked to that customer by using the PG&E-defined weather site to PG&E local office mapping.

#### **Telephone Survey Data**

All available telephone surveys (except for the Canvass surveys, which do not collect detailed information regarding changes that have occurred at the premise) collected as part of the evaluation for the Commercial Sector Program were used in the billing regression. Four telephone survey samples totaling 1,217 participants and 652 nonparticipants were collected for the Commercial Sector Evaluation. The 1,217 participant surveys included 487 HVAC participants, 614 Lighting participants, and 241 Refrigeration participants. Because of the significant levels of cross-over among participants across the Commercial Program end uses, one integrated billing regression model was developed to evaluate all three Commercial Program end uses.

The data collected in the telephone survey supplies information on energy-related changes at each site for the billing period covered by the billing regression analysis. For a detailed discussion of the telephone survey sample design and the final sample distribution, see *Appendix A*.

#### **Engineering Estimates**

Engineering estimates of savings were estimated for all 487 HVAC participants. Separate estimates were calculated for every measure installed under the Commercial Sector Program. The engineering estimates were calculated based on expected savings from the pre-installation technology to the post-installation technology. For some technologies, such as Central A/Cs installed in the HVAC Program, the savings estimates will differ from the impact estimates. Impacts are calculated relative to a baseline efficiency, while the savings estimates are based on a pre-existing unit's efficiency. Appendix B discusses in greater detail the calculation of the savings estimates used in the billing analysis.

For all measures, customer-specific engineering estimates were used in the SAE billing regression model, except for some Customized Incentives measures. For customers with EMS and "Other HVAC" Customized Incentives measures who were not on-site audited, the impact estimates supporting the application were used as the engineering estimates for the SAE analysis. From the engineering analysis based on the on-site audited measures, it was determined that the application's energy estimate was reasonable and accurate for all EMS applications used in the SAE analysis.

For the "Other HVAC" Customized Incentives measures, the measures can be so unique and the impact estimates so dependent on building characteristics and other equipment installed at the facility, that it is very difficult to estimate an impact without performing an on-site audit. However, the level of documentation provided along with the applications was sufficient to allow for an assessment of the quality of the impact calculations made. A review of the applications associated with the "Other HVAC" Customized Incentives measures indicated that the applications provided the best data for use in the SAE analysis.

## 3.3.2 Data Aggregation and Analysis Dataset Development

Because many measures installed under the Commercial Program affected multiple customer accounts within a unique site, the billing analysis had to be performed at the site level. Therefore, all account level data had to be aggregated up to the site level. A unique Site ID was created based on a combination of the PG&E service address, premise number and corporation number in the billing system to serve as the key variable for aggregating and linking data.

The telephone surveys were sampled at the Site ID level, and all questions were phrased to ask about all of the control numbers associated with the Site ID.

The engineering estimates of change were also aggregated to the Site ID level. However, prior to aggregating to the Site ID level, the installation dates for each individual measure were analyzed to ensure that only the impacts occurring within the billing analysis periods were being aggregated. The selection of analysis periods is discussed in the next section.

All data elements mentioned above were linked to the final analysis database by Site ID.

### 3.3.3 Analysis Periods

When the billing regression analysis is used to model the change of consumption attributable to the program measures, the first step is to isolate the pre- and post-installation periods for each customer in the analysis database so that the impact of these measures can be verified.

In accordance with the Protocols, participants are defined by the "paid date" instead of "installation date." Therefore, all customers actually installed measures in 1992, 1993, 1994 or 1995, with 1995 installations accounting for approximately two-thirds of total installations. *Appendix C* discusses in detail how the selection of an installation date was estimated, since the installation date is not always provided in the MDSS. In summary, the application received date was used as a proxy for the installation date, unless a valid self-reported installation date was provided by the customer through the telephone survey, in which case the self-report date was used.

Billing data were available from January 1992 through September 1996. To maximize the number of post installation months, a post period of October 1995 through September 1996 was used. Because the majority of installations occurred during 1995, the only feasible pre-periods were October 1992 through September 1993 and October 1993 through September 1994. Survey data gathered change information dating back from the beginning of 1993. Therefore, both preinstallation periods could be used. However, the further back the pre-installation period is chosen, the more likely there are to be changes that have occurred at the site. To minimize the number of changes that have occurred outside the program between the pre- and post-installation periods (and to minimize the errors associated with self-reported changes and dates the changes occurred), the October 1993 through September 1994 pre-installation period was selected.

### 3.3.4 Data Censoring

Prior to implementing the billing analysis models, the customer sample was screened for invalid data and potential outliers. The data screening was applied to the entire participant and nonparticipant billing analysis sample frame. Three primary screening criteria were applied to remove customers that have invalid billing data, that may not have had their bill properly aggregated to the Site ID level, or that were extremely large users which could not be adequately controlled for in the billing analysis model. *Appendix C* described in detail the criteria that were used to remove customers from the billing regression analysis.

Exhibits 3-9 and 3-10 present the final sample sizes used in the billing analysis by business type and technology for participants and by business type for nonparticipants.

### Exhibit 3-9 Billing Analysis Sample Used Post-Censoring HVAC End-Use Technologies

|                                     | Business Type |        |                        |        |         |            |             |             |           |                     |                      |       |       |
|-------------------------------------|---------------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group        | Office        | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Totai |
| Retrofit Express Program            |               |        |                        |        |         |            |             |             |           | يننتك               |                      |       |       |
| Central A/C                         | 75            | 26     | -                      | 24     | 4       | 10         | 20          | 3           | 8         | 4                   | 19                   | 5     | 198   |
| Variable Speed Drive HVAC Fan       | 12            | 10     | -                      | 2      | -       | -          | -           | -           | -         | -                   |                      | 1     | 25    |
| Package Terminal A/C                | 2             | -      | -                      | 7      | -       | 2          | •           | 13          | -         | -                   | -                    | -     | 24    |
| Programmable Thermostat             | 36            | 10     | -                      | 13     | -       | 6          | 7           | 2           | 2         | 2                   | 10                   | 1     | 89    |
| Reflective Window Film              | 34            | 9      | -                      | 3      | 3       | 2          | 7           | 3           | 3         | 2                   | 8                    | 2     | 76    |
| Water Chiller                       | -             | ۱      |                        | 1      | -       | -          | -           | -           | -         | -                   | 2                    | -     | 4     |
| Other RE Measures                   | -             | 1      | -                      | -      | 1       | 1          | -           | -           | -         | -                   | -                    | -     | 3     |
| Retrofit Express Total              | 131           | 45     | -                      | 41     | 8       | 17         | 27          | 19          | 11        | 7                   | 30                   | 7     | 343   |
| Retrofit Efficiency Options Program |               |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive            | -             |        | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Water Chiller                       | -             | -      | -                      | 1      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1     |
| CAV to VAV                          | -             |        | -                      | -      | -       | -          | -           | -           |           | -                   | -                    | -     | -     |
| Cooling Tower                       | -             | -      | -                      | 1      | -       | -          | -           | -           | -         | <u> </u>            | -                    | -     | 1     |
| Retrofit Efficiency Options Total   | -             |        | -                      | 1      | -       | -          | -           |             | -         | -                   | -                    | -     | 1     |
| Customized Incentives Program       |               |        |                        |        |         | -          |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive           | 1             | -      | -                      | -      | 1       | -          | -           | -           | -         | -                   | -                    | -     | 2     |
| High Efficiency Chiller             | -             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | - 1   | -     |
| Energy Management System            | 4             | •      | -                      | 14     | 1       | -          | -           | -           | 1         | -                   | -                    |       | 20    |
| Other CI Measures                   | 2             | -      | 1                      | 1      | -       | -          | -           | -           | 1         | -                   | -                    | -     | 5     |
| Customized Incentives Total         | 7             | -      | 1                      | 15     | 2       | -          | -           | -           | 1         | -                   | -                    | -     | 26    |
| Total                               | 138           | 45     | 1                      | 55     | 10      | 17         | 27          | 19          | 12        | 7                   | 30                   | 7     | 368   |

#### Exhibit 3-10 Billing Analysis Sample Used Post-Censoring Nonparticipants

|                              |        | Business Type |                        |        |         |            |             |             |           |                     |                      |       |       |
|------------------------------|--------|---------------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group | Office | Retail        | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Total                        | 74     | 124           | 1                      | 26     | 185     | 34         | 27          | 15          | 53        | 6                   | 31                   | 44    | 620   |

#### 3.3.5 Model Specification

The billing regression analysis for the Commercial Program Evaluation used two different multivariate regression models under an integrated framework, to provide unbiased and robust model estimates in the commercial sector. The key feature of the approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variation in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for participants as a function of pre-installation year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group.

The resulting SAE coefficients were used to adjust the engineering estimates of expected annual energy impacts for the entire participant population. These impacts are presented in *Section 4* and are used to compute program realization rates.

#### Baseline Model

The baseline model explains post-installation energy usage as a function of the pre-installation energy usage, weather changes, and customer self-reports of factors that could affect energy usage. In order to isolate the program impact from the energy usage changes, only the comparison group is used to fit this model. The baseline model has the following functional form:

$$kWh_{post,i} = \sum_{j} (\alpha_{j} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i} + \sum_{k} \eta_{k}Chg_{i,k} + \varepsilon$$

Where

kWh<sub>post,i</sub> and kWh<sub>pre,i</sub> are customer i's annualized energy usage for the post- and preinstallation periods, respectively;

 $\Delta$ CDD<sub>i</sub> and  $\Delta$ HDD<sub>i</sub> are the annual change of cooling and heating degree days (base 65°F) between the post-installation year and pre-installation year;

 $Eec_{i}$  is an indicator variable (0/1) for the ith customer, which equals 1 if the customer has electric heating;

 $Chg_{i,k}$  are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees and square footage;

 $\alpha_j$  is the indicator variable (0/1) for the jth business type, which equals 1 if the customer is in that business type and 0 otherwise;

 $\beta$ ,  $\gamma$  and  $\phi$  are the estimated slopes on their respective independent variables. Separate slopes on pre-usage are estimated by business type; and,

 $\boldsymbol{\epsilon}$  is the random error term of the model.

For each customer in the analysis dataset, a post-installation predicted usage value is calculated using the parameters of the baseline models estimated for the 1994 to 1996 analysis period. They both take the same functional form with different segment-level intercept series ( $\alpha_j$ ) and slopes ( $\beta$ ,  $\gamma$  and  $\phi$ ):

$$k\hat{W}h_{post,i} = F_{pre}(kWh_{pre}, \Delta CDD, \Delta HDD) = \sum_{i} (\alpha_{i} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i}$$

The final functional relation, based on all 620 nonparticipants used in the baseline model, is estimated as follows:

Baseline Model (1994 to 1996):

$$\begin{split} k\hat{W}h_{96,i} &= -40834*OFF\_LG+1349*OFF\_SM-19849*RET\_LG-120*RET\_SM\\ &+942*SCHOOLS+5378*GROCERY+8461*SUPERMKT+4756*REST\\ &+10964*HEALTH+2403*HOTEL+4167*WAREHOUS+675*PERSONAL\\ &+4795*COMMUN+37895*MISCBT\\ &+1.13*OFF\_LG4+0.91*OFF\_SM4+0.99*RET\_LG4+1.00*RET\_SM4\\ &+1.00*SCHOOLS4+0.98*GROCERY4+0.98*SUPERMKT4+0.99*REST4\\ &+0.99*COLLEGE4+0.94*HEALTH4+1.02*HOTEL4+1.04*WAREHOUS4\\ &+0.94*PERSONAL4+0.95*COMMUN4+0.95*MISCBT4\\ &+0.0000456*CDD_{96-94,i}*kWh_{94,i}+0.0000324*HDD_{96-94,i}*kWh_{94,i} \end{split}$$

### SAE Model

Using the predicted post-installation usage values estimated in the baseline model, a simultaneous equation model is specified to estimate the SAE coefficients on energy impact. The SAE simultaneous system can be described as follows:

$$kWh_{96,i} - F_{94}(kWh_{94}, \Delta CDD \ \Delta HDD) = \sum_{m} \beta_{m} Eng_{m} + \sum_{k} \eta_{k} Chg_{i,k} + \mu_{i}$$

The difference between predicted and actual usage in 1996 was used as the dependent variable in a SAE model. Based upon the estimated participation month, the pro-rated engineering estimates and change variables were used to explain the deviation in actual usage from the predicted usage.

As discussed above, the predicted usage is estimated using only the comparison group to forecast the 1996 usage as a function of 1994 usage and change of cooling and heating degree days from 1994 to 1996. This usage prediction presents what would have happened in the absence of the program.

## 3.3.6 Billing Regression Analysis Results

The coefficients of the engineering impact, termed the SAE coefficients, are used to calculate the expost gross energy impacts. Independent realization rates are estimated to provide PG&E with business type and technology group level results. Exhibit 3-11 below summarizes the final SAE model results that were estimated using 935 participants (including 368 HVAC participants), as discussed in the Data Censoring section. Also, summarized below are the independent variables used in the SAE model, together with the t-statistics and the sample sizes available for each parameter estimate.

The dependent variable is the difference between the actual and predicted 1996 usage using the 1994 baseline model.

SAE coefficients were calculated for sixteen different combinations of business type and measure, seven of these for the HVAC end use. Primarily those measures that have broad participation and relatively high expected impacts were supported by separate SAE coefficients. In addition, a separate SAE coefficient was calculated for other Commercial Program measures.

All but three of the SAE coefficients are significant at the 95 percent confidence level (t-statistics greater than 1.96). In addition, all of the statistically significant SAE coefficients were the correct sign, and therefore used in the calculation of the final ex post energy calculations. The three SAE coefficients that were not significant at the 95 percent confidence interval (HIDs in warehouses and schools, and thermostats in offices) were not used in the final ex post energy calculations. Because each of the insignificant SAE coefficients were also the wrong sign, they were set to zero. Therefore, no energy impacts are being claimed for these three segments, which is a conservative approach.

All the of the HVAC technologies are represented in the SAE billing analysis, except for REO Variable Frequency Drives (VFD), REO CAV to VAV, and Customized Incentives Chillers, as shown in Exhibit C-12. Although these measures represent only ten percent of the energy impact, an approach needed to be developed for adjusting the engineering energy impact estimate for these measures.

The REO VFD measure is very similar to those installed under the RE and Customized Incentives programs, and the engineering estimate is calculated using the same approach. Therefore, engineering energy impact estimate for the REO VFD measure was adjusted by the SAE coefficient estimated for the RE and Customized Incentives measures.

Three approaches were considered for adjusting the engineering energy impact estimate for the REO CAV to VAV measure: (1) applying the Other RE HVAC SAE coefficient, (2) applying the Other Custom HVAC SAE coefficient, or (3) leaving the engineering estimate unadjusted. Because the REO CAV to VAV measure is usually installed in large businesses, typical of those installing Customized Incentives measures, the Other Custom HVAC SAE coefficient was used to adjust the engineering energy impact estimate for the REO CAV to VAV measure. This is also the most conservative approach since the SAE coefficient is only 0.65.

| Parameter Descriptions      | Units      | Parameter<br>Estimate | t-Statistic | Sample<br>Size |
|-----------------------------|------------|-----------------------|-------------|----------------|
| SAE Coefficients            |            |                       |             |                |
| HVAC End Use                |            |                       |             |                |
| Central A/Cs                | kWh        | -2.07                 | 3.67        | 184            |
| ASDs                        | kWh        | -1.90                 | 6.75        | 27             |
| Chillers                    | kWh        | -1.58                 | 2.39        | 5              |
| EMS                         | kWh        | -1.03                 | 8.38        | 20             |
| Other Custom HVAC           | kWh        | -0.65                 | 4.76        | 5              |
| Office Thermostats          | kWh        | 0.05                  | 1.06        | 36             |
| Other RE/REO HVAC           | kWh        | -0.90                 | 2.89        | 153            |
| Lighting End Use            |            |                       |             |                |
| Office Flourescents         | kWh        | -1.00                 | 14.67       | 116            |
| Other Flourescents          | kWh        | -0.68                 | 7.41        | 261            |
| Controls                    | kWh        | -1.38                 | 2.09        | 57             |
| Warehouse HIDs              | kWh        | 0.02                  | 0.07        | 10             |
| School HIDS                 | kWh        | 0.11                  | 0.30        | 10             |
| Other RE Lighting           | kWh        | -1.26                 | 2.15        | 119            |
| Custom Lighting             | kWh        | -0.51                 | 3.07        | 15             |
| Refrigeration               |            |                       |             |                |
| Custom Refrigeration        | kWh        | -0.75                 | 2.00        | 3              |
| <b>RE/REO</b> Refrigeration | kWh        | -0.53                 | 1.98        | 181            |
| Other End Uses              | kWh        |                       |             |                |
| Other                       | kWh        | -1.71                 | 2.90        | 62             |
| Change Variables            | kWh        |                       |             |                |
| Cooling System Replacement  | (0,1)*kWh  | -0.03                 | 0.70        | 10             |
| Lighting System Replacement | (0,1)*kWh  | -0.08                 | 4.17        | 48             |
| Change in Employees         | (±1,0)*kWh | 0.01                  | 0.64        | 57             |
| Square Foot Change          | ± sqft     | 4.42                  | 2.37        | 27             |
| Heating System Replacement  | (0,1)*kWh  | -0.07                 | 0.04        | 4              |
| Other Equipment Change      | (0,1)*kWh  | 0.03                  | 1.17        | 42             |
| Remove Equipment            | (0,1)*kWh  | 0.08                  | 0.64        | 2              |
| Refrigeration Replacement   | (0,1)*kWh  | 0.00                  | 0.01        | 3              |
| Add Equipement              | (0,1)*kWh  | 0.11                  | 0.49        | 11             |
| Other Additions             | (0,1)*kWh  | 0.14                  | 12.41       | 375            |

## Exhibit 3-11 Billing Regression Final Model Outputs

The engineering energy impact for Chillers was estimated differently for Customized Incentives applications than for RE and REO applications, due to the different types of businesses that install these measures. Therefore, the engineering energy impact estimate for Customized Incentives Chillers was left unadjusted, which is conservative compared to the alternative approach of applying the 1.58 SAE coefficient estimated for the RE and REO applications.

The SAE coefficient of 0.65 for "Other" Customized Incentives HVAC measures is based on a sample size of only five sites, compared to the 43 unique sites that installed "Other" Customized Incentives HVAC measures in 1995. In addition, these five sites represent only seven percent of the total ex ante energy impact contributed by these 43 sites. Also, one third of the customers

installing "Other" Customized Incentives HVAC measures have usage over 3 million kWh per year, which are not represented in the SAE analysis.

The larger customers (usage over 3 million kWh per year), however, are very well represented in the on-site audit sample, for which calibrated engineering energy impacts were estimated. Sixteen sites, which represent 53 percent of the total ex ante energy impact, were on-site audited, one of which was included in the SAE billing analysis. The ratio of the engineering energy impact estimate to the ex ante estimate is 0.79 for the on-site audit sample. This can be directly compared to the SAE coefficient, because ex ante estimates were used as the engineering energy impact estimates for the billing analysis, as mentioned above.

Three approaches were considered for estimating the ex post gross energy impact for the "Other" Customized Incentives HVAC measures:

- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population.
- The 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate from the on-site audit sample could be applied to the ex ante estimate of gross energy impact for the population.
- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population that is most similar to the SAE sample, and the 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate could be applied to the population most similar to the on-site audit sample.

The approach of applying the SAE coefficient to the ex ante estimate of gross energy impact for the population, which is the most conservative method, was chosen for two reasons. First, the SAE coefficient provides a statistically adjusted result that is significant at the 95 percent confidence level. Second, the 0.79 ratio based on the on-site audit is very sensitive to a few individual on-site results. For example, the ratio of the engineering to ex ante estimate is 1.51 for the site with the largest energy impact. If the engineering estimate was set equal to the ex ante estimate for this customer, the overall ratio for all on-sites would be 0.64. Conversely, if the site with the second largest energy impact, which has a ratio of 0.41, had an engineering estimate set equal to the ex ante estimate, the overall ratio would be 0.95.

The SAE coefficients are multiplied by the evaluation estimates of gross energy impact to calculate the gross ex post energy impacts.

## 3.3.7 Self-Selection

In addition to conducting a billing analysis to estimate gross energy impacts as described above, a net billing analysis was performed, with the objective of estimating SAE coefficients that could be applied to gross engineering estimates to calculate net energy impact. The net billing analysis model specification differs from the gross billing analysis model, which used two different multivariate regression models (a baseline model using a control group and an SAE model using participants). Instead, the net billing analysis model runs one integrated model combining both the participants and nonparticipants.

A disadvantage of combining both participants and nonparticipants into one model of net energy savings is that the resulting sample is not random. In particular, participants self-select into the program and therefore may not be randomly distributed. As a result, there are certain unobserved characteristics that influence the decision to participate. If these characteristics are not accounted for in the model, the net savings model could produce biased coefficient estimates.

One solution to this problem is to include an Inverse Mills Ratio in the model to correct for selfselection. This method was developed by Heckman (1976, 1979<sup>8</sup>) and is used by others (Goldberg and Train, 1996<sup>9</sup>) to address the problem of self-selection into energy retrofit programs. The Mills Ratio technique assumes that the unobserved factors that are influencing participation are distributed normally. The influence of these unobserved factors on participation can be approximated by a Mills Ratio which itself is distributed normally. Using the Mills Ratio corrects for the self-selection bias in the net savings regression as the unobserved factors affecting participation are now controlled for in the model. As a result, standard regression techniques should produce unbiased coefficient estimates.

Goldberg and Train (1996) develop the technique of using an additional Mills Ratio in the savings regression to account for the possibility that participation is correlated with the size of energy savings. The second Mills Ratio is interacted with a measure of energy savings, which allows the amount of net savings to vary with participation. The rationale for the second term is that those customers who have potentially large savings are more likely to participate in the program. Consequently, the unobserved factors that are influencing participation are also affecting the amount of savings. The additional Mills Ratio accounts for the fact that amount of savings will be correlated with participation.

To correct for self-selection, a probit model of program participation is estimated. Upon estimation, the parameters of the participation model are then used to calculate an Inverse Mills Ratio for both participants and nonparticipants. This Mills Ratio is then included in the net savings regression that combines both participants and nonparticipants. If the Mills Ratio controls for those unobserved factors that determine participation, and the other model assumptions are met, then the net savings model can then be estimated as if participation in the program is randomly determined.

Using the Inverse Mills Ratio to correct for selection relies on several assumptions. First, the net savings due to the program, whether expressed as naturally occurring savings or a net-to-gross ratio, must be normally distributed. In addition, the Mills Ratio must not be highly correlated with the other independent variables used in the net billing regression. In this application, both of these assumptions are found to be violated. Net savings due to the program is biased upward toward large customers and is not distributed normally. The Mills Ratio term used in the net savings regression is also found to be highly correlated with other independent variables, which introduces multi-collinearity into the model. As a result of these violations, the regression analysis using the Mills Ratio technique does not yield reliable estimates in this application. A description of the methods used for this application are provided in *Appendix C*.

Therefore, self-selection is not treated explicitly in the billing regression analysis. However, because the objective of the billing regression analysis is to estimate the program gross energy impacts, the self-selection bias, if it even exists, has very limited impacts on the outputs of such estimation when both cross-sectional and time series data are used. In addition, the effects of free ridership are explicitly modeled in the net to gross analysis, described in *Section 3.4*.

<sup>&</sup>lt;sup>8</sup> Heckman, J. 'The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models.", Annals of Economic and Social Measurement, Vol. 5, pp. 475-492, 1976.

Heckman, J. "Sample Selection Bias as a Specification Error." Econometrica, Vol. 47, pp. 153-161, 1979.

<sup>&</sup>lt;sup>9</sup> Goldberg, Miriam and Kenneth Train. 'Net Savings Estimation: An analysis of Regression and Discrete Choice Approaches', prepared for the CADMAC Subcommittee on Base Efficiency by Xenergy, Inc. Madison, WI, March 1996.

#### 3.3.8 Relative Precision Calculation

Relative precision at 90 percent and 80 percent confidence levels for the adjusted gross energy impact estimates are calculated for each of the SAE analysis segments. As mentioned above, there are a total of sixteen analysis segments that were explicitly modeled and the relative precision estimates based upon the model output are presented in Exhibit 3-12 below. In order to calculate the total program level adjusted gross impact and relative precision, the segment level results were weighted by their unadjusted engineering energy impact estimates in the following equations.

Total Adjusted Energy Impact =  $\sum_{i} \beta_{i} Eng_{i}$ 

Where  $\beta_i$  and Eng<sub>i</sub> are the SAE coefficients and unadjusted engineering impact estimates for segment i, respectively. The program level standard error can be estimated as:<sup>10</sup>

$$StdErr = \sqrt{\sum_{i} (CV_{i} * \beta_{i} * Eng_{i})^{2}}$$

Where  $CVi = (std(\beta i)/\beta i)$  is the coefficient of variation in segment i, estimated in the billing regression model. Finally, the relative precision at 90 percent and 80 percent confidence levels were calculated as

$$RP = \frac{t * StdErr}{Total Adj. Energy Impact}$$

Where t equals 1.645 and 1.282 for the 90 percent and 80 percent confidence levels, respectively.

| SAE Analysis Level               | Engineering Gross<br>Energy Impact<br>Estimate (MWh) | SAE<br>Coefficient | t-Statistic | Relative<br>Precision<br>at 80% | Relative<br>Precision<br>at 90% |
|----------------------------------|------------------------------------------------------|--------------------|-------------|---------------------------------|---------------------------------|
| HVAC End Use                     |                                                      |                    |             | •                               |                                 |
| Central A/Cs                     | 878                                                  | 2.07               | 3.67        | 35%                             | 45%                             |
| ASDs                             | 8,971                                                | 1.90               | 6.75        | 19%                             | 24%                             |
| Chillers                         | 2,966                                                | 1.58               | 2.39        | 54%                             | 69%                             |
| EMS                              | 10,290                                               | 1.03               | 8.38        | 15%                             | 20%                             |
| Other Customized Incentives HVAC | 18,668                                               | 0.65               | 4.76        | 27%                             | 35%                             |
| Office Thermostats               | <u>1,332</u>                                         | 0.00               | -           | -                               | -                               |
| Other RE/REO HVAC                | 6,087                                                | 0.90               | 2.89        | 44%                             | 57%                             |
| Total                            | 49,192                                               | 1.03               |             | 12%                             | 15%                             |

Exhibit 3-12 Relative Precision Calculation

<sup>&</sup>lt;sup>10</sup> This procedure assumes that the samples in different segments are independent and can be treated as strata in a stratified sampling.

## 3.4 NET-TO-GROSS METHOD

In this section, the methods used to derive net-to-gross (NTG) results for the evaluation of PG&E's 1995 Commercial RE/REO/Customized Incentives Programs is presented. After a brief review of data sources, the approach to estimating free-ridership and spillover from participant self-reports is described. Finally, investigation into the use of more sophisticated discrete choice modeling techniques to estimate program net effects is discussed.

## 3.4.1 Data Sources

Data used in the NTG analysis include 487 telephone surveys from HVAC end use participants surveyed from April through August 1996, and 451 HVAC end use nonparticipants surveyed from June through August 1996. Other data used in the analysis include 156 telephone surveys from canvass nonparticipants and 634 canvass nonparticipants who were "thanked and terminated" because they had not made an equipment retrofit or installation. The canvass nonparticipants were surveyed from June through July 1996.

## 3.4.2 Self-Report-Based Estimates of Free-Ridership

The RE/REO/Customized Incentives participants surveyed installed or adopted the following technology groups. (Participants who installed multiple technologies may be included in more than one technology group.)

| Technology Group        | <u>N</u> |
|-------------------------|----------|
| Central Air Conditioner | 244      |
| Adjustable Speed Drive  | 32       |
| HVAC Controls           | 119      |
| Package Terminal        | 26       |
| Reflective Window Film  | 97       |
| Water Chillers          | 10       |
| Other                   | 11       |
| Custom                  | 58       |

Because free-ridership often varies by technology, results were calculated for each technology group. However, caution should be employed in interpreting the analysis results, given the small group sizes for some technology groups.

## Methods for Scoring Free-Ridership

The method used to score free-ridership uses participant responses to survey questions regarding the timing of and reasons for equipment replacement actions. The complete text of the participant surveys may be found in *Appendix S-1*.

As described in the work plan, a series of questions was posed to program participants. If the customer indicated that he had not been shopping for new HVAC equipment before becoming aware of the program, he was scored initially as a net participant. A customer was then classified as a free-rider if he met the following two conditions: (1) stated that he would have installed high-efficiency equipment within the year and had already selected the equipment; and (2) stated that he would have purchased high-efficiency equipment if the program had not existed.

## Free-Ridership Results

NTG results weighted by avoided cost (AC) and calculated by subtracting the free-ridership rates obtained through each of the methods described above are presented in Exhibit 3-13. Results are presented overall and by segment. Technologies classified as "other" include air handlers (2), cooling towers (3), evaporative condensers (5), and constant-to-variable air volume (1).

|                      |                     |          | RE/REO  | Technology g | groups               |          |        |        |         |
|----------------------|---------------------|----------|---------|--------------|----------------------|----------|--------|--------|---------|
| -                    | Adjustable<br>Speed | HVAC     | Water   | Central      | Reflective<br>Window | Package  |        | Custom | Overall |
|                      | Drive               | Controls | Chiller | AC           | Film                 | Terminal | Other  | custom | overail |
| N                    | 32                  | 119      | 10      | 244          | 97                   | 26       | 11     | 58     | 597     |
| %<br>Avoided<br>Cost | 12.37%              | 11.82%   | 9.37%   | 4.13%        | 3.07%                | 0.86%    | 15.02% | 31.63% | 88.27%  |
| NTG                  | 0.897               | 0.807    | 0.700   | 0.835        | 0.699                | 0.943    | 0.876  | 0.854  | 0.843   |

Exhibit 3-13 NTG Weighted by Avoided Cost

Overall, weighted NTG results range from a low of 0.7 for chillers to a high of 0.943 for package terminal units. The program-wide NTG ratio, weighted by avoided cost, was 0.843. This result was used as the basis for subsequent adjustment for spillover.

#### 3.4.3 Self-Report-Based Estimates of Spillover

HVAC spillover can be defined as HVAC efficiency improvements implemented outside the program but influenced by the program. Preliminary estimates of HVAC spillover rates were generated by analyzing responses to a combination of questions asked of 487 participants and 1,241 nonparticipants.

## Methods for Scoring Spillover

The integrated approach to estimating HVAC spillover is summarized below.

All surveyed respondents were asked if they had installed HVAC equipment outside the program since January 1993. Participants who answered "yes" to the first question were asked if these changes were made after participating in the program. Nonparticipants, and participants who said the changes were made after participation, were asked if they made the equipment changes through a PG&E program.

Participants who passed the first two screening questions and had not changed out HVAC equipment through a PG&E program, and nonparticipants who passed the first two screening questions and were aware of the program at the time of equipment purchase, were asked how

influential the program was in their decision. Those who said that the program had influenced their decision11 were included in the preliminary estimate of program spillover.

Survey-based estimates were applied to the HVAC participant population and the HVAC nonparticipant population along with estimates of impact per site, resulting in a final spillover impact.

It should be noted that this analysis provides a preliminary indication of spillover rates and more in-depth analysis is required to quantify spillover impacts.

## Spillover Result— Participants

Forty-five surveyed participants (nine percent of the total participant sample) reported that since January 1993 they had added HVAC equipment. Forty-nine percent of those participants who added equipment (4.5 percent of the total participant sample) added the equipment after participating in the program. Twenty-seven percent (2 percent of the total participant sample) did not install the equipment through the program. Six of these respondents (1 percent of the total participant sample) reported the program influenced their additional HVAC equipment installations. Of these six, two installed additional HVAC equipment in 1995. Two of 489 participants yields an initial unweighted spillover rate of 0.41 percent for 1995.

#### Spillover Results—Nonparticipants

One hundred twenty-six of 1,241 program nonparticipants reported making HVAC changes outside the program, of which 88 respondents confirmed their installations were not done through the program. Thirteen respondents (1 percent of the total nonparticipant sample) reported they were aware of the program before they purchased the equipment. Of these 13, 3 respondents reported their knowledge of the program was influential on their equipment selection. One of these 3 respondents installed HVAC equipment in 1995. One of 1,241 nonparticipants yields an unweighted spillover estimate of 0.08 percent for 1995.

Because the levels of self-reported spillover are so low and based on such a small number of responses, it was decided not to apply a correction for either participant or nonparticipant spillover. One minus the self-reported rate of free-ridership (0.843) was therefore used as the self-reported NTG ratio for the HVAC program overall, with the corresponding measure-specific NTG ratios used for individual technologies.

## 3.4.4 Use of Discrete Choice Models to Estimate NTG

In addition to the estimates based on self-reported data, discrete choice modeling techniques were assessed for their practicality in estimating NTG ratios and free ridership rates for HVAC measures. This approach was used successfully to evaluate high-efficiency equipment purchases in PG&E's 1995 Commercial Lighting Energy Efficiency Incentives (EEI) Program.

For the HVAC program, the technologies that are best suited for discrete choice analysis are split and package units. However, these measures account for less than 3 percent of the total energy impact due to the HVAC program. Information is available on the type of measures adopted outside the program, but expensive data resources were not used to determine whether these

<sup>&</sup>lt;sup>11</sup> "To what extent did participating in the program influence your additional equipment selection?" Values of 2, 3, 4, and 5 (slightly influential to very influential) were considered to demonstrate program influence on the purchase.

measures are standard or high-efficiency. As a result, assumptions must be made regarding the efficiency of these measures in order to specify a model.

## Modeling Approach and Results

The approach adopted in this analysis was to explore four different logit model specifications using a variety of assumptions regarding the technology adopted outside the program. These different models provide a range of possible NTG ratios based on whether customers outside the program purchase standard or high-efficiency HVAC equipment. Appendix D discusses the modeling approach and results in more detail.

In the logit model, the decision to purchase high-efficiency equipment is explained by the cost and savings of the equipment, any rebate offered by the HVAC program, awareness of the HVAC program, and other customer characteristics. Once estimated, the model is used to determine the probability of purchasing high-efficiency equipment in the absence of the HVAC program. This is simulated by setting program awareness and the rebate amount equal to zero in the logit purchase model. These probabilities both with and in absence of the HVAC program are used to calculate a NTG ratio. With the four models, the estimates for the NTG ratio range from 0.49 to 2.88.

## Conclusion

The wide range of NTG ratio estimates illustrates the sensitivity of these models to assumptions made regarding the energy efficiency of HVAC equipment purchased outside the program. Accurate information regarding the energy efficiency of the equipment purchased outside the HVAC program, such as the data collected for the Lighting program, is essential for developing a model that more accurately estimates the NTG ratio for the HVAC program. Because such detailed data were not available, the self-reported NTG ratios were used as the basis for adjusting gross to net impacts in the HVAC evaluation.

## 4. EVALUATION RESULTS

This section contains the results of this evaluation, beginning with ex post gross impacts, then presenting the net-to-gross (NTG) adjustments, and concluding with the program realization rates (ratio of ex post evaluation findings to the ex ante program design estimates), for both gross and net impacts. Explanations for the differences between the ex ante and ex post estimates are discussed in the presentation of program realization rates.

Where segment analysis could be supported, results are presented by technology group and building type. All results are segmented by program: Retrofit Express (RE), Retrofit Efficiency Options (REO), and Customized Incentives. All results are aggregated to the entire commercial sector by program.

## 4.1 EX POST GROSS IMPACT RESULTS

Ex post gross energy, demand, and therm impacts for the RE, REO, and Customized Incentives programs for HVAC technologies are presented in Exhibits 4-1, 4-2, and 4-3, respectively. The expost gross energy and demand impacts by PG&E costing period are provided in *Appendix F*.

As shown in Exhibit 4-1, the Customized Incentives Program technologies represent more than 55 percent of the energy impacts, the largest contributor being Other Customized HVAC technologies. Office and retail business types represent about half of the overall energy impacts, with office being the largest single segment, accounting for about 38 percent of energy impacts.

Variable or adjustable speed drives, which were offered through all three programs, contributed more to energy impacts than any other technology, with approximately 17,000 MWh, or about one-third of the total. Energy Management Systems and programmable thermostats (including timeclocks, bypass timers, and setback programmable thermostats), were the second largest contributer, having a total program impact of almost 13,000 MWh, or 25 percent of the total. A variety of "other Customized Incentives measures" together accounted for about 20 percent of this program's total impact. Technologies covered in this category are generally site-specific energy-efficiency measures that do not fit into any of the established measure definitions. High efficiency chillers contributed just over 7 percent of HVAC energy impacts, with the REO and Customized Incentives programs representing more than 90 percent of the total.

Ex post energy impacts were set to zero for programmable thermostats in offices. As explained in more detail in *Appendix C: Billing Regression Analysis*, the SAE coefficients were statistically insignificant and the wrong sign within this particular segment. Therefore, a conservative estimate of zero impact was assigned.

The REO program plays a small role in the overall impact, with just under 10 percent of the energy savings being attributable to this program. Technologies installed through the REO program were most important to the health care and community service business types, representing over 15 percent of energy impacts for these segments.

#### Exhibit 4-1 Ex Post Gross Energy Impacts By Business Type and Technology Group For HVAC Technologies Paid in 1995

| Business Type                        |            |           |                        |           | Comme     | cial HVAC  | First-Year En | ergy Impact | s (kWh)   |                     |                      |         |             |
|--------------------------------------|------------|-----------|------------------------|-----------|-----------|------------|---------------|-------------|-----------|---------------------|----------------------|---------|-------------|
| Program and Technology Group         | Office     | Retail    | College/<br>University | Schoof    | Grocery   | Restaurant | Health Care   | Hatel/Matel | Warehouse | Personal<br>Service | Community<br>Service | Misc.   | Total       |
| Retrofit Express Program             |            |           |                        |           |           |            |               | ·           |           |                     |                      |         | <del></del> |
| Centra! A/C                          | 525,642    | 281,396   | 40,936                 | 187,548   | 55,439    | 162,633    | 128,079       | 16,074      | 49,946    | 89,327              | 241,370              | 38,137  | 1,816,527   |
| Variable Speed Drive HVAC Fan        | 2,813,602  | 5,175,127 | 965,036                | 35,644    | 130,946   |            | 122,085       | 140,154     | 101,000   | 1,871,764           |                      | 84,959  | 11,440,318  |
| Package Terminal A/C                 | 7,654      | 1,566     | 3,680                  | 42,023    | -         | 13,979     | 31,857        | 120,285     | 408       | -                   | 4,690                |         | 226,144     |
| Programmable Thermostat              | 0          | 276,534   | 9,369                  | 595,792   | 35,183    | 129,262    | 123,984       | 19,618      | 217,875   | 134,030             | 448,586              | 56,476  | 2,046.708   |
| Reflective Window Film               | 1,532,208  | 67,385    | 100,755                | 37,906    | 46,846    | 26,707     | 182,729       | 87,769      | 79,668    | 71,823              | 189,158              | 34,973  | 2,457,926   |
| Water Chiller                        | 61,742     | 66,913    | •                      | 68,460    | -         | -          | -             | -           | -         | •                   | 25,672               | -       | 222,787     |
| Other RE Measures                    | 127,178    | •         | •                      | 186,899   | 23.678    | 12,192     | 66,595        | 61.231      | -         | 8,747               | 48,603               | -       | 535,124     |
| Retrofit Express Total               | 5,068,027  | 5,868,921 | 1,119,777              | 1,154,273 | 292,092   | 344,772    | 655,330       | 445,131     | 448,897   | 2,175,692           | 958,078              | 214,545 | 18,745,534  |
| Retrofit Efficiency Options Program  |            |           |                        |           |           |            |               |             |           |                     |                      |         |             |
| Variable Frequency Drive             | 408,297    | 99,084    | 494,425                | •         | •         |            | -             | -           |           |                     |                      | · ·     | 1,001,806   |
| Water Chiller                        | 108,676    | 590,332   | •                      |           |           | •          | 928,687       | •           | •         | •                   | 373,211              | -       | 2,000,905   |
| CAV IO VAV                           | 1,733,726  |           | -                      | •         |           | -          |               |             | •         | •                   | -                    |         | 1,733,726   |
| Cooling Tower                        | 27,719     | 35,316    | -                      | •         |           |            | 135,056       | -           |           | •                   | •                    | •       | 198,091     |
| Retrofit Efficiency Options Total    | 2,278,418  | 724,732   | 494.425                | 0         | 0         | 0          | 1,063,743     | 0           | 0         | 0                   | 373,211              | 0       | 4,934,528   |
| Customized Incentives Program        |            |           |                        |           |           |            |               |             |           |                     |                      |         |             |
| HVAC Variable Speed Drive            | 1,615,813  | -         | -                      | •         | 1,435,537 | -          | 684,015       | 357,401     | -         | •                   | 523,716              | •       | 4,616,483   |
| High Elliciency Chiller              | 1,560,525  |           | -                      | •         |           |            |               |             | -         | -                   | •                    | •       | 1,560,525   |
| Energy Management System             | 2,504,659  | •         | 1,227,263              | 3,420,436 | 746,289   | •          | 1,959,984     | 602,385     | 11,680    | 86,131              | •                    |         | 10,558,827  |
| Other Customized Incentives Measures | 6,135,731  | · .       | 524,908                | 261,856   |           | •          | 1,628,648     | •           | 229,992   | 1,514,162           | 164,988              | •       | 10,460,286  |
| Customized Incentives Total          | 11,816,728 | 0         | 1,752,171              | 3,682,292 | 2,181,826 | 0          | 4,272,647     | 959,787     | 241.672   | 1,600,293           | 688,704              | 0       | 27,196,121  |
| Total                                | 19,163,174 | 6,593,652 | 3,366,373              | 4.836.565 | 2,473.918 | 344,772    | 5.991,719     | 1,404,918   | 690,569   | 3,775,985           | 2,019,993            | 214,545 | 50,876,182  |

The results in Exhibits 4-2 illustrate the following findings relative to demand impacts:

In contrast to energy impacts, which were dominated by the Customized Incentives Program, slightly over half of gross ex post demand impacts are attributed to the RE program. Technologies installed through the REO program contributed less than 15 percent. The difference between the distributions of demand and energy impacts are clearly a function of the measures installed. As discussed in energy impacts above, some of the largest contributors to energy impacts are VSDs, EMS and Setback Thermostats, all measures which do not have demand impacts.

Central air conditioners (central ACs) installed through the RE program and water chillers installed through all three programs each account for approximately 25 percent of demand impacts. Among other technologies, other customized incentives measures accounted for about 22 percent and reflective window film contributed 12 percent.

#### Exhibit 4-2 Ex Post Gross Demand Impacts By Business Type and Technology Group For HVAC Technologies Paid in 1995

| Business Type                        |        |        |                        | Comme  | rcial H | VAC Fir    | <u>st-Year</u> | Deman       | d Impa    | cts (kW             | )                    |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|----------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care    | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |         |            |                |             |           |                     |                      |       |       |
| Central A/C                          | 398    | 121    | 19                     | 79     | 21      | 55         | 83             | 9           | 28        | 38                  | 146                  | 19    | 1,016 |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -       | -          | -              | -           | -         | -                   | -                    | -     | 0     |
| Package Terminal A/C                 | 7      | 2      | 2                      | 22     | -       | 10         | 17             | 147         | 1         | -                   | 3                    | -     | 212   |
| Programmable Thermostat              | -      | •      | •                      | -      | -       | -          | -              | -           | -         | -                   | -                    | -     | 0     |
| Reflective Window Film               | 322    | 14     | 19                     | 2      | 9       | 6          | 39             | 16          | 15        | 15                  | 35                   | 7     | 499   |
| Water Chiller                        | 34     | 27     | •                      | 4      | -       | -          | -              | -           | -         | -                   | 8                    | -     | 73    |
| Other RE Measures                    | 131    | -      | -                      | 27     | 9       | 7          | 76             | 18          | -         | 3                   | 17                   | -     | 288   |
| Retrofit Express Total               | 893    | 163    | 40                     | 134    | 39      | 78         | 214            | 190         | 44        | 56                  | 210                  | 25    | 2,088 |
| Retrofit Efficiency Options Program  | -      | -      | -                      | -      | -       | -          | -              | -           | -         | -                   | -                    | -     |       |
| Variable Frequency Drive             | -      | -      | -                      | -      |         | -          | -              | -           | •         | •                   | -                    | -     | 0     |
| Water Chiller                        | 10     | 149    | -                      | -      | -       | -          | 235            | -           | -         | -                   | 127                  | -     | 522   |
| CAV to VAV                           | 83     | -      | -                      | -      | -       | -          | -              | -           | -         | -                   | -                    | -     | 83    |
| Cooling Tower                        | 23     | 40     | -                      | -      | -       | -          | 90             |             | -         | -                   | -                    | -     | 153   |
| Retrofit Efficiency Options Total    | 116    | 189    | 0                      | 0      | 0       | 0          | 325            | 0           | 0         | 0                   | 127                  | 0     | 758   |
| Customized Incentives Program        |        |        |                        |        |         |            |                |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -      | -      | -                      | •      | -       | -          | -              | -           | -         | -                   | -                    | -     | 0     |
| High Efficiency Chiller              | 401    | -      | -                      |        | -       | -          | -              | -           | -         | -                   |                      | -     | 401   |
| Energy Management System             | •      | -      | -                      | -      | -       | -          | -              | -           | -         | -                   | -                    | -     | 0     |
| Other Customized Incentives Measures | 648    |        | •                      | 41     | -       | -          | 13             | -           | 73        | 115                 | ·                    | -     | 891   |
| Customized Incentives Total          | 1,049  | 0      | 0                      | 41     | 0       | 0          | 13             | 0           | 73        | 115                 | 0                    | 0     | 1,292 |
| Total                                | 2,059  | 353    | 40                     | 175    | 39      | 78         | 553            | 190         | 118       | 171                 | 337                  | 25    | 4,138 |

The office segment contributed 50 percent of demand impacts. Among other segments, only health care accounted for more than 10 percent. The sharply lower demand impact (relative to energy) for the retail, grocery, and personal service segments result from these segments' large participation in variable speed drive (VSD) HVAC fans, which have significant energy impacts but are assumed to have no demand impact at system peak when the fan motors are fully loaded.

Therm impacts associated with the installation of HVAC technologies paid in 1995 are presented in Exhibit 4-3.

## Exhibit 4-3 Ex Post Gross Therm Impacts By Business Type and Technology Group

| Business Type                        |         |        |                        |         | Comm    | ercial HV/ | AC First-Y  | ear Therm   | Impacts   |                     |                      |       |           |
|--------------------------------------|---------|--------|------------------------|---------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-----------|
| Program and Technology Group         | Office  | Retail | College/<br>University | School  | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total     |
| Retrofit Express Program             |         |        |                        |         |         |            |             |             |           |                     |                      |       | ľ         |
| Central A/C                          | -       | -      | -                      | -       | -       | -          | •           |             | -         | -                   | -                    | -     | -         |
| Variable Speed Drive HVAC Fan        | - 1     |        | -                      | -       | •       | -          | · ·         | -           | -         | -                   | -                    |       | -         |
| Package Terminal A/C                 |         | •      | -                      | -       | -       | -          | -           | -           | -         | -                   | -                    | -     | •         |
| Programmable Thermostat              | -       |        | -                      | -       | •       | -          |             | -           | •         | •                   | •                    | -     |           |
| Reflective Window Film               | - 1     | -      | -                      | •       | -       | -          |             | -           | -         | -                   | -                    | -     |           |
| Water Chiller                        | · 1     |        | -                      |         |         |            |             | -           | •         | -                   | -                    |       |           |
| Other RE Measures                    |         | -      | -                      | -       | -       |            | · ·         | •           | -         | -                   | -                    | ·     |           |
| Retrofit Express Total               | ]       | -      | •                      | -       |         | •          | -           |             | -         | -                   | •                    | -     | · ·       |
| Retrofit Efficiency Options Program  |         |        |                        |         |         |            |             |             |           |                     |                      |       |           |
| Variable Frequency Drive             | -       | •      | 1                      | -       | -       | •          | -           |             | -         | -                   | •                    | - i   | -         |
| Water Chiller                        | •       | •      | -                      | -       | •       |            | •           | •           | -         | •                   | •                    | -     |           |
| CAV to VAV                           | •       | -      | -                      | -       | -       | -          | -           | -           | -         | -                   | -                    | -     |           |
| Cooling Tower                        | •       | -      | -                      | -       | •       | -          | •           | •           | -         | -                   | -                    | -     | -         |
| Retrofit Efficiency Options Total    | •       | -      | -                      | -       | -       |            |             |             | •         | -                   | -                    |       | -         |
| Customized Incentives Program        |         |        |                        |         |         |            |             |             |           |                     |                      |       |           |
| HVAC Variable Speed Drive            |         | -      | -                      | -       | -       | -          |             | -           | • •       | -                   | -                    | -     | · .       |
| High Efficiency Chiller              | •       | -      | •                      | •       | -       | •          | -           | -           | •         | -                   | -                    | •     | · ·       |
| Energy Management System             | 71,670  | -      | -                      | 379,573 | -       | -          | 597,692     | 9,327       | 615       | -                   | -                    | -     | 1,058,877 |
| Other Customized Incentives Measures | 659,610 | -      | 23,700                 | 28,726  |         | •          | 263,911     | •           | 192       | -                   | 13,403               | 8,243 | 997,785   |
| Customized Incentives Total          | 731,280 | 0      | 23,700                 | 408,299 | 0       | 0          | 861,603     | 9,327       | 807       | 0                   | 13,403               | 8,243 | 2,056,662 |
| Total                                | 731,280 | 0      | 23,700                 | 408,299 | 0       | 0          | 861,603     | 9,327       | 807       | 0                   | 13,403               | 8,243 | 2,056,662 |

Gross therm impacts are associated only with program participants who have gas heating. Since accurate fuel type/heating equipment saturation data were not available for program participants in such RE measures as programmable thermostats and reflective window film (which would presumably have negative therm impacts), ex post therm impacts were calculated only for those segments for which ex ante therm impacts were estimated.

Energy management systems and other Customized Incentives measures contributed almost equally to the overall ex post therm impacts. Typically, energy management systems saved energy by eliminating or reducing the use of heating equipment during unoccupied periods.

Therm impacts from energy management systems were concentrated in the health care and, to a lesser extent, schools segments. The office building type accounted for two-thirds of the therm impacts from other Customized Incentives measures.

## 4.2 NET-TO-GROSS ADJUSTMENTS

Exhibit 4-4 presents the NTG values by technology. While discrete choice analysis was investigated for some segments, NTG results based on self-reported data were ultimately used, as described in detail in *Appendix D*.

In the case of self-reported data, results are presented without participant and nonparticipant spillover. Estimates of 1995 participant and nonparticipant spillover were generated based on self-

reported data, but the resulting measures of spillover were very low, less than 1 percent. Therefore, a conservative estimate of the NTG ratio as one minus free-ridership was used for all segments.

| Business Type                        |                  |        |                        |                   | ١              | vet-to-G   | ross Ad     | ljustmen    | its       |                     |                                  |            |                                          |
|--------------------------------------|------------------|--------|------------------------|-------------------|----------------|------------|-------------|-------------|-----------|---------------------|----------------------------------|------------|------------------------------------------|
| Program and Technology Group         | Office           | Retail | College/<br>University | School            | Grocery        | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service             | Misc.      | Total                                    |
| Retrofit Express Program             |                  |        |                        |                   |                |            |             |             |           |                     |                                  |            |                                          |
| Central A/C                          | 0.84             | 0.84   | 0.84                   | 0.84              | 0.84           | 0.84       | 0.84        | 0.84        | 0.84      | 0.84                | 0.84                             | 0.84       |                                          |
| Variable Speed Drive HVAC Fan        | 0.90             | 0.90   | 0.90                   | 0.90              | 0.90           | 0.90       | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                             | 0.90       |                                          |
| Package Terminal A/C                 | 0.94             | 0.94   | 0.94                   | 0.94              | 0.94           | 0.94       | 0.94        | 0.94        | 0.94      | 0.94                | 0.94                             | 0.94       |                                          |
| Programmable Thermostat              | 0.81             | 0.81   | 0.81                   | 0.81              | 0.81           | 0.81       | 0.81        | 0.81        | 0.81      | 0.81                | 0.81                             | 0.81       | 開始                                       |
| Reflective Window Film               | 0.70             | 0.70   | 0.70                   | 0.70              | 0.70           | 0.70       | 0.70        | 0.70        | 0.70      | 0.70                | 0.70                             | 0.70       |                                          |
| Water Chiller                        | 0.70             | 0.70   | 0.70                   | 0.70              | 0.70           | 0.70       | 0.70        | 0.70        | 0.70      | 0.70                | 0.70                             | 0.70       |                                          |
| Other RE Measures                    | 0.88             | 0.88   | 0.88                   | 0.88              | 0.88           | 0.88       | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                             | 0.88       |                                          |
| Retrofit Express Total               |                  |        |                        |                   |                | 影響         |             |             | 即編        |                     | <b>新教</b>                        | 1          |                                          |
| Retrofit Efficiency Options Program  |                  |        |                        |                   |                |            |             |             |           |                     |                                  |            |                                          |
| Variable Frequency Drive             | 0.88             | 0.88   | 0.88                   | 0.88              | 0.88           | 0.88       | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                             | 0.88       |                                          |
| Water Chiller                        | 0.70             | 0.70   | 0.70                   | 0.70              | 0.70           | 0.70       | 0.70        | 0.70        | 0.70      | 0.70                | 0.70                             | 0.70       |                                          |
| CAV to VAV                           | 0.88             | 0.88   | 0.88                   | 0.88              | 0.88           | 0.88       | 0.88        | 0.88        | 0.88      | 88.0                | 0.88                             | 0.88       |                                          |
| Cooling Tower                        | 0.88             | 0.88   | 0.88                   | 0.88              | 0.88           | 0.88       | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                             | 0.88       |                                          |
| Retrofit Efficiency Options Total    |                  |        | 載題                     |                   |                |            | 3           |             |           | <b>新物</b>           |                                  | <b>1</b> , |                                          |
| Customized Incentives Program        |                  |        |                        |                   | · · · · · ·    |            |             |             |           |                     |                                  |            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| HVAC Variable Speed Drive            | 0.85             | 0.85   | 0.85                   | 0.85              | 0.85           | 0.85       | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                             | 0.85       |                                          |
| High Efficiency Chiller              | 0.85             | 0.85   | 0.85                   | 0.85              | 0.85           | 0.85       | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                             | 0.85       |                                          |
| Energy Management System             | 0.85             | 0.85   | 0.85                   | 0.85              | 0.85           | 0.85       | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                             | 0.85       |                                          |
| Other Customized Incentives Measures | 0.85             | 0.85   | 0.85                   | 0.85              | 0.85           | 0.85       | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                             | 0.85       |                                          |
| Customized Incentives Total          | ar.              |        |                        |                   | ( 4 <b>5</b> 4 |            |             |             |           |                     | 4 <sup>1</sup> 11 <sup>1</sup> 1 |            |                                          |
| Total                                | che in<br>Sector |        | [ <sup>1</sup> †       | (*** * ) **<br>** | 2-             |            |             |             | 1         |                     |                                  |            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |

# Exhibit 4-4 NTG Adjustments by Technology Group

NTG values based upon self-reported data range from 0.70 for reflective window film to 0.94 for package terminal air conditioners. For Customized Incentives Program participants, a single NTG ratio was applied regardless of the specific technology. For chillers, a single NTG was calculated for the RE and REO program. Chillers installed through the Customized Incentives program, however, were assigned the NTG ratio for the Customized program. This is consistent with the way the SAE coefficients were applied to the engineering estimates of gross energy impact.

The overall program ex post NTG ratio was approximately 15 percent higher than the overall program ex ante NTG ratio for energy and demand, and some 13 percent higher for therms. Exhibit 4-14, at the end of this section, presents all of the ex ante and ex post gross and net energy, demand and therm impacts.

## 4.3 EX POST NET IMPACTS

Exhibits 4-5 and 4-6 present the ex post net energy and demand impacts, respectively, for HVAC technologies paid in 1995 through the RE, REO, and Customized Incentives programs.

#### Exhibit 4-5 Ex Post Net Energy Impacts By Business Type and Technology Group HVAC Technologies Paid in 1995

| Business Type                        |            |           |                        |           | Commer    | cial HVAC I | First-Year En | ergy Impact | ts (kWh)  |                   |                      |         |            |
|--------------------------------------|------------|-----------|------------------------|-----------|-----------|-------------|---------------|-------------|-----------|-------------------|----------------------|---------|------------|
| Program and Technology Group         | Office     | etail     | College/<br>University | chool     | ùrocery   | estaurant   | lealth Care   | lotel/Motel | Varehouse | ersonal<br>ervice | Community<br>Service | Aisc.   | otal       |
| Retrofit Express Program             |            | PK        |                        | 0         |           | <u> </u>    | Ā             | <u>∓</u>    | _>        | ة                 | Uvā                  | 2       |            |
| Central A/C                          | 438,911    | 234,966   | 34,182                 | 156,603   | 46,292    | 135,798     | 106,946       | 13,422      | 41,705    | 74,588            | 201,544              | 31,844  | 1,516,800  |
| Variable Speed Drive HVAC Fan        | 2,523,801  | 4.642,089 | 865,637                | 31,973    | 117,458   |             | 109,510       | 125,718     | 90,597    | 1,678,972         | •                    | 76,209  | 10,261,966 |
| Package Terminal A/C                 | 7,218      | 1,477     | 3,470                  | 39,628    |           | 13,182      | 30.042        | 113,429     | 385       |                   | 4,423                |         | 213,253    |
| Programmable Thermostat              | 0          | 223,163   | 7,561                  | 480,804   | 28,393    | 104,314     | 100.055       | 15,832      | 175,825   | 108,162           | 362,009              | 45,576  | 1,651,693  |
| Reflective Window Film               | 1,071,013  | 47,102    | 70,428                 | 26,496    | 32,745    | 18,668      | 127,727       | 61,351      | 55,688    | 50,204            | 132,221              | 24,446  | 1,718,090  |
| Water Chiller                        | 43,220     | 46,839    | -                      | 47,922    | -         | • •         | •             |             |           |                   | 17,970               | •       | 155,951    |
| Other RE Measures                    | 111,408    | · ·       |                        | 163,724   | 20,742    | 10,680      | 58,338        | 53,638      | •         | 7,663             | 42,576               |         | 468,768    |
| Retrofit Express Total               | 4,195,571  | 5,195,635 | 981,279                | 947,150   | 245,630   | 282.642     | 532,618       | 383,389     | 364,200   | 1,919,590         | 760,743              | 178,075 | 15,986,522 |
| Retrofit Efficiency Options Program  | 1          |           |                        |           |           |             |               |             |           |                   |                      |         |            |
| Variable Frequency Drive             | 357,668    | 86,798    | 433,116                | •         | · ·       | -           |               |             |           | •                 |                      | · ·     | 877,582    |
| Water Chiller                        | 76,073     | 413,232   |                        | -         |           |             | 650,081       | -           |           |                   | 261,247              |         | 1,400,633  |
| CAV to VAV                           | 1,518,744  | -         | •                      | -         |           | -           | •             | •           |           | •                 |                      | •       | 1,518,744  |
| Cooling Tower                        | 24,282     | 30,937    |                        |           | _ · _     |             | 118,309       |             | •         |                   |                      | •       | 173,528    |
| Retrofit Efficiency Options Total    | 1,976,768  | 530,966   | 433,116                | 0         | 0         | 0           | 768,390       | 0           | 0         | 0                 | 261,247              | 0       | 3,970.487  |
| Customized Incentives Program        | )          |           |                        | _         |           |             |               |             |           |                   |                      |         |            |
| HVAC Variable Speed Drive            | 1,379,905  |           |                        | -         | 1,225,949 | -           | 584,149       | 305,221     | •         |                   | 447,254              | -       | 3,942.476  |
| High Efficiency Chiller              | 1,332,688  |           |                        | •         | -         | •           | •             |             |           | •                 | -                    |         | 1,332,688  |
| Energy Management System             | 2,138,979  |           | 1,048,083              | 2,921,052 | 637,331   | -           | 1,673,826     | 514,437     | 9,974     | 73,556            | •                    | · ·     | 9,017,238  |
| Other Customized Incentives Measures | 5,239,914  |           | 448,272                | 223,625   | •         | <u> </u>    | 1,390,866     | _ ·         | 196,414   | 1,293,094         | 140,900              |         | 8,933,084  |
| Customized Incentives Total          | 10.091.486 | 0         | 1,496,354              | 3,144.677 | 1,863,279 | 0           | 3,648,840     | 819,658     | 206,388   | 1,366,651         | 588,154              | 0       | 23,225,487 |
| Total                                | 16,263,825 | 5,726.602 | 2,910,749              | 4,091,827 | 2,108.909 | 282.642     | 4,949,848     | 1,203,047   | 570,588   | 3,286,240         | 1,610,144            | 178,075 | 43,182,496 |

#### Exhibit 4-6 Ex Post Net Demand Impacts By Business Type and Technology Group HVAC Technologies Paid in 1995

| Business Type                        |        |        |                        | Comme  | rcial HV | VAC Fir    | st-Year     | Deman       | d Impa    | cts (kW             | )                    |       |       |
|--------------------------------------|--------|--------|------------------------|--------|----------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Crocery  | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 332    | 101    | 16                     | 66     | 17       | 46         | 69          | 8           | 23        | 32                  | 122                  | 15    | 848   |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -        |            | •           | -           | -         | -                   | -                    | -     | 0     |
| Package Terminal A/C                 | 7      | 1      | 2                      | 21     | -        | 10         | 16          | 138         | 1         | •                   | 3                    | -     | 200   |
| Programmable Thermostat              | -      | -      | -                      | -      | -        | -          | -           | •           | -         | -                   | -                    | -     | 0     |
| Reflective Window Film               | 225    | 10     | 13                     | 2      | 7        | 4          | 27          | 11          | 11        | 10                  | 25                   | 5     | 349   |
| Water Chiller                        | 24     | 19     | -                      | 3      | -        | -          | -           | -           | -         | -                   | 6                    | -     | 51    |
| Other RE Measures                    | 115    | •      | •                      | 23     | 8        | 7          | 66          | 15          | -         | 3                   | 15                   | -     | 252   |
| Retrofit Express Total               | 704    | 131    | 31                     | 115    | 32       | 66         | 178         | 173         | 35        | 45                  | 170                  | 20    | 1,700 |
| Retrofit Efficiency Options Program  |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | -      | -      | -                      | -      | -        | -          | -           | •           | -         | -                   | -                    | -     | 0     |
| Water Chiller                        | 7      | 104    | -                      | -      | -        | -          | 165         | -           | -         | -                   | 89                   |       | 365   |
| CAV to VAV                           | 73     | -      | -                      | -      | -        | -          | -           | -           | -         | -                   |                      |       | 73    |
| Cooling Tower                        | 20     | 35     | -                      | -      | -        | -          | 79          | -           | -         | -                   | -                    | -     | 134   |
| Retrofit Efficiency Options Total    | 100    | 140    | 0                      | 0      | 0        | 0          | 243         | 0           | 0         | 0                   | 89                   | 0     | 572   |
| Customized Incentives Program        |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -      | ÷      | -                      | -      | •        | -          | •           | •           | -         | -                   | -                    | -     | 0     |
| High Efficiency Chiller              | 342    | -      | -                      | - 1    |          | -          | -           | -           | -         | -                   | -                    |       | 342   |
| Energy Management System             | -      | -      | -                      | -      | -        | -          | •           | -           | -         | -                   | -                    | -     | 0     |
| Other Customized Incentives Measures | 554    | -      | · .                    | 35     | -        | -          | 11          | -           | 63        | 98                  | -                    | •     | 761   |
| Customized Incentives Total          | 896    | 0      | 0                      | 35     | 0        | 0          | 11          | 0           | 63        | 98                  | 0                    | 0     | 1,103 |
| Total                                | 1,700  | 271    | 31                     | 150    | 32       | 66         | 433         | 173         | 98        | 143                 | 259                  | 20    | 3,376 |

Overall, Exhibits 4-5 and 4-6 show reductions of 15 percent from ex post program energy impacts and 20 percent from demand impacts (when compared to Exhibits 4-1 and 4-2, gross impacts), as a result of the application of the NTG adjustments presented in Exhibit 4-4. Since spillover was not claimed for any segment, all the individual technology/business segment net impacts are less than the corresponding gross impact. Moreover, the relatively narrow range of NTG estimates described above yields a distribution of impacts among segments that is similar to the distribution of gross impacts.

On a net basis, variable speed drives for HVACs are still the dominant measure and offices are still the dominant business segment for energy impacts. The above-average NTG ratio for VSDs helped boost the relative importance of this technology from 32.6 percent to 33.9 percent of total HVAC energy impacts.

For demand, net impacts show a larger reduction compared to gross because of the lack of demand impacts associated with VSD HVAC fans, the technology with the highest NTG ratio. Similarly, two measures that contributed 28 percent of gross demand impacts (RE/REO chillers and reflective window film) had the lowest NTG ratios in the program.

#### Exhibit 4-7 Ex Post Net Therm Impacts By Business Type and Technology Group HVAC Technologies Paid in 1995

| Business Type                        |         |        |                        |         | Comn    | nercial HV/ | AC First-Yea | r Therm Im  | pacts     |                     |                      |       |           |
|--------------------------------------|---------|--------|------------------------|---------|---------|-------------|--------------|-------------|-----------|---------------------|----------------------|-------|-----------|
| Program and Technology Group         | Office  | Retail | College/<br>University | School  | Grocery | Restaurant  | Health Care  | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total     |
| Retrofit Express Program             |         |        |                        |         |         |             |              |             |           |                     |                      |       | 1         |
| Central A/C                          |         | -      | -                      | •       | -       | -           | •            | -           |           | -                   | -                    | -     |           |
| Variable Speed Drive HVAC Fan        | •       | •      | •                      | •       | -       | •           | • •          | -           | •         |                     | ·                    | -     | •         |
| Package Terminal A/C                 | •       | -      |                        | •       | -       |             |              | -           | -         | •                   | •                    | -     | •         |
| Programmable: Thermostat             |         | -      | •                      |         | -       |             |              | -           | -         | -                   | ·                    | -     | •         |
| Reflective Window Film               | -       |        | -                      | -       |         | •           | •            | •           |           | •                   |                      | -     | -         |
| Water Chiller                        | •       | -      | •                      | •       | •       | •           | •            |             | -         | -                   |                      | •     | . )       |
| Other RE Measures                    | -       |        |                        |         | •       | -           |              | •           | -         |                     |                      |       | - [       |
| Retrofit Express Total               |         | -      | · ·                    |         |         | •           |              |             | -         | •                   | -                    |       |           |
| Retrofit Efficiency Options Program  |         |        |                        |         |         |             |              |             |           |                     |                      |       | ļ.        |
| Variable Frequency Drive             |         |        | . I                    |         |         |             |              | -           | -         | -                   |                      | -     | - 1       |
| Water Chiller                        |         | -      | ·                      |         | -       | -           |              | -           | -         | •                   | -                    |       | •         |
| CAV IO VAV                           | •       | •      |                        | -       | -       |             |              |             | -         | •                   | -                    | -     |           |
| Cooling Tower                        | -       | -      | · ·                    | •       | -       | -           | •            |             |           |                     | -                    |       |           |
| Retrofit Efficiency Options Total    |         | -      |                        | -       |         |             |              |             | -         | -                   | -                    |       | · ·       |
| Customized Incentives Program        |         |        |                        |         | -       |             |              |             |           |                     |                      |       |           |
| HVAC Variable Speed Drive            | -       | -      | •                      |         | -       | -           |              | -           |           |                     | -                    | -     | · )       |
| High Efficiency Chiller              | -       | -      |                        | -       | -       | · ·         |              | -           |           | •                   | •                    |       |           |
| Energy Management System             | 61,206  | -      | -                      | 324,155 | •       | · ·         | 510,429      | 7,965       | 525       | -                   | •                    | -     | 904,281   |
| Other Customized Incentives Measures | 563,307 | -      | 20,240                 | 24,532  |         | -           | 225,380      | -           | 164       | -                   | 11,446               | 7,040 | 852,108   |
| Customized Incentives Total          | 624,513 | 0      | 20,240                 | 348,687 | 0       | 0           | 735,809      | 7,965       | 689       | 0                   | 11,446               | 7,040 | 1,756,389 |
| Total                                | 624,513 | 0      | 20,240                 | 348,687 | 0       | 0           | 735,809      | 7.965       | 689       | 0                   | 11,446               | 7,040 | 1,756.389 |

Net therm impacts, summarized in Exhibit 4-7, differ from the gross therm impacts presented in Exhibit 4-3 by 15.6 percent, reflecting the 0.85 NTG ratio applied to all Customized Incentives measures.

## 4.4 REALIZATION RATES

Exhibits 4-8 through 4-13 present the gross and net realization rates for energy, demand, and therm impacts for the RE, REO, and Customized Incentives HVAC technologies.

## 4.4.1 Gross Realization Rates for Energy Impacts

The gross energy realization rates are presented in Exhibit 4-8. These values represent, by segment, the ratio of the ex post gross impact evaluation findings to the gross ex ante program design estimates. These realization rates illustrate how well the ex ante estimates predicted energy savings, before taking into account customer behavioral effects, both inside and outside the program.

## Exhibit 4-8 Gross Energy Impact Realization Rates By Business Type and Technology Group HVAC Technologies Installed in 1995

| Business Type                        |        |        |                        |        | Gro     | ss Energ   | y Realiz    | ation R     | ates      |                     |                      |       |                                              |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|----------------------------------------------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total                                        |
| Retrofit Express Program             |        |        |                        |        |         |            |             |             |           |                     |                      |       |                                              |
| Central A/C                          | 1.07   | 2.33   | 1.33                   | 1.06   | 3.53    | 1.81       | 0.68        | 1.76        | 4.58      | 1.59                | 1.01                 | 1.25  | 1.24                                         |
| Variable Speed Drive HVAC Fan        | 2.41   | 2.61   | 2.97                   | 1.58   | 4.97    | -          | 3.60        | 6.20        | 2.68      | 2.54                | -                    | 2.82  | 2.61                                         |
| Package Terminal A/C                 | 0.90   | 1.07   | 0.82                   | 0.84   | -       | 0.83       | 0.86        | 0.86        | 0.90      | •                   | 1.03                 |       | 0.86                                         |
| Programmable Thermostat              | 0.00   | 0.84   | 2.29                   | 0.67   | 1.43    | 1.02       | 0.87        | 1.20        | 1.04      | 1.17                | 1.06                 | 0.38  | 0.48                                         |
| Reflective Window Film               | 0.95   | 0.95   | 0.99                   | 0.95   | 0.95    | 0.95       | 0.95        | 0.95        | 0.95      | 0.95                | 0.90                 | 0.95  | 0.94                                         |
| Water Chiller                        | 6.05   | 3.98   |                        | 3.30   | •       | -          | -           | -           | -         | -                   | 3.52                 | -     | 2.07                                         |
| Other RE Measures                    | 1.23   | -      | -                      | 0.53   | 0.42    | 0.40       | 0.51        | 0.42        | -         | 0.42                | 0.42                 | -     | 0.56                                         |
| Retrofit Express Total               | 0.97   | 2.33   | 2.41                   | 0.74   | 1.70    | 1.18       | 0.84        | 1.04        | 1.31      | 2.16                | 0.96                 | 0.87  | 1.34                                         |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             |           |                     |                      |       |                                              |
| Variable Frequency Drive             | 0.54   | 0.53   | 0.79                   | -      | -       | -          | -           | -           | -         | -                   | -                    |       | 0.64                                         |
| Water Chiller                        | 0.12   | 1.14   | -                      | -      | -       |            | 1.69        | -           | -         | -                   | 1.60                 | -     | 0.91                                         |
| CAV to VAV                           | 0.65   | -      | -                      | -      | -       |            | -           | -           | -         | -                   | -                    | -     | 0.65                                         |
| Cooling Tower                        | 1.05   | 0.79   | -                      | •      | -       | -          | 0.73        | -           | -         | -                   | -                    | -     | 0.77                                         |
| Retrofit Efficiency Options Total    | 0.52   | 0.97   | 0.79                   | -      | -       | -          | 1.44        | -           | -         |                     | 1.60                 | -     | 0.74                                         |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |       | <u>`                                    </u> |
| HVAC Variable Speed Drive            | 1.60   | -      | -                      | -      | 1.16    | -          | 1.90        | 1.90        | -         | -                   | 0.98                 | -     | 1.38                                         |
| High Efficiency Chiller              | 1.32   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1.32                                         |
| Energy Management System             | 1.03   | -      | 1.03                   | 0.93   | 1.03    | -          | 1.03        | 1.03        | 1.03      | 1.03                | -                    | -     | 0.99                                         |
| Other Customized Incentives Measures | 0.65   | -      | 0.65                   | 0.65   | -       | -          | 0.65        | -           | 0.65      | 0.65                | 0.65                 | -     | 0.65                                         |
| Customized Incentives Total          | 0.84   | -      | 0.88                   | 0.90   | 1,11    | -          | 0.90        | 1.24        | 0.66      | 0.67                | 0.87                 | -     | 0.87                                         |
| Total                                | 0.81   | 2.02   | 1.09                   | 0.86   | 1.16    | 1.18       | 0.95        | 1.17        | 0.98      | 1.11                | 1.00                 | 0.87  | 0.98                                         |

Overall, Exhibit 4-8 shows that the ex ante estimates are very close to the ex post gross energy impact estimates for the program overall, but that the realization rate varies across programs. The high realization rate for RE measures can be attributed in part to the 1.9 SAE coefficient estimated for the high-impact VSD HVAC fan segment (the effects of this same realization rate on HVAC VSDs in the Customized Incentives Program were offset by the low SAE coefficient on "Other Customized Incentives measures").

The technology group results presented in Exhibit 4-8 are explained below (using information from the review of the ex ante estimates in conjunction with the impact analysis results.)

**Programmable Thermostats** - This technology group, which includes time clocks and bypass timers as well as setback programmable thermostats, had the lowest gross energy realization rate of any measure. In addition to using a single climate zone, the ex ante estimates used an incorrect return air value to determine the heating and cooling loads during setback hours (Please see Appendix B, Section B.6 for more detail). While the engineering estimate of energy impacts was

15 percent lower than the ex ante savings number, the key to the low realization rate for this technology is the zero SAE coefficient applied to the engineering estimate of savings in the office segment, which accounted for 40 percent of the ex ante energy savings from programmable thermostats. As noted earlier, the SAE coefficient was statistically insignificant and the wrong sign for this technology/business segment combination, so a conservative estimate of zero impact was assigned.

**Central Air Conditioners** - The gross realization rate of 1.24 for central air conditioners is the result of several changes relative to the ex ante impacts. First, engineering impacts were found to be much lower than the ex ante estimates. This reflected the use of a single climate zone in the ex ante estimates and seven distinct climate zones in the evaluation analysis. (A substantial number of HVAC installations were in the San Francisco Bay area, where cooling requirements are relatively low, thereby reducing energy impacts for these sites.) Conversely, the billing analysis of central air conditioner sites found realized energy impacts that were more than twice the engineering estimates, thereby more than offsetting the engineering reduction. Since the engineering estimate was based on self-reported hours of cooling system operation, it is likely that actual hours of operation exceed those reported by survey respondents. This would explain the high SAE coefficient.

**Variable Speed Drives** - HVAC applications of VSDs by RE participants showed the highest gross energy realization rate of any technology. The evaluation analysis of VSD impacts used a consistent, per-horsepower approach across programs and applied the multiple climate zones described above. The engineering estimates of impacts for RE VSDs were about 35 percent higher than the ex ante estimates; for VSDs installed through the REO and Customized Incentives programs, energy impacts were 30 and 60 percent, respectively, below the ex ante estimates. Since the RE ex ante VSD impacts were based on DOE-2 simulations that were not available for review, specific reasons for the higher RE engineering estimates could not be identified. In addition, the SAE coefficient for this technology indicates that realized impacts were almost twice as high as the engineering estimates. The most likely explanation for this high SAE coefficient is that many HVAC systems are oversized, and therefore run at less than full load even during peak hours. As a result, they generate greater energy savings than suggested by the engineering estimates, which assume no savings from VSDs during peak hours.

**Water Chillers** - As with VSDs, the evaluation approach used to generate ex post energy impacts for chillers was applied to this technology in a consistent manner across programs. Seven different climate zones were used (rather than the single climate zone assumed for the ex ante estimate). In addition, ex post impacts were calculated on a per ton basis, using data collected from a review of program applications, rather than per square foot. For REO chillers, the engineering analysis led to sharply lower impacts; for Customized Incentives program chillers, impact increased. In total, engineering estimates were approximately 15 percent below the ex ante energy savings. The SAE analysis showed realized impacts to be 58 percent higher than the engineering estimate for RE and REO chillers, contributing to an overall gross realization rate of 1.09 for all chillers.

**Reflective Window Film** - As indicated by the gross realization rate, gross ex post energy savings for this measure were 5.5 percent below the ex ante estimates. The ex post impact is lower for two reasons: first, a review of the inputs to the ex ante calculation revealed a discrepancy between the annual solar heat gains listed in ASHRAE and those used in the calculation, which led to engineering estimates that were a few percent higher than the ex ante estimates. Second, the subsequent application of the SAE coefficient of 0.90 reduced the evaluation estimate to its final value.

**Energy Management Systems** - For energy management systems, a review of individual Customized Incentives Program applications yielded engineering impacts that were 3 percent

below the ex ante estimates, as detailed in Appendix B. This reduction was effectively offset by the SAE coefficient of 1.03, resulting in a 0.99 gross realization rate.

**Other Customized Incentives Measures** - Based on a statistically significant coefficient of 0.65 on the estimated energy savings for a sample of "other Customized measures" sites included in the billing analysis, this SAE coefficient was applied to the savings estimates for all "other Customized" premises. The result is a conservative estimate of gross energy impacts and a gross realization rate that is equal to the SAE coefficient.

#### 4.4.2 Gross Realization Rates for Demand Impacts

Gross demand realization rates are presented in Exhibit 4-9. These values represent, by segment, the ratio of the ex post gross impact evaluation findings to the gross ex ante program design estimate. These realization rates illustrate how well the ex ante estimates predicted demand savings, before taking into account customers' actions within the HVAC market.

| Business Type                        |        |        |                        |        | Gross   | Dema       | nd Real     | ization     | Rates     |                     |                      |       | ··,   |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             | [      |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 1.08   | 1.06   | 1.00                   | 0.30   | 1.06    | 1.06       | 1.11        | 0.97        | 1.02      | 1.08                | 0.97                 | 0.97  | 0.88  |
| Variable Speed Drive HVAC Fan        | •      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Package Terminal A/C                 | 1.16   | 1.11   | 0.89                   | 0.31   | -       | 1.06       | 1.13        | 0.97        | 1.07      | -                   | 1.10                 | -     | 0.81  |
| Programmable Thermostat              | •      | -      | -                      | -      | -       | ~          | -           | -           | -         | -                   | -                    | -     |       |
| Reflective Window Film               | 0.46   | 0.45   | 0.43                   | 0.13   | 0.45    | 0.46       | 0.47        | 0.41        | 0.43      | 0.46                | 0.39                 | 0.42  | 0.45  |
| Water Chiller                        | 4.49   | 1.70   | -                      | 0.12   | -       | -          | -           | -           | -         | -                   | 1.84                 | -     | 0.83  |
| Other RE Measures                    | 1.68   | -      | -                      | 0.14   | 0.44    | 0.61       | 0.49        | 0.33        | -         | 0.41                | 0.37                 | -     | 0.52  |
| Retrofit Express Total               | 0.77   | 1.01   | 0.61                   | 0.24   | 0.64    | 0.91       | 0.60        | 0.75        | 0.69      | 0.74                | 0.72                 | 0.72  | 0.66  |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | -      | -      | •                      | -      | •       | •          |             | -           | -         | •                   | -                    | -     | -     |
| Water Chiller                        | 0.01   | 0.44   |                        | -      | -       | -          | 1.17        | -           | -         | -                   | 0.76                 | -     | 0.38  |
| CAV to VAV                           | 1.00   | -      | -                      | •      | •       | •          | -           | -           | -         | -                   | -                    | -     | 1.00  |
| Cooling Tower                        | 1.27   | 0.96   | -                      | -      | •       | -          | 3.02        | -           | •         | -                   | -                    | •     | 1.70  |
| Retrofit Efficiency Options Total    | 0.15   | 0.50   | -                      | -      | -       | -          | 1.41        | -           | -         | -                   | 0.76                 | -     | 0.48  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           | · · · · ·           |                      |       |       |
| HVAC Variable Speed Drive            | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | •                    | -     | -     |
| High Efficiency Chiller              | 0.86   |        | -                      | •      | -       | -          | -           | -           | -         | -                   |                      | -     | 0.86  |
| Energy Management System             | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Other Customized Incentives Measures | 0.46   | -      | -                      | 0.52   | -       | -          | 0.52        | -           | 0.67      | 1.00                | -                    | -     | 0.52  |
| Customized Incentives Total          | 0.55   | -      | -                      | 0.32   | -       | -          | 0.28        | -           | 0.67      | 1.00                | <u> </u>             | -     | 0.53  |
| Total                                | 0.54   | 0.65   | 0.58                   | 0.25   | 0.47    | 0.91       | 0.87        | 0.57        | 0.68      | 0.90                | 0.69                 | 0.72  | 0.58  |

#### Exhibit 4-9 Gross Demand Impact Realization Rates By Business Type and Technology Group HVAC Technologies Paid in 1995

Overall, the gross demand estimates are 32 percent lower than the ex ante values, as presented in Exhibit 4-9. Demand results are explained using information from review of the ex ante estimates and the evaluation engineering analyses. Specific comments and justifications for the results are as follows:

**Central Air Conditioners** - For central air conditioners, as well as for package terminal air conditioning units, the evaluation calculated demand impacts based upon the observed peak period duty cycle; that is, the percentage of the time that an operating system was running during the peak hour, as gathered from EUM data. This was multiplied by the self-reported peak hour operating factor for each premise to create a customer-specific CDF that could be multiplied by the connected load. Because this process led to a lower CDF than assumed by the ex ante estimate, the gross realization rates are less than 1.0

**Reflective Window Film** - the low gross demand realization rate for this measure can be attributed to an error in the calculation of ex ante demand impacts, where peak per-square-foot heat gains were summed rather than averaged. This finding and the revised method used to generate the evaluation impact estimates are detailed in *Appendix B, Section B.6*.

**Water Chillers -** In the engineering analysis for chillers, data collected during on-site visits were used to determine peak loading factors, which were then multiplied by the site-specific operating factor for the peak hour. The resulting ex post estimates were generally close to the ex ante estimates for RE and Customized Incentives chiller installations, but were much lower for the REO chillers. This was the result of a single installation in the office business segment, where the program chiller had been installed specifically to meet off-peak cooling load and had no impact at the time of peak.

## 4.4.3 Gross Realization Rates for Therm Impacts

Gross therm realization rates are presented in Exhibit 4-10. The slight difference between the ex ante and ex post values is reflected in the realization rate of 1.00. Based upon the review of Customized Incentives applications, minor changes were made to the impact calculations for "other Customized Incentives measures" installed in the office segment.

## Exhibit 4-10 Gross Therm Impact Realization Rates By Business Type and Technology Group HVAC Technologies Paid in 1995

| Business Type                        |          |        |                        |        | Gro          | ss Thern   | n Realiz    | ation R     | ates      |                     |                      |       |             |
|--------------------------------------|----------|--------|------------------------|--------|--------------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------------|
| Program and Technology Group         | Office   | Retail | College/<br>University | School | Grocery      | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total       |
| Retrofit Express Program             |          |        | -                      |        |              |            |             |             |           |                     |                      |       |             |
| Central A/C                          | •        | -      | -                      | -      | -            | -          | -           | - 1         | -         | -                   | -                    | -     | -           |
| Variable Speed Drive HVAC Fan        | -        | -      | -                      | -      | -            | -          | -           | -           | -         | -                   | -                    | -     | -           |
| Package Terminal A/C                 | -        | -      | -                      | -      | -            | -          | -           |             |           | -                   | -                    | -     |             |
| Programmable Thermostat              | -        | -      | -                      | -      | -            | -          | •           | •           | -         | -                   | -                    | -     | -           |
| Reflective Window Film               | -        | -      | -                      | -      | -            | -          | -           | -           | -         | -                   | -                    | -     | -           |
| Water Chiller                        | -        | -      | -                      | -      | -            | -          | -           | -           | -         | -                   | -                    | -     | · ·         |
| Other RE Measures                    | -        | -      | -                      | -      |              | -          | -           |             | -         | -                   | -                    | -     | -           |
| Retrofit Express Total               | <u> </u> | -      | -                      | -      |              | -          | -           | -           | •         | -                   | -                    | -     | •           |
| Retrofit Efficiency Options Program  |          |        |                        |        | - <u>-</u> - |            | •           |             |           |                     |                      |       | $\neg \neg$ |
| Variable Frequency Drive             | -        | -      | -                      | •      | -            | -          | -           | -           | -         | -                   | -                    |       | -           |
| Water Chiller                        | -        | -      | -                      |        | -            | -          | -           | -           | -         | -                   | -                    | -     | -           |
| CAV IO VAV                           | -        | -      | -                      | -      | •            | •          |             | -           |           | -                   | -                    | -     | -           |
| Cooling Tower                        | -        | -      | -                      | -      | -            | -          | -           | -           | -         | -                   | -                    | -     | -           |
| Retrofit Efficiency Options Total    | -        | •      | -                      | -      | -            | -          | -           | -           | -         | -                   | -                    | -     | -           |
| Customized Incentives Program        |          |        |                        |        |              |            |             |             |           |                     |                      |       |             |
| HVAC Variable Speed Drive            | -        | -      | -                      | -      | -            | -          |             | -           | -         | -                   | -                    | -     | -           |
| High Efficiency Chiller              | -        | -      | -                      | -      | -            | -          | -           | -           | •         | •                   | -                    | -     | -           |
| Energy Management System             | 1.00     | -      | -                      | 1.00   | -            | -          | 1.00        | 1.00        | 1.00      | -                   | -                    | -     | 1.00        |
| Other Customized Incentives Measures | 1.00     | -      | 1.00                   | 1.00   | -            | •          | 1.00        | -           | 1.00      | -                   | 1.00                 | 1.00  | 1.00        |
| Customized Incentives Total          | 1.00     | •      | 1.00                   | 1.00   | · .          | -          | 1.00        | 1.00        | 1.00      | - 1                 | 1.00                 | 1.00  | 1.00        |
| Total                                | 1.00     | -      | 1.00                   | 1.00   | -            | -          | 1.00        | 1.00        | 1.00      | -                   | 1.00                 | 1.00  | 1.00        |

## 4.4.4 Net Realization Rates

Because of the differences between the ex ante and the ex post estimates of the NTG adjustment, the net realization rates are generally 15-20 percent higher than the gross realization rates. The ex ante estimate of NTG was 0.67 for RE and REO measures and 0.75 for Customized Incentives measures. As shown in Exhibit 4-4 above, the ex post NTG estimates vary between 0.70 and 0.94, depending on the technology, resulting in an overall NTG of 0.85 for energy and 0.82 for demand.

The net realization rates by segment are presented for energy in Exhibit 4-11, for demand in Exhibit 4-12, and for therms in Exhibit 4-13. These values represent, by segment, the ratio of net impact evaluation findings to the net ex ante program design estimates. The realization rates illustrate how well the ex ante estimates predict savings, after taking into account customers' actions within the HVAC market. A comparison of ex ante and ex post impacts are presented in Exhibit 4-14 at the end of this section.

# Exhibit 4-11 Net Energy Impact Realization Rates By Business Type and Technology Group

| Business Type                        |        |        |                        |        | Ne      | t Energy   | Realiza     | tion Ra     | tes       | •                   |                      |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 1.33   | 2.90   | 1.65                   | 1.32   | 4.40    | 2.25       | 0.85        | 2.20        | 5.71      | 1.98                | 1.25                 | 1.56  | 1.55  |
| Variable Speed Drive HVAC Fan        | 3.23   | 3.49   | 3.98                   | 2.11   | 6.65    | -          | 4.82        | 8.31        | 3.59      | 3.40                | -                    | 3.78  | 3.49  |
| Package Terminal A/C                 | 1.27   | 1.51   | 1,16                   | 1.18   | -       | 1.17       | 1.21        | 1.20        | 1.27      | -                   | 1.44                 | -     | 1.21  |
| Programmable Thermostat              | 0.00   | 1.01   | 2.76                   | 0.81   | 1.73    | 1.23       | 1.04        | 1.44        | 1.25      | 1.40                | 1.27                 | 0.46  | 0.58  |
| Reflective Window Film               | 0.99   | 0.99   | 1.04                   | 0.99   | 0.99    | 0.99       | 0.99        | 0.99        | 0.99      | 0.99                | 0.94                 | 0.99  | 0.98  |
| Water Chiller                        | 6.32   | 4.16   | -                      | 3.45   |         | -          | -           | -           | -         | -                   | 3.68                 | -     | 2.17  |
| Other RE Measures                    | 1.61   | •      | -                      | 0.69   | 0.55    | 0.53       | 0.66        | 0.54        | -         | 0.54                | 0.55                 | -     | 0.73  |
| Retrofit Express Total               | 1.20   | 3.07   | 3.15                   | 0.91   | 2.13    | 1.44       | 1.02        | 1.34        | 1.58      | 2.85                | 1.13                 | 1.08  | 1.70  |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | 0.70   | 0.70   | 1.03                   | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0.83  |
| Water Chiller                        | 0.13   | 1.19   | -                      | -      | •       | -          | 1.76        | -           | -         | -                   | 1.68                 | -     | 0.95  |
| CAV to VAV                           | 0.85   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0.85  |
| Cooling Tower                        | 1.37   | 1.04   | -                      | -      | -       | -          | 0.95        | -           | •         | -                   | -                    | -     | 1.01  |
| Retrofit Efficiency Options Total    | 0.68   | 1.06   | 1.03                   | -      | -       | -          | 1.56        | -           | -         | <u> </u>            | 1.68                 | -     | 0.89  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | 1.82   | -      | -                      | -      | 1.32    | -          | 2.17        | 2.17        | -         | -                   | 1.11                 | -     | 1.58  |
| High Efficiency Chiller              | 1.50   | •      | -                      | -      | -       | -          | •           | -           | -         |                     | -                    | -     | 1.50  |
| Energy Management System             | 1,17   | -      | 1.17                   | 1.06   | 1.17    | -          | 1.17        | 1.17        | 1.17      | 1.17                | -                    | -     | 1.13  |
| Other Customized Incentives Measures | 0.74   | -      | 0.74                   | 0.74   | -       | -          | 0.74        | -           | 0.74      | 0.74                | 0.74                 | -     | 0.74  |
| Customized Incentives Total          | 0.96   | -      | 1.00                   | 1.03   | 1.26    | -          | 1.02        | 1.41        | 0.76      | 0.76                | 0.99                 | -     | 0.99  |
| Total                                | 0.96   | 2.61   | 1.30                   | 1.00   | 1.33    | 1.44       | 1.08        | 1.39        | 1.14      | 1.33                | 1.13                 | 1.08  | 1.16  |

## Exhibit 4-12 Net Demand Impact Realization Rates By Business Type and Technology Group

| Business Type                        |        |        |                        |        | Net     | Deman      | d Reali     | zation F    | lates     |                     |                      |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        | _       |            |             |             | ·         |                     |                      |       |       |
| Central A/C                          | 1.34   | 1.33   | 1.24                   | 0.37   | 1.32    | 1.32       | 1.38        | 1.20        | 1.27      | 1.35                | 1.21                 | 1.21  | 1.10  |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | •       | •          | -           | -           | -         | -                   | -                    | -     | -     |
| Package Terminal A/C                 | 1.64   | 1.56   | 1.25                   | 0.43   | -       | 1.50       | 1.59        | 1.37        | 1.50      | -                   | 1.54                 | -     | 1.13  |
| Programmable Thermostat              | -      | -      | -                      | •      | -       | -          | -           | -           | -         | -                   | -                    | -     |       |
| Reflective Window Film               | 0.48   | 0.47   | 0.45                   | 0.13   | 0.46    | 0.48       | 0.49        | 0.43        | 0.45      | 0.48                | 0.41                 | 0.44  | 0.47  |
| Water Chiller                        | 4.69   | 1,77   | -                      | 0.12   | -       | -          | -           | -           | -         | -                   | 1.93                 | -     | 0.87  |
| Other RE Measures                    | 2.19   | -      | -                      | 0.19   | 0.58    | 0.79       | 0.64        | 0.43        | -         | 0.54                | 0.49                 | -     | 0.68  |
| Retrofit Express Total               | 0.91   | 1.21   | 0.71                   | 0.30   | 0.77    | 1.14       | 0.75        | 1.01        | 0.81      | 0.89                | 0.87                 | 0.86  | 0.80  |
| Retrofit Efficiency Options Program  |        |        |                        |        | _       |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             |        | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Water Chiller                        | 0.02   | 0.46   | -                      | -      | -       | -          | 1.22        | -           | -         | -                   | 0.79                 |       | 0.39  |
| CAV to VAV                           | 1.31   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1.31  |
| Cooling Tower                        | 1.66   | 1.25   | -                      | -      | •       | -          | 3.95        | -           | -         | -                   | -                    | -     | 2.23  |
| Retrofit Efficiency Options Total    | 0.19   | 0.55   | -                      | -      | -       | •          | 1.57        | -           | -         | -                   | 0.79                 | -     | 0.54  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   |                      | -     | -     |
| High Efficiency Chiller              | 0.98   | -      | -                      | -      | •       | -          | -           | -           | -         | -                   | -                    | -     | 0.98  |
| Energy Management System             | -      | -      | -                      | -      |         | -          | -           | -           |           | -                   | -                    | -     | -     |
| Other Customized Incentives Measures | 0.53   | -      | -                      | 0.59   | -       | -          | 0.59        | -           | 0.76      | 1.14                | -                    | -     | 0.59  |
| Customized Incentives Total          | 0.63   | -      | -                      | 0.37   | -       | -          | 0.32        | <u> </u>    | 0.76      | 1.14                | -                    | -     | 0.61  |
| Total                                | 0.62   | 0.74   | 0.67                   | 0.31   | 0.56    | 1.14       | 1.01        | 0.76        | 0.78      | 1.05                | 0.79                 | 0.86  | 0.68  |

#### Exhibit 4-13 Net Therm Impact Realization Rates By Business Type and Technology Group

| Business Type                        |        | Net Therm Realization Rates |                        |        |         |            |             |             |           |                     |                      |       |       |  |
|--------------------------------------|--------|-----------------------------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|--|
| Program and Technology Group         | Office | Retail                      | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |  |
| Retrofit Express Program             |        |                             |                        |        |         |            |             |             |           |                     |                      |       |       |  |
| Central A/C                          | -      | -                           | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |  |
| Variable Speed Drive HVAC Fan        | -      | -                           | •                      | •      | -       | -          | -           | -           | -         | -                   | -                    | -     |       |  |
| Package Terminal A/C                 | •      | -                           | -                      | -      | -       | -          | -           | -           | -         | -                   | •                    | -     | -     |  |
| Programmable Thermostat              | -      | -                           | -                      | -      |         | -          | -           | -           | -         | -                   | -                    | -     | -     |  |
| Reflective Window Film               | -      | -                           | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |  |
| Water Chiller                        | -      | •                           | -                      |        | •       | -          | •           | -           | -         | -                   | -                    | -     | -     |  |
| Other RE Measures                    | -      | -                           | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |  |
| Retrofit Express Total               | -      | -                           | -                      | -      | -       |            | -           |             | -         | -                   | -                    | -     | - 1   |  |
| Retrofit Efficiency Options Program  |        |                             | -                      |        |         |            |             |             |           |                     |                      |       |       |  |
| Variable Frequency Drive             | -      | -                           | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |  |
| Water Chiller                        | -      | -                           | -                      | -      |         | -          | -           |             | -         | -                   | -                    | -     | : -   |  |
| CAV to VAV                           |        | -                           | -                      | -      | -       |            |             | -           |           | -                   | -                    | -     |       |  |
| Cooling Tower                        | -      | -                           | -                      | -      |         | •          |             |             | -         | -                   | -                    | -     |       |  |
| Retrofit Efficiency Options Total    | -      | -                           | -                      | -      | -       | •          | -           | -           | •         |                     | -                    | -     | -     |  |
| Customized Incentives Program        |        |                             |                        |        |         | <u> </u>   |             |             |           |                     |                      |       |       |  |
| HVAC Variable Speed Drive            | · ·    | -                           | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |  |
| High Efficiency Chiller              | -      | -                           | -                      | -      | -       |            | -           | -           | -         | -                   | -                    | -     | •     |  |
| Energy Management System             | 1.14   | •                           | -                      | 1.14   | -       | -          | 1.14        | 1.14        | 1.14      | •                   | •                    | -     | 1.14  |  |
| Other Customized Incentives Measures | 1.14   | -                           | 1.14                   | 1.14   | -       |            | 1.14        | -           | 1.14      | -                   | 1.14                 | 1.14  | 1.14  |  |
| Customized Incentives Total          | 1.14   | -                           | 1.14                   | 1.14   | -       | -          | 1.14        | 1.14        | 1.14      | -                   | 1.14                 | 1.14  | 1.14  |  |
| Total                                | 1.14   | -                           | 1.14                   | 1.14   | -       | -          | 1.14        | 1.14        | 1.14      | -                   | 1.14                 | 1.14  | 1.14  |  |

Overall, given the difference between the ex ante and ex post NTG adjustment factors discussed above, it is not surprising that the net realization rates are greater than the gross realization rates presented earlier.

Most of the results presented in Exhibit 4-11 to 4-13 can be explained using information from the review of the ex ante estimates and the evaluation engineering and billing regression analyses, as discussed under the review of the gross realization rates. Most of the comments discussed in relation to the gross realization rate estimates apply to the net realization rates.

**Net Energy Impacts** - The net realization rate for HVAC measures overall is 1.16, even though the net realization rate is less than 1.0 for REO and essentially equal to 1.0 for Customized measures. The 1.7 realization rate for the RE program is a result of the very high realization rates (both net and gross) for VSD HVAC fans, which in turn reflect the SAE coefficient of 1.9.

N,

**Net Demand Impacts** - Despite the higher ex post than ex ante NTG ratios, the demand realization rate is less than 1.0 for all programs. This is because of the low ex post gross demand results discussed earlier.

**Net Therm Impacts** - The net therm realization rate is simply the result of applying higher ex post NTG ratio than as assumed in the ex ante calculations.

## 4.5 **OVERVIEW OF REALIZATION RATES**

In summary, while the ex post demand impacts are lower than predicted because of several measure-specific problems with inputs to or calculations of ex ante impact estimates, the overall net energy impacts are 16 percent higher than predicted by the ex ante net estimates. This realization rate is well documented and supportable based on the information developed during the evaluation. Appendix B presents a more detailed analysis of the engineering computational methods used.

Exhibit 4-14 summarizes all of the gross and net energy, demand and therm impacts discussed above. Results are also presented for the net to gross adjustments and the realization rates.

# Exhibit 4-14 Commercial HVAC Impact Summary By Technology Group

|                                                                                                                                                                                                                                                                                                    | (                                                            | Program Inc.                                                 |           | IG Adjustme                           |                                               | Nec                                                          | 0 I                                                  |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------|---------------------------------------|-----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------|
| Business Type                                                                                                                                                                                                                                                                                      |                                                              | Program Imp                                                  |           |                                       |                                               |                                                              | Program Imp.                                         | 161       |
| Program and Technology Group                                                                                                                                                                                                                                                                       | 6.Wh                                                         | FM.                                                          | Therm     | (1-FR)                                | Spillover                                     | kwh.                                                         | kW                                                   | Therm     |
| EX AN                                                                                                                                                                                                                                                                                              | TE                                                           |                                                              |           |                                       |                                               |                                                              |                                                      |           |
| Retrofit Express Program                                                                                                                                                                                                                                                                           |                                                              |                                                              |           |                                       |                                               |                                                              |                                                      |           |
| Central A/C                                                                                                                                                                                                                                                                                        | 1.462.731                                                    | 1,153                                                        | · ·       | 0.57                                  | 0.10                                          | 980,030                                                      | 773                                                  | •••       |
| Variable Speed Drive HVAC Fan                                                                                                                                                                                                                                                                      | 4.384,022                                                    | •                                                            | · 1       | 0.57                                  | 0.10                                          | 2,937,294                                                    | •                                                    |           |
| Package Terminal A/C                                                                                                                                                                                                                                                                               | 264,071                                                      | 263                                                          | · · ·     | 0.57                                  | 0.10                                          | 176,928                                                      | 176                                                  | •         |
| Programmable Thermostal                                                                                                                                                                                                                                                                            | 4.250,762                                                    | •                                                            | . 1       | 0.57                                  | 0.10                                          | 2,848,009                                                    |                                                      |           |
| Reflective Window film                                                                                                                                                                                                                                                                             | 2,604,815                                                    | 1,116                                                        | · · ·     | 0.57                                  | 0.10                                          | 1,745,225                                                    | 745                                                  |           |
| Water Chiller                                                                                                                                                                                                                                                                                      | 107,456                                                      | AB                                                           |           | 0.57                                  | 0.10                                          | 71,995                                                       | 59                                                   | •         |
| Other RE Measures                                                                                                                                                                                                                                                                                  | 959,422                                                      | 557                                                          |           | 0.67                                  | 0.10                                          | 642,874                                                      | 373                                                  | •         |
| Retrofit Express Sotal                                                                                                                                                                                                                                                                             | 14,033,260                                                   | 3,178                                                        | •         | 0.57                                  | 0.10                                          | 9,402,355                                                    | 2,129                                                | •         |
| Retrofit Lificiency Options Program                                                                                                                                                                                                                                                                | ł                                                            |                                                              |           |                                       |                                               |                                                              |                                                      |           |
| Variable Frequency Drive                                                                                                                                                                                                                                                                           | 1,573,383                                                    | 23                                                           | _ · _ ]   | 0.57                                  | 0.10                                          | 1,054,166                                                    | 15                                                   |           |
| Water Chiller                                                                                                                                                                                                                                                                                      | 2,203,943                                                    | 1,385                                                        | •         | 0.57                                  | 0.10                                          | 1,476,641                                                    | 928                                                  |           |
| CAV to VAV                                                                                                                                                                                                                                                                                         | 2,654,240                                                    | 83                                                           | ·         | 0.57                                  | 0.10                                          | 1,778,340                                                    | 56                                                   |           |
| Cooling lower                                                                                                                                                                                                                                                                                      | 256 821                                                      | 90                                                           | <u> </u>  | 0.57                                  | 0.10                                          | 172,070                                                      | 60                                                   | <u></u>   |
| Retrofit Efficiency Options Total                                                                                                                                                                                                                                                                  | 6,688,386                                                    | 1,581                                                        |           | 0.67                                  | 0.10                                          | 4,481,217                                                    | 1,059                                                | · ·       |
| Customized Incentives Program                                                                                                                                                                                                                                                                      | ł                                                            |                                                              |           | <u> </u>                              |                                               |                                                              |                                                      |           |
| HVAC Variable Speed Drive                                                                                                                                                                                                                                                                          | 3,334.954                                                    | 76                                                           |           | 0.65                                  | 0.10                                          | 2,501,216                                                    | 57                                                   |           |
| 1 ligh Efficiency Chiller                                                                                                                                                                                                                                                                          | 1 185 146                                                    | 468                                                          |           | 0.65                                  | 0.10                                          | 888,860                                                      | 351                                                  |           |
| Inergy Management System                                                                                                                                                                                                                                                                           | 10.633.984                                                   | 147                                                          | 1,058,877 |                                       | 0.10                                          | 7,975,490                                                    | 110                                                  | 794,158   |
| Other Customized Incentives Measurer                                                                                                                                                                                                                                                               | and the second second                                        | 1.727                                                        | 998,846   | 0,65                                  | 0.10                                          | 12,010,601                                                   | 1.295                                                | 749,135   |
| Customized Incentives Total                                                                                                                                                                                                                                                                        | 11,168,215                                                   | 2,417                                                        | 2.057.723 | 0.65                                  | 0.10                                          | 21.376.167                                                   | 1,813                                                | 1,513,292 |
| Total                                                                                                                                                                                                                                                                                              | 51,889,884                                                   | 7,176                                                        | 2,057,723 | 0.62                                  | 0.10                                          | 37,259,73                                                    | \$,001                                               | 1,541,292 |
| EK PC<br>Reiroñ: Espress Piugram                                                                                                                                                                                                                                                                   | ist                                                          |                                                              |           |                                       | 1                                             |                                                              | · · · · · ·                                          |           |
|                                                                                                                                                                                                                                                                                                    |                                                              |                                                              |           |                                       |                                               | 1,516,800                                                    | 848                                                  |           |
| Central A/C<br>Variable Speed Drive HVAC Fan                                                                                                                                                                                                                                                       | 1,816,527                                                    | 1,016                                                        |           |                                       | 0.00                                          | 10,261,466                                                   | 148                                                  | <u>.</u>  |
| Package Terminal A/C                                                                                                                                                                                                                                                                               | 226,144                                                      | 212                                                          |           | 0.90                                  | 0.00                                          | 213,253                                                      | 200                                                  |           |
| Programmable Thermostat                                                                                                                                                                                                                                                                            | 2,046,705                                                    |                                                              |           |                                       | 0,00                                          | 1,651,693                                                    |                                                      |           |
| Reflective Window Islm                                                                                                                                                                                                                                                                             | 2,457,926                                                    | 499                                                          |           | <u> </u>                              | 0.00                                          | 1,718,000                                                    | 349                                                  |           |
| Water Chiller                                                                                                                                                                                                                                                                                      | 222,787                                                      | 73                                                           |           | 0.70                                  | 0.00                                          | 155,951                                                      | 51                                                   |           |
| Other RL Measures                                                                                                                                                                                                                                                                                  | \$35,124                                                     | 288                                                          |           | 0.88                                  | 0.00                                          | 468,766                                                      | 252                                                  |           |
| Retrofit Express Tatal                                                                                                                                                                                                                                                                             | 18,745,534                                                   | 2,088                                                        |           | 0.85                                  | 0.00                                          | 15.986.522                                                   | 1,700                                                | •         |
| Retrofit Efficiency Options Program                                                                                                                                                                                                                                                                | ĵ                                                            |                                                              |           |                                       |                                               |                                                              |                                                      |           |
| Variable Frequency Drive                                                                                                                                                                                                                                                                           | 1,001,806                                                    | U                                                            | I         | 0.88                                  | 0.00                                          | 877,587                                                      | 0                                                    |           |
| Water Chiller                                                                                                                                                                                                                                                                                      | 2,000,905                                                    | 522                                                          |           | 0.70                                  | 0.00                                          | 1,400,633                                                    | 365                                                  | •         |
| CAV to VAV                                                                                                                                                                                                                                                                                         | 1,733,726                                                    | 83                                                           |           | 0.88                                  | 0.00                                          | 1,518,744                                                    | 73                                                   | •         |
| Couling Tower                                                                                                                                                                                                                                                                                      | 198,091                                                      | 153                                                          |           | 0.68                                  | 0.00                                          | 173,528                                                      | 134                                                  | ·         |
| Retrofit Efficiency Options Total                                                                                                                                                                                                                                                                  | 4,934,528                                                    | 758                                                          |           | 0.60                                  | 0.00                                          | 3,970,487                                                    | 572                                                  |           |
| Gustomized Incentives Program                                                                                                                                                                                                                                                                      | 1                                                            |                                                              |           |                                       |                                               |                                                              |                                                      |           |
| HVAC Variable Speed Drive                                                                                                                                                                                                                                                                          | 4,616,483                                                    | 0                                                            |           | 0.85                                  | 0.00                                          | 3.942,476                                                    | 0                                                    | · · ·     |
| High Efficiency Chiller                                                                                                                                                                                                                                                                            | 1,560.525                                                    | 401                                                          | <u>.</u>  | 0.85                                  | 0.00                                          | 1.332.688                                                    | 342                                                  | •         |
| Energy Management System                                                                                                                                                                                                                                                                           | 10,558,827                                                   | 0                                                            | 1,058,877 | 0.85                                  | 0.00                                          | 9,017,238                                                    | 0                                                    | 904,281   |
| Other Customized Incentives Measure                                                                                                                                                                                                                                                                | 10,460,286                                                   | 891                                                          | 997 785   | 0.85                                  | 0 00                                          | 8,933,084                                                    | 761                                                  | 852,108   |
| Customized Incentives Total                                                                                                                                                                                                                                                                        | 27.196,121                                                   | 1,292                                                        | 2,056,642 |                                       | 0.00                                          | 23,225,487                                                   | 1,103                                                | 1,756,389 |
| Total                                                                                                                                                                                                                                                                                              | 50,876,182                                                   | 4,138                                                        | 2.056.662 | 0,85                                  | 0.00                                          | 43,182,496                                                   | 3,376                                                | 1,756,389 |
| REALIZATIC                                                                                                                                                                                                                                                                                         | N RATES                                                      |                                                              | ı——       |                                       | 1                                             | . <u> </u>                                                   |                                                      | ·         |
| Retrofit Express Program                                                                                                                                                                                                                                                                           | 1                                                            |                                                              |           |                                       | I                                             |                                                              |                                                      |           |
| Central A/C                                                                                                                                                                                                                                                                                        | 1.24                                                         | 0.88                                                         | <u> </u>  |                                       | <u> </u>                                      | 1.55                                                         | 1.10                                                 | <u> </u>  |
| Variable Speed Drive HVAC Fan                                                                                                                                                                                                                                                                      | 0.86                                                         | 0 8 1                                                        |           | <u> </u>                              | <u> </u>                                      | 3.49                                                         | 1.13                                                 | · ·       |
| Package Terminal A/C<br>Programmable Thermostat                                                                                                                                                                                                                                                    | 1 0.10                                                       |                                                              | <u> </u>  | <u> </u>                              | <u> </u>                                      | 0,58                                                         |                                                      | <u> </u>  |
| Reflective Window Film                                                                                                                                                                                                                                                                             | 0.94                                                         | 0.45                                                         | <b> </b>  |                                       | <u> </u>                                      | 0.98                                                         | 0.47                                                 |           |
| Water Chiller                                                                                                                                                                                                                                                                                      | 2.07                                                         | 0.83                                                         |           | ·                                     | <u>+ · · · </u>                               | 2.17                                                         | 0.47                                                 |           |
|                                                                                                                                                                                                                                                                                                    | 0.56                                                         | 0.52                                                         |           |                                       | <u>                                      </u> | 0.73                                                         | 0.66                                                 | <u> </u>  |
|                                                                                                                                                                                                                                                                                                    |                                                              | ~ 74                                                         |           | <u> </u>                              | <u> </u>                                      | 1,70                                                         | 0,80                                                 |           |
| Other RF Measures<br>Retrofit Express Total                                                                                                                                                                                                                                                        | 1.34                                                         | 0,66                                                         |           |                                       |                                               |                                                              |                                                      |           |
| Retrofit Express Total                                                                                                                                                                                                                                                                             | 1.34                                                         | 0.66                                                         | <u>`</u>  | il <u></u>                            |                                               |                                                              |                                                      | 1         |
| Retrofit Express Total<br>Retrofit Efficiency Options Program                                                                                                                                                                                                                                      | 0.64                                                         | 0.66                                                         |           |                                       |                                               | 0.63                                                         | 0.00                                                 |           |
| Retrofit Express Total<br>Retrofit Efficiency Options Program<br>Variable Frequency Drive                                                                                                                                                                                                          | 0.64                                                         | 0.00                                                         | <br>      |                                       |                                               |                                                              |                                                      |           |
| Retrofit Express Tatal<br>Retrofit Efficiency Options Program<br>Variable Frequency Drive<br>Water Chiller                                                                                                                                                                                         | 0.64                                                         |                                                              |           |                                       |                                               | 0.63                                                         | 0.00<br>0.39<br>1.31                                 |           |
| Retrofit Express Total<br>Retrofit Efficiency Options Program<br>Variable frequency Drive<br>Water Chiller<br>CAV to VAV                                                                                                                                                                           | 0.64                                                         | 0.00                                                         |           |                                       |                                               | 0.83<br>0.95                                                 | 0.39                                                 |           |
| Retrofit Express Tatal<br>Retrofit Efficiency Options Program<br>Variable Frequency Drive<br>Water Chiller                                                                                                                                                                                         | 0.64                                                         | 0.00                                                         |           | <u> </u>                              |                                               | 0.83<br>0.95<br>0.85                                         | 0.39<br>1.31                                         |           |
| Rebolit Express Tatal<br>Retrofit Efficiency Option Program<br>Variable Frequency Drive<br>Water Chiller<br>CAV to VAV<br>Cooling Tower                                                                                                                                                            | 0.64                                                         | 0.00<br>0.38<br>1.00<br>1.70                                 |           | <u> </u>                              | · · · · · · · · · · · · · · · · · · ·         | 0.83<br>0.95<br>0.85<br>1.01                                 | 0.39<br>1.31<br>2.23                                 |           |
| Rebolit Express Tatal<br>Retrofit Efficiency Options Program<br>Variable frequency Drive<br>Water Chiller<br>CAV to VAV<br>Cooling Tower<br>Retrofit Efficiency Options Total                                                                                                                      | 0.64                                                         | 0.00<br>0.38<br>1.00<br>1.70                                 |           | <u> </u>                              | · · · · · · · · · · · · · · · · · · ·         | 0.83<br>0.95<br>0.85<br>1.01                                 | 0.39<br>1.31<br>2.23                                 |           |
| Rebolit Express Total<br>Returbit Efficiency Options Program<br>Variable Frequency Drive<br>Water Chiller<br>CAV to VAV<br>Cooling Tower<br>Retrofit Efficiency Options Total<br>Customized Incentives Program                                                                                     | 0.64<br>0.91<br>0.65<br>0.77<br>0.74                         | 0.00<br>0.38<br>1.00<br>1.70<br>0.48                         |           | <u> </u>                              |                                               | 0.63<br>0.95<br>0.65<br>1.01<br>0.69                         | 0.39<br>1.31<br>2.23<br>0.54                         |           |
| Rebolit Express Total<br>Retrofit Express Total<br>Retrofit Efficiency Options Program<br>Variable Frequency Drive<br>Water Chiller<br>CAV to VAV<br>Cooling Tower<br>Retrofit Efficiency Options Total<br>Customized Incentives Program<br>HVAC Variable Speed Drive                              | 0.64<br>0.91<br>0.45<br>0.77<br>0.74                         | 0.00<br>0.38<br>1.00<br>1.70<br>0.48                         | ·<br>· ·  | · · · · · · · · · · · · · · · · · · · |                                               | 0.83<br>0.95<br>0.85<br>1.01<br>0.89                         | 0.39<br>1.31<br>2.23<br>0.54<br>0.00                 |           |
| Rebolit Express Total<br>Retrofit Express Total<br>Retrofit Efficiency Options Program<br>Variable Frequency Drive<br>Water Chiller<br>CAV to VAV<br>Cooling Tower<br>Retrofit Efficiency Options Total<br>Customized Incentives Program<br>HVAC Variable Speed Drive<br>High Efficiency Chiller   | 0.64<br>0.91<br>0.45<br>0.77<br>0.74<br>1.38<br>1.32<br>0.99 | 0.00<br>0.38<br>1.00<br>1.70<br>0.48<br>0.00<br>0.86         |           | · · · · · · · · · · · · · · · · · · · |                                               | 0.83<br>0.95<br>0.65<br>1.01<br>0.89<br>1.56<br>1.50         | 0.39<br>1.31<br>2.23<br>0.54<br>0.00<br>0.98         |           |
| Rebolit Express Tatal<br>Retrofit Efficiency Options Program<br>Variable Frequency Drive<br>Warer Chiller<br>CAV to VAV<br>Cooling Tower<br>Retrofit Efficiency Options Total<br>Customized Incentives Program<br>HVAC Variable Speer Drive<br>High Liftciency Chilles<br>Energy Management System | 0.64<br>0.91<br>0.45<br>0.77<br>0.74<br>1.38<br>1.32<br>0.99 | 0,00<br>0.38<br>1.00<br>1.70<br>0.48<br>0.00<br>0.86<br>0.00 | 1.00      | · · · · · · · · · · · · · · · · · · · |                                               | 0.83<br>0.95<br>0.85<br>1.01<br>0.89<br>1.58<br>1.58<br>1.50 | 0.39<br>1.31<br>2.23<br>0.54<br>0.00<br>0.98<br>0.00 |           |

## 5. **RECOMMENDATIONS**

Recommendations that would enhance future program performance and evaluation are presented in this section. Recommendations regarding evaluation methods are followed by those affecting the program's design.

## 5.1 EVALUATION METHODS

The evaluation team offers the following comments and recommendations regarding methods used in the 1995 evaluation:

**Calculation of Ex Ante Impacts** - As part of the 1995 HVAC Evaluation, an attempt was made to reproduce the Retrofit Express (RE) Program impacts found in the MDSS. This resulted in several observations where ex ante impact methods were misapplied. Such errors could probably be avoided in the future with a regular and thorough review of the MDSS contents by the program manager or a qualified analyst. MDSS staff who currently review the MDSS records may not be trained in the technology-specific details that are essential to conducting meaningful quality checks.

**Revisions to the Ex Ante Impact Methods** - All ex ante algorithms for RE and REO HVAC measures paid in 1995 were thoroughly reviewed. Where necessary, these methods were updated using alternate methods or assumptions, as described in detail in *Appendix B*. It is recommended that PG&E carefully review the updates to these algorithms, and apply those updates to future Advice Filings.

**Multiple Account Records** - Application records are currently stored in the MDSS based on the PG&E control number, which is in turn linked to a particular account. Premises (an entire building or even multiple buildings with a single address) are often retrofit, but records are not available that adequately link each retrofit to the total sample of accounts affected. Billing regression analyses and other calibrated engineering models which incorporate this information may be adversely affected, since the observed usage is inconsistent with the measure and number of units retrofit. PG&E may be able to more thoroughly reconcile each retrofit in the MDSS with all customer accounts.

**Demand Impact information for VSD Measures** - Very large impacts were observed for the Variable Speed Drive measures installed under the program. For both the ex ante and engineering estimates, the assumption is made that at peak loads there is zero demand impact since the VSD is operating at 100 percent load. If the existing fans are oversized, there will indeed be a demand impact since the VSD will only operate the fan at the level required to meet space conditioning needs. This would also result in greater predicted energy savings since the VSD is operating below the curve it was calibrated to. Future evaluation activities should include the collection of frequency as well as demand data to better determine the peak level ofd VSD operation.

**Impact Estimates Based on Conditioned Square Feet** - Some ex ante algorithms make use of the facility conditioned square feet to represent the installed system capacity instead of a more reliable engineering figure. This is especially true within the REO program, where chiller retrofits, cooling tower retrofits, air handler variable frequency drive retrofits, and boiler retrofits are all based in part upon the facility square footage. Quality checks using engineering and industry rules, such as tons per square foot, should be implemented to ensure realistic impacts, or a more reliable method of computing impact estimates should be developed.

Y

## 5.2 MEASURES OFFERED

The exhibits in *Section 4* allow identification of technologies or building types that should be reassessed in terms of their viability. This does not imply that these technologies are not valuable, but rather that the original estimate of design savings was higher than that actually achieved. The following segments should be reviewed for viability as part of the overall assessment.

**Energy Management Systems** are an effective means of reducing energy consumption, but require a knowledgeable operator to achieve those savings. EMSs used to monitor and control complicated HVAC plants require significant operator input, ideas, and operational decisions to achieve savings. EMSs cannot be expected to save energy without adequate system commissioning. PG&E should require commissioning for these systems (or other complicated measures) and offer incentives based on a performance contract. On-site investigations conducted as part of this evaluation effort have shown that performance contracts are an effective means of ensuring savings from installation of a particular system.

**Application Engineering Review** is a necessary component of the submittal process, and can be used to effectively screen applications that have significant analysis errors. In some instances, large errors were observed in the Customized Incentives applications submitted, resulting in inaccurate reporting of project impacts. Since applications submitted for the Customized Incentives Program (or other current programs like Nonresidential New Construction and Advanced Performance Options) can result in relatively large incentives (often based on impact achieved), it is recommended that a more intensive application review be used to capture these anomalies.

Analysis of Reasonableness of Savings should be another method used to assess errors in the application savings estimates. For example, the Customized Incentives application includes this type of comparison information within Attachment 7, where measure savings are compared against both the baseline quantity used and also against total billing records for the site. However, in some instances, these valuable data do not appear to be used in an effort to reject claimed savings.

**Rebates Offered for Infrequently Operated Systems -** Measures are sometimes installed that are either redundant systems (in case the primary system fails or requires repair), or are strictly peaking systems (coming on-line only on rare occasions). Due to the potentially low impacts for such retrofits, PG&E should consider rejecting rebates for equipment that meet these criteria.

Additional explanations are offered for other technologies or building segments with low realization rates in Section 4.

Customer Energy Efficiency Program Measurement and Evaluation Program

EVALUATION OF PACIFIC GAS & ELECTRIC COMPANY'S 1995 NONRESIDENTIAL ENERGY EFFICIENCY INCENTIVES PROGRAM FOR COMMERCIAL SECTOR HVAC TECHNOLOGIES APPENDICES

PG&E Study ID number: 326

March 1, 1997

Measurement and Evaluation Customer Energy Efficiency Policy & Evaluation Section Pacific Gas and Electric Company San Francisco, California

#### Disclaimer of Warranties and Limitation of Liabilities

As part of its Customer Energy Efficiency Programs, Pacific Gas and Electric Company (PG&E) has engaged consultants to conduct a series of studies designed to increase the certainty of and confidence in the energy savings delivered by the programs. This report describes one of those studies. It represents the findings and views of the consultant employed to conduct the study and not of PG&E itself.

Furthermore, the results of the study may be applicable only to the unique geographic, meteorological, cultural, and social circumstances existing within PG&E's service area during the time frame of the study. PG&E and its employees expressly disclaim any responsibility or liability for any use of the report or any information, method, process, results or similar item contained in the report for any circumstances other than the unique circumstances existing in PG&E's service area and any other circumstances described within the parameters of the study.

All inquiries should be directed to:

Lisa K. Lieu Revenue Requirements Pacific Gas and Electric Company P. O. Box 770000, Mail Code B9A San Francisco, CA 94177



# EVALUATION OF PG&E'S 1995 NONRESIDENTIAL ENERGY EFFICIENCY INCENTIVES PROGRAM FOR COMMERCIAL SECTOR HVAC TECHNOLOGIES

PG&E STUDY ID#: 326

# **VOLUME I: ANALYSIS APPENDICES**

March 1, 1997

Submitted to

Mary O'Drain Market Planning and Research Pacific Gas & Electric Co. 123 Mission Street, Room 2365 San Francisco, CA 94177

Prepared by

QUANTUM CONSULTING INC. 2030 Addison Street Berkeley, CA 94704

# APPENDICES TABLE OF CONTENTS

| Appendix |                                                    | Page |
|----------|----------------------------------------------------|------|
| A        | Sample Design                                      | A-1  |
| В        | Engineering Detailed Computational Methods         | B-1  |
| С        | Billing Regression Analysis                        | C-1  |
| D        | Net-to-Gross Method                                | D-1  |
| E        | Results Tables                                     | E-1  |
| F        | Summary of Gross Program Impacts by Costing Period | F-1  |
| G        | Protocol Tables 6 & 7                              | G-1  |

Appendix A Sample Design

.

.

.

.

# A. SAMPLE DESIGN

This appendix presents the sample design for the evaluation of Pacific Gas and Electric Company's (PG&E's) 1995 Nonresidential Energy Efficiency Incentive (EEI) Programs, Commercial Sector (the Commercial program). An integrated sample design was implemented for the Lighting, HVAC, and Refrigeration end uses. First, the sample design approach and resulting sample allocation are presented. This appendix then concludes with a discussion of the California Public Utilities Commission (CPUC) Evaluation and Measurement Protocols (the Protocols) requirements.

## A.1 EXISTING DATA SOURCES FOR SAMPLE DESIGN

The participant tracking system for the Retrofit Express (RE), Retrofit Efficiency Options (REO), and Customized Incentives Programs is maintained as part of the PG&E Management Decision Support System (MDSS). Henceforth, the RE and REO program components are referred to as simply Retrofit. The MDSS contains program application, rebate, and technical information regarding installed measures, including measure descriptions, quantities, rebate amounts, and ex ante demand, energy and therm saving estimates. The MDSS extract used in this evaluation is consistent with data used in the PG&E Annual Earning Assessment Proceedings (AEAP) Report.

For the Retrofit and Customized Incentives programs, participation was tracked at both application and measure levels. They are linked by application code and program year. Each application can cover multiple measures and accounts, and each measure is linked to a PG&E electrical or gas service location where the measures are supposed to be installed. The account location is identified by its account number, or a unique seven-digit identification number (PG&E's control number). Unlike customer accounts, control numbers are used to identify service locations and serve as stable identifiers for linking datasets.

QC's existing PG&E commercial population files, assembled in support of prior evaluations, cover the period from January 1992 to September 1995. The billing series for October 1995 through September 1996 were extended only for customers in the analysis dataset. PG&E's billing data contain monthly energy-consumption as well as other customer information, such as customer name, service location, rate schedule, and Standard Industrial Classification (SIC) code.

## A.2 SAMPLE DESIGN OVERVIEW

The objectives of the sample design were to

- Determine the optimal sample allocation for first-year gross impact analysis, based upon sample size and evaluation accuracy requirements of the Protocols and available project resources.
- Allocate sufficient sample points to meet net-to-gross (NTG) objectives.
- Reallocate available resources, wherever feasible, to focus on measures and/or program features deemed most important by PG&E staff for future program design while not compromising the overall accuracy of the evaluation.

The sample design is based upon a nested sample design approach. This approach consists of nesting samples of customer data so that the most expensive and detailed primary data can be leveraged to the population. The largest customer group includes all of the commercial customers with monthly PG&E billing data and participant tracking data who were rebated for eligible

lighting, HVAC and refrigeration technologies in 1995 (the "participant population"). The smallest group is the metered (TOU loggered or end-use metered) participants, who have the most comprehensive information available. These participants have lighting logger (for the Lighting end use) or end-use metering (for the HVAC end use) data, on-site audit data, telephone survey data, participant tracking data, and billing data.

The advantage of a nested sample design is that the overlapping samples of primary data can be used to improve the accuracy of the engineering and statistical analysis for the population, rather than just for the customers for which the data are available. For example, logger and metered data are used to establish accurate measures of operating hours by key business types that are then used to improve the reliability of estimates for all customers in the survey sample.

## A.3 SAMPLE SEGMENTATION

Evaluation of the Commercial program at the participant segment level allows more precise, and insightful, analyses than those undertaken at the aggregate PG&E system level. The program segmentation consists of two components: participant segmentation and technology segmentation. A key feature of the sample design is that the sampling unit is a unique customer site. Significant effort was undertaken to aggregate billing and participation records to this level.

The first step in the participant segmentation process grouped firms by business type, as defined in the MDSS. There are a total of 12 business types and 34 technology groups, as defined below. Exhibit A-1 presents the distribution of unique customer sites across the business type and technology group segmentation.

Annual energy consumption values were used to group customers into five usage/size strata based upon a Dalenius-Hodges procedure. The comparison group customers are then selected to mirror the underlying distribution of the participant target population by size and business type. (For the customers in the largest size strata, a census was attempted both for among participants and nonparticipants.)

Exhibit A-1 1995 Commercial Segmentation and Distribution of Unique Participant Sites

| $\overline{}$ | Business Type                       |        |        |              |        |         |            | Commerci    | al             |           |                |             |       |       |
|---------------|-------------------------------------|--------|--------|--------------|--------|---------|------------|-------------|----------------|-----------|----------------|-------------|-------|-------|
| Technology    |                                     | Office | Retail | College/Univ | School | Groceny | Restaurant | Health Care | Hotel/Matel    | Warehouse | Personal Serv. | Comm. Serv. | Mixc. | Total |
| ndoor         | Halogen                             | 47     | 46     | 8            | 17     | 2       | 26         | 10          | 16             | 9         | 4              | 24          |       | 21    |
| Lighting      | Compact Fluorescent Lamps           | 323    | 106    | 19           | 175    | 38      | 136        | 107         | 136            | 36        | 31             | 156         | 39    | 1,301 |
|               | Incandescent to Fluorescent Fixture | 14     | 2      | 2            | 16     | 0       | 12         | 2           | 7              | 2         | 0              |             | - 5   |       |
|               | Exit Signs                          | 175    | 60     | 10           | 107    | 18      | 80         | 35          | 9              | 11        | 9              | 73          | 10    | 59    |
|               | Efficient Ballasts Changeouts       | 33     | 20     | 6            | 26     | 17      | 6          | 10          | 3              | 10        | 2              |             | 5     | 15    |
|               | 18 Lamps and Electronic Ballasts    | 728    | 620    | - 33         | 345    | 229     | 194        | 187         | 41             | 135       | 152            |             | 126   | 3,055 |
|               | Delamp Fluorescent Fixtures         | 280    | 153    | 14           | 106    | 58      | 80         | 42          | 9              | 42        | 39             | 48          | 26    | 890   |
|               | High Intensity Discharge            | 40     | 42     | 4            | 30     | 11      | 2          | ĩ           | 2              | 67        | 14             | 34          | 82    | 329   |
|               | Reduced Wattage Lighting            | 2      | 1      | 0            | 1      | 0       | 0          | 0           | 0              | 1         | 1              |             | 0     |       |
|               | Controls                            | 113    | 48     | 15           | 80     | 10      | 12         | 29          | 18             | 25        | 12             | 52          | 2.8   | 442   |
|               | Customized Lighting Measures        | 7      | 1      | 1            | 0      | 42      | 0          | 0           | 0              | 6         | 0              | 6           | 1     | 6-    |
|               | Indoor Lighting End Use Total       | 890    | 726    | 43           | 401    | 294     | 260        | 215         | 158            | 208       | 183            | 379         | 222   | 3,968 |
| HVAC          | Central A/C                         | 179    | -65    | 3            | 49     | 13      | 38         | -66         | <del>-</del> 7 | 31        | 25             | דל          | 14    | 557   |
|               | Adjustable Speed Drives             | 35     | 27     | 2            | 2      | 12      | 0          | 2           | 2              | 1         | . 9            | 2           | 2     | 91    |
|               | Package Terminal A/C                | 1      | 1      | 2            | 8      | 0       | 2          | 2           | 42             | 1         | 0              | 2           | 0     | 6     |
|               | Set-Back Thermostat                 | 90     | 32     | 2            | 24     | 3       | 18         | 19          | 3              | 16        | 12             | 39          | 1 2   | 269   |
|               | Reflective Window Film              | 90     | 23     | 6            | 5      | 11      | 9          | 33          | 5              | 22        | 20             | 25          | - 13  | 26    |
|               | Water Chillers                      | 6      | 4      | Ö            | 1      | 0       | 0          |             | 0              | 0         | 0              |             | . 0   |       |
|               | Customized EMS                      | 10     | 0      | 2            | 30     | 5       | 0          | 7           | 2              | 1         | 1              | 0           | 0     | 5     |
|               | Customized Controls                 | 3      | 0      | 1            | 1      | 0       | 0          | 1           | 0              | 0         | 1              | 2           | 0     |       |
|               | Chiller Optimization                | 1      | 0      | 0            | 0      | 0       | 0          | T           | 0              | Ö         | 0              | 0           | 0     |       |
|               | Convert to VAV                      | 3      | ö      | ō            | 1      | 0       | 0          | 2           | 0              | 0         | 0              | 0           | 0     |       |
|               | Other Customized Equipment          | 3      | 0      | 0            | 0      | 0       | 0          | 5           | . 0            |           | 0              | - 0         | 0     |       |
|               | Other HVAC Technologies             | 19     | 2      | Ō            | 10     | 3       | 3          | 8           | 1              | 3         | T              | - 4         | 1     | 3.    |
|               | HVAC End Use Total                  | 354    | 123    | 17           | 114    | 43      | 53         | 123         | 59             | 59        | 57             | 116         | 34    | 1,149 |
| Refrigeration | Customized Measures                 | 1      | 0      | 0            | 0      | 61      | 0          | 0           | 0              | t         | 0              |             | 5     | - 6   |
|               | Standardized Measures               | 13     | 75     | 1            | 4      | 193     | 208        | 2           | 6              | 10        | 1              | 18          | 12    | 54    |
|               | Refrigeration End Use Total         | 14     | 75     | 3            | 4      | 253     | 208        | 2           | 6              | [11]      | 1              |             | 17    | 61    |
| Misc.         | Outdoor Lighting                    | 87     | - 47   | 12           | 101    | 19      | 22         | 35          | 30             | 35        |                |             | 42    | -51   |
|               | Energy Efficient Motors             | 19     | 4      | 4            | 2      | 3       | 0          | 9           |                | 6         | 3              | 6           | 23    | - 8   |
|               | Heat Recovery & Hot Water           | 0      | 0      | 1            | 0      | 1       | 1          | 0           | 1              | 0         | 1              | 2           | 0     |       |
|               | AG Pumping                          | 1      | 0      | 0            | 0      | 0       | 0          | 0           |                | 0         | -              |             | 13    | L     |
|               | AG Other                            | 0      | 0      | 0            | 0      | 0       | 0          | 0           |                | L.        | 0              |             | 1     |       |
|               | Cooking Equipment                   | 4      | 2      | 0            | 12     | 29      | 50         | 1           | 4              | 2         | 0              |             | 0     | 103   |
|               | Non-Process Boilers                 | 0      | 0      |              | 0      | 0       | 0          | 2           | 0              | 0         | 0              | 2           | 0     |       |
|               | Process Boilers                     | 0      | 0      | 0            | 0      | 0       | T          |             |                | T         |                |             | 0     |       |
|               | Process                             | 2      | 0      | 0            | 0      | 0       | 0          | 0           | 0              | 2         | 2              |             | 15    | 2.    |
|               | Misc. End Uses Total                | 113    | 53     | 15,          | 112    | 52      | 73         | 46          |                | 46        |                |             | 90    | 74    |
|               | Program Total                       | 1,231  | 869    | 61           | 518    | 544     | 558        | 336         | 218            | 289       | 239            | 528         | 321   | 5,694 |

Data Source: 1995 PG&E Frozen MDSS Database Received on July 25 1996.

## A.4 TECHNOLOGY SEGMENTATION

Program measures are classified into technology groups through combining technologies with similar energy reduction characteristics. This grouping strengthens the analysis by creating homogenous analysis segments in terms of electricity use. The three elements of the technology segmentation are as follows:

**Technology Groups** consist of those measures that comprise, in the case of the Lighting end use, those specific measures that are expected to have similar energy saving characteristics. For example, all T12 to T8 retrofit measures are grouped together. The projected energy savings differences will be accounted for in the engineering estimates, yielding similar per-unit estimates.

Measure Group, the second level of segmentation, groups measures by the PG&E program measure description.

Measure, the highest level of segmentation presented, is the actual measure offered by the PG&E program.

The technology segmentation presented in Exhibit A-1 shows the highest level of segmentation, at the measure level for all end uses in the commercial sector. While the engineering analysis was

conducted at the measure level, the statistical billing data analysis was conducted at a much coarser level, that is, at the technology-group level or at an even higher level of aggregation.

## A.5 SAMPLE FRAME

The first step in sample design is to determine the sampling frame. In general, the sampling frame includes only those customers who are program participants, or likely targets of the program, rather than all customers in the population. It sets the stage for all data collection activities that follow, and determines the availability of billing data for the remainder of the analysis.

In this evaluation, different analyses (e.g., impact analysis, free-rider analysis, and spillover analysis) use different sampling frames, which are defined by analyzing what possible actions a customer in PG&E's service territory could have taken during the study period. This classification provides the basis for the sample design. Without this kind of control, the Statistically Adjusted Engineering (SAE) analysis change model cannot be estimated, since nonprogram-induced changes cannot be separated from changes between periods attributable to other factors, such as weather and economic trends.

## A.6 PARTICIPANT SAMPLE FRAME

This section details the reduction of the eligible participant population to a sample frame suitable for impact analysis. None of the criteria used to screen the sample are believed to have adverse impacts on the sample representativeness; therefore, the screening criteria preserve the transferability of the impact results to the population.

The final participant sample frame for the Lighting and HVAC end uses consists of 2,560 commercial customers drawn from the eligible population of 5,694 program participants paid in 1995. In addition, there were 322 pretest and 78 multisite participants that were added to the 2,560 unique sites to form the final fielding sample frame. Criteria considered in the assessment of the quality of participant account billing data are as follows:

**Presence of a billing rate schedule for the customer**: Customers are required to have a rate schedule code for all years spanned by the billing data.

Quality of usage readings for the customer for the period of January 1993 through September 1995: Customers are required to have non-missing, non-zero usage values for all months spanned by the billing data. Customers are also required to have realistic PG&E revenues for the period. Realistic revenues are defined as revenues of at least \$0.03 per kWh, but no greater than \$0.25 per kWh.

**Cohesion of billing data across years**: The original billing data was received by year, i.e., the billing data for each calendar year was stored on a separate data tape. Data from different billing tapes was checked to ensure that the first month on each tape was immediately after the last month of the previous year's tape.

**PG&E division representative deletion requests**: Lists of customers in the sample frame were sent to the appropriate PG&E division representative for approval. Based upon responses from the representatives, some customers were deleted from the sample frame.

**Reasonable usage across years and populated telephone numbers**: Accounts are screened to ensure that the mean usage on the account for 1994 and 1995 is no more than twice (or less than half) the mean usage on the account for 1993 and 1994, respectively. Accounts are also screened to ensure they have reasonable phone numbers, and any accounts with no telephone number, or zeros in place of a number, are rejected from the sample frame.

For the Refrigeration end use, the entire participant sample was drawn for the sample frame because only 612 participant sites were available.

## A.7 COMPARISON GROUP SAMPLE FRAME

The comparison group sample frame consists of 4,153 commercial customers drawn from the eligible population of 801,561 nonparticipants (Lighting and HVAC end uses) in the Commercial program. Since comparison group surveys were conducted only for customers in the commercial sector, the first step in creation of the sample frame is to limit eligibility to only those accounts having SIC codes representing commercial business activities. Note that similar screen criteria were used:

- Excessive changes in usage between 1993 and 1994 billing years: Accounts are screened to ensure that the mean usage on the account for 1994 and 1995 is no more than twice (or less than half) the mean usage on the account for 1993 and 1994, respectively.
- Geographic location of customers: Accounts are screened to insure that they fall within the geographic regions targeted for comparison group telephone survey and on-site survey data collection.

In drawing the sample frame, targets are established for each business type and usage segment, so that the sample frame distribution, by business type and usage segment, is the same as that of the surveyed program participant population. The drawing is conducted in this manner to ensure sufficient representation of each business type/usage segment combination in the sample frame and allow survey data collection in accordance with the sample design.

For the Refrigeration end use, a supplemental nonparticipant sample frame consisting 836 customers divided among small grocery (574), supermarkets (154), agricultural preparation (65), and refrigerated warehouses (43) was drawn to supplement the Lighting and HVAC comparison group.

Finally, the canvass survey sample frame of 6,000 is drawn randomly from a frame of 172,354 customers based upon geographic targets for this survey.

## A.8 SAMPLE ALLOCATION APPROACH

The sample design complies with the Protocols and meets the program evaluation objectives. In this evaluation, the sampling unit is a customer site, which defines a unique service address. Applications in the MDSS database can cover more than one control number.

The final sample sizes for the telephone, on-site, lighting logger, and end-use metering are summarized in Exhibit A-2 by end-use element.

|                                      |               | Commercial           |                   |                     |                                 |             |  |  |
|--------------------------------------|---------------|----------------------|-------------------|---------------------|---------------------------------|-------------|--|--|
| Program                              | End Use       | Telephone<br>Surveys | On-Site<br>Audits | End-Use<br>Metering | Time-of-Use<br>(TOU)<br>Loggers | Combination |  |  |
|                                      | Lighting      | 18                   | 1                 | 0                   | 0                               | 0           |  |  |
| Custom                               | HVAC          | 58                   | 32                | 0                   | 0                               | 0           |  |  |
|                                      | Refrigeration | 7                    | 16                | 0                   | 1                               | 1           |  |  |
|                                      | Lighting      | 600                  | 227               | 5                   | 108                             | 112         |  |  |
| Retrofit                             | HVAC          | 434                  | 107               | 20                  | 13                              | 31          |  |  |
|                                      | Refrigeration | 235                  | 16                | 0                   | 1                               | 1           |  |  |
|                                      | Lighting      | 614                  | 228               | 5                   | 108                             | 112         |  |  |
| Total                                | HVAC          | 487                  | 137               | 20                  | 13                              | 31          |  |  |
|                                      | Refrigeration | 241                  | 18                | 0                   | 2                               | 2           |  |  |
| Total Participants (Unique Sites)    |               | 1,217                | 380               | _20                 | 108                             | 126         |  |  |
| Total Nonparticipants (Unique Sites) |               | 808                  | 36                | 0                   | 0                               | 0           |  |  |
| Total (Unique                        | Sites)        | 2,025                | 416               | 20                  | 108                             | 126         |  |  |

## Exhibit A-2 Data Collected by Program and End Use

**Telephone Survey Sample** - For each segment, the retrofit program sample design allocated the sample in proportion to the program-avoided cost by segment. This sample design concentrates sample points to segments that represent highest impact, in order to obtain the best estimate of impact for the largest portion of the population. In addition, a census was attempted for the largest customers. This sample allocation, combined with the random sampling techniques within each segment, produces a stratified random telephone survey sample representing the program-participant population (paid in 1995). A nonparticipant sample is developed based upon on the business type and usage strata distribution resulting from the participant sample allocation.

Telephone surveys were collected for a total of 2,025 customers, 1,217 of which are participants, and the remaining 808 are in the comparison group (451 as the original lighting and HVAC comparison group, 201 as the supplemental refrigeration comparison group, and 156 outside the program retrofitters found through the canvass survey).

**On-site Audit Sample** - Similar to the telephone survey sample, this sample was also structured to be approximately proportional to the program segment-level avoided cost estimates. A total of 416 on-site surveys were conducted for the commercial sector, with 380 participants and 36 comparison group customers.

**Lighting Logger and End-Use Metering** - This sample is not intended to be a random sample, nor strictly proportional to the program-avoided cost. The sample allocations were manipulated in order to assure adequate sample sizes for calibration of engineering models. A total of 108 and 20 participant sites were loggered or end-use metered.

## A.9 RELATIVE PRECISION

Given a sample design, the relative precision, based upon total annual energy use, reflects the uncertainty regarding the extent to which the allocated sample sizes are large enough to control for the population variance in terms of annual energy usage. Precision for the telephone sample is

calculated using the following procedure. First, the 1994 annual energy consumption is computed for all participants in the analysis dataset.

Next, five strata are constructed based on customers' annual usage using the Delanius-Hodges procedure. Exhibit A-3 presents the stratum-level sample size, sample weight, sample mean, and estimated standard errors for each end-use element. Note that since a census was attempted for the largest customers, participants with consumption greater than 10,000,000 kWh were excluded from this step. Overall, there were 73 participants in the population with usage at or above this level; 37 were successfully surveyed and included in the analysis dataset. (If these 37 were included in the variance calculation—using the surveyed sample—the oversampling of large customers would explode the variance far beyond that of the true variance in the population.)

Then, the program level mean and standard error are calculated using classic stratified sample techniques. <sup>1</sup> Finally, the relative precision at 90 percent confidence level is calculated as a two-tailed test.

By end-use element, the following relative precisions were achieved:

- For indoor lighting, the relative precision is 4.7 percent based upon a survey sample of 592. For the largest customers, 22 surveys were completed out of a participant population of 49.
- For HVAC, the relative precision is 6.0 percent based upon a survey sample of 473. For the largest customers, 14 surveys were completed out of a participant population of 21.
- For refrigeration, the relative precision is 4.6 percent based upon a survey sample of 240. For the largest customers, 1 survey was completed out of a participant population of 3.

<sup>&</sup>lt;sup>1</sup> Cochran, W.G., Sampling Techniques, Third Edition, John Wiley & Sons, 1977. pp 91-95.

#### Exhibit A-3 Telephone Sample Relative Precision Levels

|            | LIGHTING   |            |                   |                   |  |  |  |  |  |
|------------|------------|------------|-------------------|-------------------|--|--|--|--|--|
| Weight     | n          | mean       | Standard<br>Error | Relative<br>Prec. |  |  |  |  |  |
| 52.8%      | 205        | 60,757     | 4,746             | 12.8%             |  |  |  |  |  |
| 24.5%      | 153        | 218,522    | 6,452             | 4.9%              |  |  |  |  |  |
| 11.5%      | 99         | 575,245    | 20,564            | 5.9%              |  |  |  |  |  |
| 6.9%       | 78         | 1,586,348  | 58,156            | 6.0%              |  |  |  |  |  |
| 4.3%       | 57         | 4,918,699  | 287,212           | 9.6%              |  |  |  |  |  |
| 100.0%     |            |            |                   |                   |  |  |  |  |  |
| TOTAL      | 592        | 471,990    | 13,460            | 4.7%              |  |  |  |  |  |
| Usage > 10 | ,000,000 k | Wh in 1994 | 49                |                   |  |  |  |  |  |
| Surveyed   |            |            | 22                |                   |  |  |  |  |  |
| TOTAL Surv | veyed = 61 | 4          |                   |                   |  |  |  |  |  |

#### REFRIGERATION

| n         | mean                                           | Standard<br>Error                                                                                                                         | Relative<br>Prec.                                                                                                                                                                                                                                                                                                                                       |
|-----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 168       | 45,814                                         | 2,759                                                                                                                                     | 9.9%                                                                                                                                                                                                                                                                                                                                                    |
| 41        | 227,111                                        | 13,980                                                                                                                                    | 10.1%                                                                                                                                                                                                                                                                                                                                                   |
| 13        | 631,164                                        | 50,908                                                                                                                                    | 13.3%                                                                                                                                                                                                                                                                                                                                                   |
| 12        | 1,533,060                                      | 55,581                                                                                                                                    | 6.0%                                                                                                                                                                                                                                                                                                                                                    |
| 6         | 4,068,986                                      | 339,006                                                                                                                                   | 13.7%                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |
| 240       | 372,375                                        | 10,401                                                                                                                                    | 4.6%                                                                                                                                                                                                                                                                                                                                                    |
| 000,000 k | Wh in 1994                                     | 3                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                | 1                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |
| eyed = 24 | 1                                              |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |
|           | 168<br>41<br>13<br>12<br>6<br>240<br>000,000 k | 168         45,814           41         227,111           13         631,164           12         1,533,060           6         4,068,986 | n         mean         Error           168         45,814         2,759           41         227,111         13,980           13         631,164         50,908           12         1,533,060         55,581           6         4,068,986         339,006           240         372,375           000,000 kWh in 1994         3           1         1 |

|             |            | HVAC       |                   |                   |
|-------------|------------|------------|-------------------|-------------------|
| Weight      | n          | mean       | Standard<br>Error | Relative<br>Prec. |
| 53.9%       | 231        | 51,141     | 3,357             | 10.8%             |
| 19.5%       | 96         | 211,135    | 8,474             | 6.6%              |
| 10.7%       | 58         | 610,891    | 28,876            | 7.8%              |
| 10.1%       | 51         | 1,654,388  | 79,836            | 7.9%              |
| 5.7%        | 37         | 4,660,035  | 327,280           | 11.6%             |
| 100.0%      |            |            |                   |                   |
| TOTAL       | 473        | 566,376    | 20,647            | 6.0%              |
| Usage > 10, | ,000,000 k | Wh in 1994 | 21                |                   |
| Surveyed    |            |            | 14                |                   |
| TOTAL Surv  | eyed = 48  | 7          | _                 |                   |

It follows that the 808 surveys that comprise the comparison group sample yield a relative precision of at least that obtained by the corresponding participant samples. Since the expected precision is based upon the annual energy usage, this does not imply that these levels of precision can be obtained for the impact analysis.

Quantum Consulting Inc.

Sample Design

## A.10 DEMONSTRATION OF PROTOCOL COMPLIANCE

## A.10.1 Sampling Procedures Adopted

The sample design follows the rules established by the CPUC in the January 1995 revisions to the "Protocols and Procedures for the Verification of Costs, Benefits and Shareholder Earning from Demand Side Management Programs." Recent revisions to the Protocols—a draft dated 6/27/95—were incorporated wherever appropriate. The purpose of this section of the report is to identify compliance with these Protocols, with respect to the 1995 Commercial Sector Program Evaluation activities.

## A.10.2 Sample Definitions

The following definitions are provided to introduce the primary segments targeted—both a participant sample and a comparison group—to ensure experiment control:

**Participants** - According to Table 5, part C, paragraph 1 of the Protocols, participants are defined as "those who received utility financial assistance to install a measure or group of measures during the program year."

**Comparison Group** - A control group is defined as a group of customers that represents what would have happened in the absence of the program. According to Table 5, part D, paragraphs 3 & 4, the comparison groups include both "customers who installed applicable measures" and "customers who did not install applicable measures," with no preference for either group (i.e., random or stratified random sample). This sample is therefore representative of the population, excluding only program participants during the evaluation year.

## A.10.3 Overall Sampling Procedures

The commercial customer samples are driven by a primary data collection activity; in this case, the telephone surveys serve as the primary site-specific data collection elements that contribute to the analysis dataset. The commercial telephone sample was drawn to achieve a stratified random sample and optimally distribute the allocated sample points.

## A.10.4 Detailed Protocol Sample Requirement

The commercial participant and comparison group samples are designed to meet the Protocol requirements in terms of analysis dataset sample size, precision of the results, availability of preand post-billing data contributing to the analysis dataset, and in ensuring cost-effective use of measured data.

Analysis Dataset Sample for Commercial Participants: The Protocols require that a program with more than 450 participants has a randomly drawn sample sufficiently large to achieve minimum energy use precision of  $\pm 10$  percent at the 90 percent confidence level, and at least 450 contributing points in the analysis dataset. (This was the requirement at the time of the sample design; this requirement was relaxed to 350 subsequent to the completion of the data collection activities conducted for this evaluation.)

Data collection protocols are met regarding minimum analysis dataset size, if primary site-specific data are collected on-site, as per Table 5, part C, paragraph 4 of the Protocols. Data collection efforts are further strengthened during on-site activities through the installation of lighting loggers. These devices record specific fixture operating profiles during the monitoring period, and serve to calibrate self-reported lighting operating schedules. Data collected in this way follows the participant protocol recommendations set forth in Table C-4, paragraph 1 of the Protocols.

As discussed earlier, the sample collected for the commercial section, all end uses achieve a relative precision of at least 6 percent at a 90 percent confidence level, well below the 10 percent required by the Protocols, Table 5, part C, paragraph 4. Each participant chosen for the telephone sample is required to have at least nine months of post-installation billing data, and 12 months of pre-installation data, as per the Protocols, Table 5, part D, paragraphs 2 and 1, respectively.

Analysis Dataset Sample for Commercial Comparison Group - The Protocols require that the comparison group sample "be drawn using the same criteria for participants," as per Table 5, part C, paragraph 6.

The analysis dataset meets the sample size requirement in Table 5, part C, paragraph 3. The calculated relative precision meets the precision requirement in Table 5, part C, paragraph 4. The commercial comparison group telephone sample is drawn based upon the similar distribution of participant sample, in terms of their business types and annual usage.

To ensure compliance with comparison group protocols, the telephone survey sample frame is drawn to meet the billing data requirements of Table 5, part D, paragraphs 3 and 4 of the Protocols. All customers in the analysis dataset have billing data from January 1991 to September 1996, which ensures an adequate pre- and post-installation billing periods for customers who installed applicable measures between 1993 and 1995.

Appendix B Engineering Detailed Computational Methods

.

## **B.** ENGINEERING DETAILED COMPUTATIONAL METHODS

The technical approach and engineering results that support realized gross impacts in the 1995 Pacific Gas and Electric Company (PG&E) Commercial HVAC Technologies Evaluation (Commercial HVAC Evaluation) are presented in this appendix. The purpose of a presentation of the engineering computations is to provide detailed intermediate results that either verify or contradict the methods used to generate program design demand and energy impact estimates. Results are presented to ensure that future program design and evaluation activities will benefit from the engineering parameters generated during the 1995 program evaluation effort.

## **B.1** APPENDIX B STRUCTURE

The appendix is structured as follows:

- First, an overview of the engineering approach is presented.
- Then, details surrounding the development of impacts for central air conditioners, variable speed drives for fans and high efficiency chillers are discussed.
- An overview of the methods used and the engineering estimates developed for other RE and REO measures is then presented.
- Next, the methods used and the engineering estimates developed for the Customized Incentives program are summarized.
- The final two sections of the appendix contain detailed calculations, assumptions, and analyses used in the development of engineering estimates, first for the RE and REO programs, then for the Customized Incentives program.

## **B.2 OVERVIEW OF THE EVALUATION APPROACH**

The Commercial HVAC Evaluation consisted of the analysis of three separate PG&E programs, Retrofit Express (RE), Retrofit Efficiency Options (REO) and Customized Incentives. Where measures offered in different programs are similar (such as variable speed drives), identical analysis methods were applied across all programs.

Listed below are various RE and REO measures and an overview of the evaluation done for each:

**Central Air-Conditioners** - Estimates of energy use were derived using the DOE-2.1E building energy simulation model, calibrated to billing data (see *Section B.3*).

**Variable Speed Drives for Ventilation Fans** - This measure was offered in all of the PG&E programs. However, a single method was used to develop estimates, using DOE-2.1E simulations which were calibrated to end use metered (EUM) data (see *Section B.3*).

Water Chillers - Impacts were developed using data gathered from on-site audits, application data, and DOE-2.1 simulations.

**Cooling Towers** - The analysis method used data gathered from on-site audits, along with ex ante calculations, to develop engineering estimates.

**Other Measures** - A detailed review of the algorithms used to develop ex ante impacts was performed for the other RE measures.

As a result of program design, some of the measures installed in the Customized Incentives program were similar to or the same as those for the RE and REO programs, but were installed in larger and more complex projects. For this reason, some of the analysis methods used are similar to those employed in the RE and REO program evaluations. Additionally, on-site audits and detailed application reviews were performed for a select number of Customized Incentives applications.

#### **B.3 EVALUATION APPROACH: CENTRAL AIR-CONDITIONERS, VARIABLE SPEED** DRIVES, AND WATER CHILLERS

Demand and energy savings for the program measures associated with Central Air Conditioning (CAC) and Variable Speed Drives (VSDs) for supply fans were determined on a per unit basis using the DOE-2 building energy simulation program.

The engineering analysis combines detailed on-site audit data with information from telephone surveys to supply reliable engineering estimates. These estimates are then used as input to a statistically-adjusted engineering (SAE) regression model using billing data. The primary value of generating engineering estimates of energy and demand savings is that they reduce the standard error of SAE regression estimates.

The engineering estimates for CAC and VSD were developed as follows:

- Develop DOE-2 models
- Calibrate DOE-2 models
- Create undiversified and diversified energy models
- Calculate CAC energy savings
- Calculate VSD energy savings
- Calculate water chiller energy savings
- Compute energy and demand impacts

On-site audit data were used to develop DOE-2 models of offices and retail facilities that participated in the program. These models were then calibrated using end-use-metered (EUM) and billing data in conjunction with California Energy Commission (CEC) weather data adjusted for local temperatures<sup>1</sup>. The resulting hourly estimates were then diversified and leveraged to additional building types using telephone survey data of operating hours. Finally, the DOE-2.1E model estimates were regenerated using long term weather data and CEC baseline equipment efficiencies to compute program impacts.

<sup>&</sup>lt;sup>1</sup> This approach is consistent with the approach used for the 1994 HVAC program year evaluation

### **B.3.1 Develop DOE-2 Models**

Audit and billing data were analyzed to determine the number of DOE-2.1E prototypes needed to represent typical participating office and retail facilities. The primary variables reviewed were conditioned square footage and the ratio of summer usage<sup>2</sup> to conditioned square footage. Across business types, the VSD measure was clearly installed in larger facilities compared to the CAC measure. Within measures, only CACs in retail facilities need to be divided into categories, large and small. The small prototype typically represents a single owner operated business, while the larger prototype represents a larger chain store such as a Target K-Mart.

- CAC Measures:
  - It was determined that Office participants could be represented by one prototype, since the relationship between energy use and building size appears to be relatively linear.
  - Retail participants were grouped into two categories:
    - -- Small Retail, with summer energy use of less than 100,000 kWh, and
    - -- Large Retail, with summer energy use of 100,000 kWh or more.
- VSD Prototypes:
  - As with CAC, VSD Office participants could be represented by one prototype, since the relationship between energy use and building size also appeared to be linear.
  - All of the Retail VSD sites in the audit sample fit into the classification of Large Retail.

For all prototypes, lighting density was entered based in lighting data collected from the on-site survey. Lighting schedules were based on segment average operating profiles from on-site survey data collected to support the lighting evaluation.

Key characteristics for the five prototypes are detailed in Exhibit B-1.

<sup>&</sup>lt;sup>2</sup> Total premise kWh for the months of June, July and August, 1996.

| File             | Office VSD   | Retail VSD   | Office CAC   | Small Retail CAC | Large Retail CA |
|------------------|--------------|--------------|--------------|------------------|-----------------|
| Sample Size      | 5            | 8            | 31           | 9                | 8               |
| Total Sq Ft      | 40948        | 80745        | 12477        | 4201             | 80745           |
| Slab             | 21224        | 65693        | 9045         | 4034             | 65693           |
| Total Wall       | 17680        | 20532        | 7324         | 4236             | 20532           |
| Frame            | 28%          | 0%           | 34%          | · <u>5%</u>      | 0%              |
| Block            | 72%          | 100%         | 66%          | 95%              | 100%            |
| Frame Insulation | R-13         | -            | R-11         | R-7              | -               |
| Block Insulation |              | R-0          | R-11         | R-0              | R-0             |
| Roof Area        | 21224        | 65693        | 9045         | 4034             | 65693           |
| Roof             | R-19         | R-19         | R-11         | R-11             | R-19            |
| Ceiling Height   | 8            | 16           | 9_           | 14               | 16              |
| Window           | 5284         | 437          | 1496         | 389              | 437             |
| Window Type      | Single Clear | Single Clear | Single Clear | Single Clear     | Single Clear    |
| Cooling BTUH     | N/A          | N/A          | 403128       | 135046           | 2595841         |
| Occupants        | 160          | 906          | 86           | 57               | 906             |
| Cool Thermostat  | 72           | 73           | 73           | 75               | 73              |

#### Exhibit B-1 Key Characteristics for DOE-2.1E Prototypes

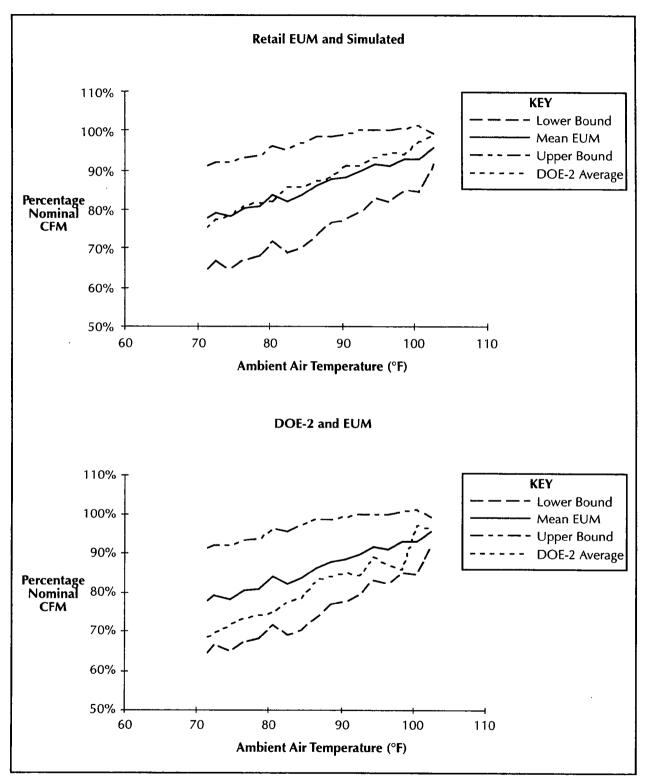
## **B.3.2** Calibrate DOE-2 Models

To ensure that the modeled results were accurate and reasonable, models were calibrated to EUM and billing data. Calibration was performed by comparing DOE-2 simulations run under weather data from different climate zones with the EUM data.

**CAC Model Calibration** -Audit data for CAC sites indicated that both Office and Retail HVAC systems were designed with an average sizing of approximately 400 square feet per ton of cooling. This sizing was used for all CAC sites across climate zones. Minimum ventilation, miscellaneous equipment watts per square foot, and economizer control strategies were used in calibrating the model.

Billing data were used to verify the accuracy of the calibration across climate zones. This was accomplished by comparing the annual estimates of HVAC and lighting usage to annual billing data for the sites that contributed to each prototype.

**VSD Model Calibration** - Using ASHRAE fan curves<sup>3</sup> and the EUM data, hourly air flow provided by VSD fans was computed. As illustrated in Exhibit B-2, percent of full load cubic feet per minute (CFM) was observed to be relatively linear with outdoor temperature. The DOE-2.1E prototypes were calibrated to observed percent CFM delivered at given dry bulb temperatures. Exhibit B-3 shoes the mean, calculated percent CFM, upper and lower bounds computed as 1 standard deviation of the mean EUM data and average DOE-2.1E simulation results. Data were compared at 2 degree temperature bins for typical operating conditions.


The calibration was carried out for weekday hours between 10 AM and 6 PM where outside dry bulb temperature was 70 Degrees Fahrenheit or greater. This was done in order to isolate typical

<sup>&</sup>lt;sup>3</sup> ASHRAE/IES Standard 90.1-1989 User's Manual, November 1992. Page 13-48 - 13-49.

cooling operation, where the majority of the VSD impacts take place. Calibration parameters for the model included fan size, minimum outside air and miscellaneous equipment watts per square foot. Calibrating the models in this way allowed for adjustment of the prototypes across climate zones.

Average, maximum loads from the EUM air handler fans were observed to be approximately 74 percent of rated fan kW during peak periods of operation. It was assumed that this 74 percent represented the operating condition of the existing fan at constant volume.

Exhibit B-2 Percentage CFM vs. Ambient Temperature



### **B.3.3 Create Undiversified and Diversified Energy Estimates**

Using the calibrated DOE-2.1E prototypes discussed above, undiversified energy usage estimates were created by setting the HVAC system to operate 24 hours a day. Other operational aspects of the building, such as lighting and miscellaneous equipment schedules, were based on audit data and information calculated in the lighting analysis. For both CAC and VSD, the calibrated DOE-2 models were run using the adjusted CEC weather data in each climate zone. The weather data covered October 1, 1995, through September 30, 1996, the post-retrofit period used in the SAE model.

Undiversified CAC savings estimates were generated using the installed efficiencies of the retrofit equipment taken from the MDSS and estimated existing efficiencies based on the size of the retrofit unit. The existing efficiencies used were based on 1988 Title 24 standards, down graded to reflect a 15 year old CAC system, the assumed equipment life for these types of systems.

Undiversified VSD fan energy usage was determined by running the calibrated DOE-2.1E prototypes for three different fan systems using the adjusted CEC weather data:

VSD Fans - modeled as the post-retrofit case.

**Constant-volume fans** - modeled as one of the pre-retrofit cases. This fan system assumes 100 percent nominal CFM during fan operation.

**Inlet vane fans** - modeled as a secondary pre-retrofit case. The inlet vane fan system was modeled by to account for existing variable air volume systems which used inlet vanes as a means of volume control. This case was necessary because participants of the REO program and many of the participants of the Customized Incentives program replaced inlet vane fans with VSD as a means of volume control. For these participants, the inlet vane case represents baseline energy consumption. Further, the advice filing for the ASD measure of the RE program (S22) assumes that 19 percent of the energy consumed by existing fans are inlet vane. This 19 percent figure was used to prorate the constant volume and inlet vane cases for participants with unknown existing conditions.

For both CAC and ASD, the DOE-2.1E prototypes provide simulated annual energy usage, at an hourly level for Retail and Office business types in all climate zones with program participation. All other business types are mapped to the Office and Small or Large Retail prototypes as shown in Exhibit B-3.

| OFAGE                | SMALL RETAIL             | LARGE RITAUL |
|----------------------|--------------------------|--------------|
| Office               | Small Retail             | Large Retail |
| Community Service    | Personal Service         | Grocery      |
| Health Care Hospital | Restaurant               | Warehouse    |
| Hotel/Motel          | Miscellaneous Commercial | -            |
| College/University   | -                        | _            |
| School               | _                        | -            |

#### Exhibit B-3 Business Type Mapping

<sup>&</sup>lt;sup>4</sup> This classification was used for CAC sites only. These business types were mapped to the Large Retail model in the case of VSDs.

The simulated, hourly cooling and fan energy use was diversified for each business type by hourly self reported operating factors gathered through telephone surveys. The operating factor is defined as the percentage of facilities reporting the availability of space conditioning for a given hour and season. Business type specific hourly operating factors for key business types are illustrated in Exhibit B-4. Note that these are average, annual profiles. The School business type underwent an additional adjustment for the months June, July, and August. For those months, the diversified load was multiplied by 27 percent, which is the telephone survey reported peak operating factor. This additional factor reflects the large reduction in occupancy for schools during the summer months. The result of this step are a series of hourly loads for CAC and fan systems adjusted for the occupancy and operational patterns of participants.

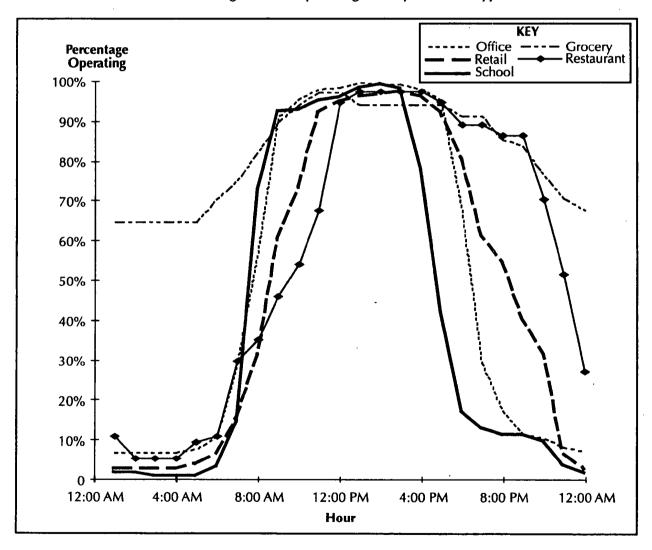



Exhibit B-4 Annual Average HVAC Operating for Key Business Types

#### **B.3.4** Calculate CAC Energy Savings

For all CAC energy usage and saving estimates, a method of calculation incorporating Equivalent Full Load Hours (EFLH) was developed. The EFLH is defined as the total annual cooling energy usage, divided by the connected load for the CAC unit. The diversified CAC energy model

B-8

produced an annual equivalent full load hour (EFLH) estimate for each business type and climate zone.

Energy savings estimates for each site in the SAE sample were calculated using estimated EFLH, total tons retrofit, post retrofit EER and an assumed existing EER as discussed previously. Energy savings were computed for each participant in the SAE sample using the equation in Exhibit B-5.

| kWh <sub>sav,i</sub>   | = U * {EFLH <sub>j</sub> * T * 12 * (1/EER <sub>1</sub> - 1/EER <sub>MDSS</sub> )} |
|------------------------|------------------------------------------------------------------------------------|
| where:                 |                                                                                    |
| kWh <sub>sav,i</sub> = | Annual energy savings for participant "j" (kWh/yr.)                                |
| U =                    | Number of units installed                                                          |
| EFLHj =                | Diversified Equivalent Full Load Hours for business type j                         |
| T =                    | Number of tons installed                                                           |
| 12 =                   | Conversion of tons to kBtuh                                                        |
| EER <sub>1</sub> =     | Existing System EER                                                                |
| EER <sub>MDSS</sub> =  | Post-retrofit EER                                                                  |
|                        |                                                                                    |

Exhibit B-5 Equation for Estimating CAC Energy Savings

# **B.3.5** Calculate VSD Energy Savings

The diversified VSD energy model results were used to produce an estimate of annual kWh usage per installed horsepower by business type and climate zone. This was accomplished for each of the three equipment types (constant volume, inlet vane, and variable speed drive). Energy savings estimates were computed as the difference of the diversified constant-volume and inlet-vane cases to the diversified VSD case.

Based on previous analysis, constant-volume fans were assumed to make up 70 percent of the pre-retrofit conditions while the remaining sites were assumed to be Inlet-vane systems. This was computed based on the advice filing, which states a 19 percent reduction in savings for the constant volume case, due to the presence of existing inlet vane fan systems.

Energy savings estimates for each site in the SAE sample were calculated using estimated per horsepower usage and total retrofit horsepower for each fan system. For the majority of the participants, the existing fan type was not known, so the assumed distribution of 70 percent constant volume and 30 percent inlet vane was used. The energy savings were computed for each participant in the SAE sample using the equation in Exhibit B-6. For all other participants the existing fan type was used and the appropriate baseline usage of either 100 percent constant volume or 100 percent inlet vanes was used.

|                      |   | Equation for Estimating VSD Energy Savings                                                                     |  |  |  |  |  |  |  |
|----------------------|---|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| kWh <sub>sav,i</sub> | = | U * [kWh j - {(kWh j,cv * 0.30) + (kWh j,iv* 0.70)]}                                                           |  |  |  |  |  |  |  |
| where:               |   |                                                                                                                |  |  |  |  |  |  |  |
| kWh <sub>sav,i</sub> | Ξ | Annual energy impact for participant "i" (kWh/yr.)                                                             |  |  |  |  |  |  |  |
| U                    | = | Number of retrofit Horsepower                                                                                  |  |  |  |  |  |  |  |
| kWh <sub>j</sub>     | × | Annual diversified energy use per horsepower for business type j (kWh/yr.) for fans with variable speed drives |  |  |  |  |  |  |  |
| kWh <sub>j,iv</sub>  | = | Annual diversified energy use per horsepower for business type j (kWh/yr.) for inlet vane fans                 |  |  |  |  |  |  |  |
| kWh <sub>j,cv</sub>  | Ξ | Annual diversified energy use per horsepower for business type j (kWh/yr.)<br>for constant volume fans         |  |  |  |  |  |  |  |
|                      |   | · · · · · · · · · · · · · · · · · · ·                                                                          |  |  |  |  |  |  |  |

Exhibit B-6 Equation for Estimating VSD Energy Savings

## **B.3.5** Compute Energy and Demand Impacts

The final step in the analysis of CAC and VSD measures was the calculation of energy and demand impacts for each. The energy savings estimates described above were based on weather data for dates between October 1, 1995, through September 30, 1996, and were used as inputs to the SAE analysis. The following steps were taken to convert the energy *savings* estimates to *impact* estimates:

**Current CEC** - CEC weather data<sup>5</sup> were used to generate the calibrated DOE-2.1E energy estimates, instead of actual adjusted CEC weather data.

**Baseline** - CAC savings estimates were adjusted to reflect the difference between post-retrofit conditions and minimum efficiencies defined by Title 24, rather than the pre-retrofit equipment.

Peak demand impacts were calculated for CAC only, since VSD impacts are assumed to be zero under peak conditions. CAC peak demand impacts were based on an undiversified peak duty cycle calculated from EUM data. For each metered CAC unit, the five highest weekday duty cycles

<sup>&</sup>lt;sup>5</sup> Approved for use with the 1992 and 1995 Energy Efficiency Standards for Residential and Nonresidential Buildings. Referred to on magnetic media as CZxxRV2.WY2, where xx indicates the climate zone.

occurring between 3 and 4 PM were selected as representing peak duty cycles. The average of these duty cycles across all metered CAC units was 88.7 percent.

Except for Schools, Coincident Diversity Factors (CDF) were computed as the product of the peak duty cycle and the weekday 3 to 4 PM operating factor used in the energy analysis. For schools, the telephone survey reported peak operating factor of 27 percent was used to compute the CDF.

| kW <sub>sav,i</sub> | =  | U * {CDF <sub>j</sub> * T * 12 * (1/EER <sub>1</sub> - 1/EER <sub>MDSS</sub> )}       |
|---------------------|----|---------------------------------------------------------------------------------------|
| where:              |    |                                                                                       |
| kW <sub>sav,i</sub> | Ξ  | Peak demand impact for participant "i"                                                |
| υ                   | =  | Number of units installed                                                             |
| CDF                 | =  | Coincident Diversity Factor, computed as 0.887 times the hour 3-4 PM operating Factor |
| т                   | =  | Number of tons per installed unit                                                     |
| EER <sub>1</sub>    | =  | Baseline EER                                                                          |
| EERMDS              | S= | Post-retrofit EER                                                                     |

Exhibit B-7 Equation for Estimating CAC Demand Savings

# B.3.6 Calculate RE and REO High Efficiency Chiller Impacts

Savings and impact estimates associated with high efficiency chillers were computed by leveraging off of the CAC program estimates. This approach was used since it would produce consistent, reasonably accurate estimates of change in energy consumption to be adjusted by the SAE analysis. The following steps were taken to generate the chiller estimates.

An Office DOE-2.1E prototype from QC's library was modified to reflect the lighting and equipment characteristics of the on-site sample. The prototype was simulated with a central plant configured with two chillers in Lead/Lag operation.

Simulations were carried out using the adjusted CEC weather data for each climate zone with participation. Total energy consumption and the full load demand of the chiller were then used to compute EFLH values for the lead chiller.

Energy estimates of savings were then computed by leveraging on the Office EFLH values from the chiller and CAC simulations. This was accomplished by calculating the ratio of chiller EFLH to Office CAC EFLH values for each climate zone with participation. This ratio was then used in conjunction with the method developed for CAC estimates. The equation used is illustrated in Exhibit B-8.

| kWh <sub>sav,i</sub>  | =   | U * {EFLH <sub>j</sub> * EFLH <sub>CH</sub> / EFLH <sub>OFF</sub> * T * 12 * (kW/Ton <sub>1</sub> - kW/Ton <sub>MDSS</sub> )} |
|-----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|
| where:                |     |                                                                                                                               |
| kWh <sub>sav,i</sub>  | =   | Annual energy savings for participant "i" (kWh/yr.)                                                                           |
| U                     | =   | Number of units installed                                                                                                     |
| EFLHj                 | .=  | Diversified Equivalent Full Load Hours for business type j                                                                    |
| EFLHCH                | =   | Equivalent Full Load Hours for chiller prototype                                                                              |
| EFLHOff               | =   | Equivalent Full Load Hours for Office CAC prototype                                                                           |
| т                     | =   | Number of tons installed                                                                                                      |
| 12                    | =   | Conversion of tons to kBtuh                                                                                                   |
| kW/Ton <sub>1</sub>   | =   | Existing System kW/Ton                                                                                                        |
| kW/Ton <sub>MDS</sub> | s = | Post-retrofit kW/Ton                                                                                                          |
|                       |     |                                                                                                                               |

## Exhibit B-8 Equation for Estimating Chiller Savings

Demand estimates for chillers were computed using chiller information from the MDSS or applications, in conjunction with operating and loading information obtained from on-site surveys. On-site survey information indicated that during peak periods participating chillers operate on average at 91 percent of their full load capacity. Therefore, peak demand impacts were computed as the difference in connected load of the retrofit and Title 24 baseline chiller times 0.91. Following are several points regarding chiller impacts.

For chillers installed under the RE program, the Title 24 baseline efficiency is substantially lower then the minimum chiller efficiency required for program participation. All evaluation impacts are computed using Title 24 baselines so the impacts for chillers installed under the RE program reflect this.

Demand impacts for the REO program are computed using the efficiency listed on the application. These efficiencies were computed for the site specific conditions of the retrofit chiller. For this reason, the Title 24 baseline chiller efficiency was modified using the ratio of the Site specific chiller efficiency to the ARI rated efficiency of the retrofit chiller. This was done so that the baseline efficiency used to compute impacts would be consistent with the site specific efficiency for the retrofit chiller.

#### **B.4** EVALUATION APPROACH: RETROFIT EXPRESS AND RETROFIT EFFICIENCY OPTIONS

For RE and REO measures other than CAC and VSDs, the evaluation approach was based on a review of the algorithms and input assumptions used to develop the ex ante impacts. Since many of the same measures were offered in both the RE and REO programs, methods developed for evaluating a measure in one program were, for consistency, applied to other programs. The aim of the evaluation was to either confirm or correct the methods and inputs used in the ex ante estimates.

When applicable, the engineering algorithms used by PG&E to develop ex ante impacts for RE measures were reviewed thoroughly (algorithms were taken from the 1995 Advice Filing<sup>6</sup>). For each measure, the following analysis steps were performed in an algorithm review:

- Ex ante impacts were re-calculated using methods and inputs listed in the Advice Filing.
- Evaluation impacts are developed using revised methods and inputs when applicable. When possible, inputs and methods were verified using either sources referenced in the Advice Filing or alternate sources such as ASHRAE, the CEC or ARI.

Estimates were derived for the water chiller measures using a more detailed analysis approach.

An on-site audit was performed for selected sites, in order to gather detailed engineering information. Then, DOE-2.1 E simulations were performed using data from individual applications and on-site audits in order to derive engineering estimates.

Engineering impact estimates for the cooling tower measure were derived using on-site audit data and calculation methods listed in the Advice Filing.

Section B.6 contains detailed information regarding the development of impacts for each RE and REO measure.

#### **B.5 EVALUATION APPROACH: CUSTOMIZED INCENTIVES**

The evaluation of Customized Incentives applications focused on sites which claimed the highest avoided cost under the program. The following describe the steps used in the evaluation process:

- Applications were first ranked according to the total claimed avoided cost for the facility.
- On-site audits were performed for 28 of the sites with the highest avoided cost.
- A comparison was made between on-site audit data and data found in the MDSS.
- If there was a discrepancy found between the audit data and the ex ante impacts then one or all of the following were developed:
  - DOE-2.1 E simulations
  - Temperature bin models
  - Spreadsheet-based algorithms

<sup>&</sup>lt;sup>6</sup> PG&E 1995 Customer Energy Efficiency Programs Advice Letter No. 1867-G/1481-E, filed October 1994.

Section B.7 contains detailed information regarding the development of impacts for each Customized Incentives participant.

#### **B.6** DETAILED METHODS USED TO DEVELOP MEASURE-SPECIFIC RETROFIT EXPRESS AND RETROFIT EFFICIENCY OPTIONS ENGINEERING ESTIMATES

This section contains detailed information regarding the development of impacts for each RE and REO measure, and is presented using the following format:

- For each measure, a written summary provides an overview of the algorithm review.
- Detailed calculations used in the analysis are provided.

# Setback Programmable Thermostats

| Measure<br>Description:                       | Installation of setback programmable thermostats in spaces with regular occupied and unoccupied periods.                                                                                                                                                                                                                                                            |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Advice<br>Filing Calculations:     | A bin analysis method was employed to create per thermostat<br>energy and therm impacts. Demand impacts were not calculated,<br>as setback thermostats do not affect peak demand.                                                                                                                                                                                   |
| Comments on<br>Advice Filing<br>Calculations: | Program review has shown that the per-unit impacts were applied<br>to each participant with the assumption that each thermostat<br>controlled the conditioning of 5,000 sq ft of office space, regardless<br>of building size or type. These impacts were not adjusted to<br>account for different climate zones.                                                   |
| Comments on<br>Advice Filing<br>Inputs:       | Incorrect return air values were used to determine the heating and cooling loads during setback hours. Weather data was for San Jose, and thus only represented one climate zone.                                                                                                                                                                                   |
| Evaluation Process:                           | Energy and therm impacts were developed using modified return air<br>values during setback hours and binned weather data from all 16<br>California climate zones. A conditioned square footage value was<br>developed for each participant using MDSS, survey, and audit data.<br>Climate zone-specific impacts (leveraged by square footage) were<br>then applied. |
| Additional Notes:                             | If the ex ante assumptions for a given premise indicated only energy impacts, then no therm impact was developed.                                                                                                                                                                                                                                                   |

#### Setback Programmable Thermostat:

1) Installs setback programmable thermostats in spaces with regular occupied and unoccupied periods.

2) Assumptions used in Advice Filing:

```
Office hours = 07:00-18:00 M-F

Occupied Hours = 11 hr/day x 5 day/week x 52.14 week/yr

= 2,868

= Listed as 2,870 hr/year

AC size = 10 tons (120,000 Btu)

AC Efficiency = 1.3 kW/ton with out fans

EER = 9.23 Btu/Watt (calculated in spreadsheet "Window Film AF")

Area serviced/ton = 500 sqft/ton

Heating size = 250 kBtu/hr

Heating efficiency = 70%

Area served = 50 Btu/hr-sqft

Total cfm = 5,000

Fan hp = 3

Outside Supply Air = 20%

Location = San Jose, ASHRAE bin weather data
```

#### A bin analysis method is used, where:

OSA = outside air temp (F) Bin = hours per year that temp is in a given range (hr/yr) % OSA = percent outside air (fixed at 20%) Ret Air = return air temp (F) Mix Air = mixed air temperature = (% OSA x OSA) + [(1 - % OSA) x Ret Air] 67 F = temp at which system switches from cooling to heating

SAT = supply air temp (F)

SAT (cooling) = 67 F + {[67 F - OSA)/5] x 2}

SAT (heating) = 67 F + {[67 F - OSA)/5] x 3}

Heating Loads (kBtu/yr) ≃ [SAT - Mix Air (F)] x Bin (hr/yr) x (1.085 Btu/hr-F-CFM) x Air Flow (CFM)

Cooling Loads (kBtu/yr) = [Mix Air - SAT (F)] x Bin (hr/yr) x (1.085 Btu/hr-F-CFM) x Air Flow (CFM)

.

|             | S         | ample Heating a | nd Cooling Load Calc | ulations for San J | 050        |           |           |
|-------------|-----------|-----------------|----------------------|--------------------|------------|-----------|-----------|
| Outside Air | Total Bin | % OSA           | Return Air           | Mixed Air          | Supply Air | Cooling   | Heating   |
| (F)         | (ħr/yr)   |                 | (F)                  | (F)                | (F) '      | (kBtu/yr) | (kBtu/yr) |
| 92          | 6         | 20%             | 74                   | 77.6               | 57         | 671       |           |
| 87          | 24        | 20%             | 74                   | 76.6               | 59         | 2,292     |           |
| 82          | 84        | 20%             | 74                   | 75.6               | 61         | 6,653     |           |
| 77          | 207       | 20%             | 74                   | 74.6               | 63         | 13.027    |           |
| 72          | 535       | 20%             | 74                   | 73.6               | 65         | 24,960    |           |
| 67          | 1,077     | 20%             | 74                   | 72.6               | 67         | 32,719    |           |
| 62          | 1,756     | 20%             | 74                   | 71.6               | 70         | 15,242    |           |
| 57          | 1,977     | 20%             | 74                   | 70.6               | 73         | 0         | 25,74     |
| 52          | 1,545     | 20%             | 74                   | 69.6               | 76         | 0         | 53,64     |
| 47          | 935       | 20%             | 74                   | 68.6               | 79         | 0         | 52,75     |
| 42          | 451       | 20%             | 74                   | 67.6               | 82         | 0         | 35,23     |
| 37          | 138       | 20%             | 74                   | 66.6               | 85         | 0         | 13,77     |
| 32          | 24        | 20%             | 74                   | 65.6               | 88         | 0         | 2,91      |
| 27          | 1         | 20%             | 74                   | 64.6               | 91         | 0         | 14        |
| Total       | 8,760     |                 |                      |                    | Total      | 95,564    | 184,20    |

Recreated from Advice Filing p.AC-54 (Thermostat Set-back)

Baseline Energy Usage:

Cooing = Cooling Loads (kBtu/yr) x (1 ton-hr/12 kBtu) x 1.3 kW/ton = 95,564 kBtu/yr x (1"ton-hr/12 kBtu) x 1.3 kW/ton = 10,353 = 10,353 kWh/yr for San Jose Heating = Heating Loads (kBtu/yr) x (1 therm/100 kBtu) x 1/Efficiency = 184,203 kBtu/yr x (1 therm/100 kBtu) x 1/70% = 2,631

= 2,631 therm/yr for San Jose

Revised Energy Use 7:00AM - 6:00PM

|             |           | Sample Heating a | ind Cooling Load Calc | ulations for San J | ose        |           |           |
|-------------|-----------|------------------|-----------------------|--------------------|------------|-----------|-----------|
| Outside Air | Total Bin | % OSA            | Return Air            | Mixed Air          | Supply Air | Cooling   | Heating   |
| (F)         | (hr/yr)   |                  | (F)                   | (F)                | (F)        | (kBtu/yr) | (kBtu/yr) |
| 92          | 4         | 20%              | 74                    | 77.6               | 57         | 447       |           |
| 87          | 16        | 20%              | 74                    | 76.6               | 59         | 1,528     |           |
| 82          | 53        | 20%              | 74                    | 75.6               | 61         | 4,198     |           |
| 77          | 122       | 20%              | 74                    | 74.6               | 63         | 7,677     |           |
| 72          | 293       | 20%              | 74                    | 73.6               | 65         | 13,670    |           |
| 67          | 516       | 20%              | 74                    | 72.6               | 67         | 15,676    |           |
| 62          | 608       | 20%              | 74                    | 71.6               | 70         | 5,277     |           |
| 57          | 563       | 20%              | 74                    | 70.6               | 73         | 0         | 7,33      |
| 52          | 395       | 20%              | 74                    | 69.6               | 76         | 0         | 13,71     |
| 47          | 200       | 20%              | 74                    | 68.6               | 79         | 0         | 11,28     |
| 42          | 78        | 20%              | 74                    | 67.6               | 82         | 0         | 6,09      |
| 37          | 19        | 20%              | 74                    | 66.6               | B 5        | 0         | 1,89      |
| 32          | 3         | 20%              | 74                    | 65.6               | 88         | 0         | 36        |
| 27          | 0         | 20%              | 74                    | 64.6               | 91         | 0         | _         |
| Total       | 2,870     |                  |                       |                    | Total      | 48,473    | 40,68     |

Recreated from Advice Filing p.AC-54 (Thermostat Set-back)

#### Advice Filing lists total bin as 2,879 hours, but calculations do not support this.

| Coolin  | g = Cooling Loads (kBtu/yr) x (1 ton-hr/12 kBtu) x 1.3 kW/ton   |  |
|---------|-----------------------------------------------------------------|--|
|         | = 48,473 kBtu/yr x (1 ton-hr/12 kBtu) x 1.3 kW/ton              |  |
|         | = 5,251                                                         |  |
|         | = 5,251 kWh/yr for San Jose                                     |  |
| Heating | g = Heating Loads (kBtu/yr) x (1 therm/100 kBtu) x 1/Efficiency |  |
|         | = 40,683 kBtu/yr x (1 therm/100 kBtu) x 1/70%                   |  |
|         | = 581                                                           |  |
|         | = 581 therm/yr for San Jose                                     |  |

#### Revised Energy Use 7:00PM - 6:00AM

|             |           | Sample Heating a | nd Cooling Load Calc | ulations for San J | ose        |           |           |
|-------------|-----------|------------------|----------------------|--------------------|------------|-----------|-----------|
| Outside Air | Total Bin | % OSA            | Return Air           | Mixed Air          | Supply Air | Cooling   | Heating   |
| (F)         | (hr/yr)   |                  | (F)                  | (F)                | (F)        | (kBtu/yr) | (kBtu/yr) |
| 92          | 2         | 20%              | 74                   | 77.6               | 62.0       | 169       |           |
| 87          | 8         | 20%              | 74                   | 76.6               | 64.0       | 547       |           |
| 82          | 31        | 20%              | 74                   | 75.6               | 66.0       | 1,614     |           |
| 77          | 85        | 20%              | 74                   | 74.6               | 68.0       | 3,043     |           |
| 72          | 242       | 20%              | 74                   | 73.6               | 73.6       | 0         |           |
| 67          | 561       | 20%              | 74                   | 72.6               | 72.6       | 0         |           |
| 62          | 1,148     | 20%              | 74                   | 71.6               | 71.6       | 0         |           |
| 57          | 1,414     | 20%              | 74                   | 70.6               | 70.6       | 0         |           |
| 52          | 1,150     | 20%              | 74                   | 69.6               | 71.0       | 0         | 8,73      |
| 47          | 735       | 20%              | 74                   | 68.6               | 74.0       | 0         | 21,53     |
| 42          | 373       | 20%              | 74                   | 67.6               | 77.0       | 0         | 19,02     |
| 37          | 119       | 20%              | 74                   | 66.6               | 80.0       | 0         | 8,65      |
| 32          | 21        | 20%              | ' 74                 | 65.6               | 83.0       | 0         | 1,98      |
| 27          | 1         | 20%              | 74                   | 64,6               | 86.0       | 0         | 11        |
| Tota        | 5,890     |                  |                      |                    | Tota       | 5,374     | 60,03     |

Recreated from Advice Filing p.AC-54 (Thermostat Set-back)

#### Setback Energy Usage:

|   | chergy Usage.                                                         |  |
|---|-----------------------------------------------------------------------|--|
| 1 | Cooling = Cooling Loads (kBtu/yr) x (1 ton-hr/12 kBtu) x 1.3 kW/ton   |  |
|   | = 5,374 kBtu/yr x (1 ton-hr/12 kBtu) x 1.3 kW/ton                     |  |
|   | = 582                                                                 |  |
|   | = 582 kWh/yr for San Jose                                             |  |
|   | Heating = Heating Loads (kBtu/yr) x (1 therm/100 kBtu) x 1/Efficiency |  |
|   | = 60,036 kBtu/yr x (1 therm/100 kBtu) x 1/70%                         |  |
|   | = 858                                                                 |  |
|   | = 858 therm/yr for San Jose                                           |  |

```
Additional warm-up/cool-down loads:
Cooling = 19 F x (1hr/day x 3 mo/yr x 22 day/mo) x 1.085 Btu/cfm-deg-hr x 5,000 cfm
```

```
    = 13 F x (Thirday x 3 thicky x 2 day/no) x 1.055 btu/cfm-deg-fit x 5,000 cfm
    = 6,802,950
    = 6,803 kBtu/yr
    Advice filing does not list 5,000 cfm in the equation, but it obviously was used to derive the result.
    Heating = 11 F x (1hr/day x 3 mo/yr x 22 day/mo) x 1.085 Btu/cfm-deg-hr x 5,000 cfm
    = 3,938,550
    = 3,939 kBtu/yr
```

#### Total Retrofit Energy Use:

| Cooling = 48,473 kBtu/yr + 5,373 kBtu/yr +3,939 kBtu/yr                     | _ |
|-----------------------------------------------------------------------------|---|
| = 57,785                                                                    |   |
| Adjust to kWh = 57,785 kBtu/yr x (1 ton/12,000 Btu) x (1,000 Btu/kBtu)      |   |
| = 4,815                                                                     |   |
| = 4,815 ton/yr x 1.3 kW/ton                                                 |   |
| = 6,260                                                                     |   |
| = 6,260 kWh/yr                                                              |   |
| Heating = 40,683 kBtu/yr + 60,036 kBtu/yr + 6,803 kBtu/yr                   |   |
| = 107,522                                                                   |   |
| djust to Therm = 107,522 kBtu/yr x (1 therm/100,000 Btu) x (1,000 Btu/kBtu) |   |
| = 1,075                                                                     |   |
| = 1,075 therm/yr x (1/70%)                                                  |   |
| = 1,536                                                                     |   |
| = 1,536 therm/yr                                                            |   |

#### Energy Savings:

| <br>zhorg) outrige:                         |                                     |   |
|---------------------------------------------|-------------------------------------|---|
| Cooling = 10,353 kWh/yr - 6,260 kWh/yr      |                                     |   |
| = 4,093                                     |                                     |   |
| = 4,093 kWh/yr for a 10 ton unit            | According to Advice Filing p. AC-57 |   |
|                                             |                                     |   |
| Heating = 2,631 therms/yr - 1,536 therms/yr |                                     |   |
| = 1,095                                     |                                     | { |
| = 1,095 therms/yr for a 250 kBtuh unit      | According to Advice Filing p. AC-57 | } |

1

#### 4) Evaluation Estimates:

For Baseline and Business Hours energy usage, see advice filing.

|             |           | ample Heating a | nd Cooling Load Calc | ulations for San J | ose        |           |                   |
|-------------|-----------|-----------------|----------------------|--------------------|------------|-----------|-------------------|
| Outside Air | Total Bin | % OSA           | Return Air           | Mixed Air          | Supply Air | Cooling   | Heating           |
| (F)         | (hr/yr)   |                 | (F)                  | (F)                | · (F)      | (kBtu/yr) | (kBtu/ <u>yr)</u> |
| 92          | 2         | 20%             | 85                   | 86.4               | 82.2       | 46        |                   |
| 87          | 8         | 20%             | 85                   | 85.4               | 84.2       | 52        |                   |
| 82          | 31        | 20%             | 85                   | 84.4               | 86.2       | 0         |                   |
| 77          | 85        | 20%             | 85                   | 83.4               | 88.2       | 0         |                   |
| 72          | 242       | 20%             | 85                   | 82.4               | 90.2       | 0         |                   |
| 67          | 561       | 20%             | 85                   | 81.4               | 92.2       | 0         |                   |
| 62          | 1,148     | 20%             | 85                   | 80.4               | 94.2       | 0         |                   |
| 57          | 1,414     | 20%             | 85                   | . 79.4             | 101.8      | 0         |                   |
| 52          | 1,150     | 20%             | 55                   | 54.4               | 56.8       | 0         | 14,9              |
| 47          | 735       | 20%             | 55                   | 53.4               | 59.8       | 0         | 25,5              |
| 42          | 373       | 20%             | 55                   | 52.4               | 62.8       | 0         | 21,0              |
| 37          | 119       | 20%             | 55                   | 51.4               | 65.8       | 0         | 9,2               |
| 32          | 21        | 20%             | 55                   | 50.4               | 68.8       | 0         | 2,0               |
| 27          | 1         | 20%             | 55                   | 49.4               | 71.8       | 0         | 1                 |
| Total       | 5,890     |                 |                      |                    | Total      | 98        | 73,0              |

Recreated from Advice Filing p.AC-54 (Thermostat Set-back)

Setback Energy Usage:

```
Cooling = Cooling Loads (kBtu/yr) x (1 ton-hr/12 kBtu) x 1.3 kW/ton
```

```
= 5,374 kBtu/yr x (1 ton-hr/12 kBtu) x 1.3 kW/ton
```

- = 11
- = 11 kWh/yr

Heating = Heating Loads (kBtu/yr) x (1 ton-hr/100 kBtu) x 1/Efficiency

- = 60,036 kBtu/yr x (1 therm/100 kBtu) x 1/70%
- = 1.044
- = 1,044 therms/yr

Total Retrofit Energy Use:

Assume same "ramping" used in the Advice Filing.

#### Cooling = 48,473 kBtu/yr + 98 kBtu/yr +3,939 kBtu/yr

= 52,510

Adjust to kWh = 52510 kBtu/yr x (1 ton/12,000 Btu) x (1,000 Btu/kBtu)

- = 4,376
- = 4,376 ton/yr x 1.3 kW/ton
- = 5,689
- = 5,689 kWh/yr

```
Heating = 40,683 kBtu/yr + 73,051 kBtu/yr + 6,803 kBtu/yr
```

```
= 120,537
```

Adjust to Therm = 120,573 kBtu/yr x (1 therm/100,000 Btu) x (1,000 Btu/kBtu)

- = 1,205
- = 1,205 therm/yr x (1/70%)
- = 1,722
- = 1,722 therm/yr

.

bin analysis

۰.

#### Energy Savings:

Cooling = 10,353 kWh/yr - 5,689 kWh/yr

= 4,664

= 4,664 kWh/yr for a 10 ton unit

Heating = 2,631 therms/yr - 1,722 therms/yr

= 909

= 909 therms/yr for a 250 kBtuh unit

#### 5) Summary of Results:

| Impact Type         | Imp           | Recommended |            |
|---------------------|---------------|-------------|------------|
| (per 10-ton unit)   | Advice Filing | Evaluation  | Source     |
| NC Demand (kW)      | -             | •           |            |
| Coinc. Demand (kW)  | -             |             |            |
| Annual Energy (kWh) | 4,093         | 4,664       | Evaluation |

#### \*See following spreadsheet for evauation estimates for Climate Zone 4.

| Climate Zone Specific Impacts: |         |  |  |  |  |  |
|--------------------------------|---------|--|--|--|--|--|
| Climate Zone                   | kWh/ton |  |  |  |  |  |
| CZ_1                           | 73.4    |  |  |  |  |  |
| CZ_2                           | 546.9   |  |  |  |  |  |
| CZ_3                           | 253.3   |  |  |  |  |  |
| CZ_4*                          | 559.6   |  |  |  |  |  |
| CZ_5                           | 305.9   |  |  |  |  |  |
| CZ_6                           | 597.9   |  |  |  |  |  |
| CZ_7                           | 764.2   |  |  |  |  |  |
| CZ_B                           | 844.2   |  |  |  |  |  |
| CZ_9                           | 942.2   |  |  |  |  |  |
| CZ_10                          | 1059.4  |  |  |  |  |  |
| CZ_11                          | 1043.7  |  |  |  |  |  |
| CZ_12                          | 736.6   |  |  |  |  |  |
| CZ_13                          | 1366.5  |  |  |  |  |  |
| CZ_14                          | 1307.2  |  |  |  |  |  |
| CZ_15                          | 2435.2  |  |  |  |  |  |
| CZ_16                          | 489.2   |  |  |  |  |  |

#### 6) Adjust Energy Impacts by Conditioned Area:

Advice Filing Assumptions:

Cooling Energy Savings = 4,664 kWh/yr for a 10 ton unit

= 466.4 kWh/yr-ton

Heating Energy Savings = 909 therms/yr for a 250 kBtuh unit

= 3.636 therms/yr-kBtuh

AC Sizing = 1 ton/500 sqft

According to Advice Filing p. AC-54

Furnace Sizing = 50 Bluh/sqft

According to Advice Filing p. AC-54

#### Evaluation Energy Estimate:

Cooling = (Conditioned Area) x (1 ton/500 sqft) x 466.4 kWh/yr-ton

Heating = (Conditioned Area) x (50 Btuh/sqft) x (3.636 therms/yr-kBtuh) x (1 kBtuh/1,000 Btuh)

|             | Sample Heating and Cooling Load Calculations for Climate Zone 4 |       |            |           |            |           |           |  |  |  |
|-------------|-----------------------------------------------------------------|-------|------------|-----------|------------|-----------|-----------|--|--|--|
| Outside Air | Total Bin                                                       | % OSA | Return Air | Mixed Air | Supply Air | Cooling   | Heating   |  |  |  |
| (F)         | (hr/yr)                                                         |       | (F)        | (F)       | (F)        | (kBtu/yr) | (kBtu/yr) |  |  |  |
| 117         | 0                                                               | 20%   | 74         | 82.6      | 47.0       | 0         | C         |  |  |  |
| 112         | 0                                                               | 20%   | 74         | 81.6      | 49.0       | 0         | C         |  |  |  |
| 107         | 0                                                               | 20%   | 74         | 80.6      | 51.0       | 0         | (         |  |  |  |
| 102         | 0.                                                              | 20%   | 74         | 79.6      | 53.0       | . 0       | (         |  |  |  |
| 97          | 10                                                              | 20%   | 74         | 78.6      | 55.0       | 1,280     | (         |  |  |  |
| 92          | 25                                                              | 20%   | 74         | 77.6      | 57.0       | 2,794     | (         |  |  |  |
| 87          | 112                                                             | 20%   | 74         | 76.6      | 59.0       | 10,694    | 4         |  |  |  |
| 82          | 296                                                             | 20%   | 74         | 75.6      | 61.0       | 23,445    |           |  |  |  |
| 77          | 488                                                             | 20%   | 74         | 74.6      | 63.0       | 30,710    |           |  |  |  |
| 72          | 724                                                             | 20%   | 74         | 73.6      | 65.0       | 33,778    |           |  |  |  |
| 67          | 853                                                             | 20%   | 74         | 72.6      | 67.0       | 25,914    |           |  |  |  |
| 62          | 1,289                                                           | 20%   | 74         | 71.6      | 70.0       | 11,189    |           |  |  |  |
| 57          | 1,780                                                           | 20%   | 74         | 70.6      | 73.0       | 0         | 23,17     |  |  |  |
| 52          | 1,370                                                           | 20%   | 74         | 69.6      | 76.0       | 0         | 47,56     |  |  |  |
| 47          | 986                                                             | 20%   | 74         | 68.6      | 79.0       | 0         | 55,63     |  |  |  |
| 42          | 519                                                             | 20%   | 74         | 67.6      | 82.0       | 0         | 40,54     |  |  |  |
| 37          | 243                                                             | 20%   | 74         | 66.6      | 85.0       | 0         | 24,25     |  |  |  |
| 32          | 61                                                              | 20%   | 74         | 65.6      | 88.0       | 0         | 7,41      |  |  |  |
| 27          | 4                                                               | 20%   | 74         | 64.6      | 91.0       | 0         | 57        |  |  |  |
| 22          | 0                                                               | 20%   | 74         | 63.6      | 94.0       | 0         |           |  |  |  |
| 17          | 0                                                               | 20%   | 74         | 62.6      | 97.0       | 0         |           |  |  |  |
| Total       | 8,760                                                           |       |            |           | Total      | 139,803   | 199,15    |  |  |  |

| P | levised | Energy | Use | 7:00AM - | 6:00PM |
|---|---------|--------|-----|----------|--------|
|   |         |        |     |          |        |

|             | Sar       | nple Heating | and Cooling Lo | ad Calculation | s for Climate Zone | 4         |           |
|-------------|-----------|--------------|----------------|----------------|--------------------|-----------|-----------|
| Outside Air | Total Bin | % OSA        | Return Air     | Mixed Alr      | Supply Air         | Cooling   | Heating   |
| (F)         | (hr/yr)   |              | (F)            | (F)            | (F)                | (kBtu/yr) | (kBtu/yr) |
| 117         | 0         | 20%          | 74             | 82.6           | 47.0               | 0         | 0         |
| 112         | 0         | 20%          | 74             | 81.6           | 49.0               | 0         | 0         |
| 107         | . 0       | 20%          | 74             | 80.6           | 51.0               | 0         | 0         |
| 102         | 0         | 20%          | 74             | 79.6           | 53.0               | 0         | 0         |
| 97          | 7         | 20%          | 74             | 78.6           | 55.0               | 896       | 0         |
| 92          | 1 B       | 20%          | 74             | 77.6           | 57.0               | 2,012     | 0         |
| 87          | 76        | 20%          | 74             | 76.6           | 59.0               | 7,256     | 0         |
| 82          | 205       | 20%          | 74             | 75.6           | 61.0               | 16,237    | 0         |
| 77          | 349       | 20%          | 74             | 74.6           | 63.0               | 21,963    | 0         |
| 72          | 422       | 20%          | 74             | 73.6           | 65.0               | 19,688    | 0         |
| 67          | 381       | 20%          | 74             | 72.6           | 67.0               | 11,575    | 0         |
| 62          | 469       | 20%          | 74             | 71.6           | 70.0               | 4,071     | 0         |
| 57          | 497       | 20%          | 74             | 70.6           | 73.0               | 0         | 6,471     |
| 52          | 262       | 20%          | 74             | 69.6           | 76.0               | 0         | 9,097     |
| 47          | 94        | 20%          | 74             | 68.6           | 79.0               | 0         | 5,303     |
| 42          | 53        | 20%          | 74             | 67.6           | 82.0               | 0         | 4,140     |
| 37          | 21        | 20%          | 74             | 66.6           | 85.0               | 0         | 2,096     |
| 32          | 4         | 20%          | 74             | 65.6           | 88.0               | 0         | 486       |
| 27          | 2         | 20%          | 74             | 64.6           | 91.0               | 0         | 286       |
| 22          | 0         | 20%          | 74             | 63.6           | 94.0               | 0         | 0         |
| 17          | 0         | 20%          | 74             | 62.6           | 97.0               | o         | 0         |
| Total       | 2,860     |              |                |                | Total              | 83,698    | 27,880    |

、 .

| ,           | <u>USE 7:00PM - 6</u><br>Sa: |       | and Cooling Lo | ad Calculation | s for Climate Zone | 4         |           |
|-------------|------------------------------|-------|----------------|----------------|--------------------|-----------|-----------|
| Outside Air | Total Bin                    | % OSA | Return Air     | Mixed Air      | Supply Air         | Cooling   | Heating   |
| (F)         | (hr/yr)                      |       | (F)            | (F)            | (F)                | (kBtu/yr) | (kBtu/yr) |
| 117         |                              | 20%   | 85             | 91.4           | 72.2               | 0         |           |
| 112         |                              | 20%   | 85             | 90.4           | 74.2               | 0         |           |
| 107         |                              | 20%   | 85             | 89.4           | 76.2               | 0         |           |
| 102         |                              | 20%   | 85             | 88.4           | 78.2               | 0         |           |
| 97          | 3                            | 20%   | 85             | 87.4           | 80.2               | 117       |           |
| 92          | 7                            | 20%   | 85             | 86.4           | 82.2               | 159       |           |
| 87          | 36                           | 20%   | 85             | 85.4           | 84.2               | 234       |           |
| 82          | 91                           | 20%   | 85             | 84.4           | 86.2               | 0         |           |
| 77          | 139                          | 20%   | 85             | 83.4           | 88.2               | 0         |           |
| 72          | 302                          | 20%   | 85             | 82.4           | 90.2               | 0         |           |
| 67          | 472                          | 20%   | 85             | 81.4           | 92.2               | 0         |           |
| 62          | 820                          | 20%   | 85             | 80.4           | 94.2               | 0         |           |
| 57          | 1,283                        | 20%   | 85             | 79.4           | 101.8              | 0         |           |
| 52          | 1,108                        | 20%   | 55             | 54.4           | 56.B               | 0         | 14,42     |
| 47          | 892                          | 20%   | 55             | 53.4           | 5 <b>9</b> .8      | 0         | 30,97     |
| 42          | 466                          | 20%   | 55             | 52.4           | 62.8               | 0         | 26,29     |
| 37          | 222                          | 20%   | 55             | 51.4           | 65.8               | 0         | 17,34     |
| 32          | 57                           | 20%   | 55             | 50.4           | 68.8               | 0         | 5,69      |
| 27          | 2                            | 20%   | 55             | 49.4           | 71.8               | 0         | 24        |
| 22          |                              | 20%   | 55             | 48.4           | 74.8               | 0         |           |
| 17          |                              | 20%   | 55             | 47.4           | 77.8               | 0         |           |
| Total       | 5,900                        |       |                | /              | Total              | 511       | _ 94,96   |

Revised Energy Use 7:00PM - 6:00AM

|                               | Cooling | Heating |
|-------------------------------|---------|---------|
| Baseline Loads                | 139,803 | 199,158 |
| Retrofit Business Hours Loads | 83,698  | 27,880  |
| Retrofit Setback Hours Loads  | 511     | 94,964  |
| Ramping Loads                 | 3,939   | 6,803   |
| Total Retrolit Loads          | 88,148  | 129,647 |
| Baseline Energy Use           | 15,145  | 2,845   |
| Retrofit Energy Use           | 9,549   | 1,852   |
| Savings                       | 5,596   | 993     |
| kWh/ton                       | 559.6   |         |
| therm/kBtu                    |         | 3.972   |
|                               |         |         |

1

# Package Terminal AC Units

| Measure<br>Description:                       | Installation of high efficiency packaged terminal air-conditioners<br>and heat-pumps. This measure provides an incentive to install<br>PTAC and PTHP units that exceed Title20 standards.          |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Advice<br>Filing Calculations:     | Demand and energy impacts were developed using equivalent full load hours (ELFHs), coincident demand factors (CDFs), and system efficiency.                                                        |
| Comments on<br>Advice Filing<br>Calculations: | Calculation methods cited in the Advice Filing do not accurately model participant specific retrofits. This is due to a generalized assumption regarding typical efficiency and capacity upgrades. |
| Comments on<br>Advice Filing<br>Inputs:       | Sufficient data are not available to verify either the CDF or the EFLH values used in the calculation.                                                                                             |
|                                               | ELFHs do not take climate zone variation into account.                                                                                                                                             |
| Evaluation Process:                           | Using the change in EER for each site (based upon the MDSS), a revised equation was used in conjunction with Advice Filing EFLH and CDF values, to estimate per participant impacts.               |
| Additional Notes:                             |                                                                                                                                                                                                    |

-

7

.

.

#### Package Terminal AC

- 1) Install high efficiency PTAC and PTHP. Units must exceed Title 20 standards.
- 2) Ex-ante Assumptions Used in Calculations:

| Equivalent Full Load Cooling Hours |            |  |  |
|------------------------------------|------------|--|--|
| Market Segment                     | Hours/Year |  |  |
| Schools K-12                       | 500        |  |  |
| Hotel/Motel                        | 700        |  |  |
| Grocery                            | 600        |  |  |
| College                            | 1,200      |  |  |
| Warehouse                          | 300        |  |  |
| Office                             | 1,000      |  |  |
| Hospitals                          | 1,900      |  |  |
| Other                              | 1,200      |  |  |
| Retail                             | 800        |  |  |
| Restaurant                         | 1,300      |  |  |
| Process Industry                   | 800        |  |  |
| Assembly Industry                  | 2,100      |  |  |
| Advice Filing, Table               | 1, p. AC-3 |  |  |

EER= 10.0 - (0.16 x Capacity Btuh)

#### 3) Advice Filing Estimates:

.

| Measure Demand S   | Savings  |                |                 |                       |                       |                              |
|--------------------|----------|----------------|-----------------|-----------------------|-----------------------|------------------------------|
| Tons               | Title 20 | Title 20<br>kW | High Efficiency | High Efficiency<br>kW | Demand Savings<br>KW  | Demand Savings<br>KW/ton-EER |
| 0,6                | 8.9      | 0.809          | 9.5             | 0.758                 | 0.051                 | 0.142                        |
| 0.8                | 8.6      | 1.116          | 9.6             | 1,000                 | 0.116                 | 0.145                        |
| 1                  | 8.0      | 1.500          | 9.1             | 1.319                 | 0.181                 | 0.165                        |
| 1.3                | 7.6      | 2,053          | 9.1             | 1.714                 | 0.338                 | 0.174                        |
| Advice Filing p. A | C-17,18  |                |                 |                       | Average =             | 0.156                        |
|                    |          |                |                 | Advice Filing lists   | 0.157, the diff, is a | due to rounding              |
|                    |          |                |                 | Advice Filing lists   | 0.157, the diff. is c | due to rounding              |

.

1

| =                 | 0.156 kW/ton- | ER x EFLCH                              |  |
|-------------------|---------------|-----------------------------------------|--|
| Coincident Energy | Sevings       |                                         |  |
| Market Segment    | Hours/Year    | Annual Energy<br>Savings<br>kWh/ton-EER |  |
| Schools K-12      | 500           | 78                                      |  |
| Hotel/Motel       | 700           | 109                                     |  |
| Grocery           | 600           | 94                                      |  |
| College           | 1,200         | 187                                     |  |
| Warehouse         | 300           | 47                                      |  |
| Office            | 1,000         | 156                                     |  |
| Hospitals         | 1,900         | 296                                     |  |
| Other             | 1,200         | 187                                     |  |
| Retail            | 800           | 125                                     |  |
| Restaurant        | 1,300         | 203                                     |  |
| Process Industry  | 800           | 125                                     |  |
| Assembly Industry | 2,100         | 328                                     |  |

#### 4) Evaluation Estimates:

Demand Savings:

EER is not linear.

For this reason, calculating an impact using the unit kW/ton-EER is only valid for a very small range of EER values. Demand estimates are developed at a per unit basis.

Demand Savings = (Capacity, Btuh) x (1/EERtitle20 - 1/EERtetrolit) x (1/W/1.000 Watts) Coincident Demand Savings = Demand Savings x CDF

CDF = varies by climate zone and business type (0.75 used in sample calculations)

|   | Tons | Capacity | Title 20 | High Efficiency | Demand Savings | Coincident Demand |
|---|------|----------|----------|-----------------|----------------|-------------------|
|   |      | Btuh     | EPA      | ER .            | kW.            | Savings kW        |
|   | 0.6  | 7,200    | 8.9      | 9,5             | 0.051          | 0.038             |
| 1 | 0.8  | 9,600    | 8.6      | 9.6             | 0.116          | 0.087             |
|   | 1    | 12,000   | 8.0      | 9.1             | 0.181          | 0.136             |
| Į | 1.3  | 15,600   | 7,6      | 9.1             | 0.338          | 0.254             |

Energy Savings:

Energy savings are also determined at a per unit level.

= Measure Demand Savings x EFLCH

= Assume 1 ton unit with 1.1 change in EER

= 0.181 kW/ton x EFLCH

#### Sample Energy Savings Using 0.181 kW/ton

|                   |            | Annual Energy |
|-------------------|------------|---------------|
| Market Segment    | Hours/Year | Savings       |
|                   |            | kWh           |
| Schools K-12      | 500        | 91            |
| Hotel/Motel       | 700        | 127           |
| Grocery           | 600        | 109           |
| College           | 1,200      | 217           |
| Warehouse         | 300        | 54            |
| Office            | 1,000      | 181           |
| Hospitals         | 1,900      | 344           |
| Other             | 1,200      | 217           |
| Retail            | 800        | 145           |
| Restaurant        | 1,300      | 235           |
| Process Industry  | 800        | 145           |
| Assembly industry | 2,100      | 380           |

# **Reflective Window Film**

| Evaluation Process: Er                                                                | Comments on A<br>Advice Filing bu<br>Inputs: us                                                                                                              | Comments on <i>N</i><br>Advice Filing<br>Calculations:         | Summary of Advice C<br>Filing Calculations: Pe<br>af                                                                                                                                                                    | Measure Pt<br>Description: of                                                                           |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Energy and demand estimates were developed using the correctly applied ASHRAE method. | A review of the inputs from ASHRAE revealed a discrepancy between the annual solar heat gains listed in ASHRAE and those used in Advice Filing calculations. | Methods used to determine energy and demand impacts are valid. | Cooling loads attributable to solar heat gain were calculated using equation 27.41 of the ASHRAE Fundamentals Handbook (p.27.24). Per square foot energy and demand impacts were estimated for applied reflective film. | Provides an incentive for the installation of reflective window film on clear non-North facing glazing. |

Additional Notes:

٦

| Reflective Window Film                                                                           |                                                                                                       |                                                                |                       |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|--|
| 1) Install reflective film on                                                                    | clear glass, non-N                                                                                    | lorth facing exposu                                            | res.                  |  |
| 2) Ex-ante Assumptions Us                                                                        | ed in Calculations:                                                                                   |                                                                |                       |  |
| Assume 75% fenestr<br>Average cooling effici<br>Conversion of kW/ton                             | = 0.45<br>SHRAE 1989 Funda<br>ed by 75% to accou<br>ation for vertical sur<br>ency = 1.3 kW/ton       | mentals, p.27.10,latitud<br>Int for variations in si<br>faces. | tals p.27.36 table 28 |  |
| Sample Building                                                                                  |                                                                                                       |                                                                |                       |  |
| Footprint<br>Building Surface Area<br>While building surface<br>Evaluation Building Surface Area | area is not needed                                                                                    |                                                                | calculation is wrong. |  |
|                                                                                                  |                                                                                                       |                                                                |                       |  |
| Solar Load, Solar<br>Solar Load, East-West<br>3) Advice Filing Estimates:<br>Energy Savings:     | = 309 kBtu/sqft-yr<br>= 241 kBtu/sqft-yr                                                              |                                                                |                       |  |
| Assume 2,250 sqft of                                                                             | diazing per oriente                                                                                   | tion                                                           |                       |  |
| Orientation                                                                                      | Area                                                                                                  | Solar Load                                                     | Annual Solar Load     |  |
|                                                                                                  | (sqft)                                                                                                | (kBtu/sqft-yr)                                                 | (kBtu/yr)             |  |
| South                                                                                            | 2,250                                                                                                 | 309                                                            | 695,250               |  |
| East                                                                                             | 2,250                                                                                                 | 241                                                            | 542,250               |  |
| West                                                                                             | 2,250                                                                                                 | 241                                                            | 542,250               |  |
| Su                                                                                               |                                                                                                       |                                                                | 1,779,750             |  |
| Advice Filing table, p                                                                           | .AC-59                                                                                                |                                                                |                       |  |
|                                                                                                  | = 0.95 SC x 1,779,7<br>= 1,690,763<br>= 1,690,763 kBtu/y                                              |                                                                |                       |  |
| Retrofit Solar Gain                                                                              | = 0.45 SC x 1,779,7<br>= 800,888<br>= 800,888 kBtu/yr                                                 |                                                                |                       |  |
| Annual Energy Savings                                                                            | = (1.690,763 kBtu/y<br>= 889,875                                                                      | r) - 800,888 kBtu/yr                                           |                       |  |
| Adjust to kWh                                                                                    | ⇒ 889,875 kBłu/yr ><br>= 74,156<br>= 74,156 ton-hr/yr ><br>= 96,403<br>= (96,403 kWh/yr)/6<br>= 14.28 | 5,750 sqft                                                     | < 1,000 Btu/kBtu      |  |
|                                                                                                  | = 14.28 kWh/sqft-y                                                                                    | r                                                              |                       |  |

| Demand Saving         | s:         |                        |                                                    |
|-----------------------|------------|------------------------|----------------------------------------------------|
| Advice Filing         | estimate:  |                        |                                                    |
|                       | Ave        | erage Peak Gain        | ,                                                  |
| Orientation           | (          | Btu/hr-sqit)           |                                                    |
|                       | East       | 216                    |                                                    |
|                       | South      | 33.3                   |                                                    |
|                       | West       | 25                     |                                                    |
|                       | Total      | 274.3                  |                                                    |
|                       | Average    | 91.43                  |                                                    |
| Advice Filing,        | p.AC-60    |                        |                                                    |
|                       |            |                        | Alternate Calculation:                             |
| Total Average Peat    | Gain ⇒ 274 | 4.3 Btu/sqft x 2,250 s |                                                    |
|                       |            | 7,175                  | = 617.153                                          |
| Account for Load Time | Delay = 61 | 7.175 Btu x 0.65 mas:  | iss coefficient                                    |
|                       |            | 1,164                  |                                                    |
| Adjusted              |            |                        | /12,000 Blu/hr x 1.3 kW/ton                        |
|                       | = 43       |                        |                                                    |
|                       | = 43       | kW                     |                                                    |
|                       | Th         | e Advice Filina does n | not perform any further calculations.              |
|                       |            | is is NOT the demand s | · ·                                                |
|                       |            | mand Savings = 43 k    | •                                                  |
|                       |            | = 0.006                |                                                    |
|                       |            | = 0.006                | D64 kW/sqft                                        |
|                       | Th         | is would assume a 100  | 00% reduction in solar gains during the peak hour. |

#### 4) Evaluation Estimates:

Calculate Baseline Solar Gains Using ASHRAE Fundamentals†:

| Month     | Half Day SHGF | Half Day SHGF | Half Day SHGF | Daily SHGF   | Annual SHGF | Daily SHGF   | Annual SHGF |
|-----------|---------------|---------------|---------------|--------------|-------------|--------------|-------------|
|           | East          | South         | West          | East-West    | East-West   | South        | South       |
|           | (Btu/hr-sqft) | (Btu/hr·sqft) | (Btu/hr-sqft) | Btu/sqft-day | Btu/sqft-yr | Btu/sqft-day | Btu/sqft-yr |
| January   | 452           | 813           | 62            | 514          | 15,934      | 1626         | 50,406      |
| February  | 648           | 821           | 85            | 733          | 20,524      | 1642         | 45,976      |
| March     | 832           | 694           | 114           | 946          | 29,326      | 1388         | 43,028      |
| April     | 957           | 488           | 148           | 1105         | 33,150      | 976          | 29,280      |
| May       | 1024          | 358           | 176           | 1200         | 37,200      | 716          | 22,196      |
| June      | 1038          | 315           | 188           | 1226         | 36,780      | 630          | 18,900      |
| July      | 1008          | 352           | 181           | 1189         | 36,859      | 704          | 21,824      |
| August    | 928           | 474           | 157           | 1085         | 33,635      | 948          | 29,388      |
| September | 787           | 672           | 119           | 906          | 27,180      | 1344         | 40,320      |
| October   | 623           | 791           | 89            | 712          | 22,072      | 1582         | 49,042      |
| November  | 445           | 798           | 63            | 508          | 15,240      | 1596         | 47,880      |
| December  | 374           | 775           | 53            | 427          | 13,237      | 1550         | 48,050      |
| · · ·     |               |               |               | Sum :        | = 321,137   | Sum =        | 446,290     |

ASHRAE Fundamentals† Table 27-8, p.27.10

East-West Solar Gain = 321,137 Btu/sqft-yr x .75 shading factor

= 241

= 241 kBtu/sqft-yr

South Solar Gain = 446,290 Btu/sqlt-yr x .75 shading factor

= 335

= 335 kBtu/sqft-yr

Advice Filing calculates 309 kBtu/sqft-yr for South solar gain, which is not consistent with the Evaluation estimate. Application of a 75% shading factor renders this a conservative estimate.

Potential loads on unshaded surfaces could be as high as 100% of those estimated.

.

#### Calculate Baseline Peak Solar Gains Using ASHRAE Fundamentalst;

|              |       | Peak Ho          | our Solar Gains (B | tu/hr-sqft)       |
|--------------|-------|------------------|--------------------|-------------------|
|              |       | 8:00 AM, 4:00 PM | 9:00 AM, 3:00 PM   | 10:00 AM, 2:00 PM |
| June (ave)   |       | 90.67            | 89.67              | 83.00             |
|              | East  | 216              | 192                | 145               |
|              | South | 29               | 45                 | 69                |
|              | West  | 27               | 32                 | 35                |
| July (ave)   |       | 90.67            | 92.00              | 87.33             |
|              | East  | 216              | 193                | 146               |
|              | South | 30               | 52                 | B1                |
|              | West  | 26               | 31                 | 35                |
| August (ave) |       | 93,33            | 101.67             | 99.33             |
|              | East  | 216              | 197                | 150               |
|              | South | 41               | 80                 | 116               |
|              | West  | 23               | 28                 | 32                |
| Average      |       | 91.56            | 94.44              | 89.89             |
|              | East  | 216              | 194                | 147               |
|              | South | 33.3             | 59                 | 88.7              |
|              | West  | 25.3             | 30.3               | 34                |

ASHRAE Fundamentals† p.27.10, Table B

Peak solar gains occur during the 9:00 AM or 3:00 PM hour. Advice Filing uses values from the 8:00 AM or 4:00 PM hour (in bold).

#### Energy Savings:

Assume 2,250 sqft of glazing per orientation.

| Orientation | Area   | Solar Load     | Annual Solar Load |
|-------------|--------|----------------|-------------------|
|             | (sqft) | (kBtu/sqft-yr) | (kBtu/yr)         |
| South       | 2,250  | 335            | 753,750           |
| East        | 2,250  | 241            | 542,250           |
| West        | 2,250  | 241            | 542,250           |
| Sum         | 6,750  |                | 1,838,250         |

Advice Filing table, p.AC-59

```
Baseline Solar Gain = 0.95 SC x 1,838,250 kBtu/yr

= 1,746,338

= 1,746,338 kBtu/yr

Retrofit Solar Gain = 0.45 SC x 1,838,250 kBtu/yr

= 827,213

= 827,213 kBtu/yr

Annual Energy Savings = (1,746,338 kBtu/yr) - 827,213 kBtu/yr

= 919,125

Adjust to kWh = 919,125 kBtu/yr x 1ton/12,000Btu/hr x 1,000 Btu/kBtu

= 76,594

= 76,594

= 76,594 ton-hr/yr x 1.3 kW/ton

= 99,572

= (977,527 kWh/yr)/6,750 sqft

= 14.74
```

= 14.74 kWh/sqft-yr

•

.

.

| Demand Savings:              |                                                             |
|------------------------------|-------------------------------------------------------------|
|                              | (216 Btu/sqft + 33.3 Btu/sqft +25.3 Btu/sqft) x 2,250 sqft  |
|                              | 617,850                                                     |
| =                            | 617,850 Btu x 0.95 SC                                       |
| =                            | 586,958                                                     |
| Adjust for Load Time Delay = | 586,958 Btu x 0.65 mass coefficient factor                  |
| =                            | 381,522                                                     |
| =                            | 381,522 Btu                                                 |
|                              |                                                             |
| Retrofit Peak Gain =         | 617,850 Btu x 0.45 SC                                       |
| =                            | 278,033                                                     |
| Adjust for Load Time Delay = | 278,033 Btu x 0.65 mass coefficient factor                  |
| =                            | 180,721                                                     |
| =                            | 180,721 Btu                                                 |
|                              |                                                             |
| Demand Savings =             | 381,522 Btu - 180,721 Btu                                   |
| =                            | 200,801                                                     |
| Adjusted to kW/sqft =        | (200,801 Btu x 1 ton/12,000 Btu/hr x 1.3 kW/ton)/6,750 sqft |
| =                            | 0.0032                                                      |
| =                            | 0.0032 kW/sqft                                              |
|                              |                                                             |
| Coincident Demand Savings =  | 0.0032 kW/sqft x 0.75 CDF                                   |
| =                            | 0.0024                                                      |
| =                            | 0.0024 kW/sqft                                              |
|                              |                                                             |

5) Summary of Results:

| Impact Type         | Im            | Recommended |            |
|---------------------|---------------|-------------|------------|
| (per soft of film)  | Advice Filing | Evaluation  | Source     |
| Coinc. Demand (kW)  | 0.0064        | 0.0024      | Evaluation |
| Annual Energy (kWh) | 14.28         | 14.74       | Evaluation |

6) Sources

† ASHRAE Handbook, "Fundamentals"; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA, 1989

.

# **Direct Evaporative Coolers**

| Measure<br>Description:                       | Provides an incentive for the replacement of an existing AC unit<br>with an equally sized direct evaporative cooler system. Measure<br>participation is restricted to certain climate zones.                                                                                                                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Advice<br>Filing Calculations:     | Used HVAC manufactures' software to develop demand and energy impacts.                                                                                                                                                                                                                                                       |
| Comments on<br>Advice Filing<br>Calculations: | No documentation is provided for the method used. Additionally, final impacts are greater than baseline demand and energy usage, which is theoretically impossible. (See Additional Notes)                                                                                                                                   |
| Comments on<br>Advice Filing<br>Inputs:       | The inputs used in the calculations are not substantiated.                                                                                                                                                                                                                                                                   |
| Evaluation Process:                           | Demand and energy savings were determined using climate zone-<br>specific cooling degree hours, fan motor horsepower and the<br>efficiency of the existing AC unit (see Additional Notes). Impacts<br>were developed using motor efficiency values listed in the baseline<br>assumptions for the RE Motors program.          |
| Additional Notes:                             | In the interim between the 1994 Advice Filing and the current<br>evaluation, PG&E revised substantially the methods used to<br>determine impacts. The evaluation effort concentrated on the<br>revised algorithms, and used (with slight modifications) the current<br>methods developed by PG&E for the 1996 Advice Filing. |

#### **Direct Evaporative Cooler**

1) Replace an existing AC unit with an equally sized direct evaporative cooler.

#### 2) Ex-ante calculation assumptions:

#### 1994 Advice Filing Assumptions

| Air Flow =           | assumed to be 5,000 CFM             |
|----------------------|-------------------------------------|
| Air Heat Capacity =  | 1.085 Btu/hr-F-CFM                  |
| Cooling Efficiency = | 8.8 Btu/Watt-hr (EER) or 1.3 kW/ton |
| Furnace Efficiency = | 70%                                 |

#### 1996 Advice Filing Assumptions

High comfort occupancy has an internal requirement of 76 F, 60% RH.

For a 5 F  $\Delta$ t between entering DB and interior design DB, the outside WB temp must be 64 F or lower.

Low comfort occupancy has an internal requirement of 84 F, 60% RH.

For a 5 F Δt between entering DB and interior design DB, the outside WB temp must be 72 F or lower.

4 hp of fan energy is required to move 12,000 cfm at 0.5 in static pressure.

This is consistent with manufactures' data.

Conventional HVAC system efficiency is 1.3 kW/ton.

To convert from hp to kW use 0.746 kW/hp.

The heat capacity of air is 1.08 Btu/hr-F-cfm.

#### 3) 1994 Advice Filing Estimates:

Demand Savings for a 10 ton unit (kW/yr)

| Market Segment |     | CEC Climate Zone |     |      |      |      |      |      |      |
|----------------|-----|------------------|-----|------|------|------|------|------|------|
|                | 1   | 2                | 3   | 4    | 5    | 11   | 12   | 13   | 16   |
| Warehouse      | N/A | 8.1              | N/A | 6.1  | 5.1  | 10.1 | 9.1  | 9.1  | 6.1  |
| Hotel/Motel    | N/A | 7.1              | N/A | 5.1  | 4.1  | 9.1  | 8.1  | 8.1  | 5.1  |
| Retail         | N/A | 16.1             | N/A | 14.1 | 12.1 | 19.1 | 18.1 | 19.1 | 13.1 |
| Restaurant     | N/A | 27.2             | N/A | 23.2 | 19.2 | 31.2 | 31.2 | 32.2 | 18.2 |
| Average        | N/A | 14.6             | N/A | 12.1 | 10,1 | 17.4 | 16.6 | 17.1 | 10.6 |

Advice Filing p.AC-44

Assuming that a 10 ton unit at 1.3 kW/ton (8.8 EER) has a power draw of 13 kW, many of these estimates are unreasonable. Virtually all of the retail and restaurant estimates are greater than the connected load of the baseline unit.

### Energy Savings for a 10 ton unit (kWh/yr)

| Market Segment |     | CEC Climate Zone |     |        |        |        |        |        |        |
|----------------|-----|------------------|-----|--------|--------|--------|--------|--------|--------|
| _              | 1   | 2                | 3   | 4      | 5      | 11     | 12     | 13     | 16     |
| Warehouse      | N/A | 8,436            | N/A | 650    | 1,805  | 13,593 | 9,549  | 13,302 | 5,054  |
| Hotel/Motel    | N/A | 29,014           | N/A | 23,202 | 22,758 | 37,998 | 32,611 | 37.284 | 26,093 |
| Retail         | N/A | 17,685           | N/A | 2,960  | 4,163  | 25,662 | 19,651 | 26,306 | 9,720  |
| Restaurant     | N/A | 48,378           | N/A | 36,800 | 28,485 | 60,599 | 54,631 | 63,090 | 32,258 |
| Average        | N/A | 25,878           | N/A | 15,903 | 14,303 | 34,463 | 29,111 | 34,996 | 18,281 |

Advice Filing p.AC-44

,

#### 4) 1996 Advice Filing Estimates:

In the interim between the 1994 Advice Filing and the current evaluation, PG&E significantly revised the methods used to develop impacts. The following estimates were developed by PG&E for the 1996 Advice Filing<sup>†</sup>.

#### Evaporative Capacity;

 $Q = cfm \times \Delta t \times 1.08 Btu/hr-F-cfm$ 

#### where:

Q = evaporative capacity (Btu/hr)

cfm =j cubic feet per minute

Δt = temperature differential between indoor design conditions and supply air temperature

that can be generated without exceeding the moisture ratio of the design conditions.

≠ indoor design temp - {DB design temp - {70% effectiveness x (DB design temp - WB design temp)}}

| Climate Zone | DB Design<br>temp (F) | WB Design<br>temp (F) | Exit temp from<br>evap. | Evaluation | Advice Filing | Capacity<br>(Btu/hr) | Capacity<br>(tons) |
|--------------|-----------------------|-----------------------|-------------------------|------------|---------------|----------------------|--------------------|
| 2            | 90                    | 65                    | 72.5                    | 11.5       | 11.5          | 149,040              | 12.42              |
| 4            | 83                    | 71                    | 74.6                    | 8.0        | 8.0           | 103,680              | 8.64               |
| 5            | 77                    | 65                    | 68.6                    | 15.4       | 15.4          | 199,584              | 16.63              |
| 11           | 96                    | 66                    | 75                      | 9.0        | 9.0           | 116,640              | 9.72               |
| 12           | 93                    | 68                    | 75.5                    | 8.5        | 8.5           | 110,160              | 9.18               |
| 13           | 99                    | 71                    | 79.4                    | 4.6        | 4.6           | 59,616               | 4.97               |
| 16           | 99                    | 63                    | 73.8                    | 10.2       | 10.2          | 132,192              | 11.02              |

#### Evaporator Fan Demand:

| A 4 hp fan can move 12,000 cfm | 1 |
|--------------------------------|---|
| = 4 hp x 0.746 kW/hp           |   |
| = 2.984                        |   |
| = 2.984 kW                     |   |

#### Demand Savings:

| = baseline demand (kW/ton) - [fan demand (kW)/evaporator capacity (tons)] |
|---------------------------------------------------------------------------|
| = 1.3 kW/ton - 2.984 kW/capacity (tons)                                   |

#### Energy Savings:

| = demand savings ( | kW/ton) x cooling degree hours ( | (CDH) · |  |
|--------------------|----------------------------------|---------|--|
|                    |                                  |         |  |

| Climate Zone | Demand Impacts<br>(kW/ton) | AF Dem. Impacts<br>(kW/ton) | CDH<br>(hours) | Energy Impacts<br>(kWh/ton) | AF Energy Imp.<br>(kWh/ton) |
|--------------|----------------------------|-----------------------------|----------------|-----------------------------|-----------------------------|
| 2            | 1.06                       | 1.04                        | 1,003          | 1,063                       | 1,043                       |
| 4            | 0.95                       | 0.93                        | 861            | 822                         | 801                         |
| 5            | 1.12                       | 1.11                        | 493            | 552                         | 547                         |
| 11           | 0.99                       | 0.97                        | 1,729          | 1,717                       | 1,677                       |
| 12           | 0.97                       | 0.95                        | 1,331          | 1,298                       | 1,264                       |
| 13           | 0.70                       | 0.65                        | 2,252          | 1,575                       | 1,464                       |
| 16           | 1.03                       | 1.01                        | 720            | 741                         | 727                         |

#### 5) Evaluation Estimates:

Use method described in the RE Motors program, (Advice Filing, p.MT-8). Baseline efficiency for a 4 hp motor = 83%, according to Advice Filing p.MT-7 Load factor is assumed to be 80%, according to Advice Filing p.NRR-64

#### Fan Demand Savings:

= kW/hp x hp x 1/eff x % load

,

- = 0.746 kW x 4 hp x (1/83% eli) x 80% load
- = 2.876
- = 2.876 kW/12,000 cfm

#### Coincident Demand Savings:

- = [baseline demand (kW/ton) x CDF] [fan demand (kW)/evaporator capacity (tons)]
- = [(1.3 kW/ton) x 75%] 2.876 kW/capacity (tons)

#### Energy Savings:

= demand savings (kW) x cooling degree hours (CDH)

#### 6) Summary of Results:

| Climate Zone | Dema                   | nd Impacts                     | Cooling Degree   | Energ                   | y Impacts                       |
|--------------|------------------------|--------------------------------|------------------|-------------------------|---------------------------------|
|              | Evaluation<br>(kW/ton) | 1996 Advice Filing<br>(kW/ton) | Hours<br>(hours) | Evaluation<br>(kWh/ton) | 1996 Advice Filing<br>(kWh/ton) |
| 2            | 0.74                   | 1.04                           | 1,003            | 1,072                   | 1,043                           |
| 4            | 0.64                   | 0.93                           | 861              | 833                     | 801                             |
| 5            | 0.80                   | 1.11                           | 493              | 556                     | 547                             |
| 11           | 0.68                   | 0.97                           | 1,729            | 1,736                   | 1,677                           |
| 12           | 0.66                   | 0.95                           | 1,331            | 1,313                   | 1,265                           |
| 13           | 0.40                   | 0.65                           | 2,252            | 1,624                   | 1,464                           |
| 16           | 0.71                   | 1.01                           | 720              | 748                     | 727                             |

#### 7) Sources

† PG&E, "1997 Customer Energy Efficiency Programs, Advice Letter No. 1978-G/1608-E Workpapers"; pp. AC-23 to AC-25

# **Bypass Timer**

| Measure<br>Description:                       | Installation of a bypass timer to control the fans of a space which is intermittently occupied after hours when the space conditioning system is off.                                                     |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Advice<br>Filing Calculations:     | Using fan motor horsepower, assumed hours of operation and a fan load/efficiency value, energy savings were developed. No demand savings are estimated since bypass timers do not affect the peak demand. |
| Comments on<br>Advice Filing<br>Calculations: | The percent a fan is loaded is generally independent from efficiency.                                                                                                                                     |
| Comments on<br>Advice Filing<br>Inputs:       | The fan load/efficiency value is not substantiated with documentation. Assumed hours of operation are poorly documented.                                                                                  |
| Evaluation Process:                           | Energy impacts were developed using fan load and motor efficiency values listed in the baseline assumptions for RE HVAC measures and the RE Motors program, respectively.                                 |
| Additional Notes:                             |                                                                                                                                                                                                           |

AF analysis

#### **Bypass Timer**

 Install a bypass timer for a zone intermittently occupied after hours when conditioning is scheduled off. Timer controls the fans of a central AC system.

#### 2) Ex-ante calculation assumptions:

Average occupancy of zone is 2 hours per night.

Existing fan power  $\approx$  1.0 hp. Fans operate at 80% load/efficiency.

This value appears to be a combination of fan load and fan efficiency.

These two variables are independent of each other, and so should not be combined.

To convert from hp to kW use 0.746 kW/hp.

Baseline assumes fans are on for 11 hours a day, 260 days a year after business hours.

According to the Setback Programmable Thermostat measure, business hours are from 7:00 AM to 6:00 PM (11 hrs).

This implies that the system would be off for 13 hours (24 hr - 11 hr).

Retrofit assumes fans are on for 2 hours a day, 5 days a week after business hours.

Savings associated with the compressor are ignored, as night cooling loads are small due to low occupancy and low ambient temperatures. Heating savings are not determined.

#### 3) Advice Filing Estimates:

#### Baseline Energy Use:

| = | = 1 hp x 0.746 kW/hp x 80% load/eff x 11 hrs/day x 260 days/yr |
|---|----------------------------------------------------------------|
| · | = 1,707                                                        |
|   | = 1,707 kWh/yr                                                 |
|   | Advice Filing lists 1,797 kWh/yr (AC-78)                       |

#### Energy Savings:

|   | = 1 hp x 0.746 kW/hp x 80% eff. x (11 - 2 hrs/day  | ) x 260 days/yr                                         |  |
|---|----------------------------------------------------|---------------------------------------------------------|--|
|   | = 1,397                                            |                                                         |  |
|   | = 1,397 kWh/yr                                     |                                                         |  |
| 1 | This is 82% of the baseline.                       | 82%                                                     |  |
|   | Advice Filing also lists 82% (p.AC-78) which indic | ates that the 1,797 kWh/yr value was typed incorrectly. |  |
|   |                                                    |                                                         |  |

#### NC Demand Savings:

· · · · ·

| Livings.             |      |  |
|----------------------|------|--|
| = 1 hp x 0.746 kW/hp |      |  |
| = 0.746 kW           | <br> |  |

#### Cycle Peak Coincident Demand Savings:

| = 0.746 kW x 0.82 x 0.75 CDF                   |                                                              |
|------------------------------------------------|--------------------------------------------------------------|
| = 0.459                                        |                                                              |
| = 0.459 kW                                     |                                                              |
| Demand savings is counted towards off-peak and | d partial-peak savings only, and is not applied to the MDSS. |

| 5) | Evaluation Estimates: | Use method described in the RE Motors proggram, (Advice Filing, p.MT-8).<br>Baseline efficiency for a 1 hp motor = 77%, according to Advice Filing p.MT-7<br>Load factor is assumed to be 80%, according to Advice Filing p.NRR-64 |     |        |
|----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|    | Baseline Energy Use:  |                                                                                                                                                                                                                                    |     |        |
|    |                       | = 1 hp x 0.746 kW/hp x (1/77% eff.) x 80% load x 11 hrs/day x 260 days/yr                                                                                                                                                          |     | 0.9375 |
|    |                       | = 2,217                                                                                                                                                                                                                            |     |        |
|    |                       | = 2,217 kWh/yr                                                                                                                                                                                                                     |     |        |
|    | Energy Savings:       |                                                                                                                                                                                                                                    |     |        |
|    |                       | = 1 hp x 0.746 kW/hp x (1/77% eff.) x 80% load x (11 - 2 hrs/day) x 260 days/yr                                                                                                                                                    |     |        |
|    |                       | = 1,814                                                                                                                                                                                                                            |     |        |
|    |                       | = 1,814 kWh/yr                                                                                                                                                                                                                     |     |        |
|    |                       | This is 82% of the baseline.                                                                                                                                                                                                       | 82% |        |
|    | NC Demand Savings:    |                                                                                                                                                                                                                                    |     |        |
|    |                       | = kW x 1/eff x % load x (impact hours/baseline hours)                                                                                                                                                                              |     |        |
|    |                       | = 0.746 kW x (1/77% eff) x 80% load x (9 hrs/11 hrs)                                                                                                                                                                               |     |        |
|    |                       | = 0.634                                                                                                                                                                                                                            |     |        |
|    |                       | = 0.634 kW                                                                                                                                                                                                                         |     |        |
|    |                       |                                                                                                                                                                                                                                    |     |        |

Coincident Demand Savings:

.

.

Since fans are assumed to run continuously during the peak period, the coincident demand savings are zero.

-

### 6) Summary of Results:

| Impact Type         | Impact        |            | Recommended |
|---------------------|---------------|------------|-------------|
| (per timer)         | Advice Filing | Evaluation | Source      |
| Coinc. Demand (kW)  | 0             | 0          |             |
| Annual Energy (kWh) | 1,397         | 1,814      | Evaluation  |

# Timeclock

| Measure<br>Description:                       | Installation of timeclocks, which regulate HVAC usage in spaces with regular occupied and unoccupied periods.                                                                                                                                                                                                                                  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Advice<br>Filing Calculations:     | A bin analysis method was employed to create per timeclock<br>energy impacts. Demand impacts were not calculated, as<br>timeclocks do not affect peak demand.                                                                                                                                                                                  |
| Comments on<br>Advice Filing<br>Calculations: | Program review has shown that the per-unit impacts were applied<br>to each participant with the assumption that each timeclock<br>controlled the conditioning of 5,000 sq ft of office space, regardless<br>of building size or type. These impacts were not adjusted to<br>account for different climate zones.                               |
| Comments on<br>Advice Filing<br>Inputs:       | Weather data was for San Jose, and thus only represented one climate zone.                                                                                                                                                                                                                                                                     |
| Evaluation Process:                           | Energy and therm impacts were developed using modified return air<br>values during setback hours and binned weather data from all 16<br>California climate zones. A conditioned square footage value was<br>developed for each participant using MDSS data. Climate zone-<br>specific impacts (leveraged by square footage) were then applied. |
| Additional Notes:                             | If the ex ante assumptions for a given premise indicated only energy impacts, then no therm impact was developed.                                                                                                                                                                                                                              |

1

#### **Timeclock - Electronic:**

- 1) Installs electronic timeclocks in spaces with regular occupied and unoccupied periods.
- 2) Assumptions used in Advice Filing:

Office hours = 07:00-18:00 M-F Occupied Hours = 11 hr/day x 5 day/week x 52.14 week/yr = 2,868 = Listed as 2,870 hr/year AC size = 10 tons (120,000 Btu) AC Efficiency = 1.3 kW/ton with out fans EER = 9.23 Btu/Watt (calculated in spreadsheet "Window Film AF") Area serviced/ton = 500 sqft/ton Heating size = 250 kBtu/hr Heating efficiency = 70% Area served = 50 Btu/hr-sqft Total cfm = 5,000 Fan hp = 3 Outside Supply Air = 20% Location = San Jose, ASHRAE bin weather data

#### A bin analysis method is used, where:

OSA = outside air temp (F) Bin = hours per year that temp is in a given range (hr/yr) % OSA = percent outside air (fixed at 20%) Ret Air = return air temp (F) Mix Air = mixed air temperature = (% OSA x OSA) + [(1 - % OSA) x Ret Air] 67 F = temp at which system switches from cooling to heating SAT = supply air temp (F) SAT (cooling) = 67 F + [[67 F - OSA)/5] x 2] SAT (heating) = 67 F + [[67 F - OSA)/5] x 3] Heating Loads (kBtu/yr) = [SAT - Mix Air (F)] x Bin (hr/yr) x (1.085 Btu/hr-F-CFM) x Air Flow (CFM) Cooling Loads (kBtu/yr) = [Mix Air - SAT (F)] x Bin (hr/yr) x (1.085 Btu/hr-F-CFM) x Air Flow (CFM)

|             | Sam       | ple Heating and | Cooling Load Cal | ulations for San | Jose       |           |           |
|-------------|-----------|-----------------|------------------|------------------|------------|-----------|-----------|
| Outside Air | Total Bin | % OSA           | Return Air       | Mixed Air        | Supply Air | Cooling   | Heating   |
| (F) '       | (hr/yr)   |                 | (F)              | (F)              | (F)        | (kBtu/yr) | (kBtu/yr) |
| 92          | 6         | 20%             | 74               | 77.6             | 57         | 671       | 0         |
| 87          | 24        | 20%             | 74               | 76.6             | 59         | 2,292     | 0         |
| 82          | 84        | 20%             | 74               | 75.6             | 61         | 6,653     | 0         |
| 77          | 207       | 20%             | 74               | 74.6             | 63         | 13,027    | 0         |
| 72          | 535       | 20%             | 74               | 73.6             | 65         | 24,960    | · 0       |
| 67          | 1,077     | 20%             | 74               | 72.6             | 67         | 32,719    | 0         |
| 62          | 1,756     | 20%             | 74               | 71.6             | 70         | 15,242    | 0         |
| 57          | 1,977     | 20%             | 74               | 70.6             | 73         | 0         | 25,741    |
| 52          | 1,545     | 20%             | 74               | 69.6             | 76         | 0         | 53,642    |
| 47          | 935       | 20%             | 74               | 68.6             | 79         | 0         | 52,753    |
| 42          | 451       | 20%             | 74               | 67.6             | 82         | 0         | 35,232    |
| 37          | 138       | 20%             | 74               | 66.6             | 85         | 0         | 13,775    |
| 32          | 24        | 20%             | 74               | 65.6             | 88         | 0         | 2,916     |
| 27          | 1         | 20%             | 74               | 64.6             | 91         | 0         | 143       |
| Total       | 8,760     |                 |                  |                  | Total      | 95,564    | 184,203   |

Total 8,760 Recreated from Advice Filing p.AC-54 (Thermostat Set-back)

Baseline Energy Usage:

| _norgy obugo. |                                                                                                             |
|---------------|-------------------------------------------------------------------------------------------------------------|
| Cooing =      | Cooling Loads (kBtu/yr) x (1 ton-hr/12 kBtu) x 1.3 kW/ton                                                   |
| =             | 95,564 kBtu/yr x (1 ton-hr/12 kBtu) x 1.3 kW/ton                                                            |
| =             | 10,353                                                                                                      |
| =             | 10,353 kWh/yr for San Jose                                                                                  |
|               | Heating Loads (kBtu/yr) x (1 therm/100 kBtu) x 1/Efficiency<br>184,203 kBtu/yr x (1 therm/100 kBtu) x 1/70% |
|               | 2,631                                                                                                       |

= 2,631 therm/yr for San Jose

Revised Energy Use 7:00AM - 6:00PM

|                    | San                  | ple Heating and | Cooling Load Cald | ulations for San | Jose              |                      |                      |
|--------------------|----------------------|-----------------|-------------------|------------------|-------------------|----------------------|----------------------|
| Outside Air<br>(F) | Total Bin<br>(hr/yr) | % OSA           | Return Air<br>(F) | Mixed Air<br>(F) | Supply Air<br>(F) | Cooling<br>(kBtu/yr) | Heating<br>(kBtu/yr) |
| 92                 | 4                    | 20%             | 74                | 77.6             | 57                | 447                  | 0                    |
| 87                 | 16                   | 20%             | 74                | 76.6             | 59                | 1,528                | 0                    |
| 82                 | 53                   | 20%             | 74                | 75.6             | 61                | 4,198                | 0                    |
| 77                 | 122                  | 20%             | 74                | 74.6             | 63                | 7,677                | 0                    |
| 72                 | 293                  | 20%             | 74                | 73.6             | 65                | 13,670               | 0                    |
| 67                 | 516                  | 20%             | 74                | 72.6             | 67                | 15,676               | 0                    |
| 62                 | 608                  | 20%             | 74                | 71.6             | 70                | 5,277                | 0                    |
| 57                 | 563                  | 20%             | 74                | 70.6             | 73                | 0                    | 7,330                |
| 52                 | 395                  | 20%             | 74                | 69.6             | 76                | 0                    | 13,714               |
| 47                 | 200                  | 20%             | 74                | 68.6             | 79                | 0                    | 11,284               |
| 42                 | 78                   | 20%             | 74                | 67.6             | 82                | 0                    | 6,093                |
| 37                 | 19                   | 20%             | 74                | 66.6             | 85                | 0                    | 1,897                |
| 32                 | 3                    | 20%             | 74                | 65.6             | 88                | 0                    | 365                  |
| 27                 | 0                    | 20%             | 74                | 64.6             | 91                | 0                    | 0                    |
| Total              | 2,870                |                 |                   |                  | Total             | 48,473               | 40,683               |

Advice Filing lists total bin as 2,879 hours, but calculations do not support this.

 Total
 48,473
 40,683

 Recreated from Advice Filing p.AC-54 (Thermostat Set-back)

2/18/97

۰

.

|   | Business Hours Energy Usage:                                          |
|---|-----------------------------------------------------------------------|
| 1 | Cooling = Cooling Loads (kBtu/yr) x (1 ton-hr/12 kBtu) x 1.3 kW/ton   |
|   | = 48,473 kBtu/yr x (1 ton-hr/12 kBtu) x 1.3 kW/ton                    |
|   | = 5,251 *                                                             |
|   | = 5,251 kWh/yr for San Jose                                           |
|   | Heating = Heating Loads (kBtu/yr) x (1 therm/100 kBtu) x 1/Efficiency |
|   | = 40,683 kBtu/yr x (1 therm/100 kBtu) x 1/70%                         |
|   | = 581                                                                 |
| L | = 581 therm/yr for San Jose                                           |

|  | Additional | warm-up/cool-down | loads: |
|--|------------|-------------------|--------|
|--|------------|-------------------|--------|

| <br>Cooling = 16 F x (1.5 hr/day x 3 mo/yr x 22 day/mo) x 1.085 Btu/cfm-deg-hr x 5,000 cfm             |
|--------------------------------------------------------------------------------------------------------|
| <b>≈</b> 8,593,200                                                                                     |
| = 8,593 kBtu/yr                                                                                        |
| Advice filing does not list 5,000 cfm in the equation, but it obviously was used to derive the result. |
| Heating = 24 F x (1.5 hr/day x 3 mo/yr x 22 day/mo) x 1.085 Btu/ctm-deg-hr x 5,000 cfm                 |
| = 12,889,800                                                                                           |
| = 12,890 kBtu/yr                                                                                       |
|                                                                                                        |

### Total\_Retrofit Energy Use:

| Cooling =         | 48,473 kBtu/yr + 8,593 kBtu/yr                            |
|-------------------|-----------------------------------------------------------|
| =                 | 57,066                                                    |
| Adjust to kWh =   | 57,066 kBtu/yr x (1 ton/12,000 Btu) x (1,000 Btu/kBtu)    |
| • =               | 4,756                                                     |
| =                 | 4,756 ton/yr x 1.3 kW/ton                                 |
| =                 | 6,182                                                     |
| =                 | 6,182 kWh/yr                                              |
|                   |                                                           |
| Heating =         | 40,683 kBtu/yr + 12,890 kBtu/yr                           |
| =                 | 53,573                                                    |
| Adjust to Therm = | 53,573 kBtu/yr x (1 therm/100,000 Btu) x (1,000 Btu/kBtu) |
| =                 | 536                                                       |
| =                 | 536 therm/yr x (1/70%)                                    |
| =                 | 765                                                       |
| =                 | 765 therm/yr                                              |

### Energy Savings:

| Cooling = 10,353 kWh/yr - 6,221 kWh/yr    |                                     |
|-------------------------------------------|-------------------------------------|
| = 4,171                                   |                                     |
| = 4,171 kWh/yr for a 10 ton unit          | According to Advice Filing p. AC-52 |
|                                           |                                     |
| Heating = 2,631 therms/yr - 765 therms/yr |                                     |
| = 1,866                                   |                                     |
| = 1,866 therms/yr for a 250 kBtuh unit    | According to Advice Filing p. AC-52 |

.

#### 4) Evaluation Estimates:

#### See Advice Filing impacts. Impacts developed for all climate zones:

#### 5) Summary of Results:

| Impact Type         | lmp           | Recommended |            |
|---------------------|---------------|-------------|------------|
| (per 10-ton unit)   | Advice Filing | Evaluation  | Source     |
| NC Demand (kW)      | -             | -           |            |
| Coinc. Demand (kW)  | -             | -           |            |
| Annual Energy (kWh) | 4,171         | 4,171       | Evaluation |

#### 'See following spreadsheet for evaluation estimates for Climate Zone 4.

| Climate Zone | kWh/ton |
|--------------|---------|
|              |         |
| CZ_1         | 22.9    |
| CZ_2         | 523.4   |
| CZ_3         | 202.9   |
| CZ_4*        | 514.7   |
| CZ_5         | 255.7   |
| CZ_6         | 547.6   |
| CZ_7         | 714.4   |
| CZ_8         | 807.3   |
| CZ_9         | 913.1   |
| CZ_10        | 1071.0  |
| CZ_11        | 1060.5  |
| CZ_12        | 722.5   |
| CZ_13        | 1407.9  |
| CZ_14        | 1364.6  |
| CZ_15        | 2731.7  |
| CZ_16        | 460.1   |

Climate Zone Specific Impacts:

#### 6) Adjust Energy Impacts by Conditioned Area:

Advice Filing Assumptions: Cooling Energy Savings = 4,171 kWh/yr for a 10 ton unit = 417.1 kWh/yr-ton Heating Energy Savings = 1,866 therms/yr for a 250 kBtuh unit = 7,464 therms/yr-kBtuh

AC Sizing = 1 ton/500 sqft According to Advice Filing p. AC-54

Furnace Sizing = 50 Btuh/sqft According to Advice Filing p. AC-54

#### Evaluation Energy Estimate:

Cooling = (Conditioned Area) x (1 ton/500 sqft) x 417.1 kWh/yr-ton

Heating = (Conditioned Area) x (50 Btuh/sqtt) x (7.464 therms/yr-kBtuh) x (1 kBtuh/1,000 Btuh)

|             | San       | nple Heating | and Cooling Lo | ad Calculation | s for Climate Zone | 4         |           |
|-------------|-----------|--------------|----------------|----------------|--------------------|-----------|-----------|
| Outside Air | Total Bin | %OSA         | Return Air     | Mixed Alr      | Supply Air         | Cooling   | Heating   |
| (F)         | (hr/yr)   |              | (F)            | (F)            | (F)                | (kBtu/yr) | (kBtu/yr) |
| 117         | 0         | 20%          | 74             | 82.6           | 47.0               | Ö         | 0         |
| 112         | 0         | 20%          | 74             | 81.6           | 49.0               | 0         | 0         |
| 107         | 0         | 20%          | 74             | 80.6           | 51.0               | 0         | 0         |
| 102         | 0         | 20%          | 74             | 79.6           | 53.0               | 0         | 0         |
| 97          | 10        | 20%          | 74             | 78.6           | 55.0               | 1,280     | 0         |
| 92          | 25        | 20%          | 74             | 77.6           | 57.0               | 2,794     | 0         |
| 87          | 112       | 20%          | 74             | 76.6           | 59.0               | 10,694    | o         |
| 82          | 296       | 20%          | 74             | 75.6           | 61.0               | 23,445    | 0         |
| 77          | 488       | 20%          | 74             | 74.6           | 63.0               | 30,710    | 0         |
| 72          | 724       | 20%          | 74             | 73.6           | 65.0               | 33,778    | 0         |
| 67          | 853       | 20%          | 74             | 72.6           | 67.0               | 25,914    | 0         |
| 62          | 1,289     | 20%          | 74             | 71.6           | 70.0               | 11,189    | 0         |
| 57          | 1,780     | 20%          | 74             | 70.6           | 73.0               | o         | 23,176    |
| 52          | 1,370     | 20%          | 74             | 69.6           | 76.0               | 0         | 47,566    |
| 47          | 986       | 20%          | 74             | 68.6           | 79.0               | 0         | 55,630    |
| 42          | 519       | 20%          | 74             | 67.6           | 82.0               | 0         | 40,544    |
| 37          | 243       | 20%          | 74             | 66.6           | 85.0               | 0         | 24,256    |
| 32          | 61        | 20%          | 74             | 65.6           | 88.0               | 0         | 7,413     |
| 27          | 4         | 20%          | 74             | 64.6           | 91.0               | 0         | 573       |
| 22          | 0         | 20%          | 74             | 63.6           | 94.0               | 0         | 0         |
| 17          | 0         | 20%          | 74             | 62.6           | 97.0               | 0         | 0         |
| Total       | 8,760     |              |                |                | Total              | 139,803   | 199,158   |

| Revised | Energy Use | 7:00AM - | 6:00PM |
|---------|------------|----------|--------|
|         |            |          |        |

| levised Energy | Sample Heating and Cooling Load Calculations for Climate Zone 4 |      |            |           |            |           |           |
|----------------|-----------------------------------------------------------------|------|------------|-----------|------------|-----------|-----------|
| Outside Air    | Total Bin                                                       | %OSA | Return Air | Mixed Air | Supply Air | Cooling   | Heating   |
| (F)            | (hr/yr)                                                         |      | (F)        | (F)       | .(F)       | (kBtu/yr) | (kBtu/yr) |
| 117            | 0                                                               | 20%  | 74         | 82.6      | 47.0       | 0         | 0         |
| 112            | 0                                                               | 20%  | 74         | 81.6      | 49.0       | 0         | 0         |
| 107            | 0                                                               | 20%  | 74         | 80.6      | 51.0       | 0         | 0         |
| 102            | 0                                                               | 20%  | 74         | 79.6      | 53.0       | 0         | 0         |
| 97             | 7                                                               | 20%  | 74         | 78.6      | 55.0       | 896       | 0         |
| 92             | 18                                                              | 20%  | 74         | 77.6      | 57.0       | 2,012     | 0         |
| 87             | 76                                                              | 20%  | 74         | 76.6      | 59.0       | 7,256     | 0         |
| 82             | 205                                                             | 20%  | 74         | 75.6      | 61.0       | 16,237    | 0         |
| 77             | 349                                                             | 20%  | 74         | 74.6      | 63.0       | 21,963    | 0         |
| 72             | 422                                                             | 20%  | 74         | 73.6      | 65.0       | 19,688    | 0         |
| 67             | 381                                                             | 20%  | 74         | 72.6      | 67.0       | 11,575    | 0         |
| 62             | 469                                                             | 20%  | 74         | 71.6      | 70.0       | 4,071     | 0         |
| 57             | 497                                                             | 20%  | 74         | 70.6      | 73.0       | 0         | 6,471     |
| 52             | 262                                                             | 20%  | 74         | 69.6      | 76.0       | 0         | 9,097     |
| 47             | 94                                                              | 20%  | 74         | 68.6      | 79.0       | 0         | 5,303     |
| 42             | 53                                                              | 20%  | 74         | 67.6      | 82.0       | 0         | 4,140     |
| 37             | 21                                                              | 20%  | 74         | 66.6      | 85.0       | 0         | 2,096     |
| 32             | 4                                                               | 20%  | 74         | 65.6      | 88.0       | 0         | 486       |
| 27             | 2                                                               | 20%  | 74         | 64.6      | 91.0       | 0         | 286       |
| 22             | 0                                                               | 20%  | 74         | 63.6      | 94.0       | 0         | 0         |
| 17             | .0                                                              | 20%  | 74         | 62.6      | 97.0       | 0         | 0         |
| Total          | 2,860                                                           |      |            |           | Total      | 83,698    | 27,880    |

.

1

,

|                               | Cooling | Heating |  |
|-------------------------------|---------|---------|--|
| Baseline Loads                | 139.803 | 199,158 |  |
|                               |         |         |  |
| Retrofit Business Hours Loads | 83,698  | 27,880  |  |
| Ramping Loads                 | 8,593   | 12,890  |  |
| Total Retrofit Loads          | 92,291  | 40,770  |  |
| Baseline Energy Use           | 15,145  | 2,845   |  |
| Retrofit Energy Use           | 9,998   | 582     |  |
| Savings                       | 5,147   | 2,263   |  |
| kWh/ton                       | 514.7   |         |  |
| therm/k8tu                    |         | 9.051   |  |

,

.

. .

## Water and Evaporative Cooled Single Package AC Unit

(≥ 135,000 Btu/hr)

### **Remote Condensing Unit (RCU); Air-Cooled**

(≥ 135,000 Btu/hr)

Remote Condensing Unit (RCU); Water- and Evaporative- Cooled (≥ 135,000 Btu/hr)

All three measures involve the replacement of an existing standard-Measure efficiency AC unit with a high-efficiency unit that exceeds Title20 **Description:** specifications. Demand and energy impacts were developed using equivalent full **Summary of Advice** Filing Calculations: load hours (ELFHs), coincident demand factors (CDFs), and system efficiency. Calculation methods cited in the Advice Filing do not accurately **Comments on Advice Filing** model participant specific retrofits. This is due to a generalized Calculations: assumption regarding typical efficiency and capacity upgrades. **Comments on** Baseline efficiencies are consistent with Title20 standards. **Advice Filing** Inputs: Sufficient data are not available to verify either the CDF or the EFLH values used in the calculation. ELFHs do not take climate zone variation into account. **Evaluation Process:** Using the change in EER for each site (based upon the MDSS), a revised equation was used in conjunction with EFLHs (developed as part of the evaluation of the RE Central AC measures), to estimate

per participant impacts.

.

Water and Evaporative Cooled Single-Package AC Unit Remote Condensing Unit (RCU); Air-Cooled Remote Condensing Unit (RCU); Water and Evaporative Cooled

> Installation of high-efficiency AC units using the different technologies described. Units must exceed Title 20 standards

2) Ex-ante Assumptions Used in Calculations:

Baseline Title20 Efficiencies;

Evap Single-Package AC = 9.6 EER RCU Air-cooled = 9.6 EER RCU Evap-cooled = 12.9 EER

These values were verified using CEC documentation.

| Equivalent Full Loa | Equivalent Full Load Cooling Hours |  |  |  |  |  |  |  |  |
|---------------------|------------------------------------|--|--|--|--|--|--|--|--|
| Market Segment      | Hours/Year                         |  |  |  |  |  |  |  |  |
| Schools K-12        | 500                                |  |  |  |  |  |  |  |  |
| Hotel/Motel         | 700                                |  |  |  |  |  |  |  |  |
| Grocery             | 600                                |  |  |  |  |  |  |  |  |
| College             | 1,200                              |  |  |  |  |  |  |  |  |
| Warehouse           | 300                                |  |  |  |  |  |  |  |  |
| Office              | 1,000                              |  |  |  |  |  |  |  |  |
| Hospitals           | 1,900                              |  |  |  |  |  |  |  |  |
| Other               | 1,200                              |  |  |  |  |  |  |  |  |
| Retail              | 800                                |  |  |  |  |  |  |  |  |
| Restaurant          | 1,300                              |  |  |  |  |  |  |  |  |

800

Assembly industry 2,100 Advice Filing, Table 1, p. AC-3

#### 3) Advice Filing Estimates:

Process Industry

Demand Savings:

Measure Demand Savings = KW Title 20 - kW High Efficiency Unit, according to Advice Filing, p. AC-15

kW = (12,000 Btuh/ton) x (1kW/1,000Watt) x (tons/EER Btuh/Watt) according to Advice Filing, p. AC-15 Coincident Demand Savings = Measure Demand Savings x 0.75 CDF

| Program           | Tons | Title 20 | Title 20 | High Efficiency | High Efficiency | Demand Savings | Demand Savings | Coinc kW Savings |
|-------------------|------|----------|----------|-----------------|-----------------|----------------|----------------|------------------|
|                   |      | É₽.      | kW       | ER              | kW              | ĸw             | kW/ton-EER     | kW/ton-EER       |
| Evap. Cooled SPAC | 80   | 9.6      | 100,000  | 10.5            | 91,429          | 8.571          | 0.119          |                  |
|                   | 80   | 9.6      | 100.000  | 11.5            | 83.478          | 16,522         | 0.109          |                  |
|                   |      |          |          |                 |                 | Average        | 0.114          | 0.085            |
| Air-Cooled RCU    | 30   | 99       | 36.364   | 10.2            | 35.294          | 1.070          | 0,119          |                  |
|                   | 60   | 99       | 72.727   | 10.5            | 68,571          | 4,156          | 0.115          |                  |
|                   |      |          |          |                 |                 | Average        | 0.117          | 0.088            |
| Evap-Cooled RCU   | 80   | 12.9     | 74.419   | 13.5            | 71.111          | 3.307          | 0.069          |                  |
|                   | 120  | 12.9     | 111.628  | 14              | 102,857         | 8.771          | 0 066          |                  |
|                   |      |          |          |                 |                 | Average        | 0.068          | 0.051            |

Advice Filing p. AC-15-22 Values may vary slightly due to rounding.

.

4

.

| a · · · · · -     | <b>.</b> . |                   |                |                 | 1 |  |
|-------------------|------------|-------------------|----------------|-----------------|---|--|
| Coincident Energy | Savings    |                   |                |                 | 1 |  |
|                   |            | Evap. Cooled SPAC | Air-Cooled RCU | Evap-Cooled RCU |   |  |
| Market Segment    | Hours/Year | Annual Energy     | Annual Energy  | Annual Energy   |   |  |
|                   |            | Savings           | Savings        | Savings         |   |  |
|                   | 1          | kWh/ton-EER       | kWh/ton-EER    | kWh/ton-EER     |   |  |
| Schools K-12      | 500        | 57                | 59             | 34              |   |  |
| Hotel/Motel       | 700        | 80                | 82             | 47              |   |  |
| Grocery           | 600        | 68                | 70             | 41              |   |  |
| College           | 1,200      | 137               | 141            | 61              |   |  |
| Warehouse         | 300        | 34                | 35             | 20              |   |  |
| Office            | 1,000      | 114               | 117            | 68              |   |  |
| Hospitals         | 1,900      | 216               | 223            | 129             |   |  |
| Other             | 1,200      | 137               | 141            | 81              |   |  |
| Retail            | 800        | 91                | 94             | 54              |   |  |
| Restaurant        | 1,300      | 148               | 152            | 88              |   |  |
| Process Industry  | 800        | 91                | 94             | 54              |   |  |
| Assembly Industry | 2,100      | 239               | 246            | 142             |   |  |

#### 4) Evaluation Estimates:

```
Demand Savings:
EER is not linear.
For this reason, calculating an impact using the unit kW/ton-EER is only valid for a very small range of EER values
Demand estimates are developed at a per unit basis.
```

Demand Savings = (Capacity, Btuh) x (1/EERtitle20 - 1/EERretrofit) x (1kW/1.000 Watts) Coincident Demand Savings = Demand Savings x CDF

CDF = varies by climate zone and business type

Energy Savings: Use EFLH's and CDF's developed for the CAC measures for each climate zone.

Energy Savings = Demand Savings x EFLH (climate zone specific)

No efficiency value recorded in the MDSS for the single participant in the RCU Evep-cooled measure. Using the baseline efficiencies and the kW and kWh impacts, the retrofit efficiency was determined through back-calculations. Back-calculated Efficiency.

3.723 kW = 0.068 kW/ton-JEER x 36.5 tons x (EER - 12.9 EER) x 0.75 CDF

- EER = [3.723 kW/(0.068 kW/ton-AEER x 36.5 tons x 0.75 CDF)] + 12.9
  - = 14.9
  - = 14.9 EER according to kW impacts

3,416.4 kWh = 34 kWh/ton-∆EER x 36.5 tons x (EER - 12.9 EER)

```
EER= 15.65
```

= 15.65 EER according to kWh impacts

```
Average EER = 15.28
```

RE Misc

### **B.7 DETAILED METHODS USED TO DEVELOP PREMISE-SPECIFIC CUSTOMIZED** INCENTIVES ENGINEERING ESTIMATES

This section contains detailed information regarding the development of impacts for each Customized Incentives application, and is presented using the following format:

- For each application, a written summary provides a synopsis of the application review process.
- Detailed calculations used in the analysis are provided.

### **Customized Incentives VSD**

Customized rebates for variable speed drives were distributed between 24 records in MDSS. Of these records, 20 were associated with VSDs on supply fans. Other records were associated with VSDs on pumps, chillers, and cooling tower fans. Rebates for the Customized program are based on the demand and energy reductions computed specifically for individual applications.

| Program                          | Customized Rebates                                                                                                                                                                                                                                                                                                              |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measure                          | Variable Speed Drives                                                                                                                                                                                                                                                                                                           |
| Summary of Rebat<br>Calculations | e In the case of VSDs on supply fans, savings were based on energy estimates from the Retrofit Express VSD analysis. Site specific adjustments were made to reflect operating schedules and fan size.                                                                                                                           |
|                                  | All other uses of VSDs were reviewed individually to verify accuracy of calculations.                                                                                                                                                                                                                                           |
| Comments on<br>Calculations      | Impacts and calculation methods are detailed in the applications.<br>For the most part, the calculations are based on temperature bin<br>models, associating a fan load with a given outside air dry bulb<br>temperature. Energy impacts from these calculations agree with the<br>project summary and the MDSS records.        |
| Evaluation Process               | Energy estimates from the Retrofit Express VSD analysis represent<br>hourly fan loads based on 24 hour operating schedules. Estimates<br>were computed by using long term (TMY) weather data specific to<br>the climate zone. These figures were diversified to site specific<br>loads based on evaluation of the applications. |
|                                  | Applications were reviewed to gather horsepower of fans, fan schedules, and basecase fan type.                                                                                                                                                                                                                                  |
|                                  | Operating schedules were used to diversify the per-horsepower<br>energy estimates for both pre- and post-retrofit conditions.<br>Dependent on data from the application, a base case of a Constant-<br>volume fan, or Inlet vane system was used.                                                                               |
|                                  | Baseline and post-retrofit energy use were compared to determine per-horsepower savings.                                                                                                                                                                                                                                        |
| Additional Notes                 | All VSD measures on non-supply fans were reviewed and determined to be reasonable estimates.                                                                                                                                                                                                                                    |

## Impact Results

|                                 | kW. | kWh   | Therm |
|---------------------------------|-----|-------|-------|
| MDSS                            | 76  | 3,335 | 0     |
| Adjusted Engineering            | 0   | 2,428 | 0     |
| Engineering Realization<br>Rate | 0.0 | 0.73  | NA    |

# **EMS Systems in District Schools**

| Program          | Customized Rebates |
|------------------|--------------------|
| Measure          | EMS                |
| Site Description | School District    |

| Measure<br>Description            | Install a central energy management system to automate equipment scheduling for several schools within the district. Twenty-two applications were submitted for a total of 24 schools.                                                                                                                                                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Rebate<br>Calculations | Savings claimed within the applications were accepted.                                                                                                                                                                                                                                                                                                                                  |
| Comments on<br>Calculations       | Energy saving calculations were based on bin models which<br>represented loading of the heating and cooling systems before and<br>after installation of the EMS. Heating equivalent full load hours<br>(EFLH) are projected to decrease from 456 to 227. Cooling EFLH<br>are projected to decrease from 706 to 389. Connected loads were<br>based on detailed audits of the facilities. |
| Evaluation Process                | Site visits were performed on five schools representing 43% of the<br>total energy savings for all participating schools. Connected load<br>data was verified through visual inspection of equipment.<br>Operating hours were verified by school personnel.                                                                                                                             |
|                                   | It was found that the connected load data was very accurate. There<br>were a few minor discrepancies with small motors, but these were<br>deemed to be insignificant to the overall savings calculations. It was<br>assumed that the level of accuracy exhibited in the on-sites was<br>maintained throughout the applications, therefore connected loads<br>were not adjusted.         |
|                                   | Bin model analysis of full load hour reduction was accepted as an accurate representation of pre- and post-retrofit conditions.                                                                                                                                                                                                                                                         |
| Additional Notes                  |                                                                                                                                                                                                                                                                                                                                                                                         |

# Impact Results

|                                 | kW | kWh       | Therm   |
|---------------------------------|----|-----------|---------|
| MDSS                            | 0  | 2,016,177 | 228,057 |
| Adjusted Engineering            | 0  | 2,016,177 | 228,057 |
| Engineering Realization<br>Rate | NA | 1.00      | 1.00    |

| Site ID #                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Control#                              | 0348858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Check #                               | 59427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Program                               | Customized Rebates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Measure(s)                            | EMS, Return Air Ductwork, Low Leakage Dampers, VAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                       | conversion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Site Description                      | Large Secondary School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Measure<br>Description:               | Four measures were installed at this site: A central EMS system,<br>Return air ducts for 100% outside air units, low leakage<br>dampers for outside air and conversion from packaged<br>constant volume to variable air volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Summery of<br>Rebate<br>Calculations: | The rebate calculations were performed using the HAP<br>simulation program from the Carrier Corporation. Sequential<br>simulations were performed for each of the measures installed.<br>Summary output from the simulation, by month, are provided<br>at the building level. Estimates of end use consumption are<br>provided only on an annual basis. Simulations appear to have<br>been conducted using weather data for Oakland, California.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Comments on<br>Calculations           | Input files used for the simulations were not available for<br>review. Based on the application information, it appears that<br>the simulations were based on detailed site information<br>collected over a long period of time. As detailed in the<br>application, energy use at this site is much higher then other<br>similar schools in the same area. A critical assumption made<br>by the preparer is that this additional energy use is attributable<br>to a poor HVAC system and mode of operation. This<br>assumption is then used as the basis to calibrate the HAP<br>model. Another point made in the application is that a<br>complete lighting retrofit was carried out previously, resulting<br>in a lighting density of 0.82 Watts per square foot of<br>conditioned space. This value is relatively low, even for sites<br>that have been completely retrofit with high efficiency lighting. |  |  |  |  |  |  |
| Evaluation<br>Process                 | After a review of the application information, an on-site survey<br>was conducted. The primary objective of the Survey was to<br>verify the HVAC equipment and operating characteristics. All<br>of HVAC units at the site are packaged, gas heating, electric<br>cooling systems.<br>The number, type and capacity of the packaged HVAC<br>systems described in the application were verified during the<br>on-site survey. Also verified were the presence of adjustable<br>speed drives on all multi-zone systems. During the on-site<br>survey it was noticed that several of the HVAC units were<br>appeared functional but not operating, indicating that the<br>ventilation fans cycle with the compressor or furnace. Also                                                                                                                                                                            |  |  |  |  |  |  |

B-26

verified were the operating hours and months of the equipment. This information was consistent with the hours and months stated in application in Exhibit M.

To confirm the operation of the installed measures, monthly HAP output from the application was plotted against billing data. Recall that the HAP data is at the building level and there is very little information available to disaggregate end-use values from this data. Monthly HAP data were available for a base or calibration run and then each of the subsequent measure savings estimate runs.

The calibration simulation agreed reasonably well with the billing data, recall however that the assumption had been made that the HVAC usage at this site was much larger than other schools in the same district.

It appears that the simulation representing the post installation case of the EMS system assumes greatly reduced HVAC usage in the summer months of June, July and August. This is contrary to both the stated hours of operation from Exhibit M and the available billing data. Since the HAP input files used to generate these data were not available, a DOE-2 model was developed to explore the effect of various operating assumptions.

After several parametric simulations, a model was completed which more reasonably agreed with post installation billing data. In order to calibrate the model, following assumptions were implemented:

- HVAC operation was available for the stated operating hours for all 12 months of the year.
- Supply and return fans were allowed to cycle with the furnace and compressor rather than run continuously.
- The model was simulated with climate zone 12 data (Sacramento) rather than climate zone 3 data (Oakland). Walnut Creek is located in climate zone 12. Based on ASHRAE weather and cooling degree day data, it was determined that climate zone 12 was a more representative climate zone. Note that all other campus's that participated in this program were modeled with climate zone 3 weather data.

The return air ductwork and low leakage dampers were then modeled by adjusting assumptions of the amount of outdoor air for particular zones. The VAV measure was not modeled explicitly using DOE-2 due to the level of site data necessary to accurately model a VAV system. Instead the application estimate for this measure was verified by adding the incremental savings for this measure to the estimates from the

B-27

DOE-2 simulations and comparing to billing data. Since these two values agreed well, the application estimates was accepted as accurate.

# Additional Notes

## Impact Results

|                                 | kW  | kWh       | Therm  |
|---------------------------------|-----|-----------|--------|
| MDSS                            | 0   | 1,007,592 | 19,082 |
| Adjusted Engineering            | 0   | 651,835   | 19,082 |
| Engineering Realization<br>Rate | N/A | 0.65      | 1.00   |

### App. Usage Data

| Compariso    | 1 Information From /   | pplication       |               |               |                  |                |                  |               |                |           |           |           |          |
|--------------|------------------------|------------------|---------------|---------------|------------------|----------------|------------------|---------------|----------------|-----------|-----------|-----------|----------|
|              |                        |                  | Measured      | Measured      |                  |                |                  |               |                | Est.      | Lighting  | Lighting  |          |
|              |                        |                  | Lighting      | Lighting      |                  |                |                  |               | Est. HVAC      | Lighting  | W/Sq-Ft   | W/Sq-Ft   | New/Old  |
|              | Sq.                    | 12 Month         | kW (Pre       | kW (Post      | Lighting         | 1              |                  | Bill          | kWh/SqFT-      | kWh/SqFT- | (Pre      | (Post     | Lighting |
| Sch          | ool Footage            | Bill             | Retrofit)     | Retrofit)     | kWh/Yr           | Misc Usage     | HVAC             | kWh/Sq Ft     | Yr             | Yr        | Retrofit) | Retrofit) | Watts    |
| Clayton Va   | ley 163,391            | 601,920          | 195.48        | 163.2         | 406,598          |                | 168,236          | 3.68          | 1.03           | 2.49      | 1.20      | 1.00      | 0.83     |
| College Par  | k 138,872              | 929,040          | 208.6         | 143.1         | 433,888          |                | 453,345          | 6.69          | 3.26           | 3.12      | 1.50      | 1.03      | 0.69     |
| Concord H    | gh 143,513             | 749,640          | 202.37        | 156.8         | 420,930          |                | 294,978          | 5.22          | 2.06           | 2.93      | 1.41      | 1.09      | 0.77     |
| Mt. Diablo   | 180,151                | 821,200          | 223.8         | 154.7         | 465,504          |                | 318,742          | 4.56          | 1.77           | 2.58      | 1.24      | 0.86      | 0.69     |
| Ygnacio Va   | lley 159,080           | 1,148,160        | 245.62        | 211.3         | 510,890          |                | 585,604          | 7.22          | 3.68           | 3.21      | 1.54      | 1.33      | 0.86     |
| Northgate    | 167,800                | 2,128,800        | 138.3         | 138.3         | 313,320          |                | 1,719,684        | 12.69         | 10.25          | 1.87      | -         | 0.82      |          |
| Northgate 1  | ARGET                  |                  |               |               | 403,722          | 1,329,069      | 396,009          |               |                |           |           |           |          |
| Average for  | schools other than N   | lorthgate:       |               |               |                  |                |                  | 5.47          | 2.36           | 2.87      | 1.38      | 1.06      |          |
|              |                        |                  |               |               |                  |                |                  |               | 43%            | 52%       |           |           |          |
| Analysis Ap  | proach:                | 1                |               |               |                  |                |                  |               |                |           |           |           |          |
| 1) This info | rmation is provided i  | n the applicatio | n for compar  | ison to North | igate HS         |                |                  |               |                |           |           |           |          |
| 2) Assume    | hat the HVAC and L     | ghting usage fo  | r schools oth | er than North | igate have bee   | en computed re | easonably        |               |                |           |           |           |          |
|              | e that the HVAC usag   |                  |               |               |                  |                |                  |               |                | -         |           |           |          |
| 3) Assume    | hat it is not reasonab | le for Northgate | to save 20%   | 6 more on a l | ighting retrofit | than other sch | iools. Use oth   | ner school re | trofit average | •         |           |           |          |
| 4) Compute   | "Target" energy usag   | e for HVAC an    | d lighting to | calibrate DO  | E-2              |                |                  |               |                |           |           |           |          |
| 5) Simulate  | the Calibrated DOE-    | 2 model with E   | MS controlin  | g the HVAC :  | systems and co   | ompare to Post | retrofit billing | g data        |                |           |           |           |          |
| 6) Assess re | asonableness of resu   | ts               |               |               |                  |                |                  |               |                |           |           |           |          |
|              |                        |                  |               |               |                  |                |                  |               |                |           |           |           |          |

## Carrier Data

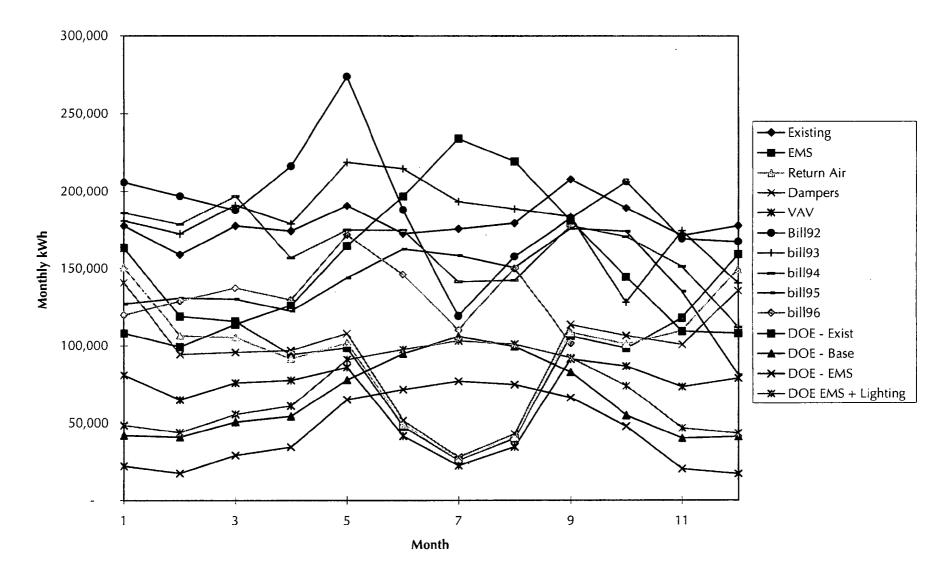
| Model 48DF   | 24    | 34     | 44     | 54     | 64     |
|--------------|-------|--------|--------|--------|--------|
| Tons         | 20    | 30     | 40     | 50     | 60     |
| Standard HP  | 7.5   | 10     | 15     | 20     | 25     |
| Alternate HP | 7.5   | 15     | 20     | 25     | 30     |
| Nominal CFM  | 8,000 | 12,000 | 16,000 | 20,000 | 24,000 |
| CFM/HP       | 1,067 | 1,200  | 1,067  | 1,000  | 960    |
| CFM/Ton      | 400   | 400    | 400    | 400    | 400    |
|              |       |        |        |        |        |
| Model 48DJ   | 24    | 34     | 44     | 54     | • 64   |
| Tons         | 20    | 30     | 40     | 50     | 60     |
| Standard HP  |       | 7.5    | 15     | 15     | 20     |
| Alternate HP |       |        |        |        |        |
| Nominal CFM  |       | 10,500 | 14,000 | 17,500 | 21,000 |
| CFM/HP       |       | 1,400  | 933    | 1,167  | 1,050  |
| CFM/Ton      |       | 350    | 350    | 350    | 350    |
| Ave. CFM/HP  |       | 1,300  | 1,000  | 1,083  | 1,005  |

.

|          | Parameter         | Value   | Source                                                                           |
|----------|-------------------|---------|----------------------------------------------------------------------------------|
| Physical |                   |         |                                                                                  |
|          | Cond. Sq. Footage | 167,800 | Application                                                                      |
|          | Lighting w/Sqft   | 1.06    | Average from other retrofit schools. Is more reasonable than 0.80 on application |
| System   |                   |         |                                                                                  |
|          | Capacity(Tons)    | 606.75  | On-site Audit                                                                    |
|          | Supply Fan HP     |         | On-site Audit                                                                    |
|          | Supply kW         |         | Calculated: Assume 90% loading (about 0.6 In static).                            |
|          | CFM               | 227,531 | Calculated Using Carrier data average @ 350 CFM/Ton                              |
|          | Supply Watts/CFM  | 0.459   |                                                                                  |
|          | Return Fan HP     | 68      | On-site Audit                                                                    |
|          | Return kW         | 35.81   | Calculated: Assume 90% loading (about 0.6 In static).                            |
|          | CFM               | 182,025 | Calculated Using 10% Exhaust to account for ventilation                          |
|          | Watts/CFM         | 0.197   |                                                                                  |
|          | Post-Vent(% Flow) | 24%     | From Application                                                                 |
|          | Pre-Vent(% Flow)  | 5%      | From Application                                                                 |

## Site Data

|     |         | Supply CFM    |                |            |            |                   |             |               |         |
|-----|---------|---------------|----------------|------------|------------|-------------------|-------------|---------------|---------|
| MBH | # Units | (From Applic) | Total BTUH     | Tons       | Supply HP  | Return HP         | CFM / TOn   | Туре          | cfm/HP  |
| 645 | 1       | 19,130        | 645,000        | 53.8       | 15         | 5                 | 356         | SZ            | 127     |
| 645 | 1       | 17,375        | 645,000        | 53.8       | 15         | 5                 | 323         | SZ            | 115     |
| 155 | 1       | 3,585         | 155,000        | 12.9       | 2          |                   | 278         | MZ            | 179     |
|     |         | 8,525         | -              | •          | 10         |                   |             | MZ            | 85      |
| 325 | 1       | 4,855         | 325,000        | 27.1       | 7.5        | 3                 | 179         | MZ            | 64      |
| 221 | 1       | 6,710         | 221,000        | 18.4       | 7.5        | 2                 | 364         |               | 89.     |
| 504 | 1       | 11,959        | 504,000        | 42.0       | 15         | 3                 | 285         | MZ            | 79      |
| 608 | 1       | 12,680        | 608,000        | 50.7       | 10         | 1                 | 250         | MZ            | 126     |
| 199 | 1       | 5,795         | 199,000        | 16.6       | 3          | 2                 | 349         |               | 193     |
| 427 | 1       | 13,285        | 427,000        | 35.6       | 15         | 5                 | 373         | SZ            | 88      |
| 352 | 1       | 11,405        | 352,000        | 29.3       | 7.5        | 3                 | 389         | MZ            | 152     |
| 455 | 1       | 11,300        | 455,000        | 37.9       | 7.5        | 3                 | 298         | MZ            | 150     |
| 725 | 1       | 11,265        | 725,000        | 60.4       | 10         | 3                 | 186         | MZ            | 112     |
| 395 | 1       | 11,230        | 395,000        | 32.9       | 10         | 7.5               | 341         |               | 112.    |
| 366 | 1       | 11,568        | 366,000        | 30.5       | 10         | 7.5               | 379         |               | 115     |
| 391 | 1       | 11,124        | 391,000        | 32.6       | 10         | 7.5               |             | MZ            | 111:    |
| 368 | 1       | 11,855        | 368,000        | 30.7       | 10         | 7.5               | 387         |               | 118     |
| 500 | 1       | 9,830         | 500,000        | 41.7       | 5          | 3                 | 236         | MZ            | 196     |
|     |         |               |                |            |            |                   |             | 0.415039      |         |
|     |         | 193,476       | 43.39          | 606.75     | 132.5      | 55                |             |               | 123     |
|     |         | 242,700       | Estimated CF   | M @ 400 C  | FM/Ton     |                   |             |               | 1831.69 |
|     |         |               | The 193,476    | "Measured" | CFM value  | 193,476           |             |               |         |
|     |         | 227,531       | Use this value | e computed | as 375 CFN | <b>I/TON</b> from | average dat | a from Carrie | er      |


### HAP Data

|           |           |           |            |           |         |           |           |           |           |         |             |          | · · · · · · · · · · · · · · · · · · · |
|-----------|-----------|-----------|------------|-----------|---------|-----------|-----------|-----------|-----------|---------|-------------|----------|---------------------------------------|
|           |           |           |            |           |         | ·         |           |           |           |         | · ····      |          |                                       |
|           | Existing  | EMS       | Return Air | Dampers   | VAV     | Bill92    | bill93    | bill94    | bill95    | bill96  | App. Lighti | DOE-2 HV | EMS                                   |
| January   | 177,544   | 163,328   | 150,856    | 140,830   | 81064   | 205,948   | 180,703   | 185,840   | 126,869   | 119,368 | 26,110      | 23348.11 | 21430.45                              |
| February  | 158,930   | 118,732   | 106,635    | 94,497    | 64889   | 196,813   | 172,525   | 178,493   | 130,731   | 128,770 | 26,110      | 30120.61 | 26400.73                              |
| March     | 177,544   | 115,638   | 105,478    | 95,929    | 76058   | 187,414   | 190,835   | 196,789   | 130,110   | 137,449 | 26,110      | 44984.44 | 38193.03                              |
| April     | 174,229   | 94,347    | 91,581     | 97,098    | 77677   | 216,213   | 178,709   | 156,892   | 122,083   | 129,599 | 26,110      | 52475.51 | 42287.76                              |
| May       | 190,422   | 98,721    | 101,956    | 107,988   | 86057   | 273,932   | 218,831   | 174,999   | 143,942   | 171,747 | 26,110      | 65686.45 | 55845.74                              |
| June      | 172,575   | 47,896    | 49,253     | 51,797    | 41822   | 187,705   | 214,765   | 174,747   | 162,509   | 146,042 | 26,110      | 70932.48 | 53267.76                              |
| July      | 175,596   | 26,327    | 27,001     | 28,285    | 22862   | 118,790   | 193,209   | 141,367   | 158,401   | 110,115 | 26,110      | 75072.71 | 54265.68                              |
| August    | 179,157   | 40,179    | 41,207     | 43,185    | 34871   | 157,660   | 188,326   | 142,259   | 150,582   | 150,124 | 26,110      | 74457.03 | 57864.5                               |
| September | 207,890   | 106,247   | 108,695    | 113,593   | 91416   | 182,328   | 183,375   | 177,551   | 175,879   | 101,587 | 26,110      | 77234.81 | 64924.64                              |
| October   | 188,865   | 98,381    | 101,042    | 106,567   | 86838   | 206,262   | 127,770   | 170,676   | 173,993   |         | 26,110      | 64735.99 | 55735.59                              |
| November  | 171,339   | 117,808   | 109,757    | 100,779   | 73431   | 169,189   | 174,402   | 151,307   | 135,033   |         | 26,110      | 38617.71 | 34281.71                              |
| December  | 177,544   | 159,095   | 149,503    | 135,274   | 78925   | 167,321   | 140,453   | 111,879   | 81,067    | · · ·   | 26,110      | 18323.2  | 16961.28                              |
| Sum       | 2,151,635 | 1,186,699 | 1,142,964  | 1,115,822 | 815,910 | 2,269,574 | 2,163,903 | 1,962,800 | 1,691,200 |         | 313,320     | 635,989  | 521,459                               |

•

Bill Hap Chart

Monthly Bills Actual & Projected Bills



### DOE2 Sim Data

| Assumed Lig | E       | kist        |         | ase         |         | ИS          | Low Leakag | e Dampers   | DOE - Exist | DOE - Base | DOE - EMS | Low Leakag | DOE EMS -    |
|-------------|---------|-------------|---------|-------------|---------|-------------|------------|-------------|-------------|------------|-----------|------------|--------------|
|             | Cooling | Ventilation | Cooling | Ventilation | Cooling | Ventilation | Cooling    | Ventilation | HVAC        | HVAC       | HVAC      | HVAČ       | VAC + lighti |
| 26110       | 47      | 108,117     | 3,889   | 38,230      | 1,992   | 20,588      | 1,759      | 17,458      | 108,163     | 42,119     | 22,580    | 19,216     | 48,690       |
| 26110       | 1,676   | 97,654      | 8,215   | 32,901      | 5,690   | 12,266      | 5,825      | 10,473      | 99,330      | 41,116     | 17,956    | 16,297     | 44,066       |
| 26110       | 5,643   | 108,117     | 18,093  | 32,741      | 17,412  | 11,997      | 18,059     | 11,882      | 113,760     | 50,834     | 29,409    | 29,941     | 55,519       |
| 26110       | 21,133  | 104,629     | 31,079  | 23,216      | 26,310  | 8,485       | 27,535     | 8,518       | 125,762     | 54,295     | 34,795    | 36,053     | 60,905       |
| 26110       | 56,585  | 108,117     | 60,617  | 17,259      | 50,385  | 14,637      | 51,291     | 14,644      | 164,702     | 77,876     | 65,022    | 65,936     | 91,132       |
| 26110       | 92,079  | 104,629     | 74,994  | 19,887      | 56,482  | 15,117      | 56,513     | 15,117      | 196,708     | 94,882     | 71,599    | 71,630     | 97,709       |
| 26110       | 126,006 | 108,117     | 84,105  | 21,929      | 61,260  | 15,827      | 59,605     | 15,784      | 234,123     | 106,034    | 77,087    | 75,389     | 103,197      |
| 26110       | 111,283 | 108,117     | 78,943  | 20,629      | 58,962  | 15,860      | 57,932     | 15,844      | 219,400     | 99,572     | 74,823    | 73,777     | 100,933      |
| 26110       | 76,194  | 104,629     | 65,330  | 17,570      | 52,171  | 14,013      | 52,183     | 14,014      | 180,823     | 82,900     | 66,184    | 66,197     | 92,294       |
| 26110       | 36,442  | 108,117     | 42,689  | 12,282      | 37,160  | 10,778      | 37,986     | 10,813      | 144,558     | 54,971     | 47,937    | 48,799     | 74,047       |
| 26110       | 4,749   | 104,629     | 14,525  | 25,887      | 11,979  | 8,713       | 11,149     | 7,719       | 109,378     | 40,411     | 20,692    | 18,868     | 46,802       |
| 26110       | 60      | 108,117     | 3,356   | 37,981      | 1,736   | 15,658      | 1,506      | 12,668      | 108,177     | 41,337     | 17,394    | 14,173     | 43,504       |
|             | 531,898 | 1,272,985   | 485,836 | 300,511     | 381,538 | 163,939     | 381,343    | 154,933     | 1,804,883   | 786,347    | 545,477   | 536,276    | 545,477      |
|             |         |             |         |             |         |             |            |             |             |            |           |            |              |
|             |         |             |         |             | l<br>   |             | 250,070    | <u></u>     |             | 1,018,537  | 342,723   |            | Savings for  |
|             |         |             |         |             |         |             |            |             |             |            |           | 299911     | ļ            |
|             |         |             |         |             |         |             | 0.9        |             |             | }          |           | 651,835    |              |

| Site ID#:                                                     | 1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                                                       | 61487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Measure                                                       | Install heat exchanger between tower water and building loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Measure<br>Description:                                       | A "free cooling" heat exchange system was installed, that allows the<br>building supply water loop to bypass of the central plant chiller,<br>when ambient weather conditions drop below 60 °F. The heat<br>exchanger installed allows for a direct exchange of heat between<br>the tower water loop and the building loop. The building cooling<br>load is either met entirely using the free cooling system or the chiller<br>system, never both simultaneously. MDSS records list this as HVAC<br>- Other; action code 299. |
| Summary of<br>Calculations in the<br>Original<br>Application: | The calculations use a balance point bin model to estimate chiller<br>loads in the pre-retrofit condition. This bin model assumes a<br>maximum chiller demand of 282 kW at 107 °F outdoor dry bulb<br>and 5 kW at 42 °F outdoor dry bulb.                                                                                                                                                                                                                                                                                      |
|                                                               | In the post-retrofit condition it is assumed that the chillers are locked out below 60°F, and that all chiller loads are met using the free cooling system.                                                                                                                                                                                                                                                                                                                                                                    |
|                                                               | Peak demand impacts are assumed to be zero because free cooling<br>is obtained during the early morning and late at night, and during<br>periods with low outdoor temperatures.                                                                                                                                                                                                                                                                                                                                                |
| Comments on<br>Calculations:                                  | This retrofit included the installation of a new evaporative cooling tower. The tower retrofit was, however, applied for under a separate application (refer to check number 60361).                                                                                                                                                                                                                                                                                                                                           |
| <b>Evaluation Process</b>                                     | The chiller loads assumed in this application were verified using chiller logs maintained at the site.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | Logs were also available surrounding the operation of the free<br>cooling system. Outdoor temperatures recorded on this log support<br>the application assumption of free cooling below 60 °F. Of the<br>eighty one records obtained for free cooling, just four observations<br>were recorded where the outdoor temperature was in excess of 60<br>°F.                                                                                                                                                                        |
|                                                               | In contrast, however, chiller logs for the period December 1995<br>and January 1996 showed chiller operation below 60 °F. This<br>suggests that the reported chiller lockout at 60 °F is not always<br>applicable (the on-site contact stated that the chiller lockout occurs<br>at an even higher outdoor temperature of 63 °F in the post-retrofit<br>condition, though the logs do not support this position).                                                                                                              |
|                                                               | In general, on-site documented records are consistent with the application assumptions. Following several verification steps, application estimates were adopted.                                                                                                                                                                                                                                                                                                                                                              |
| Additional Notes:                                             | An on-site inspection of this facility was conducted on November 19, 1996 with Lee Wilson.                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# Impact Results for Site ID# 1230

|                                 | kW | kWh     | Therm |
|---------------------------------|----|---------|-------|
| MDSS                            | 0  | 216,028 | 0     |
| Evaluation Estimates            | 0  | 216,028 | 0     |
| Engineering Realization<br>Rate | NA | 1.0     | NĂ    |

| hiller #1 Data |             |            |               | ,                                               |                                       |                           | <u> </u> |
|----------------|-------------|------------|---------------|-------------------------------------------------|---------------------------------------|---------------------------|----------|
| Observation    | Outside     | Compressor |               | Average<br>Compressor                           | Probability of                        | Number of<br>Observations |          |
| No.            | Temperature | Amps       | Both Running? | Amps                                            | Both Running                          | Contributing              | Bin      |
| 1              | 49          | 100        | 0             | 100                                             | 0.00                                  | 1                         | 47       |
| 5              | 50          | 85         | 0             | 100                                             | 0.00                                  |                           |          |
| 6              | 50          | 85         | 0             |                                                 |                                       |                           |          |
| 8              | 50          | 105        | 0             |                                                 |                                       |                           |          |
| 9              | 52          | 105        | 0             |                                                 |                                       |                           |          |
| 10             | 52          | 110        | 0             |                                                 |                                       |                           |          |
| 11             | 52          | 100        | 0             | =                                               |                                       |                           |          |
| 12             | 52          | 105        | 0             |                                                 | +                                     |                           |          |
| 13             | 52          | 95         | 0             | • •                                             |                                       |                           |          |
| 4              | 54          | 95         | 0             |                                                 |                                       |                           |          |
| 14             | 54          | 90         | 0             | 98                                              | 0.00                                  | 10                        | 52       |
| 2              | 55          | 85         | 0             |                                                 |                                       |                           |          |
| 7              | 55          | 120        | 0             | - • <u></u> · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                           |          |
| 3              | 56          | 90         | 0             | 98                                              | 0.00                                  | 3                         | 57       |
| 74             | 64          | 195        | 0             | 195                                             | 0.00                                  | 1                         | 62       |
| 23             | 65          | 175        | 1             |                                                 |                                       |                           |          |
| 106            | 65          | 130        | 0             |                                                 |                                       |                           |          |
| 35             | 66          | 180        | 1             |                                                 |                                       | ·                         |          |
| 44             | 66          | 165        | 0             |                                                 |                                       |                           |          |
| 52             | 66          | 195        | 0             |                                                 |                                       |                           |          |
| 66             | 66          | 185        | 1             |                                                 |                                       |                           |          |
| 71             | 66          | 150        | 1             |                                                 |                                       |                           |          |
| 104            | 66          | 174        | 1             |                                                 |                                       |                           |          |
| 119            | 66          | 165        | 0             |                                                 |                                       |                           |          |
| 122            | 66          | 170        | 0             |                                                 |                                       |                           |          |
| 20             | 67          | 120        | 1             |                                                 |                                       |                           |          |
| 22             | 67          | 110        | 1             |                                                 |                                       |                           |          |
| 111            | 67          | 168        | 0             |                                                 |                                       |                           |          |

10

| 18  | 68 | 125 | 0 |                                       |      |     |                                       |
|-----|----|-----|---|---------------------------------------|------|-----|---------------------------------------|
| 45  | 68 | 180 | 0 |                                       |      |     |                                       |
| 78  | 68 | 190 | 1 |                                       |      |     |                                       |
| 84  | 68 | 195 | 0 |                                       |      |     |                                       |
| 98  | 68 | 185 | 0 |                                       |      |     |                                       |
| 105 | 68 | 170 | 0 |                                       |      |     |                                       |
| 110 | 68 | 176 | 0 |                                       |      |     |                                       |
| 114 | 68 | 162 | 0 |                                       |      |     |                                       |
| 118 | 68 | 170 | 0 |                                       |      |     |                                       |
| 58  | 69 | 186 | 0 |                                       |      |     |                                       |
| 112 | 69 | 175 | 0 | 167                                   | 0.33 | 24  | 67                                    |
| 34  | 70 | 170 | 0 |                                       |      |     |                                       |
| 59  | 70 | 190 | 0 |                                       |      | · · |                                       |
| 92  | 70 | 180 | 0 |                                       |      |     |                                       |
| 93  | 70 | 180 | 0 |                                       |      |     |                                       |
| 117 | 70 | 175 | 0 |                                       |      |     |                                       |
| 120 | 70 | 170 | 0 | · · · · · · · · · · · · · · · · · · · |      |     |                                       |
| 121 | 71 | 170 | 0 |                                       |      |     |                                       |
| 21  | 72 | 120 | 1 |                                       |      |     |                                       |
| 115 | 72 | 171 | 0 |                                       |      |     |                                       |
| 116 | 72 | 170 | 0 |                                       |      |     |                                       |
| 109 | 73 | 183 | 0 |                                       |      |     | · · · · · · · · · · · · · · · · · · · |
| 30  | 74 | 195 | 0 |                                       |      |     |                                       |
| 65  | 74 | 190 | 0 |                                       |      |     |                                       |
| 107 | 74 | 185 | 0 | 175                                   | 0.07 | 14  | 72                                    |
| 15  | 75 | 200 | 1 |                                       |      |     |                                       |
| 75  | 75 | 190 | 0 |                                       |      |     |                                       |
| 113 | 75 | 177 | 0 |                                       |      |     |                                       |
| 19  | 76 | 100 | 1 | · ·                                   |      |     |                                       |
| 64  | 76 | 190 | 0 |                                       |      |     |                                       |
| 76  | 76 | 180 | 1 |                                       |      |     |                                       |
| 83  | 76 | 175 | 0 |                                       |      | +   |                                       |
| 100 | 76 | 150 | 1 |                                       |      |     |                                       |

| 108 | 76 | 185 | 0 |     |      |                                       |    |
|-----|----|-----|---|-----|------|---------------------------------------|----|
| 29  | 78 | 200 | 0 |     |      | · ·                                   |    |
| 46  | 78 | 195 | 0 |     |      |                                       |    |
| 51  | 78 | 194 | 0 |     |      |                                       |    |
| 91  | 78 | 180 | 0 | 178 | 0.31 | 13                                    | 77 |
| 43  | 80 | 195 | 0 |     |      | · · · · · · · · · · · · · · · · · · · |    |
| 101 | 80 | 184 | 1 |     |      |                                       |    |
| 103 | 80 | 176 | 1 |     |      |                                       |    |
| 24  | 81 | 195 | 0 |     |      |                                       |    |
| 16  | 82 | 115 | 0 |     |      | · · · · · · · · · · · · · · · · · · · |    |
| 17  | 82 | 105 | 1 |     |      |                                       |    |
| 77  | 82 | 175 | 1 |     |      |                                       |    |
| 82  | 82 | 185 | 1 |     |      |                                       |    |
| 33  | 84 | 195 | 0 |     |      |                                       |    |
| 36  | 84 | 195 | 0 |     |      |                                       |    |
| 57  | 84 | 189 | 0 |     |      |                                       |    |
| 90  | 84 | 165 | 1 |     |      |                                       |    |
| 102 | 84 | 166 | 1 | 172 | 0.54 | 13                                    | 82 |
| 99  | 85 | 190 | 1 |     |      |                                       |    |
| 53  | 86 | 195 | 0 |     |      |                                       |    |
| 63  | 86 | 180 | 1 |     |      |                                       |    |
| 72  | 86 | 145 | 1 |     |      |                                       |    |
| 94  | 87 | 185 | 1 |     |      |                                       |    |
| 28  | 88 | 185 | 1 |     |      |                                       |    |
| 40  | 88 | 200 | 0 |     |      |                                       |    |
| 79  | 88 | 170 | 1 |     |      |                                       |    |
| 85  | 88 | 190 | 0 | 182 | 0.67 | 9                                     | 87 |
| 25  | 90 | 180 | 0 |     |      |                                       |    |
| 48  | 90 | 185 | 1 |     |      |                                       |    |
| 49  | 90 | 186 | 1 |     |      |                                       |    |
| 32  | 92 | 195 | 0 |     |      |                                       |    |
| 37  | 92 | 180 | 1 |     |      |                                       |    |
| 38  | 92 | 175 | 0 |     |      |                                       |    |

.

| 39 | 92  | 196 | 0 |     |      |                                       |          |
|----|-----|-----|---|-----|------|---------------------------------------|----------|
| 47 | 92  | 185 | 1 |     |      |                                       |          |
| 80 | 92  | 160 | 1 |     |      |                                       |          |
| 89 | 92  | 180 | 1 |     |      |                                       |          |
| 26 | 94  | 175 | 1 |     |      |                                       |          |
| 50 | 94  | 188 | 1 | 1   |      |                                       |          |
| 73 | 94  | 145 | 1 |     |      |                                       |          |
| 86 | 94  | 190 | 1 | 180 | 0.71 | 14                                    | 92       |
| 42 | 96  | 185 | 1 |     |      |                                       | <u> </u> |
| 56 | 96  | 184 | 1 |     |      |                                       |          |
| 67 | 96  | 180 | 1 |     |      |                                       |          |
| 41 | 98  | 180 | 1 |     |      | · · · · · · · · · · · · · · · · · · · |          |
| 54 | 98  | 180 | 1 |     |      |                                       |          |
| 55 | 98  | 186 | 1 |     |      |                                       |          |
| 87 | 98  | 190 | 1 | 184 | 1.00 | 7                                     | 97       |
| 27 | 100 | 200 | 0 |     |      |                                       |          |
| 31 | 100 | 190 | 0 |     |      |                                       |          |
| 69 | 100 | 187 | 1 |     |      |                                       |          |
| 70 | 100 | 184 | 1 |     |      |                                       |          |
| 95 | 100 | 185 | 1 |     |      |                                       |          |
| 97 | 100 | 186 | 1 |     |      |                                       |          |
| 68 | 102 | 185 | 1 |     | •    |                                       |          |
| 81 | 102 | 190 | 1 |     |      |                                       |          |
| 96 | 102 | 189 | 1 |     |      |                                       |          |
| 62 | 104 | 180 | 1 | 188 | 0.80 | 10                                    | 102      |
| 60 | 106 | 180 | 1 | 180 | 1.00 | 1                                     | 107      |
| 88 | 110 | 175 | 1 | 175 | 1.00 | 1                                     | 112      |
| 61 | 118 | 180 | 1 | 180 | 1.00 | 1                                     | 117      |

| hiller #2 Data     |                        |                    |               |                                       |                                       |                                           | · · · · ·   |
|--------------------|------------------------|--------------------|---------------|---------------------------------------|---------------------------------------|-------------------------------------------|-------------|
| Observation<br>No. | Outside<br>Temperature | Compressor<br>Amps | Both Running? | Average<br>Compressor<br>Amps         | Probability of<br>Both Running        | Number of<br>Observations<br>Contributing | Bin         |
| 7                  | 48                     | 160                | 0             | 160                                   | 0.00                                  | 1                                         | 47          |
| 1                  | 50                     | 110                | 0             | 100                                   | 0.00                                  | <b>I</b>                                  | <del></del> |
| 6                  | 50                     | 140                | 0             |                                       |                                       |                                           |             |
| 18                 | 50                     | 140                | 0             |                                       |                                       |                                           |             |
| 2                  | 51                     | 170                | 0             |                                       | · · · · · · · · · · · · · · · · · · · |                                           |             |
| 19                 | 51                     | 110                | 0             | · · · · · · · · · · · · · · · · · · · | · · ·                                 |                                           | ······      |
| 13                 | 51.3                   | 149                | 0             |                                       |                                       |                                           |             |
| 17                 | 52 ·                   | 140                | 0             |                                       |                                       |                                           |             |
| 21                 | 52                     | 115                | 0             |                                       |                                       |                                           |             |
| 22                 | 52                     | 110                | 0             | ·····                                 |                                       |                                           |             |
| 5                  | 54                     | 145                | 0             |                                       |                                       |                                           |             |
| 8                  | 54                     | 145                | 0             |                                       |                                       |                                           |             |
| 20                 | 54                     | 115                | 0             |                                       |                                       |                                           |             |
| 11                 | 54.4                   | 148                | 0             | 134                                   | 0.00                                  | 13                                        | 52          |
| 23                 | 55                     | 120                | 0             |                                       |                                       |                                           |             |
| 3                  | 56                     | 150                | 0             |                                       |                                       |                                           |             |
| 16                 | 56                     | 140                | 0             |                                       |                                       |                                           | · · · ·     |
| 12                 | 56.8                   | .146               | 0             | 139                                   | 0.00                                  | 4                                         | 57          |
| 4                  | 60                     | 145                | 0             |                                       |                                       |                                           |             |
| 15                 | 60                     | 145                | 0             |                                       |                                       |                                           |             |
| 29                 | 60                     | 145                | 0             |                                       |                                       |                                           |             |
| 10                 | 60.5                   | 150                | 0             |                                       | 1                                     |                                           |             |
| 14                 | 60.5                   | 147                | 0             |                                       |                                       |                                           |             |
| 187                | 62                     | 175                | 0             |                                       |                                       |                                           |             |
| 189                | 62                     | 170                | 0             |                                       |                                       |                                           |             |
| 9                  | 63                     | 152                | 0             |                                       |                                       |                                           |             |
| 36                 | 64                     | 180                | 0             |                                       |                                       |                                           |             |
| 38                 | 64                     | 185                | 0             |                                       |                                       |                                           |             |

|     |    |      |    | / · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |    |                                       |
|-----|----|------|----|-----------------------------------------|---------------------------------------|----|---------------------------------------|
| 148 | 64 | 180  | 0  |                                         | •                                     |    |                                       |
| 180 | 64 | 180  | 0  |                                         |                                       |    |                                       |
| 197 | 64 | 185  | 0  | 165                                     | 0.00                                  | 13 | 62                                    |
| 24  | 65 | 155  | 0  |                                         |                                       |    |                                       |
| 34  | 65 | 170  | 0  |                                         |                                       |    |                                       |
| 51  | 65 | 185  | 0  |                                         |                                       |    |                                       |
| 89  | 65 | 150  | 0  |                                         |                                       |    |                                       |
| 112 | 65 | 185  | 0  |                                         |                                       |    | · · · · · · · · · · · · · · · · · · · |
| 123 | 65 | 175  | 0  |                                         |                                       |    |                                       |
| 145 | 65 | 185  | 0  |                                         |                                       |    |                                       |
| 159 | 65 | 180  | 0  |                                         |                                       |    |                                       |
| 25  | 66 | 160  | 0  |                                         |                                       |    |                                       |
| 33  | 66 | 156  | 0  |                                         |                                       |    |                                       |
| 47  | 66 | 185  | 0  |                                         |                                       |    |                                       |
| 67  | 66 | 180  | 0  |                                         |                                       |    |                                       |
| 69  | 66 | 185  | 1  |                                         |                                       |    |                                       |
| 75  | 66 | 185  | 1  |                                         |                                       |    |                                       |
| 86  | 66 | 180  | 0  |                                         |                                       |    |                                       |
| 94  | 66 | 160  | .0 |                                         |                                       |    |                                       |
| 96  | 66 | 1.85 | 0  |                                         |                                       |    |                                       |
| 100 | 66 | 189  | 0  |                                         |                                       |    |                                       |
| 105 | 66 | 190  | 0  |                                         |                                       |    |                                       |
| 111 | 66 | 190  | 0  |                                         | · · · · · · · · · · · · · · · · · · · |    |                                       |
| 158 | 66 | 180  | 0  |                                         |                                       |    |                                       |
| 165 | 66 | 185  | 1  |                                         |                                       |    | · · · · · · · · · · · · · · · · · · · |
| 171 | 66 | 190  | 0  |                                         |                                       |    |                                       |
| 175 | 66 | 180  | 0  |                                         |                                       | T  |                                       |
| 179 | 66 | 180  | 0  |                                         | 1                                     |    |                                       |
| 185 | 66 | 185  | 0  |                                         |                                       |    |                                       |
| 200 | 66 | 180  | 0  |                                         |                                       |    |                                       |
| 201 | 66 | 180  | 0  |                                         |                                       |    |                                       |
| 26  | 67 | 165  | 0  |                                         |                                       |    |                                       |
| 182 | 67 | 182  | 0  | +                                       | ·····                                 |    |                                       |

| 192 | 67 | 184 | 0   | ····· |                                        |                                        |          |
|-----|----|-----|-----|-------|----------------------------------------|----------------------------------------|----------|
| 35  | 68 | 167 | 0   |       |                                        |                                        |          |
| 42  | 68 | 180 | 0   |       |                                        |                                        |          |
| 61  | 68 | 80  | 0   |       |                                        |                                        |          |
| 99  | 68 | 191 | 0   |       |                                        |                                        |          |
| 106 | 68 | 186 | 0   |       |                                        | ······································ |          |
| 108 | 68 | 185 | 0   |       |                                        |                                        |          |
| 129 | 68 | 180 | 0   |       |                                        |                                        |          |
| 152 | 68 | 182 | 0   |       |                                        |                                        |          |
| 157 | 68 | 180 | 0   |       | ······································ |                                        |          |
| 164 | 68 | 185 | 0   |       | · · · · · · · · · · · · · · · · · · ·  |                                        |          |
| 170 | 68 | 185 | 0   |       |                                        |                                        |          |
| 184 | 68 | 180 | 0   |       |                                        |                                        |          |
| 186 | 68 | 180 | 0   |       |                                        |                                        |          |
| 196 | 68 | 180 | 0   |       |                                        |                                        |          |
| 56  | 69 | 180 | 0   |       |                                        |                                        |          |
| 117 | 69 | 185 | 0   |       |                                        |                                        |          |
| 183 | 69 | 180 | 0   |       |                                        |                                        |          |
| 193 | 69 | 184 | 0   | 177   | 0.06                                   | 49                                     | 67       |
| 43  | 70 | 185 | 0 . |       |                                        |                                        |          |
| 46  | 70 | 185 | 0   |       |                                        |                                        |          |
| 107 | 70 | 185 | 0   |       |                                        |                                        |          |
| 116 | 70 | 190 | 0   |       |                                        |                                        |          |
| 122 | 70 | 190 | 0   |       |                                        |                                        |          |
| 138 | 70 | 190 | 0   |       |                                        |                                        |          |
| 30  | 71 | 155 | 0   |       |                                        |                                        |          |
| 39  | 71 | 185 | 0   |       |                                        |                                        |          |
| 153 | 71 | 186 | 0   |       |                                        |                                        |          |
| 172 | 71 | 185 | 0   |       |                                        |                                        | <u> </u> |
| 181 | 71 | 180 | 0   |       |                                        |                                        |          |
| 27  | 72 | 160 | 0   |       |                                        |                                        |          |
| 28  | 72 | 165 | 0   |       |                                        |                                        |          |
| 88  | 72 | 175 | 0   |       |                                        |                                        |          |

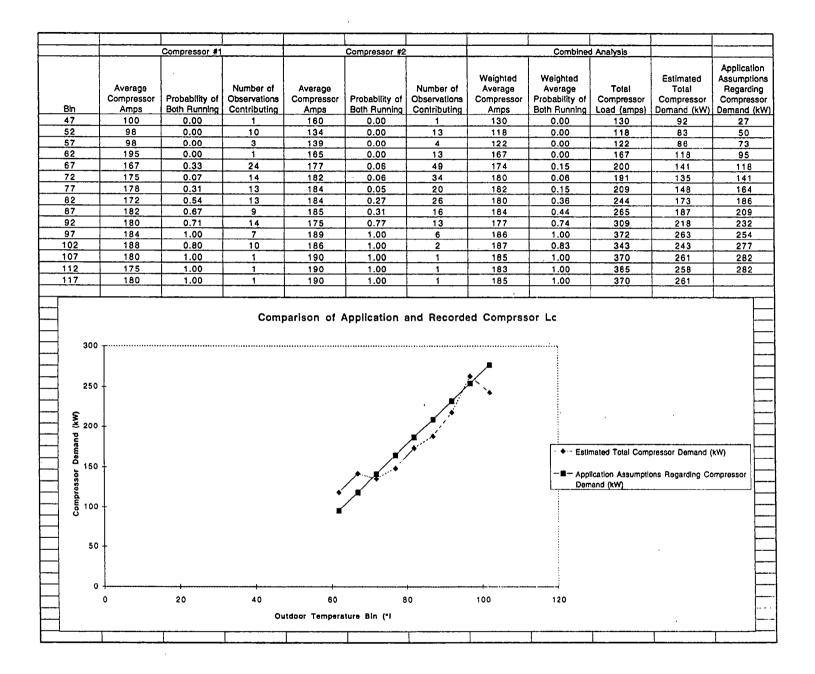
|     |    |      |   |     |      | 1  | ·           |
|-----|----|------|---|-----|------|----|-------------|
| 173 | 72 | 185  | 0 |     |      |    |             |
| 176 | 72 | 185  | 0 |     |      |    |             |
| 188 | 72 | 180  | 0 |     |      |    |             |
| 198 | 72 | -180 | 0 |     |      |    |             |
| 37  | 73 | 185  | 0 |     |      |    |             |
| 160 | 73 | 185  | 0 |     |      |    |             |
| 166 | 73 | 185  | 0 |     |      |    |             |
| 190 | 73 | 180  | 0 |     |      |    |             |
| 50  | 74 | 190  | 0 |     |      |    |             |
| 52  | 74 | 185  | 0 |     |      |    |             |
| 55  | 74 | 185  | 0 |     |      |    |             |
| 62  | 74 | 195  | 0 |     |      |    |             |
| 90  | 74 | 150  | 1 |     |      |    |             |
| 104 | 74 | 190  | 0 |     |      |    |             |
| 109 | 74 | 190  | 0 |     |      |    |             |
| 146 | 74 | 200  | 1 |     |      |    |             |
| 163 | 74 | 185  | 0 |     |      |    |             |
| 174 | 74 | 185  | 0 |     |      |    |             |
| 195 | 74 | 180  | 0 |     |      |    |             |
| 199 | 74 | 180  | 0 | 182 | 0.06 | 34 | 72          |
| 31  | 75 | 160  | 0 |     |      |    |             |
| 97  | 75 | 190  | 0 |     |      |    |             |
| 101 | 75 | 189  | 0 |     |      |    |             |
| 113 | 75 | 190  | 0 |     |      |    |             |
| 70  | 76 | 185  | 0 |     |      | 1  |             |
| 93  | 76 | 195  | 0 |     |      |    |             |
| 121 | 76 | 185  | 0 |     |      |    | · · · · · · |
| 144 | 76 | 187  | 1 |     |      |    |             |
| 151 | 76 | 184  | 0 |     |      |    |             |
| 154 | 76 | 187  | 0 |     |      |    |             |
| 177 | 76 | 180  | 0 |     |      |    |             |
| 191 | 77 | 181  | 0 |     |      |    |             |
| 32  | 78 | 172  | 0 |     |      |    |             |

1

.

| 40  | 78  | 190 | 0   |     |      |     |    |
|-----|-----|-----|-----|-----|------|-----|----|
| 41  | 78  | 185 | 0   |     |      |     |    |
| 48  | 78  | 185 | 0   |     |      |     |    |
| 114 | 78  | 190 | 0   |     |      |     |    |
| 155 | 78  | 185 | 0   |     |      |     |    |
| 178 | 78  | 185 | 0   |     |      | · · |    |
| 194 | 78  | 181 | 0   | 184 | 0.05 | 20  | 77 |
| 44  | 80  | 185 | 0   |     |      |     |    |
| 118 | 80  | 190 | 0   |     |      |     |    |
| 124 | 80  | 195 | 0   |     |      |     |    |
| 149 | 80  | 166 | 1   |     |      |     |    |
| 150 | 80  | 168 | 1   |     |      |     |    |
| 161 | 80  | 185 | 0   |     |      |     |    |
| 167 | 80  | 185 | . 0 |     |      |     |    |
| 168 | 80  | 180 | 0   |     |      |     |    |
| 169 | 80  | 185 | 0   |     |      |     |    |
| 68  | 82  | 180 | 1   |     |      |     |    |
| 74  | 82. | 184 | 0   |     |      |     |    |
| 127 | 82  | 179 | 0   |     |      |     |    |
| 133 | 82  | 185 | 1   |     |      |     |    |
| 139 | 82  | 190 | 0   |     |      |     |    |
| 57  | 83  | 184 | 0   |     |      |     |    |
| 58  | 83  | 186 | 0   |     |      |     |    |
| 59  | 83  | 186 |     |     |      |     |    |
| 130 | 83  | 182 | 0   |     |      |     |    |
| 49  | 84  | 185 | 0   |     |      |     |    |
| 53  | 84  | 190 | 0   |     |      |     |    |
| 71  | 84  | 180 | 1   |     |      |     |    |
| 110 | 84  | 185 | 0   |     |      | P   |    |
| 115 | 84  | 190 | 0   |     |      |     |    |
| 119 | 84  | 190 | 0   |     |      |     |    |
| 137 | 84  | 190 | 1   |     |      |     |    |
| 147 | 84  | 170 | 1   |     |      |     |    |

| 162 | 84 | 185 | 0              | 184 | 0.27 | 26  | 82          |
|-----|----|-----|----------------|-----|------|-----|-------------|
| 63  | 85 | 174 | 0              |     |      |     |             |
| 72  | 85 | 186 | 1              |     |      |     |             |
| 73  | 85 | 184 | 1              |     |      |     |             |
| 98  | 85 | 193 | 0              |     |      |     |             |
| 143 | 85 | 189 | 1              |     |      |     |             |
| 45  | 86 | 185 | 0              |     |      |     |             |
| 54  | 86 | 190 | 0              |     |      |     |             |
| 91  | 86 | 190 | 0              |     |      |     |             |
| 95  | 86 | 195 | 0              |     |      |     | · · ·       |
| 102 | 86 | 190 | 0              |     |      |     |             |
| 103 | 86 | 190 | 0              |     |      |     |             |
| 156 | 86 | 180 | 0              |     |      |     |             |
| 76  | 88 | 180 | 1              |     |      |     | · · · · · · |
| 87  | 88 | 180 | 1              |     |      |     |             |
| 125 | 88 | 177 | 0              |     |      |     |             |
| 126 | 88 | 179 | 0              | 185 | 0.31 | 16  | 87          |
| 77  | 90 | 178 | 1              |     |      |     |             |
| 78  | 90 | 185 | 1              |     |      |     |             |
| 131 | 91 | 178 | 0 <sup>,</sup> |     |      |     |             |
| 60  | 92 | 81  | 1              |     |      |     |             |
| 92  | 92 | 180 | 1              |     |      |     |             |
| 136 | 92 | 190 | 1              |     |      |     |             |
| 140 | 92 | 190 | 1              |     |      |     |             |
| 64  | 94 | 181 | 1              |     |      |     |             |
| 65  | 94 | 175 | 1              |     |      |     |             |
| 66  | 94 | 182 | 1              |     |      |     |             |
| 79  | 94 | 180 | 1              |     |      |     |             |
| 120 | 94 | 190 | 0              |     | · ·  |     |             |
| 128 | 94 | 179 | 0              | 175 | 0.77 | 13  | 92          |
| 83  | 96 | 189 | 1              |     |      | · · |             |
| 80  | 98 | 186 | 1              |     |      |     |             |
| 81  | 98 | 187 | 1              |     |      |     |             |


.

| 82  | 98  | 189 | 1 |     |      |     |     |
|-----|-----|-----|---|-----|------|-----|-----|
| 134 | 98  | 190 | 1 |     |      |     |     |
| 142 | 98  | 191 | 1 | 189 | 1.00 | 6   | 97  |
| 132 | 102 | 185 | 1 |     |      |     |     |
| 141 | 102 | 187 | 1 | 186 | 1.00 | 2   | 102 |
| 84  | 106 | 190 | 1 | 190 | 1.00 | 1 - | 107 |
| 135 | 110 | 190 | 1 | 190 | 1.00 | 1   | 112 |
| 85  | 118 | 190 | 1 | 190 | 1.00 | 1   | 117 |

.

.

.



| Site ID #                             | 1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control#                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Check #                               | 63884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Program                               | Customized Rebates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Measure(s)                            | Chiller Retrofit, Installation of VSD on Supply Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Site Description                      | County Office Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measure<br>Description:               | Install a variable speed drive on the compressor of an existing 700 ton chiller and add an additional high efficiency, variable speed 400 to chiller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Summery of<br>Rebate<br>Calculations: | Rebate calculations were performed using visual DOE. The<br>simulations documented in the application include a basecase<br>run calibrated to billing data and an enhanced case run<br>incorporating the new chiller characteristics. The variable<br>speed drive savings are undocumented.                                                                                                                                                                                                                                                                                                                                  |
| Comments on<br>Calculations:          | There are minor discrepancies between the standard DOE-2<br>output included with the application and the Visual-DOE<br>output used to document the impact calculations. In terms of<br>energy impacts, both the standard DOE-2 and visual-DOE<br>output show large savings for the condenser as well as the<br>chiller. No rational is given for condenser savings, as the<br>project to not affect either the cooling tower or condenser<br>loop pumps.                                                                                                                                                                     |
| Evaluation<br>Process:                | An on-site survey was conducted to verify equipment and<br>operational characteristics. Both the retrofit chiller and the<br>added chiller were found to be installed and operating in a<br>fashion consistent with what was stated in the application.                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | The Visual-DOE output was checked against the standard<br>DOE-2 output included with the application. As mentioned<br>previously, there was a savings shown for the condenser<br>operation as well as the chiller. Discussions with the plant<br>manager indicated that no change had taken place to explain<br>this change in energy consumption. For this reason, the<br>impact estimate was adjusted to reflect no change in the<br>amount of energy used for the condenser.                                                                                                                                              |
|                                       | Documentation to support the savings associated with the<br>variable speed drive on the chilled water supply pump were<br>not supplied with the application. In order to verify the<br>savings, the basecase DOE-2 model used for the application<br>estimate was obtained. This model was first simulated to<br>ensure that the output was consistent with the application.<br>Once this was the basecase energy usage was confirmed, the<br>model was modified to reflect the use of a variable speed<br>pump on the chilled water supply. Results from this<br>simulation showed the impacts associated with the variable |

speed drive to be approximately 80 percent of the value listed on the application. These results were used as the basis for the evaluation impacts.

Demand impacts for the retrofit were computed based on the on-site survey data. During the peak period only the 700 to retrofit chiller is operating, loaded at approximately 91 percent. Peak demand impact associated with the retrofit chiller was computed as the product of the chiller capacity times the loading factor (91 percent) and the difference in full load kW/ton of the Title 24 baseline and retrofit chillers. This assumes a negligible difference in efficiency between full load and 91 percent loaded. The result of this computation is 68.80 kW, as opposed to an application estimate of 197.0 kW. Since the modified case simulation model was not available for review, the source of this discrepancy could not be identified.

# **Additional Notes:**

## **Impact Results**

|                                 | kW     | kWh     | Therm |
|---------------------------------|--------|---------|-------|
| MDSS                            | 197.00 | 650,328 | 0     |
| Adjusted Engineering            | 68.80  | 456,224 | 0     |
| Engineering Realization<br>Rate | 0.35   | 0.70    | N/A   |

### Quantum Consulting Inc.

# Calculations

|                     | En                     |                        |                           |                                       |                 |               |
|---------------------|------------------------|------------------------|---------------------------|---------------------------------------|-----------------|---------------|
|                     |                        | Retrofit               | Chilled Water<br>Pump VSD | Evaluation<br>Estimate                |                 |               |
| End-Use             | Base Case              | <b>Modified</b> Case   | Modified Case             |                                       |                 |               |
| Lighting            | 1,246,850              | 1,246,850              | -                         | 1,246,850                             |                 |               |
| Equipment           | 439,940                | 439,940                | -                         | 439,940                               |                 |               |
| Heating             | 58,310                 | 58,310                 | -                         | 58,310                                |                 | · · · · · · · |
| Cooling             | 970,990                | 676,820                | -                         | 676,820                               |                 |               |
| Cooling Tower       | 414,060                | 257,020                | -                         | 414,060                               |                 |               |
| Pumps - Cooling     | 456,400                | 456,400                | -                         | 186,083                               |                 |               |
| Pumps - Heating     | N/A                    | N/A                    | -                         | 108,263                               |                 |               |
| Fans                | 1,383,450              | 1,383,450              | -                         | 1,383,450                             |                 |               |
| Hot Water           | -                      | -                      | -                         |                                       |                 |               |
| Total               | 4,970,000              | 4,518,790              | 4,319,887                 | 4,513,776                             |                 |               |
| Impacts             |                        |                        | 650,113                   | 456,224                               |                 |               |
| Red Indicates a cal | culated Value          |                        |                           | · · · · · · · · · · · · · · · · · · · |                 |               |
| L                   |                        | Deman                  | d Impacts                 |                                       |                 |               |
|                     | Existing<br>Efficiency | Baseline<br>Efficiency | Enhanced<br>Efficiency    | Capacity                              | Peak<br>Loading | Impact        |
|                     | 0.78                   | 0.748                  | 0.640                     | 700                                   | 0.91            | 68.80         |
| Red Indicates a cal | culated Value          |                        |                           |                                       |                 |               |

| Site ID#:                                                     | 1929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                                                       | 61202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Measure                                                       | Retrofit Existing VAV Boxes with Damper Kits and DDC Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measure<br>Description:                                       | The retrofit site is a large 23 story office building, with 1,500,000 sq ft of conditioned space. The retrofit performed at this site is a VAV box upgrade which includes the replacement of older damper equipment and the installation of DDC terminal unit controls (and velocity sensors) that provide feedback to the central plant. In addition, pneumatic thermostats were replaced with electronic thermostats. MDSS records list this as HVAC Controls, action code 201.                                                                                                                                                                                                                                                                   |
| Summary of<br>Calculations in the<br>Original<br>Application: | The calculations estimate savings due to a reduced discharge<br>pressure at each terminal. A reduction in supply air (SA) pressure<br>will save energy due to a reduction in SA motor load (at a particular<br>CFM delivery rate).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               | In addition, the retrofit has allowed a reduction in the supply air temperature setting. Increased occupant comfort has been achieved with damper systems that will completely close.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Comments on<br>Calculations:                                  | The documentation for this retrofit indicates that savings are<br>achieved due to both the reduced pressure drop at the VAV box<br>(retrofit boxes have a new low pressure damper system ), and the<br>ability to completely close off unconditioned zones during<br>unoccupied periods.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                               | The inability to completely close the existing VAV box dampers<br>caused many "cold" complaints, due to supply air that leaks<br>through closed dampers. These cold complaints in turn forced the<br>building engineers to raise the supply air temperature 10 °F above<br>the design setting (to 65 °F), which caused this system to operate in<br>a fashion more closely related to a constant volume than variable air<br>volume system. Upon retrofit of the VAV boxes, the building<br>engineers were able to lower the supply air temperature in<br>accordance with the original building design. Calculations capture<br>this component of retrofit savings with the application of an average<br>CFM factor in the post-retrofit condition. |
| Evaluation Process                                            | The application estimates are based upon assumed CFM delivery<br>rates for average operation of the pre- and post-retrofit system. The<br>evaluation process has assessed these assumptions relative to the<br>assumed reduction in supply air temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | The evaluation approach re-defines the post-retrofit CFM delivery<br>rate based upon the assumption that the sensible cooling delivery of<br>the system would not change pre- vs post-retrofit. CFM are<br>predicted in the post-retrofit condition using data from the site<br>contact regarding supply air temperatures in both the pre- and post-<br>retrofit system.                                                                                                                                                                                                                                                                                                                                                                            |
| Additional Notes:                                             | An on-site inspection of this facility was conducted on November 13, 1996 with Mario Yamas and Tom Hayes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

B-33

# Impact Results for Site ID# 1929

|                                 | kW    | kWh       | Therm |
|---------------------------------|-------|-----------|-------|
| MDSS                            | 115   | 2,318,100 | 0     |
| Evaluation Estimates            | 115.2 | 3,491,159 | 0     |
| Engineering Realization<br>Rate | 1.00  | 1.51      | NA    |

•

•

|                |                          | of coulo co b                    |        |                           |                                       |          | Received and here        |                          |                                       |               |                                       | r              |
|----------------|--------------------------|----------------------------------|--------|---------------------------|---------------------------------------|----------|--------------------------|--------------------------|---------------------------------------|---------------|---------------------------------------|----------------|
|                |                          | of savings are b                 |        |                           |                                       |          |                          | s (schedule A)           | and unoccupied                        | nours (schedu | <u>le В).</u>                         | <b> </b>       |
|                |                          | parding the CFM                  |        |                           |                                       |          |                          |                          |                                       |               |                                       |                |
|                |                          | ng plans were insported below in |        |                           |                                       |          |                          |                          |                                       |               |                                       | <u> </u>       |
|                | A summary is p           |                                  | conj   | unction with supp         | ny ran records                        |          | the application          |                          |                                       |               |                                       | <u> </u>       |
|                | Duilding Diag            | Duilding Diam                    |        | A = = 11 = = 11 = =       | A 11 Al                               |          | Dull dan Dian            | Duritation Dise          |                                       |               |                                       | <u> </u>       |
| Sumaly         | Building Plan            | Building Plan                    |        | Application               | Application                           | ŀ        | Building Plan            | Building Plan            |                                       |               |                                       |                |
| Supply<br>Fan  | Supply Fan<br>Design CFM | Number of<br>Supply Fans         |        | Supply Fan<br>Design CFM  | Number of<br>Supply Fans              |          | Return Fan<br>Design CFM | Number of<br>Return Fans |                                       |               |                                       |                |
| AC-1           | 52,000                   | 2                                |        | 52,000                    | 2                                     |          | 44,000                   | 2                        |                                       |               | ·                                     | <u>}</u>       |
| AC-2           | 115,000                  | 2                                |        | 115,000                   | 2                                     |          | 95,000                   | 2                        |                                       | <u> </u>      | <u> </u>                              | <u> </u>       |
| AC-2<br>AC-3   | 25,000                   | 2                                |        | 25,000                    | 2                                     |          | 22,500                   | 2                        |                                       |               |                                       |                |
| AC-4           | 170,000                  |                                  |        |                           |                                       |          |                          |                          |                                       |               |                                       | ·              |
| AC-5           | 170,000                  | 2                                |        | <u>170,000</u><br>170,000 | 2                                     | <b> </b> | 74,000                   | 2                        |                                       |               |                                       | ·····          |
| AC-5<br>AC-6   | 87,500                   |                                  |        |                           | 2                                     |          | 74,000                   | 2                        | · · · · · · · · · · · · · · · · · · · |               |                                       |                |
| AC-0<br>AC-7   | 87,500                   | 2 2                              |        | 87,500<br>87,500          | 2                                     |          | <u>61,000</u><br>61,000  | 2                        |                                       |               | +                                     |                |
| AC-8           | *                        | *                                |        | 74,000                    | 1                                     |          | ¥                        | ¥                        | <b> </b>                              | ·             |                                       | <u> </u>       |
| AC-9           |                          | +                                |        | 67,000                    | 1                                     |          | ¥                        | ¥                        |                                       |               | · · · · · · · · · · · · · · · · · · · | <u></u>        |
| AC-9<br>AC-10  | +                        | +                                |        | 50,000                    | 1                                     |          | ¥                        | ¥                        |                                       |               |                                       | L              |
| AC-10<br>AC-11 |                          |                                  |        |                           | 1                                     | ┨────    | ¥                        |                          |                                       |               |                                       | <u> </u>       |
|                | 1 414 000                |                                  |        | 36,000                    |                                       |          | ·····                    | <b>P</b>                 |                                       |               | ł                                     | +              |
| Total          |                          | CFM Supply Air C                 |        |                           |                                       | <u> </u> |                          |                          |                                       |               |                                       | <u> </u>       |
|                | This design car          | bacity figure exclu              | ldes   | AC-8 through AC           | - I I WRICH IS CO                     |          | ent with monito          | red records that         | t were obtained                       | (see below).  | ·                                     | +              |
| This for       |                          | i<br>ified in the buildin        |        |                           | l                                     | I        | and and from the for     |                          |                                       |               | historia di Abia das                  |                |
|                |                          | ot indicate the exi              |        |                           |                                       |          |                          |                          |                                       |               | Actuded this lat                      | +              |
|                |                          | ere also recorded                |        |                           |                                       |          |                          |                          | e application.                        | <u> </u>      |                                       | +              |
| + netuir       | I Tall recolds we        | ale also recorded                | uun    | ng the on-site in         |                                       | 19110    |                          | <u> </u>                 | <u> </u>                              |               |                                       | +              |
|                |                          |                                  |        |                           |                                       | <u> </u> |                          |                          | · · · · · · · · · · · · · · · · · · · |               | <u> </u>                              | +              |
|                | Second bourby            | monitored CFM                    | tollyc | n, par floor word         | recorded durin                        | h tho    |                          |                          |                                       |               |                                       | +              |
| <u> </u>       |                          | were available for               |        |                           |                                       | ig uie   | 01-516.                  |                          |                                       |               |                                       | - <del> </del> |
| }              |                          | below are the ma                 |        |                           |                                       |          | +                        | ····                     | <u> </u>                              | <u> </u>      |                                       | +              |
|                | i ioni uno data,         | Delow are the file               |        |                           |                                       |          |                          | {                        | ·                                     |               |                                       |                |
| <u> </u>       | Max Observed             |                                  |        |                           |                                       |          |                          | +                        |                                       |               |                                       | +              |
| Zone           | CRM CBServed             | Served by AC                     |        | · ·                       | 1                                     |          |                          |                          |                                       |               |                                       | 1              |
| 1N             | 19,151                   | AC-1,2 & 3                       |        |                           | ·                                     | ╉╌┈━┉    |                          |                          |                                       |               |                                       |                |
| 28             |                          |                                  |        | <u> </u>                  |                                       |          |                          |                          |                                       |               | <u> </u>                              | +              |
| 25<br>2N       | 24,577                   | AC-1,2 & 3                       |        |                           |                                       |          | <u>}</u>                 | +                        | +                                     |               | <u> </u>                              |                |
| 2N<br>3N       | 10,207                   | AC-1,2 & 3                       |        |                           |                                       |          | ·····                    | <b>+</b>                 | +                                     |               |                                       | +              |
| 4S             | 11,384                   | AC-1,2 & 3                       |        |                           |                                       |          | ·                        |                          | •                                     |               |                                       |                |
|                | 28,112                   | AC-1,2 & 3                       |        |                           | · · · · · · · · · · · · · · · · · · · | +        | <u> </u>                 | ·                        |                                       | ·             |                                       |                |
| 4N             | 19,552                   | AC-1,2 & 3                       |        | <u> </u>                  |                                       |          |                          |                          | <u> </u>                              |               |                                       | +              |
| 59             |                          | AC-1,2 & 3                       |        | l                         |                                       |          |                          | ł                        | +                                     |               | •}                                    |                |
| 5N             |                          | AC-1,2 & 3                       |        | ļ ·                       |                                       |          |                          |                          | +                                     |               |                                       |                |
| 9              | 32,672                   | AC-6 &7                          | L      | <u> </u>                  | 1                                     | 1        | .l                       | <u> </u>                 | .l                                    | <u> </u>      | <u> </u>                              |                |

| 10        | 17,416            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
|-----------|-------------------|-------------------|--------|------------------|-------------------|-------|----------|---|----------|----------|----------|----------|
| 11        | 16,148            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 12        | 15,998            | AC-6 &7           |        |                  |                   |       |          | l |          |          |          |          |
| 13        | 15,293            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 14        | 19,062            | AC-6 &7           |        |                  |                   |       |          |   |          |          | ]        |          |
| 15        | 16,301            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 18        | 18,943            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 16        | 15,485            | AC-6 &7           |        |                  |                   |       |          |   |          | ·        |          |          |
| 17        | 15,053            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 19        | 20,110            | AC-6 &7           |        |                  |                   |       |          |   |          | <u> </u> |          |          |
| 20        | 13,316            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 21        | 16,049            | AC-6 &7           |        |                  |                   |       |          |   |          |          |          |          |
| 22        | 10,853            | AC-6 &7           |        |                  |                   |       | ·        |   |          |          |          |          |
| 23        | 13,528            | AC-6 &7           |        |                  |                   |       |          |   |          | l        | <u> </u> |          |
| 6N        | 8,567             | AC-4 & 5          |        |                  |                   |       |          |   |          |          |          |          |
| 6S        | 10,145            | AC-4 & 5          |        |                  |                   |       |          |   |          |          |          |          |
| 7N        | 11,467            | AC-4 & 5          |        |                  |                   |       |          |   |          |          |          |          |
| 7S        | 19,207            | AC-4 & 5          |        |                  |                   |       | :        | ļ |          |          | ļ        |          |
| 8N        | 15,588            | AC-4 & 5          |        |                  |                   |       |          |   |          |          |          | <u> </u> |
| 8S        | 14,229            | AC-4 & 5          |        |                  |                   |       |          |   |          |          |          |          |
| Total     | 486,074           | Maximum obser     | ved Cl | -M distributed d | iuring a four day | perio | ¢        |   |          |          |          |          |
| %         | of Design CFM     | 34.38%            |        |                  |                   |       |          |   |          |          |          | <u> </u> |
|           | l                 | l                 |        | L                |                   | _     | L        |   |          |          |          |          |
| * The 5th | n floor is not cu | rrently trended o | lue to | ongoing remod    | eling.            |       | ļ        |   | <u> </u> |          |          |          |
|           | l                 | l                 | +-     |                  |                   | _     | <u> </u> |   |          |          |          |          |
|           | designates an     |                   |        | ·                |                   |       | ļ        |   |          |          |          |          |
|           | designates a c    |                   |        |                  |                   |       | 1        | 4 |          |          |          |          |
| Green de  | asignates a resu  | lt.               |        |                  |                   |       | l        | l | l        | 1        |          | <u></u>  |

### Analysis of CFM Factors

.

|              |                   |                   |                | ned fan loads dur                     | ing both "occup | ied" hours (sci | edule A) and u                          | noccupled hours | (schedule B).                         |                                       |                                       |                                       |         |
|--------------|-------------------|-------------------|----------------|---------------------------------------|-----------------|-----------------|-----------------------------------------|-----------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------|
|              |                   | e assumed fan loa |                |                                       |                 |                 |                                         | ·····           |                                       |                                       |                                       | ·                                     |         |
|              |                   |                   |                | ation is recorded                     |                 |                 |                                         |                 |                                       |                                       |                                       |                                       |         |
|              | in addition, anal | ysis is conducted | of the assumed | fan CFM supplie                       | using these m   | ethods          |                                         |                 |                                       |                                       |                                       |                                       |         |
|              |                   |                   |                |                                       |                 | L               |                                         |                 |                                       |                                       |                                       |                                       |         |
|              |                   |                   |                |                                       | Existing O      | peration Befor  | e Retrofit                              |                 | Post-Retrofi                          | t Operation                           |                                       |                                       |         |
|              |                   |                   |                |                                       |                 |                 |                                         |                 |                                       |                                       |                                       |                                       |         |
|              | j                 |                   |                | Hours per Year                        |                 |                 |                                         |                 |                                       |                                       |                                       |                                       |         |
|              |                   |                   | Schedule of    | Operating Under                       |                 |                 |                                         |                 |                                       |                                       |                                       |                                       |         |
| Supply       | -                 | Supply Fan        | Supply Air Fan | a Particular                          | Motor Rated     | Motor           |                                         | Averge CFM      |                                       | Averge CFM                            |                                       |                                       |         |
| Fan          | Fan system        | Design CFM        | Operation      | Schedule                              | HP              | Efficiency      | Peak Hour BHP                           | Factor          | Peak Hour BHP                         | Factor                                |                                       |                                       |         |
| AC-1         | S-1A              | 52,000            | <u> </u>       | 2600                                  | 60              | 0.86            | 53.50                                   | 0.95            | 47.50                                 | 0.85                                  |                                       |                                       |         |
| AC-1         | S-1A              | 52,000            | B              | 6160                                  | 60              | 0.86            | 53.50                                   | 0.95            | 47.50                                 | 0.80                                  |                                       |                                       |         |
| AC-1         | S-1B              | 52,000            | A              | 2600                                  | 60              | 0.86            | 53.50                                   | 0.95            | 47.50                                 | 0.85                                  |                                       |                                       |         |
| AC-1         | <u>S-1B</u>       | 52,000            | <u> </u>       | 3458                                  | 60              | 0.86            | 53.50                                   | 0.95            | 47.50                                 | 0.80                                  |                                       |                                       |         |
| AC-2         |                   | 115,000           | A              | 2600                                  | 150             | 0.88            | 122.00                                  | 0.95            | 106.70                                | 0.85                                  |                                       |                                       |         |
| AC-2         | S-2A              | 115,000           | <u> </u>       | 6160                                  | 150             | 0.88            | 122.00                                  | 0.95            | 106.70                                | . 0.80                                | ļ                                     |                                       |         |
| AC-2         | <u>S-2B</u>       | 115,000           | <u>A</u>       | 2600                                  | 150             | 0.88            | 122.00                                  | 0.95            | 106.70                                | 0.85                                  | ·                                     |                                       |         |
| AC-2         | S-2B              | 115,000           | 8              | 0                                     | 150             | 0.88            | 122.00                                  | 0.95            | 106.70                                |                                       |                                       |                                       |         |
| AC-3         | S-3A              | 25,000            | <u>A</u>       | 2600                                  | 40              | 0.86            | 28.00                                   | 0.95            | 23.80                                 | _0.85                                 |                                       | <u> </u>                              |         |
| AC-3         | S-3A              | 25,000            |                | 6160                                  | 40              | 0.86            | 28.00                                   | 0.95            | 23.80                                 | 0.80                                  |                                       | <u> </u>                              |         |
| AC-3         | S-3B              | 25,000            | <u>A</u>       | 2600                                  | 40              | 0.86            | 28.00                                   | 0.95            | 23.80                                 | 0.85                                  |                                       | · · ·                                 |         |
| AC-3         | S-3B              | 25,000            | <u> </u>       | 3094                                  | 40              | 0.86            | 28.00                                   | 0.95            | 23.80                                 | 0.80                                  |                                       | · · · ·                               |         |
| AC-4         | <u>S-4</u>        | 170,000           | A              | 3640                                  | 200             | 0.88            | 190.00                                  | 0.95            | 172.50                                | 0.90                                  | l                                     |                                       |         |
| AC-4         | <u>S-4</u>        | 170,000           | B              | 5120                                  | 200             | 0.88            | 190.00                                  | 0.95            | 172.50                                | 0.85                                  |                                       | · · · · · · · · · · · · · · · · · · · |         |
| AC-5         | <u>S-5</u>        | 170,000           | <u> </u>       | 3640                                  | 200             | 0.88            | 190.00                                  | 0.95            | 172.50                                | 0.90                                  |                                       |                                       |         |
| AC-5<br>AC-6 | S-5<br>S-6A       | 170,000<br>87,500 | B              | <u>5120</u><br>2600                   | 200             | 0.88            | 190.00                                  | 0.95            | 172.50<br>79.80                       | 0.85                                  |                                       |                                       | ·       |
| AC-6         | S-8A<br>S-8A      | 87,500            | A<br>B         | 6160                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.85                                  |                                       |                                       |         |
| AC-6         | <u>S-6A</u>       | 87,600            | A              | 2600                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.80                                  |                                       | <u> </u>                              |         |
| AC-6         | S-6B              | 87,500            | B              | 1560                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.80                                  |                                       | · [                                   |         |
| AC-7         |                   | 87,500            | <u>B</u>       | 2600                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.85                                  |                                       |                                       | <b></b> |
| AC-7         | S-7A              | 87,500            | B              | 6160                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.80                                  | <u> </u>                              |                                       |         |
| AC-7         | S-7B              | 87,500            | A              | 2600                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.85                                  |                                       |                                       |         |
| AC-7         | S-7B              | 87,500            | В              | 1560                                  | 125             | 0.87            | 92.00                                   | 0.95            | 79.80                                 | 0.80                                  |                                       |                                       |         |
| AQ-1         | 0-70              |                   |                | 1300                                  |                 | 0.07            |                                         |                 |                                       | 0,00                                  |                                       | 1                                     |         |
| •            |                   | <i></i>           |                |                                       |                 |                 |                                         |                 | · · · · · · · · · · · · · · · · · · · | ····                                  | · · · ·                               |                                       |         |
|              | •••               |                   |                | <u> </u>                              | 1               |                 | +                                       |                 |                                       |                                       |                                       |                                       |         |
|              |                   | Calculated Post-  |                |                                       |                 |                 |                                         |                 |                                       | Į                                     |                                       |                                       |         |
| Supply       |                   | Retrofit Average  |                |                                       |                 | Į               |                                         |                 | ļ                                     |                                       |                                       |                                       |         |
| Fan          | Fan system        | CFM Rate*         |                |                                       |                 |                 |                                         |                 | 1                                     |                                       | ļ                                     |                                       |         |
| AC-1         | S-1A              | 44,200            | · · · · ·      |                                       |                 |                 | · · · · · · · · · · · · · · · · · · ·   |                 | 1                                     |                                       | · · · · · · · · · · · · · · · · · · · |                                       |         |
| AC-1         | S-1A              | 41,600            |                | 1                                     | 1               | 1               | 1                                       | <u> </u>        | 1                                     | 1                                     | 1                                     | 1                                     |         |
| AC-1         | S-1B              | 44,200            |                | 1                                     | 1               | 1               | 1 ··· ··· · · · · · · · · · · · · · · · |                 | 1                                     | 1                                     | 1                                     | 1                                     |         |
| AC-1         | S-1B              | 41,600            |                | 1                                     | 1               | 1               | 1                                       |                 |                                       |                                       | 1                                     |                                       |         |
| AC-2         | S-2A              | 97,750            |                |                                       |                 |                 | 1                                       | [               | 1                                     |                                       | 1                                     |                                       |         |
| AC-2         | S-2A              | 92,000            |                |                                       | 1               |                 |                                         | 1               |                                       |                                       |                                       |                                       |         |
| AC-2         | S-2B              | 97,750            |                |                                       |                 | 1               | 1                                       |                 |                                       |                                       |                                       |                                       |         |
| AC-2         | S-2B              | 0                 |                | 1                                     |                 | 1               | 1                                       |                 | 1                                     |                                       | 1                                     |                                       |         |
| AC-3         | S-3A              | 21,250            | 1              | 1                                     | 1               | <u>+</u> -      | 1                                       | 1               | · [                                   |                                       |                                       |                                       |         |
| AC-3         | S-3A              | 20,000            | <u> </u>       | 1                                     | 1               | 1               | +                                       | 1               |                                       | 1                                     | 1                                     |                                       | 1       |
| AC-3         | S-3B              | 21,250            |                |                                       |                 | 1               | 1                                       | 1               |                                       | 1                                     | 1                                     |                                       | 1       |
| AC-3         | S-3B              | 20,000            |                | 1                                     | +               | +               | 1                                       | 1               | 1                                     | 1                                     |                                       |                                       | 1       |
| AC-4         | S-4               | 153,000           | t i            | 1                                     | 1               | +               |                                         | 1               | 1                                     |                                       |                                       |                                       | 1       |
| AC-4         | S-4               | 144,500           |                | · · · · · · · · · · · · · · · · · · · | 1               |                 |                                         | 1               | 1                                     | • • • • • • • • • • • • • • • • • • • |                                       | 1                                     | 1       |

.

· .

#### Analysis of CFM Factors

| AC-5                       | S-5               | 153,000            |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
|----------------------------|-------------------|--------------------|------------------|---------------------|--------------------|-----------------|-------------------|------------------|-------------------|-----------------|-------------------|----------------|---------------|
| AC-5                       | S-5               | 144,500            |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-6                       | S-6A              | 74,375             |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-6                       | S-6A              | 70,000             |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-6                       | S-6B              | 74,375             |                  |                     |                    |                 |                   |                  | •                 |                 |                   |                |               |
| AC-6                       | S-6B              | 70,000             |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-7                       | S-7A              | 74,375             |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-7                       | S-7A              | 70,000             |                  |                     |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-7                       | \$-7B             | 74,375             |                  | · ·                 |                    |                 |                   |                  |                   |                 |                   |                |               |
| AC-7                       | S-7B              | 70,000             |                  |                     |                    |                 | · .               |                  |                   |                 |                   |                |               |
| Sum                        | Schedule A CFM    | 929,900            | OFM              | 52%                 | Measured maxi      | mum CFM (ob     | served in early i | November) as a   | percentage of m   | odeled (from th | e application) so | hedule A CFM.  |               |
| Sum                        | Schedule B CFM    | 784,200            | OFM              | 62%                 |                    |                 |                   |                  | e of modeled (fro |                 |                   |                |               |
|                            |                   |                    |                  |                     |                    |                 | · .               |                  |                   |                 |                   | l              |               |
| <ul> <li>During</li> </ul> | the system peak   | all fans are assur | med to operate   | under design CFN    | loads.             |                 |                   |                  | ·····             |                 |                   |                |               |
|                            | Comparisons be    | tween the CFM v    | alues derived u  | sing average CFN    | I factors (from th | ne application) | and those obse    | rved in early No | vember, applicat  | Ion assumption  | appear reason     | able.          |               |
|                            | Given that temp   | peratures in Noven | nber are relativ | ely mild, it is not | surprising that d  | elivered CFM    | measured durin    | g that period wa | s lower than the  | average (whic   | h includes perio  | ds with warmer | emperatures). |
|                            |                   |                    |                  |                     | T                  |                 |                   |                  | [                 |                 |                   |                |               |
|                            | 1                 |                    |                  | 1                   | 1                  |                 |                   |                  |                   |                 |                   |                |               |
| Blue font                  | t designates an l | nout.              |                  | 1                   |                    | 1               |                   | 1                | 1                 |                 | 1                 |                |               |
|                            | designates a ca   |                    |                  | 1                   | <b></b>            | · · · ·         | [                 | 1                |                   |                 |                   |                |               |
|                            | esignates a resul |                    |                  |                     | ł                  | †               |                   |                  | 1                 |                 | <u> </u>          | <u>+</u>       |               |

:

| The applic   | cation estimates   | of savings are ba                     | ased upon assu    | med fan loads dur                     | ing pre- and pos      | st-retrofit, which | h are in turn ba          | ed upon assun         | ed supply air d   | elivery temperat        | ures.                                 |                  |                  |            |
|--------------|--------------------|---------------------------------------|-------------------|---------------------------------------|-----------------------|--------------------|---------------------------|-----------------------|-------------------|-------------------------|---------------------------------------|------------------|------------------|------------|
| n generat    | i, the application | describes this re                     | duction in air d  | elivery as being a                    | ssociated with a      | pre-retrofit su    | pply air tempera          | ture of 65 °F a       | nd a post-retrof  | t value of 55 °F        |                                       |                  |                  |            |
|              |                    |                                       |                   | duction in supply                     |                       |                    |                           |                       |                   |                         |                                       |                  |                  |            |
|              | However, those     | records Indicate                      | that the realized | d temperature diffe                   | erential varies w     | dth fan system     | , and at times,           | he reduction in       | supply air temp   | erature was no          | t as dramatic as                      | s Indicated by t | he appplication. |            |
|              | To further asse    | ss the reasonable                     | ness of applicat  | ion fan load assu                     | mptions, analyse      | es are carried     | out below to me           | asure the Etuh        | load difference   | assumed (pre-           | vs post-retrofit                      | at the supply    | air temperatures | specified. |
|              |                    |                                       |                   |                                       |                       |                    |                           |                       | i                 |                         |                                       |                  |                  |            |
|              |                    |                                       |                   |                                       | Existing O            | peration Before    | a Retrofit                |                       | Post-Retrofi      | t Operation             |                                       |                  | 1                |            |
|              |                    |                                       |                   |                                       |                       |                    |                           |                       |                   |                         |                                       | ·                |                  |            |
|              |                    |                                       |                   | Hours per Year                        |                       |                    |                           |                       |                   |                         | }                                     |                  |                  | 1          |
|              |                    |                                       | Schedule of       | Operating Under                       |                       |                    |                           |                       |                   |                         |                                       |                  |                  |            |
| Supply       |                    | Supply Fan                            | Supply Alr Fan    | a Particular                          | Motor Rated           | Motor              |                           | Averge CFM            |                   | Automa OFM              |                                       |                  |                  |            |
| Fan          | Fan system         | Design CFM                            | Operation         | Schedule                              | HP                    |                    | Peak Hour BHP             | Factor                | Peak Hour BHP     | Averge CFM<br>Factor    |                                       |                  |                  |            |
| AC-1         | S-1A               | 52.000                                | A                 | 2600                                  | 60                    | 0.86               | 53.50                     | 0.95                  | 47.50             | 0.85                    |                                       |                  | +                |            |
| AC-1         | \$-1A<br>\$-1A     | 52,000                                | <u>B</u>          | 6160                                  | 60                    | 0.86               | 53.50                     |                       | 47.50             |                         |                                       |                  |                  |            |
| AC-1         |                    |                                       |                   | · · · · · · · · · · · · · · · · · · · |                       |                    |                           | 0.95                  |                   | 0.80                    |                                       |                  |                  | ·          |
|              | <u>S-1B</u>        | 52,000                                | A                 | 2600                                  | 60                    | 0.86               | 53.50                     | 0.95                  | 47.50             | 0.85                    |                                       |                  | ·                |            |
| AC-1         | S-1B               | 52,000                                | 8                 | 3458                                  | 60                    | 0.86               | 53.50                     | 0.95                  | 47.50             | 0.80                    |                                       |                  |                  |            |
| AC-2         | S-2A               | 115,000                               | A                 | 2600                                  | 150                   | 0.88               | 122.00                    | 0.95                  | 106.70            | 0.85                    |                                       |                  |                  |            |
| AC-2         | <u>\$-2A</u>       | 115,000                               | В                 | 6160                                  | 150                   | 0.88               | 122.00                    | 0.95                  | 106.70            | 0.80                    |                                       |                  | l                |            |
| AC-2         | S-2B               | 115,000                               | Α                 | 2600                                  | 150                   | 0.88               | 122.00                    | 0.95                  | 108.70            | 0.85                    |                                       | ļ                |                  |            |
| AC-2         | S-2B               | 115,000                               | 8                 | 0                                     | 150                   | 0.88               | 122.00                    | 0.95                  | 106.70            | <u> </u>                |                                       |                  | 1                |            |
| AC-3         | S-3A               | 25,000                                | <u>A</u>          | 2600                                  | 40                    | 0.86               | 28.00                     | 0.95                  | 23.80             | 0.85                    |                                       | 1                |                  |            |
| AC-3         | S-3A               | 25,000                                | 8                 | 6160                                  | 40                    | 0.86               | 28.00                     | 0.95                  | 23.80             | 0.80                    |                                       |                  |                  |            |
| AC-3         | S-3B               | 25,000                                | A                 | 2600                                  | 40                    | 0.86               | 28.00                     | 0.95                  | 23.80             | 0.85                    |                                       |                  |                  |            |
| AC-3         | S-38               | 25,000                                | 8                 | 3094                                  | 40                    | 0.86               | 28.00                     | 0.95                  | 23.80             | 0.80                    |                                       |                  |                  |            |
| AC-4         | S-4                | 170,000                               | Α                 | 3640                                  | 200                   | 0.88               | 190.00                    | 0.95                  | 172.50            | 0.90                    |                                       |                  |                  | 1          |
| AC-4         | S-4                | 170,000                               | В                 | 5120                                  | 200                   | 0.88               | 190.00                    | 0.95                  | 172.50            | 0.85                    |                                       | <u>+</u>         | 1                |            |
| AC-5         | S-5                | 170.000                               | A                 | 3640                                  | 200                   | 0.88               | 190.00                    | 0.95                  | 172.50            | 0.90                    |                                       |                  |                  | 1          |
| AC-5         | S-5                | 170.000                               | 8                 | 5120                                  | 200                   | 0.88               | 190.00                    | 0.95                  | 172.50            | 0.85                    |                                       |                  | 1                |            |
| AC-6         | S-6A               | 87,500                                | <u>A</u>          | 2800                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.85                    |                                       |                  |                  |            |
| AC-6         | S-6A               | 87,500                                | 8                 | 6160                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.80                    |                                       |                  |                  | +          |
| AC-8         | S-68               | 87,500                                | <u>D</u>          | 2600                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.85                    |                                       |                  | •{               |            |
| AC-6         | S-68               | 87,500                                | <u>B</u>          | 1560                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.80                    |                                       |                  |                  |            |
| AC-7         | \$-7A              | 87,500                                | A                 | 2800                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.85                    |                                       |                  |                  | ·          |
| AC-7         | \$-7A              | 87,500                                | в                 | 6160                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.80                    |                                       |                  | +                |            |
| AC-7         | S-7B               | 87,500                                | A                 | 2800                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.85                    |                                       |                  | {·· ·· ··        |            |
| AC-7         | S-7B               | 87,500                                | B                 | 1560                                  | 125                   | 0.87               | 92.00                     | 0.95                  | 79.80             | 0.85                    |                                       |                  |                  |            |
| -10-1        |                    | 87,500                                |                   | . 1300                                | 125                   | 0.07               | 82.00                     | 0.95                  | /                 | 0.80                    |                                       |                  | <u> </u>         |            |
|              |                    | Eviation                              | Operation Befor   | I                                     | Beet                  | -Retrofit Oper     |                           | Be                    | st-Retrofit Opera |                         | +                                     |                  | <u> </u>         | +          |
|              |                    | CXISUIN                               | Operation beto    |                                       | 705                   | I-Herroni Oper     |                           | F0                    | I Opena           |                         |                                       |                  | +                |            |
|              | Į                  |                                       |                   |                                       |                       | l                  |                           |                       |                   |                         | 1                                     |                  | 1                |            |
| 1            | 1                  |                                       | Assumed           |                                       |                       | Assumed            | 1                         |                       |                   |                         |                                       |                  |                  | 1          |
|              |                    |                                       | Application-      |                                       |                       | Application-       | Average Btuh              |                       |                   | Average Bluh            |                                       |                  | 1                |            |
|              |                    |                                       | Based Supply      | Average Btuh                          | Calculated            | Based Supply       |                           | Calculated            | Required          | Sensible                |                                       |                  | 1                |            |
|              |                    | Calculated Pre-                       | Air               | Sensible Cooling                      |                       | Air                | Cooling                   | Post-Retrofit         | Supply Air        | Cooling                 |                                       |                  |                  | 1          |
| Supply       |                    | Retrofit Average                      | Temperature       | Delivery of the                       | Average CFM           |                    | Delivery of the           | Average CFM           | Temperature       | Delivery of the         |                                       |                  | ļ                | 1          |
| Fan          | Fan system         | CFM Rate                              | Differential      | System*                               | Rate                  | Differential       | System*                   | Rate                  | Differential†     | System*                 |                                       |                  | 4                |            |
| AC-1         | <u>S-1A</u>        | 49,400                                | 7                 | 375,193                               | 44,200                | 17                 | 815,269                   | 44,200                | 88                | 369,269                 |                                       |                  |                  |            |
| AC-1         | <u>\$-1A</u>       | 49,400                                | 7                 | 375,193                               | 41,600                | 17                 | 767,312                   | 41,600                | 8                 | 347,547                 |                                       | 1                |                  | 1          |
| AC-1         | S-1B               | 49,400                                | 7                 | 375,193                               | 44,200                | 17                 | 815,269                   | 44,200                | 8                 | 369,269                 |                                       | 1                | 1                |            |
| AC-1         | \$-1B              | 49,400                                | 7                 | 375,193                               | 41,600                | 17                 | 767,312                   | 41,600                | 8                 | 347,547                 |                                       | 1                |                  |            |
| AC-2         | S-2A               | 109,250                               | 7                 | 829,754                               | 97,750                | 17                 | 1,802,999                 | 97,750                | 8                 | 816,652                 | 1                                     | T                |                  |            |
|              |                    | · · · · · · · · · · · · · · · · · · · | 7                 | 829,754                               | 92,000                | 17                 | 1,696,940                 | 92,000                | 8                 | 768,614                 | 1                                     | 1                |                  | 1          |
|              | S-2A               | 1 109.250                             |                   |                                       |                       |                    |                           | ·                     |                   |                         | · · · · · · · · · · · · · · · · · · · | +                |                  |            |
| AC-2         | S-2A<br>S-2B       | 109,250                               |                   | · · · · · · · · · · · · · · · · · · · | 97 750                | 17                 | 1 802 000                 | 97.750                | A 1               | 816 652                 |                                       |                  |                  | 1          |
| AC-2<br>AC-2 | S-2B               | 109,250                               | 7                 | 829,754                               | 97,750                | 17                 | 1,802,999                 | 97,750                | 8                 | 816,652                 |                                       |                  |                  |            |
| AC-2         |                    |                                       |                   | · · · · · · · · · · · · · · · · · · · | 97,750<br>0<br>21,250 | 17<br>17<br>17     | 1,802,999<br>0<br>391,956 | 97,750<br>0<br>21,250 | 8<br>8<br>8       | 816,652<br>0<br>177,533 |                                       |                  |                  |            |

#### Application Btu Delivery

.

| AC-3     | S-3B             | 23,750             | 7                   | 180,381              | 21,250          | 17             | 391,956           | 21,250          | 8          | 177,533            |              | 1               |                   |   |
|----------|------------------|--------------------|---------------------|----------------------|-----------------|----------------|-------------------|-----------------|------------|--------------------|--------------|-----------------|-------------------|---|
| AC-3     | S-3B             | 23,750             | 7                   | 180,381              | 20,000          | 17             | 368,900           | 20,000          | 8          | 167,090            |              |                 |                   |   |
| AC-4     | S-4              | 161,500            | 7                   | 1,226,593            | 153,000         | 17             | 2,822,085         | 153,000         | 8          | 1,278,239          |              | ·               |                   |   |
| AC-4     | S-4              | 161,500            | 7                   | 1,228,593            | 144,500         | 17             | 2,665,303         | 144,500         | 8          | 1,207,225          |              |                 |                   |   |
| AC-5     | S-5              | 161,500            | 7                   | 1,226,593            | 153,000         | 17             | 2,822,085         | 153,000         | 8          | 1,278,239          |              |                 |                   |   |
| AC-5     | S-5              | 161,500            | 7                   | 1,226,593            | 144,500         | 17             | 2,665,303         | 144,500         | 8          | 1,207,225          |              |                 |                   |   |
| AC-6     | S-6A             | 83,125             | 7                   | 631,334              | 74,375          | 17             | 1,371,847         | 74,375          | 8          | 621,366            |              |                 |                   |   |
| AC-6     | S-6A             | 83,125             | 7                   | 631,334              | 70,000          | 17             | 1,291,150         | 70,000          | 8          | 584,815            |              |                 |                   |   |
| AC-6     | S-6B             | 83,125             | 7                   | 631,334              | 74,375          | 17             | 1,371,847         | 74,375          | 8          | 621,366            |              |                 |                   |   |
| AC-6     | S-68             | 83,125             | 7                   | 631,334              | 70,000          | 17             | 1,291,150         | 70,000          | 8          | 584,815            |              |                 |                   |   |
| AC-7     | S-7A             | 83,125             | 7                   | 631,334              | 74,375          | 17             | 1,371,847         | 74,375          | 8          | 621,366            |              |                 |                   |   |
| AC-7     | S-7A             | 83,125             | 7                   | 631,334              | 70,000          | 17             | 1,291,150         | 70,000          | 8          | 584,815            |              |                 |                   |   |
| AC-7     | S-7B             | 83,125             | 7                   | 631,334              | 74,375          | 17             | 1,371,847         | 74,375          | 8          | 621,366            |              |                 |                   |   |
| AC-7     | S-78             | 83,125             | . 7                 | 631,334              | 70,000          | 17             | 1,291,150         | 70,000          | 8          | 584,815            |              |                 |                   |   |
|          |                  |                    |                     |                      |                 |                |                   |                 |            |                    |              |                 |                   |   |
|          |                  | Sum                | Schedule A Btuh     | 7,749,179            | Btuh            |                | 17,152,006        | Btuh            |            | 7,788,850          | Btuh         |                 |                   |   |
|          |                  | Sum                | Schedule B Bluh     | 7,749,179            | Btuh            | -              | 14,464,589        | Btuh            |            | 6,551,599          | Btuh         |                 |                   |   |
|          |                  |                    |                     |                      |                 |                |                   |                 |            |                    |              |                 |                   | • |
|          |                  |                    |                     |                      |                 |                |                   |                 |            |                    |              |                 |                   |   |
| • The s  | ensible capacity | is calculated usin | g 1.08 Btuh/CFM     | -Δ°F.                |                 |                |                   |                 |            |                    |              |                 |                   |   |
| † The r  | equired supply a | Ir temperature di  | flerential is the v | alue that will yield | a post-retrofit | cooling load t | hat is equivalent | to the pre-retr | ofit load. |                    |              |                 |                   |   |
|          |                  |                    |                     | very assumptions     |                 |                |                   |                 |            | retrofit condition | based on a s | upply air tempe | nature of 64.3 °F |   |
|          |                  |                    |                     | for the application  |                 |                |                   |                 |            |                    |              |                 |                   |   |
|          |                  |                    |                     |                      | •               |                |                   |                 |            |                    |              |                 |                   |   |
|          |                  |                    |                     |                      |                 |                | 1                 |                 |            |                    |              |                 |                   |   |
| Blue fon | t designates an  | nput.              |                     |                      |                 |                |                   |                 |            |                    |              |                 |                   |   |
|          | designates a ca  |                    |                     |                      | ·               |                |                   |                 |            |                    |              |                 |                   |   |
| Green d  | esignates a resu | 1.                 |                     |                      |                 |                |                   |                 |            |                    |              |                 | 1                 |   |

.

>

÷.,

~

| Evaluation  | n_estimates ar | e based upon     | site contact su           | pplied pre- vs.       | post-retrofit s | upply air tem | peratures.   |                      |                  |                      |              |                                       |               |                                       |             |
|-------------|----------------|------------------|---------------------------|-----------------------|-----------------|---------------|--------------|----------------------|------------------|----------------------|--------------|---------------------------------------|---------------|---------------------------------------|-------------|
|             |                | findings alread  |                           |                       |                 |               |              | evise the aver       | age CFM fact     | or based upor        | assumed app  | lication existin                      | g loads and s | ite contact ba                        | ed supply a |
|             |                | that the pre- at |                           |                       |                 |               |              |                      |                  |                      |              |                                       |               |                                       |             |
|             | These analyes  | utilize the supp | ly air temperat           | ures provided an      | d then back in  | to required 0 | FM based on  | those assumption     | ons              |                      |              |                                       |               |                                       |             |
|             |                |                  |                           |                       | E dation of     |               |              |                      |                  |                      |              |                                       | · · · ·       |                                       |             |
|             |                |                  |                           |                       | Existing Op     | eration Befo  | e Hetrotit   |                      | Post-Retroli     | Uperation            |              |                                       |               |                                       |             |
| 1           |                |                  |                           | Hours per Year        |                 |               |              |                      |                  |                      |              |                                       | 1             |                                       |             |
|             | [              |                  | 0.5.4.4.4                 | Operating             |                 |               |              |                      |                  |                      |              |                                       | ļ             |                                       |             |
| Supply      |                | Supply Fan       | Schedule of<br>Supply Air | Under a<br>Particular | Motor Rated     | Motor         | Peak Hour    |                      |                  | August 0514          |              |                                       | i i           |                                       |             |
| Fan         | Fan system     |                  | Fan Operation             | Schedule              | HP              | Efficiency    | BHP          | Averge CFM<br>Factor | Peak Hour<br>BHP | Averge CFM<br>Factor |              |                                       | ]             |                                       | }           |
| AC-1        | S-1A           | 52,000           | A                         | 2800                  | 60              | 0.86          | 53.50        | 0.35                 | 47.50            | 0.85                 |              | ·                                     |               |                                       | {           |
| AC-1        | S-1A           | 52,000           | . <u></u>                 | 6160                  | 60              | 0.86          | 53.50        | 0.95                 | 47.50            | 0.80                 |              |                                       |               |                                       | -           |
| AC-1        | S-18           | 52,000           | A                         | 2600                  | 60              | 0.86          | 53.50        | 0.95                 | 47.50            | 0.85                 |              |                                       |               |                                       |             |
| AC-1        | S-1B           | 52,000           | В                         | 3458                  | 60              | 0.86          | 53.50        | 0.95                 | 47.50            | 0.80                 |              |                                       |               |                                       |             |
| AC-2        | S-2A           | 115,000          | A                         | 2600                  | 150             | 0.88          | 122.00       | 0.95                 | 108.70           | 0.85                 |              |                                       |               |                                       |             |
| AC-2        | S-2A           | 115,000          | B                         | 6160                  | 150             | 0.88          | 122.00       | 0.95                 | 106.70           | 0.80                 |              |                                       |               |                                       |             |
| AC-2        | S-2B           | 115,000          | A                         | 2600                  | 150             | 0.88          | 122.00       | 0.95                 | 106.70           | 0.85                 |              |                                       | ··· ··· · ··· | · · · · · · · · · · · · · · · · · · · | 1           |
| AC-2        | S-2B           | 115,000          | B                         | 0                     | 150             | 0.88          | 122.00       | 0.95                 | 108.70           |                      |              |                                       | <u> </u>      | 1                                     | [           |
| AC-3        | S-3A           | 25,000           | A                         | 2600                  | 40              | 0.86          | 28.00        | 0.95                 | 23.80            | 0.85                 |              |                                       |               | 1                                     |             |
| AC-3        | S-3A           | 25,000           | B                         | 6160                  | 40              | 0.86          | 28.00        | 0.95                 | 23.80            | 0.80                 |              |                                       |               |                                       |             |
| AC-3        | S-3B           | 25,000           | A                         | 2600                  | 40              | 0.86          | 28.00        | 0.95                 | 23.80            | 0.85                 | ·····        |                                       | <u> </u>      |                                       |             |
| AC-3        | S-3B           | 25,000           | B                         | 3094                  | 40              | 0.86          | 28.00        | 0.95                 | 23.80            | 0.80                 |              |                                       |               |                                       |             |
| AC-4        | S-4            | 170,000          | A                         | 3840                  | 200             | 0.88          | 190.00       | 0.95                 | 172.50           | 0.90                 |              |                                       |               |                                       | 1           |
| AC-4        | S-4            | 170,000          | В                         | 5120                  | 200             | 0.88          | 190.00       | 0.95                 | 172.50           | 0.85                 |              |                                       | 1             | 1                                     |             |
| AC-5        | S-5            | 170,000          | A                         | 3840                  | 200             | 0.88          | 190.00       | 0.95                 | 172.50           | 0.90                 |              |                                       |               |                                       | 1           |
| AC-5        | S-5            | 170,000          | В                         | 5120                  | 200             | 0.88          | 190.00       | 0.95                 | 172.50           | 0.85                 |              |                                       |               |                                       |             |
| AC-6        | S-6A           | 87,500           | A                         | 2600                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.85                 |              | · · · · · · · · · · · · · · · · · · · |               |                                       |             |
| AC-6        | S-6A           | 87,500           | <u> </u>                  | 6160                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.80                 | · · · -      |                                       |               |                                       |             |
| AC-6        | S-6B           | 87,500           | A                         | 2600                  | 125             | 0.87          | 92,00        | 0.95                 | 79.80            | 0.85                 |              |                                       | 1             |                                       |             |
| AC-6        | S-6B           | 87,500           | B                         | 1560                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.80                 |              |                                       |               | 1                                     |             |
| AC-7        | S-7A           | 87,500           | A                         | 2600                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.85                 |              |                                       | 1             | 1                                     |             |
| AC+7        | S-7A           | 87,500           | 8                         | 6160                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.80                 |              |                                       | ·             |                                       | 1           |
| AC-7        | S-7B           | 87,500           | A                         | 2600                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.85                 |              |                                       |               |                                       |             |
| AC-7        | S-7B           | 87,500           | B                         | 1560                  | 125             | 0.87          | 92.00        | 0.95                 | 79.80            | 0.80                 |              |                                       |               |                                       |             |
|             |                |                  |                           |                       |                 |               |              |                      |                  |                      |              |                                       |               |                                       |             |
|             |                | Ex               | sting Operatio            | n Before Retro        | it              |               | Post-Retro   | it Operation         |                  |                      | Post-Retrof  | t Operation                           |               |                                       |             |
|             |                | -                |                           |                       |                 |               |              | Assumed              |                  | 1                    |              |                                       |               |                                       |             |
|             |                |                  | Assumed Site              | Assumed Site          | Average Blub    | Calculated    | Assumed      |                      | Average Btuh     | Calculated           |              | Average Bluh                          |               |                                       |             |
|             |                | Calculated Pre   |                           | Contact-Based         | Sensible        | Post-         | Site Contact |                      | Sensible         | Post-                | Required     | Sensible                              | `}            |                                       |             |
|             |                | Retrofit         | Based Supply              | Supply Air            | Cooling         | Retrofit      | Based Supply | Air                  | Cooling          | Retrofit             | Supply Air   | Cooling                               | Calculated    |                                       | 1           |
| Supply      |                | Average CFM      | Air                       | Temperature           | Delivery of     | Average       | Air          | Temperature          | Delivery of      | Average CFM          | Temperature  | Delivery of                           | Averge CFM    | 1                                     | 1           |
| Fan         | Fan_system     | Rate             | Temperature               | Differential          | the System*     | CFM Rate      |              | Differential         | the System*      | Rate                 | Differential |                                       | Factor        |                                       |             |
| AC-1        | S-1A           | 49,400           | 65                        | 7                     | 375,193         | 44,200        | 60           | 12                   | 575,484          | 29,614               | 12           | 385,574                               | 0.57          |                                       | 1           |
| AC-1        | S-1A           | 49,400           | 65                        | 7                     | 375,193         | 41,600        | 60           | 12                   | 541,832          | 27,872               | 12           | 362,893                               | 0.54          |                                       | ļ           |
| AC-1        | S-18           | 49,400           | 65                        | 7                     | 375,193         | 44,200        | 60           | 12                   | 575,484          | 29,614               | 12           | 385,574                               | 0.57          |                                       |             |
| AC-1        | S-1B           | 49,400           | 65                        | 7                     | 375,193         | 41,600        | 60           | 12                   | 541,632          | 27,872               | 12           | 362,893                               | 0.54          |                                       |             |
| AC-2        | S-2A           | 109,250          | 65                        | 7                     | 829,754         | 97,750        | 60           | 12                   | 1,272,705        | 65,493               | 12           | 852,712                               | 0.57          | .l                                    |             |
| AC-2        | S-2A           | 109,250          | 65                        | 7                     | 829,754         | 92,000        | 60           | 12                   | 1,197,840        | 61,640               | 12           | 802,553                               | 0.54          |                                       |             |
| AC-2        | S-2B           | 109,250          | 65                        | 7                     | 829,754         | 97,750        | 60           | 12                   | 1,272,705        | 65,493               | 12           | 852,712                               | 0.57          | 4                                     |             |
| AC-2        | S-2B           | 109,250          | 65                        | 7                     | 829,754         | 0             | 60           | 1.2                  | 0                | 0                    | 12           | 0                                     | 0.00          | <u>_</u>                              |             |
| AC-3        | S-3A           | 23,750           | 65                        | 7                     | 180,381         | 21,250        | 53           | 19                   | 438,069          | 14,238               | 19           | 293,506                               | 0.57          | · · · · · · · · · · · · · · · · · · · |             |
| AC-3        | S-3A           | 23,750           | 65                        | 7                     | 180,381         | 20,000        | 53           | 19                   | 412,300          | 13,400               | 19           | 276,241                               | 0.54          |                                       |             |
| AC-3        | S-3B           | 23,750           | 65                        | 7                     | 180,381         | 21,250        | 53           | 19                   | 438,069          | 14,238               | 19           | 293,508                               | 0.57          |                                       |             |
| <u>AC-3</u> | S-3B           | 23,750           | 85                        | 7                     | 180,381         | 20,000        | 53           | 19                   | 412,300          | 13,400               | 19           | 276,241                               | 0.54          | ·                                     |             |
| AC-4        | S-4            | 161,500          | 60                        | 12                    | 2,102,730       | 153,000       | 55           | 17                   | 2,822,085        | 102,510              | 17           | 1,890,797                             | 0.60          |                                       | <u></u>     |
| AC-4        | S-4            | 161,500          | 60                        | 12                    | 2,102,730       | 144,500       | 55           | 17                   | 2,665,303        | 96,815               | 17           | 1,785,753                             | 0.57          |                                       |             |
| AC-5        | S-5            | 161,500          | 60                        | 12                    | 2,102,730       | 153,000       | 55           | 17                   | 2,822,085        | 102,510              | 17           | 1,890,797                             | 0.60          | 1                                     | 1           |

...

| AC-5     | S-5            | 161,500                               | 60            | 12                | 2,102,730      | 144,500         | 55             | 17             | 2,685,303      | 96,815        | 17                | 1,785,753    | 0.57           |                                                | 1       |
|----------|----------------|---------------------------------------|---------------|-------------------|----------------|-----------------|----------------|----------------|----------------|---------------|-------------------|--------------|----------------|------------------------------------------------|---------|
| AC-8     | S-6A           | 83,125                                | 85            | 7                 | 631,334        | 74,375          | 60             | 12             | 968,363        | 49,831        | 12                | 648,803      | 0.57           |                                                | 1       |
| AC-6     | S-6A           | 83,125                                | 85            | 7                 | 631,334        | 70,000          | 60             | 12             | 911,400        | 46,900        | 12                | 610,638      | 0.54           |                                                |         |
| AC-8     | S-6B           | 83,125                                | 65            | 7                 | 631,334        | 74,375          | 60             | 12             | 968,363        | 49,831        | 12                | 848,803      | 0.57           |                                                |         |
| AC-6     | S-6B           | 83,125                                | 65            | 7                 | 631,334        | 70,000          | 80             | 12             | 911,400        | 46,900        | 12                | 610,638      | 0.54           |                                                | í       |
| AC-7     | S-7A           | 83,125                                | 65            | 7                 | 631,334        | 74,375          | 60             | 12             | 968,363        | 49,831        | 12                | 648,803      | 0.57           |                                                |         |
| AC-7     | S-7A           | 83,125                                | 65            | 7                 | 631,334        | 70,000          | 60             | 12             | 911,400        | 46,900        | 12                | 610,638      | 0.54           |                                                |         |
| AC-7     | \$-7B          | 83,125                                | 65            | 7                 | 631,334        | 74,375          | 80             | 12             | 968,363        | 49,831        | 12                | 648,803      | 0.57           |                                                |         |
| AC-7     | S-7B           | 83,125                                | 65            | 7                 | 631,334        | 70,000          | 60             | 12             | 911,400        | 46,900        | 12                | 610,638      | 0.54           |                                                |         |
|          |                |                                       |               |                   |                |                 |                | -              |                |               |                   |              |                |                                                | -       |
|          |                |                                       | Sum           | Schedule A Bluh   | 9,601,454      | Btuh            |                |                | 14,090,138     | Bluh          |                   | 9,440,391    | Btuh           |                                                |         |
|          |                |                                       | Sum           | Schedule B Bluh   | 9,501,454      | Btuh            |                |                | 12,081,909     | Bluh          |                   | 8,094,879    | Bluh           |                                                |         |
|          |                |                                       |               |                   |                |                 |                |                |                |               |                   |              |                |                                                |         |
|          |                |                                       |               |                   |                |                 |                |                |                |               |                   |              |                |                                                |         |
| • The    | sensible capac | ty is calculated                      | using 1.08 Bt | h/CFM-A*F.        |                |                 |                |                |                |               |                   |              |                |                                                |         |
|          |                |                                       |               | is the value that | t will vield a | oost-retrofit o | poling load th | at is equivale | t to the pre-r | atrofit load. |                   |              |                |                                                |         |
|          |                |                                       |               | ir delivery assum |                |                 |                |                |                |               | retrofit conditio | n based on a | supply air ten | nperature of 6/                                | 4.3 °F. |
|          |                |                                       |               | y used for the a  |                |                 |                |                |                |               |                   |              |                | 1                                              |         |
|          |                |                                       |               |                   |                |                 |                |                |                |               |                   |              |                | 1                                              |         |
|          |                | · · · · · · · · · · · · · · · · · · · |               | 1                 |                |                 | <u> </u>       |                |                |               | <u> </u>          |              |                | <u>  ··· · · · · · · · · · · · · · · · · ·</u> |         |
| Blue for | t designates a | h input.                              |               |                   |                |                 |                | l              |                |               |                   |              |                | t                                              | +       |
|          | t designates a |                                       | 1             | 1                 |                |                 |                |                |                |               | 1                 |              |                | 1                                              | [       |
| _        | esignates a re |                                       | 1             | 1                 |                |                 |                |                |                |               | 1                 |              |                | 1                                              | [       |
|          |                |                                       |               |                   |                |                 |                |                |                |               |                   |              |                |                                                |         |

.1

.

•

| The aver      | age CFM factor | has been re-cor             | mputed based up                            | oon the assumpti                                                 | ons that the bul       | Iding cooling                         | load is equivale                         | nt in the pre- ar                                                 | nd post-retrofit                   | condition.           |                                       | <u> </u>      |
|---------------|----------------|-----------------------------|--------------------------------------------|------------------------------------------------------------------|------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------------------------|------------------------------------|----------------------|---------------------------------------|---------------|
|               |                |                             |                                            | med, using the e                                                 |                        |                                       |                                          |                                                                   |                                    |                      |                                       | · · · · · ·   |
|               | These analyes  | utilize the supply          | air temperature                            | s provided and th                                                | ien back into re       | quired CFM b                          | ased on those                            | assumptions.                                                      |                                    |                      |                                       |               |
|               |                |                             |                                            |                                                                  |                        |                                       |                                          |                                                                   |                                    |                      | · · · · · · · · · · · · · · · · · · · |               |
|               |                |                             | \\                                         |                                                                  | Existing Or            | peration Befor                        | e Retrofit                               |                                                                   | Post-Retrofi                       | t Operation          |                                       |               |
| Supply<br>Fan | Fan system     | Supply Fan<br>Design CFM    | Schedule of<br>Supply Air Fan<br>Operation | Hours per Year<br>Operating<br>Under a<br>Particular<br>Schedule | Motor Rated<br>HP      | Motor<br>Efficlency                   | Peak Hour<br>BHP                         | Averge CFM<br>Factor                                              | Peak Hour<br>BHP                   | Averge CFM<br>Factor |                                       |               |
| AC-1          | S-1A           | 52,000                      | A                                          | 2600                                                             | 60                     | 0.86                                  | 53.50                                    | 0.95                                                              | 47.50                              | 0.85                 | l                                     |               |
| AC-1          | S-1A           | 52,000                      | В                                          | 6160                                                             | 60                     | 0.86                                  | 53.50                                    | 0.95                                                              | 47.50                              | 0.80                 |                                       |               |
| AC-1          | S-1B           | 52,000                      | A                                          | 2600                                                             | 60                     | 0.86                                  | 53.50                                    | 0.95                                                              | 47.50                              | 0.85                 | L                                     | 1             |
| C-1           | S-1B           | 52,000                      | В                                          | 3458                                                             | 60                     | 0.86                                  | 53.50                                    | 0.95                                                              | 47.50                              | 0.80                 |                                       |               |
| AC-2          | S-2A           | 115,000                     | A                                          | 2600                                                             | 150                    | 0,88                                  | 122.00                                   | 0.95                                                              | 106.70                             | 0.85                 | l                                     |               |
| AC-2          | S-2A           | 115,000                     | В                                          | 6160                                                             | 150                    | 0.88                                  | 122.00                                   | 0.95                                                              | 106.70                             | 0.80                 |                                       |               |
| AC-2          | S-28           | 115,000                     | A                                          | 2600                                                             | 150                    | 0.88                                  | 122.00                                   | 0.95                                                              | 106.70                             | 0.85                 | ļ                                     |               |
| AC-2          | S-2B           | 115,000                     | В                                          | 0                                                                | 150                    | 0.88                                  | 122.00                                   | 0.95                                                              | 106.70                             | •                    |                                       |               |
| AC-3          | S-3A           | 25,000                      | A                                          | 2600                                                             | 40                     | 0.86                                  | 28.00                                    | 0.95                                                              | 23.80                              | 0.85                 |                                       |               |
| AC-3          | S-3A           | 25,000                      | В                                          | 6160                                                             | 40                     | 0.86                                  | 28.00                                    | 0.95                                                              | 23.80                              | 0.80                 |                                       |               |
| AC-3          | S-3B           | 25,000                      | A                                          | 2600                                                             | 40                     | 0.86                                  | 28.00                                    | 0.95                                                              | 23.80                              | 0.85                 |                                       |               |
| AC-3          | S-3B           | 25,000                      | В                                          | 3094                                                             | 40                     | 0.86                                  | 28.00                                    | 0,95                                                              | 23.80                              | 0.80                 |                                       |               |
| AC-4          | S-4            | 170,000                     | A                                          | 3640                                                             | 200                    | 0.88                                  | 190.00                                   | 0.95                                                              | 172.50                             | 0.90                 | ļ                                     |               |
| AC-4          | S-4            | 170,000                     | В                                          | 5120                                                             | 200                    | 0.88                                  | 190.00                                   | 0.95                                                              | 172.50                             | 0.85                 | <u> </u>                              |               |
| AC-5          | S-5            | 170,000                     | Α                                          | 3640                                                             | 200                    | 0.88                                  | 190.00                                   | 0.95                                                              | 172.50                             | 0.90                 |                                       |               |
| AC-5          | S-5            | 170,000                     | В                                          | 5120                                                             | 200                    | 0.88                                  | 190.00                                   | 0.95                                                              | 172.50                             | 0.85                 |                                       |               |
| AC-6          | S-6A           | 87,500                      | A                                          | 2600                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.85                 |                                       |               |
| AC-6          | S-6A           | 87,500                      | В                                          | 6160                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.80                 |                                       |               |
| AC-6          | S-6B           | 87,500                      | A                                          | 2600                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.85                 |                                       |               |
| AC-6          | S-6B           | 87,500                      | В                                          | 1560                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.80                 |                                       |               |
| AC-7          | S-7A           | 87,500                      | <u> </u>                                   | 2600                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.85                 | <u>-</u>                              |               |
| AC-7          | S-7A           | 87,500                      | В                                          | 6160                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.80                 | <u>+</u>                              |               |
| AC-7          | S-7B           | 87,500                      | A                                          | 2600                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.85                 |                                       |               |
| AC-7          | S-7B           | 87,500                      | B                                          | 1560                                                             | 125                    | 0.87                                  | 92.00                                    | 0.95                                                              | 79.80                              | 0.80                 | <u> </u>                              |               |
|               |                |                             | )<br>Evelvetter                            | Estimate of Energy                                               |                        | Alternate Estimate of Ene             |                                          |                                                                   | ray Impost                         | <u> </u>             | . <u>+</u>                            |               |
|               |                |                             | Evaluation                                 |                                                                  |                        |                                       | Allelinate                               |                                                                   | igy mbact                          | l                    |                                       |               |
| Supply<br>Fan | Fan system     | Pre-Retrofit<br>Average BHP | Calculated<br>Averge CFM<br>Factor         | Post-Retrofit<br>Average BHP*                                    | Average BHP<br>savings | Annual<br>Energy<br>Savings†<br>(kWh) | Level using<br>Pre-retrofit<br>BHP (kWh) | Back-<br>calcuaited AC-<br>2/S-2B<br>Annual Energy<br>Level (kWh) | Annual Energy<br>Savings¥<br>(kWh) |                      |                                       |               |
| AC-1          | S-1A           | 45.87                       | 0.57                                       | 8.77                                                             | 37.10                  | 83,664                                | 103,452                                  |                                                                   | 58,916                             |                      |                                       |               |
| AC-1          | S-1A           | 45.87                       | 0.54                                       | 7.31                                                             | 38.56                  | 206,016                               | 245,101                                  |                                                                   | 131,374                            |                      | +                                     |               |
| AC-1          | S-1B           | 45.87                       | 0.57                                       | 8.77                                                             | 37.10                  | 83,664                                | 103,452                                  | · · · · · · · · · · · · · · · · · · ·                             | 58,916                             | <u> </u>             |                                       |               |
| AC-1          | S-1B           | 45.87                       | 0.54                                       | 7.31                                                             | 38.56                  | 115,650                               | 137,591                                  | ļ                                                                 | 73,749                             | ╉─────               |                                       | _ <del></del> |
| AC-2          | S-2A           | 104,60                      | 0.57                                       | 19.71                                                            | 84.89                  | 187,109                               | 230,547                                  | L                                                                 | 131,297                            | <u>t</u>             | <u>_l,</u>                            |               |

### Evaluation Energy Impacts

-

| AC-2                       | S-2A                                                                   | 104.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54             | 16.43                                 | 88.17             | 460,418                                                                                                        | 546,220                        | ·····           | 292,774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               | 1         |
|----------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------|
| AC-2<br>AC-2               | S-2A<br>S-2B                                                           | 104.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.57             | 19.71                                 | 84.89             | 187,109                                                                                                        | 230,547                        |                 | 131,297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               | ·····     |
| AC-2                       | S-28                                                                   | 104.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00             | 0.00                                  | 104.60            | 0                                                                                                              | 0                              | 75,987          | 75,987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |           |
| AC-3                       | S-3A                                                                   | 24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57             | ·4.40                                 | 19.61             | 44,229                                                                                                         | 54,143                         | 10,007          | 30,834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |           |
| AC-3                       | S-3A                                                                   | 24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54             | 3.66                                  | 20.34             | 108,694                                                                                                        | 128,277                        |                 | 68,757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |           |
| AC-3                       | S-3B                                                                   | 24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57             | 4.40                                  | 19.61             | 44,229                                                                                                         | 54,143                         |                 | 30,834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |           |
| AC-3                       | S-3B                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-4                       | S-4                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                | · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-4                       | S-4                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-5                       | S-5                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                | · · · · · · · · · · · · · · · · · · · |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-5                       | S-5                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                |                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               |           |
| AC-6                       | S-6A                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-6                       | S-6A                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   | the second s |                                | ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | · · · ·       |           |
| AC-6                       | S-6B                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                | مە <del>مىن ئىت ات</del> ىمى م |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-6                       | S-6B                                                                   | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-7                       | S-7A                                                                   | 78.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57             |                                       |                   |                                                                                                                |                                |                 | No. of the local division of the local divis |                   |               |           |
| AC-7                       | S-7A                                                                   | 78.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54             |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-7                       |                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| AC-7                       | S-7B                                                                   | 78.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54             | 12.29                                 | 66.59             | 89,075                                                                                                         | 105,512                        |                 | 56,555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |           |
|                            | <u>}.</u>                                                              | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.54             |                                       | Total             | 4,938,398                                                                                                      | 6,065,059                      | 6,141,046       | 3,491,159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energy Impac      | t (kWh)       |           |
|                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   | Application in                                                                                                 | npact estimate                 | is 2,318,000 k  | Wh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |               |           |
|                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   | Application p                                                                                                  | re-retrofit energ              | y level is 6,14 | 1,046 kWh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |               |           |
|                            | C-7 S-7B 78.88 0.57 14.74<br>C-7 S-7B 78.88 0.54 12.29<br>Average 0.54 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Therefore say                         | rings estimated   | using the calcu                                                                                                | lated CFM and                  | the fan cube la | w is 80% of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | basecase.         |               |           |
|                            |                                                                        | 4         162.90         0.60         37.82         125.08         385,961         502,669         303,109           4         162.90         0.57         31.86         131.04         568,759         707,051         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         402,665         400,449         442,893         175,854         100,149         42,833         405,512         56,555         400,149         478,88< |                  |                                       |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
|                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                |                 | 56.85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Energy Savings    | 3             |           |
| <ul> <li>Post-r</li> </ul> | etrofit average                                                        | BHP estimated us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing the followin | g fan law:                            |                   |                                                                                                                |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
|                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       | -retrofit peak B  | нр                                                                                                             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>          |               |           |
| † Annua                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                | ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | L             |           |
|                            | Energy Impact                                                          | = ((average BHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | savings) x 0.7   | 46 x hours per y                      | rear)/motor effic | lency                                                                                                          | l                              | Í               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |               |           |
| ¥ Due to                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                | energy use is a | assumed to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | directly proporti | onal to CFM d | elivered. |
|                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   |                                                                                                                |                                | <u></u> -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |
| The met                    | hods used in th                                                        | e application to ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | enerate demand   | d impacts were re                     | eviewed and fou   | nd to be acce                                                                                                  | ptable.                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                 |               |           |
|                            | l                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   | <u> </u>                                                                                                       |                                |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>          | <u> </u>      | +         |
|                            | t designates an                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                   | <u> </u>                                                                                                       |                                |                 | <b>[</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                 | ·             | +         |
|                            | t designates a c                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       | ļ                 | ļ                                                                                                              |                                |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |               |           |
| Green d                    | esignates a resu                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | l                                     | 1                 | <u> </u>                                                                                                       | <u> </u>                       | I               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>          | L             | 1         |

| Site ID #                             | 3083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control#                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Check #                               | 61488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Program                               | Customized Rebates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Measure(s)                            | Chiller Retrofit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Site Description                      | Highrise Office Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measure<br>Description:               | Retrofit an existing 600 ton centrifugal chiller with an open compressor and a Turbo Modulator (variable speed drive on compressor motor).                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Summery of<br>Rebate<br>Calculations: | Demand and energy calculations were computed based using<br>a temperature bin method and manufacturers data for the<br>existing and retrofit chillers. The loadline was based on<br>observed loads at the site.                                                                                                                                                                                                                                                                                                                                                                                      |
| Comments on<br>Calculations:          | The loadine appears reasonable and accurate. Temperature<br>bin data agree well with both the PG&E approved weather<br>and TMY San Francisco weather. Existing usage is computed<br>as the product of the hourly load for the given temperature bin<br>(expressed in tons) and the current condition efficiency. The<br>current condition efficiency appears to be based on the<br>condenser water temperature and the part load ratio. The<br>condenser water temperature is held constant at 80 degrees<br>for all hours in the existing case, assuming a constant tower<br>setpoint.              |
|                                       | Usage associated with the Retrofit chiller is computed in a similar fashion, using an identical loadline, weather and operating hours assumptions. Computations are provided for the retrofit compressor by itself and then in combination with the Turbo Modulator. The two main differences between the existing case and retrofit cases are the equipment efficiencies and the tower setpoint. Equipment efficiencies are consistent with manufacturers ratings. The tower setpoint however is computed as the sum of the mean coincident wet bulb temperature and a tower approach of 7 degrees. |
|                                       | A final observation that the existing case is used as the baseline, not Title 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Evaluation<br>Process:                | The evaluation process consisted of reviewing the application<br>form and supporting documentation, conducting an on-site<br>survey and then recomputing the impacts using the on-site<br>data and a Title 24 baseline.                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | The on-site survey was conducted on October 15, 1996 with<br>Chief Engineer Jon Burdette. The retrofit equipment and<br>operating conditions were verified via an inspection of the<br>central plant and EMS control system. Data observed on the                                                                                                                                                                                                                                                                                                                                                    |

B-35

EMS system and discussions with Mr. Burdette confirmed the appropriateness of the loadline. Use of an 80 degree tower setpoint for the existing case and a "floating" tower setpoint for the retrofit cases could not be explained, since tower operation had not been altered. In both cases the tower is allowed to float and achieve optimal condenser temperatures.

To recompute the impacts the following assumptions were applied for the existing case:

- Use a Title 24 baseline efficiency of 0.748 kW/ton, based on a centrifugal chiller of greater than 300 tons.
- Apply an adjustment to the efficiency calculation to take into account the actual tower operation. This adjustment was computed using the EIR-FT bi-quadratic equation documented in the DOE-2.1E Supplement.

The above adjustments were incorporated in the calculation methodology and impacts were recalculated. Both demand and energy impacts were substantially reduced. Results form these calculations are summarized below and documented in the attached workbook.

## Additional Notes:

**Impact Results** 

|                                 | kW    | kWh     | Therm |
|---------------------------------|-------|---------|-------|
| MDSS                            | 214   | 513,204 | N/A   |
| Adjusted Engineering            | 73.6  | 236,342 | N/A   |
| Engineering Realization<br>Rate | 0.344 | 0.461   | N/Â   |

### Application Info.

-----

.

,

|             |    |                        |                   | Exis         | ting Chille | er Usage       |                    |                                |                      |                        |                                 |                 |                      |                          |                             |                   |
|-------------|----|------------------------|-------------------|--------------|-------------|----------------|--------------------|--------------------------------|----------------------|------------------------|---------------------------------|-----------------|----------------------|--------------------------|-----------------------------|-------------------|
| Dry E<br>Bi | ,  | Coincident<br>Wet Bulb | Tower<br>Approach | Poss<br>ECWT | Tons Load   | % Full<br>Load | kW/Ton             | Adjusted<br>Basecase<br>kW/Ton | Title 24<br>Baseline | Application<br>kW Draw | Title 24<br>Baseline<br>kW Draw | Hours           | Application<br>kWh   | Title 24<br>Baseline kWh | Part-Load<br>Adjustmen<br>t | CWT<br>adjustment |
|             |    |                        |                   | 85           | 600         | 100%           | 0.905              | 0.905                          | 0.748                | 543                    | 449                             | 0               | 0                    | 0                        | 1                           | 1.000             |
| 95          | 99 | 68                     | 7                 | 75           | 541         | 90.1%          | 0.922              | 0.803                          | 0.664                | 499                    | 359                             | 1               | 499                  | 359                      | 1.000                       | 0.888             |
| 90          | 94 | 66                     | 7                 | 73           | 510         | 84.9%          | 0.913              | 0.786                          | 0.650                | 466                    | 331                             | 5               | 2328                 | 1657                     | 1.000                       | 0.869             |
| 85          | 89 | 65                     | 7                 | 72           | 479         | 79.8%          | 0.904              | 0.778                          | 0.643                | 433                    | 308                             | 19              | 8227                 | 5853                     | 1.000                       | 0.860             |
| 80          | 84 | 64                     | 7                 | 71           | 448         | 74.6%          | 0.898              | 0.770                          | 0.637                | 402                    | 285                             | 56              | 22529                | 15972                    | 1.000                       | 0.851             |
| 75          | 79 | 62                     | 7                 | 69           | 417         | 69.4%          | 0.894              | 0.755                          | 0.624                | 373                    | 260                             | 110             | 41008                | 28636                    | 1.000                       | 0.835             |
| 70          | 74 | 61                     | 7                 | 68           | 386         | 64.3%          | 0.892              | 0.748                          | 0.618                | 344                    | 239                             | 346             | 119132               | 82599                    | 1.000                       | 0.827             |
| 65          | 69 | 58                     | 7                 | 65           | 355         | 59.1%          | 0.894              | 0.729                          | 0.602                | 317                    | 214                             | 583             | 185027               | 124656                   |                             |                   |
| 60          | 64 | 56                     | 7                 | 63           | 324         | 54.0%          | 0.9                | 0.717                          | 0.593                | 292                    | 192                             | 640             |                      | 122893                   |                             |                   |
| 55          | 59 | 53                     | 7                 | 60           | 293         | 48.8%          | 0.912              | 0.702                          | 0.580                | 267                    | 170                             | 591             | 157925               | 100411                   | 1.000                       |                   |
| 50          | 54 | 49                     | 7                 | 56           | 243         | 40.5%          | 0.949              | 0.685                          | 0.566                | 231                    | 138                             | 384             | 88553                | 52810                    | 1.000                       |                   |
| 45          | 49 | 44                     | 8                 | 52           | 174         | 29.0%          | 1.07               | 0.672                          | 0.556                | 186                    | 97                              | 3               | 559                  | 290                      | 1.000                       | 0.743             |
|             |    |                        |                   |              |             |                |                    |                                |                      | _                      |                                 |                 | 812,410              | 536,138                  |                             |                   |
|             |    |                        |                   |              |             |                |                    |                                |                      |                        |                                 |                 | >60                  | 382,626                  |                             |                   |
|             |    |                        |                   | Ret          | rofit Chill | er Usage       |                    |                                |                      |                        | kWh                             |                 |                      |                          |                             |                   |
| Dry I<br>Bi | 1  | Coincident<br>Wet Bulb | Tower<br>Approach | Poss<br>ECWT | Tons Load   | % Full<br>Load | Retrofit<br>kW/Ton | Retrofit<br>kW/Ton<br>w/TM     | Retrofit<br>kW Draw  | kW Draw<br>w/TM        | Hours                           | Retrofit<br>kWh | Retrofit<br>kWh w/TM |                          |                             |                   |
| 95          | 99 | 68                     | 7                 | 75           | 541         | 97.2%          | 0.571              | 0.528                          | 308.91               | 285.65                 |                                 | 309             | 286                  |                          |                             |                   |
| 90          | 94 | 66                     | 7                 | 73           | 510         | 91.7%          | 0.554              | 0.496                          | 282.54               | 252.96                 | 5                               | 1,413           | 1,265                |                          |                             |                   |
| 85          | 89 | 65                     | 7                 | 72           | 479         | 86.1%          | 0.544              | 0.472                          | 260.58               | 226.09                 | 19                              | 4,951           | 4,296                |                          |                             |                   |
| 80          | 84 | 64                     | 7                 | 71           | 448         | 80.5%          | 0.535              | 0.448                          | 239.68               | 200.70                 | 56                              | 13,422          | 11,239               |                          |                             |                   |
| 75          | 79 | 62                     | 7                 | 69           | 417         | 74.9%          | 0.522              | 0.416                          | 217.67               | 173.47                 | 110                             | 23,944          | 19,082               |                          |                             |                   |
| 70          | 74 | 61                     | 7                 | 68           | 386         | 69.4%          | 0.515              | 0.393                          | 198.79               | 151.70                 | 346                             | 68,781          | 52,488               |                          |                             |                   |
| 65          | 69 | 58                     | 7                 | 65           | 355         | 63.8%          | 0.501              | 0.351                          | 177.86               | 124.61                 | 583                             | 103,689         | 72,645               |                          |                             |                   |
| 60          | 64 | 56                     | 7                 | 63           | 324         | 58.2%          | 0.491              | 0.321                          | 159.08               | 104.00                 | 640                             | 101,814         | 66,563               |                          |                             |                   |
| 55          | 59 | 53                     | 7                 | 60           | 293         | 52.6%          | 0.478              | 0.284                          | 140.05               | 83.21                  | 591                             | 82,772          | 49,178               |                          |                             |                   |
| 50          | 54 | 49                     | 7                 | 56           | 243         | 43.7%          | 0.475              | 0.239                          | 115.43               | 58.08                  | 384                             | 44,323          | 22,302               |                          |                             |                   |
| 45          | 49 | 44                     | 8                 | 52           | 174         | 31.3%          | 0.542              | 0.240                          | 94.31                | 41.76                  | 3                               | 283             | 125                  | 1                        |                             |                   |
|             |    |                        |                   |              |             |                |                    |                                |                      |                        |                                 |                 |                      |                          |                             |                   |
|             |    |                        |                   |              |             |                |                    |                                |                      |                        | Total                           | 445,701         | 299,467              |                          |                             |                   |
|             |    |                        |                   |              |             |                |                    |                                |                      |                        | >60                             | 401,095         | 277,041              |                          |                             |                   |

Chiller Info.

|          | CHWT     | CWT      | kW       | kW/ton   |          |           |                                        |                                       |                                       |               |
|----------|----------|----------|----------|----------|----------|-----------|----------------------------------------|---------------------------------------|---------------------------------------|---------------|
|          | 44       | 85       | 130      | 0.589    |          |           |                                        |                                       |                                       |               |
|          | 44       | 78.75    | 142      | 0.548    |          |           |                                        |                                       |                                       |               |
|          | 44       | 72.5     | 155      | 0.567    |          |           |                                        |                                       |                                       |               |
|          |          | 66.25    |          | 0.725    |          |           | ······································ |                                       | · · · · · · · · · · · · · · · · · · · |               |
|          |          |          |          |          |          |           |                                        |                                       |                                       |               |
|          |          |          |          |          |          |           |                                        |                                       |                                       |               |
|          |          |          | r,       | iciencts |          |           |                                        |                                       |                                       |               |
|          | -        | b        | с        |          | е        | f         |                                        |                                       |                                       |               |
| Cap-FT   | -1.74204 | 0.029292 | -6.7E-05 | 0.048054 | -0.00029 | -0.000106 |                                        |                                       | s a function o                        |               |
| EIR-FPLR | 0.222903 | 0.313387 | 0.46371  |          |          |           | Quad                                   |                                       | s a function o                        |               |
| EIR-FT   | 3.1175   | -0.10924 | 0.001389 | 0.00375  | 0.00015  | -0.000375 | Bi-Quad                                | Efficiency a                          | as a function                         | of Chilled wa |
|          |          |          |          |          |          |           |                                        |                                       |                                       |               |
|          |          |          |          | ·····    |          |           |                                        |                                       |                                       |               |
|          | снут     | CWT      | Cap-FT   | PLR Frac | EIR-FPLR | EIR-FT    | Unadjusted                             | Adjusted                              |                                       | Unadjusted    |
|          |          |          |          | 1.000    | 1 000    | 1 00000   | EIR                                    | EIR                                   | kW/ton                                | kW/ton        |
|          | 44       | 85       | 1.003    | 1.000    | 1.000    | 1.00022   | 1.000                                  |                                       | 0.750                                 |               |
|          | 44       | 80       | 1.026    | 0.950    |          | 0.94022   | 0.883                                  |                                       | 0.750                                 |               |
|          | 44       | 75       | 1.034    | 0.900    |          | 0.88772   | 0.782                                  |                                       | 0.750                                 |               |
|          | 44       | 85       | 1.003    | 0.850    |          | 1.00022   | 0.824                                  |                                       | 0.750                                 |               |
|          | 44       | 85       | 1.003    | 0.800    | 0.770    | 1.00022   | 0.771                                  |                                       | 0.750                                 |               |
|          | 44       | 85       | 1.003    | 0.750    |          | 1.00022   |                                        |                                       | 0.750                                 |               |
|          | 44       | 85       | 1.003    | 0.700    |          | 1.00022   | 0.670                                  |                                       |                                       |               |
|          | 44       | 85       | 1.003    | 0.650    |          | 1.00022   | 0.623                                  |                                       | 0.750                                 |               |
|          | 44       | 85       | 1.003    | 0.600    |          |           |                                        |                                       | 0.750                                 |               |
|          | 44       | 85<br>85 | 1.003    | 0.550    | 0.536    | 1.00022   | 0.536                                  |                                       | 0.750                                 |               |
|          |          | 85       | 1.003    |          |          | 1.00022   | 0.498                                  |                                       | 0.750                                 |               |
|          | 44       |          |          | <u> </u> | L        | 1.00022   |                                        | · · · · · · · · · · · · · · · · · · · | 0.750                                 |               |
|          | 44       | 85       | 1.003    | 0.400    |          |           | 0.423                                  |                                       |                                       |               |
|          | 44       | 85       | 1.003    | 0.350    | 0.389    | 1.00022   | 0.389                                  | 1                                     | 0.750                                 | 0.29          |

Impacts

|             | Energy Ir                               | npacts                     |                 |  |  |
|-------------|-----------------------------------------|----------------------------|-----------------|--|--|
|             | Existing/Ba<br>seline<br>Usage<br>(kWh) | Retrofit<br>Usage<br>(kWh) | lmpact<br>(kWh) |  |  |
| Application | 813,000                                 | 299,796                    | 513,204         |  |  |
| Evaluation  | 536,138                                 | 299,796                    | 236,342         |  |  |
|             | Demand I                                | mpacts                     |                 |  |  |
|             | Existing/Ba<br>seline<br>Usage<br>(kWh) | Retrofit<br>Usage<br>(kWh) | lmpact<br>(kWh) |  |  |
| Application | 499                                     | 285                        | 214             |  |  |
| Evaluation  | 359                                     | 286                        | 74              |  |  |

Page 3

| Site ID #        | 3179                                          |
|------------------|-----------------------------------------------|
| Control#         | 0034566                                       |
| Check #          | 63400                                         |
| Program          | Customized Rebates                            |
| Measure(s)       | HVAC System Conversion                        |
| Site Description | 200,000 Square Foot Office/Warehouse Building |

1

| Measure<br>Description:               | Replacement of an older water cooled chiller, cooling tower<br>and supply pumps with a new air cooled Chiller and<br>downsized distribution pumps. Installation of economizers<br>on four ceiling mounted air handling units (AHU's) for the<br>warehouse area. Installation of a variable speed drive on the<br>AHU for the office area. Dampers to shut off supply air to the<br>upper floor of the office area. Time clock controls to optimize<br>operation of the heating and cooling systems and pipe<br>insulation for exposed copper heating supply and return water<br>pipes. |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summery of<br>Rebate<br>Calculations: | For the chiller retrofit and associated ancillary equipment, a<br>bin method calculation was carried out. Cooling loads for the<br>pre retrofit case were developed from data collected on site<br>and from analysis of electric bills. Post retrofit cooling loads<br>were developed using the Trace-600 simulation model.                                                                                                                                                                                                                                                            |
|                                       | AHU savings for the warehouse were generated by computing the number of hours that the fans operated and multiplying by an estimated fan load.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Comments on<br>Calculations:          | The calculations used to compute the change in energy<br>consumption for the site are for the most part accurate and<br>realistic. What needs to be discussed is the implementation of<br>the Title 24 baseline. All impact estimates listed in the<br>application assume that the existing equipment and operation<br>are used as the baseline, not Title 24.                                                                                                                                                                                                                         |
|                                       | In terms of the insulation on the hot water supply pipes, the<br>temperatures, hours of operation and heat transfer coefficients<br>used were verified during the on-site survey. The heat loss<br>calculations however assumed a constant temperature of<br>180°F for both supply and return lines.                                                                                                                                                                                                                                                                                   |
| Evaluation<br>Process:                | An on-site survey was conducted at the site to gather<br>equipment and operating characteristics for the measures<br>installed. The on-site survey information was then used to<br>recalculate the impacts using the methods documented in the<br>application. Three sets of calculations were performed:<br>Cooling and Office AHU savings, Warehouse AHU savings<br>and Savings due to pipe insulation.                                                                                                                                                                              |

B-37

The chiller retrofit involved replacing a 440 ton water cooled centrifugal chiller with a 100 ton air cooled recipricating chiller. In the process of installing the new chiller, the cooling coils and chilled water distribution for three of the four ceiling mounted air handeling units were removed and economizers were added to each. In addition, the cooling tower and associated condenser pumps were removed and the chilled water supply pumps were replaced with new, smaller pumps. Finally, a variable speed drive was addedd to the supply fan for the office area as well as dampers to control the amount of air flow.

The evaluation focused on recalculating the baseline and retrofit energy consumption using the on-site data as well as Title 24 baseline information. The following assumptions were implemented when computing the impact:

- The post installation load line generated by the TRACE-600 model was used as the basis for computing the cooling load on the chiller. At the time of the retrofit, the facility was converted from a manufacturing to warehouse occupancy. It is assumed that the change in occupancy resulted in the elimination of the cooling coils and chilled water distribution in three of the four warehouse AHU's. Elimimating the space conditioning from a major portion of the space is not considered an act of energy efficiency.
- Using the post installation load line, baseline energy consumption was computed for an air cooled chiller with an ARI rated efficiency of 1.30 kW/ton, the Title 24 minimum efficiency.
- Since the rated kW/ton for air cooled chillers includes energy consumption for the condenser, the cooling tower and condenser pump for the existing water cooled chiller were not included in the calculation of baseline energy consumption.
- Since the chilled water supply pump operates independently of the type of chiller installed, 100 percent of the savings assolated with downsizing the pump is used.

The savings associated with the warehouse AHU's are are computed based on a reduction of operating hours by installing controls to lockout operation for stated hours. Pre and post hours of operation were verified by the site contact, Mr. Chris Damelos. The following assumptions were applied when recalculating the application impact:

• A spot measurment of an operating fan in the warehouse was included as part of the on-site survey. The measured

B-38

fan consumption was 10.75 kW, as contrasted with the value of 14.5 kW calculated in the application.

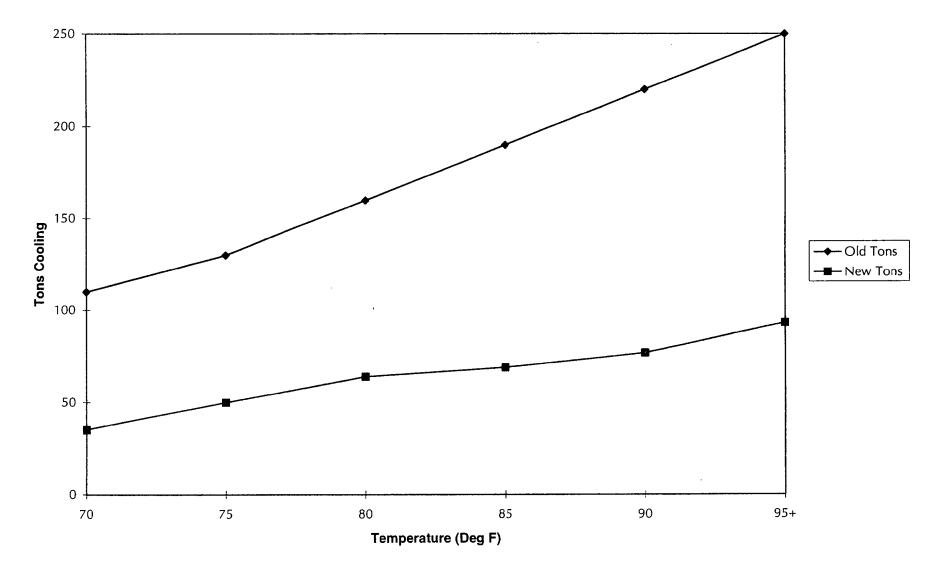
Savings associated with insulating the hot water supply lines was calculated based on the length of pipe insulated, a supply temperature of 180 °F, an average space temperature of 75°F and heat loss coefficients from ASHRAE. The application calculations assumed a constant temperature for both supply and return, an unrealistic assumption if indeed the heating coils are in operation and providing heat to the space. Further, all of the piping is attached to the ceiling joists below the ceiling insulation. Based on the above, it was assumed that there is some savings associated with delivering the heat to the heating coils since the heat would be circulated more efficiently throuout the space. The assumed savings was thus estimated to be 25 percent of the application estimate.

# Additional Notes:

## **Impact Results**

|                                 | kW    | kWh     | Therm |
|---------------------------------|-------|---------|-------|
| MDSS                            | 248.5 | 249,636 | 1,419 |
| Adjusted Engineering            | 83.8  | 121,544 | 355   |
| Engineering Realization<br>Rate | 0.337 | 0.487   | 0.250 |

### Chiller and Office Calcs


|              |                 |              |           |      |          |         |        |          |            |         |                                               | <br>-1 |  |
|--------------|-----------------|--------------|-----------|------|----------|---------|--------|----------|------------|---------|-----------------------------------------------|--------|--|
| Existing Sys | stem as reporte | ed in applic | ation.    |      |          |         |        |          |            |         |                                               |        |  |
|              | Annual          | Chiller      |           | CHW  |          | Cooling |        |          |            | Total   |                                               |        |  |
| Outside      | Operating       | Load         | Chiller   | Pump | CW Pump  | Tower   | Office | Office   | Total Load | Energy  |                                               |        |  |
| Air Temp     | Hours           | (Tons)       | Load (kW) | (kW) | (kW)     | (kW)    | CFM    | AHU (kW) | (kW)       | (kWh)   |                                               |        |  |
| 25           | 9               | 0            | 0         | 0    | 0        |         | 36,000 | 17.1     | 17,1       | 154     |                                               |        |  |
| 30           | 36              | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 616     |                                               |        |  |
| 35           | 100             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 1,710   |                                               | <br>   |  |
| 40           | 237             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 4,053   |                                               |        |  |
| 45           | 347             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 5,934   |                                               |        |  |
| 50           | 439             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 7,507   |                                               |        |  |
| 55           | 436             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 7,456   |                                               | <br>   |  |
| 60           | 401             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 6,857   |                                               |        |  |
| 65           | 229             | 0            | 0         | 0    | 0        | 0       | 36,000 | 17.1     | 17.1       | 3,916   |                                               |        |  |
| 70           | 222             | 110          | 94        | 29.8 | 14.9     | 35.4    | 36,000 | 17.1     | 190.7      | 42,335  |                                               |        |  |
| 75           | 184             | 130          | 111       | 29.8 | 14.9     | 35.4    | 36,000 | 17.1     | 207.7      | 38,217  |                                               |        |  |
| 80           | 199             | 160          |           | 29.8 |          | 35.4    | 36,000 | 17.1     | 233.2      | 46,407  |                                               |        |  |
| 85           | 109             | 190          | 162       | 29.8 | 14.9     | 35.4    | 36,000 | 17.1     | 258.7      | 28,198  |                                               |        |  |
| 90           | 107             | 220          |           | 29.8 |          | 35.4    | 36,000 | 17.1     | 284.2      | 30,409  |                                               | <br>   |  |
| 95+          | 73              | 250          |           | 29.8 |          | 35.4    | 36,000 | 17.1     | 309.7      | 22,608  |                                               |        |  |
|              | 3128            |              |           |      |          |         |        |          |            | 246,376 |                                               |        |  |
|              |                 |              |           |      |          |         |        |          |            |         |                                               |        |  |
| Retrofit Sys | tem as reporte  | ed in applic | ation.    |      |          |         |        |          |            |         |                                               |        |  |
|              | Annual          | Chiller      |           | CHW  |          | Cooling |        |          |            | Total   |                                               |        |  |
| Outside      | Operating       | Load         | Chiller   | Pump | CW Pump  |         | Office | Office   | Total Load | Energy  |                                               |        |  |
| Air Temp     | Hours           | (Tons)       | Load (kW) | (kW) | (kW)     | (kW)    | CFM    | AHU (kW) | (kW)       | (kWh)   |                                               |        |  |
| 25           | 9               | 0            | 0         | 0    | · 0      | 0       | 10,000 | 1.8      | 1.8        | 16      |                                               |        |  |
| 30           | 36              | 0            | 0         | 0    | 0        | 0       | 10,000 | 1.8      | 1.8        | 65      |                                               |        |  |
| 35           | 100             | 0            |           | 0    |          |         | 10,000 | 1.8      | 1.8        | 180     |                                               |        |  |
| 40           | 237             | 0            | 0         | 0    | 0        | 0       | 10,000 | 1.8      | 1.8        | 427     |                                               |        |  |
| 45           | 347             | 0            |           |      | 0        | 0       |        | 1.8      |            | 625     |                                               | <br>   |  |
| 50           | 439             | 0            | 0         | 0    | 0        | 0       | 10,000 | 1.8      | 1.8        | 790     |                                               |        |  |
| 55           | 436             | 0            |           |      | <u> </u> |         | 10,000 | 1.8      |            | 785     |                                               |        |  |
| 60           | 401             | 0            |           |      |          |         |        | 1.8      | 1.8        | 722     |                                               |        |  |
| 65           | 229             | 0            |           |      | 0        | Ö       |        | 1.8      |            | 412     |                                               |        |  |
| 70           | 222             | 35           |           |      | 0        | 0       | 11,500 | 1.9      |            | 7,957   |                                               |        |  |
| 75           | 184             | 50           |           | 3.7  |          |         |        |          |            | 9,192   |                                               | <br>   |  |
| 80           | 199             | 64           |           |      |          |         |        | 2.2      |            | 12,716  | 1                                             |        |  |
| 85           | 109             | 69           |           |      |          |         |        | 2.5      |            | 8,045   |                                               | <br>   |  |
| 90           | 107             | 77           |           | 3.7  |          |         |        | 2.9      |            | 9,385   |                                               |        |  |
| 95+          | 73              | 93           |           | 3.7  |          |         |        | 3.3      |            | 8,052   |                                               | <br>·  |  |
|              | 3,128           |              |           | 5.7  | 1        |         |        | <u> </u> |            | 59,368  | <u>                                      </u> |        |  |
|              | 5,120           |              |           |      | <u>+</u> |         |        |          |            |         |                                               |        |  |
|              |                 |              |           |      |          |         |        |          |            |         |                                               |        |  |

#### Chiller and Office Calcs

|   | <u> </u>     |              |          |           |           | New  |         |         |             | l              |            |                |           |           |           |        |
|---|--------------|--------------|----------|-----------|-----------|------|---------|---------|-------------|----------------|------------|----------------|-----------|-----------|-----------|--------|
|   |              |              | Chiller  | Installed | Baseline  | CHW  | Old CHW | New     |             | New            |            |                |           | New Total | Old Total |        |
|   | Outside      | Annual       | Load     | Chiller   | Chiller   | Pump | Pump    | Office  | Old Office  | Office         | Old Office | New Total      | Old Total | Energy    | Energy    | 1      |
|   | Air Temp     | Hours        | (Tons)   | Load (kW) | Load (kW) | (kW) | (kW)    | CFM     | CFM         | AHU (kW)       | AHU (kW)   | Load (kW)      | Load (kW) | (kWh)     | (kWh)     |        |
|   | 25           | 9            | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 16        | 154       |        |
|   | 30           | 36           | 0        | 0         | 0         | 0    | 0.      | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 65        | 616       |        |
|   | 35           | 100          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 180       | 1,710     |        |
|   | 40           | 237          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 427       | 4,053     |        |
|   | 45           | 347          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 625       | 5,934     |        |
|   | 50           | 439          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 790       | 7,507     |        |
|   | 55           | 436          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 785       | 7,456     |        |
|   | 60           | 401          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 722       | 6,857     |        |
|   | 65           | 229          | 0        | 0         | 0         | 0    | 0       | 10,000  | 36,000      | 1.8            | 17.1       | 1.8            | 17.1      | 412       | 3,916     |        |
|   | 70           | 222          | 35       | 30        | 34        | 3.7  | 29.8    | 11,500  | 36,000      | 1.9            | 17.1       | 35.8           | 80.6      | 7,957     | 17,884    |        |
|   | 75           | 184          | 50       | 44        | 49        | 3.7  | 29.8    | 12,700  | 36,000      | 2.0            | 17.1       | 50.0           | 96.2      | 9,192     | 17,693    |        |
|   | 80           | 199          | 64       | 58        | 65        | 3.7  | 29.8    | 14,000  | 36,000      | 2.2            | 17.1       | 63.9           | 111.4     | 12,716    | 22,178    |        |
|   | 85           | 109          | 69       | 68        | 75        | 3.7  | 29.8    | 15,300  | 36,000      | 2.5            | 17.1       | 73.8           | 122.1     | 8,045     | 13,313    |        |
|   | 90           | 107          | 77       | 81        | 90        | 3.7  | 29.8    | 16,700  | 36,000      | 2.9            | 17.1       | 87.7           | 137.2     | 9,385     | 14,677    |        |
|   | 95+          | 73           | 93       | 103       | 115       | 3.7  | 29.8    | 18,000  | 36,000      | 3.3            | 17.1       | 110.3          | 161.9     | 8,052     | 11,816    |        |
|   |              | 3,128        |          |           |           |      |         |         |             |                |            | 110.3          | 161.9     | 59,368    | 135,762   | Total  |
|   |              |              |          |           |           |      |         |         |             |                |            |                | 51.6      |           | 76,394    | Impact |
| · | Castin       | - 1 1        |          |           |           |      |         | Chiller | Part Load I | 14/ 1/- luca   |            |                |           |           |           |        |
|   |              | g Load Infor | mation   |           |           | OADB |         | Chiller | Tart Load K | d kW Values    |            |                |           |           |           |        |
|   | QADB<br>Temp | Old Tons     | New Tons |           | % Disp.   | Temp | Tons    | Unit kW | Base kW     | Unit<br>kW/Ton |            | Base<br>kW/Ton |           |           |           |        |
|   | 70           | 110          | 35       |           | 25%       | 65   | 30.9    | 26.7    | 29.7        | 0.86           |            | 0.96           |           |           |           |        |
|   | 75           | 130          | 50       |           |           | 70   | 49.1    | 43.8    | 48.7        | 0.89           |            | 0.99           |           |           |           |        |
|   | 80           | 160          | 64       |           | 50%       | 75   | 67.2    | 60.9    | 67.8        | 0.91           |            | 1.01           |           |           |           |        |
|   | 85           | 190          | 69       |           |           | 80   | 76.7    | 75.9    | 84.4        | 0.98           |            | 1.09           |           |           |           |        |
|   | 90           | 220          | 77       |           | 75%       | 85   | 86.2    | 90.8    | 101.1       | 1.05           |            | 1.17           |           |           |           |        |
|   | 95+          | 250          | 93       |           |           | 909  | 95.2    | 106.2   | 118.2       | 1.11           |            | 1.24           |           |           |           |        |
|   |              |              |          |           | 100%      | 95   | 104.1   | 121.6   | 135.3       | 1.17           |            | 1.30           |           |           |           |        |

Cooling Load Chart





| Information | from the appl  | ication: |              |                     |                         |                        |                                    |                   |                                                 |                                                             |
|-------------|----------------|----------|--------------|---------------------|-------------------------|------------------------|------------------------------------|-------------------|-------------------------------------------------|-------------------------------------------------------------|
| mormation   | r nom the app  |          |              | Evisting (          | Operation               |                        | I                                  | l                 |                                                 |                                                             |
| Season      | Time<br>Period | Days     | HVAC<br>Mode | Occupancy<br>Status | Air<br>Handler<br>(CFM) | Air<br>Handler<br>(kW) | Adjusted<br>Air<br>Handler<br>(kW) | Hours per<br>Year | Warehouse<br>Air Handler<br>Usage<br>(kWh/Year) | Adjusted<br>Warehouse<br>Air Handler<br>Usage<br>(kWh/Year) |
| Summer      | 5AM - 5PM      | M-F      | Cooling      | Occupied            | 128,000                 | 58                     | 43                                 | 1,800             | 104,400                                         | 77400                                                       |
| Summer      | 5PM - 5AM      | M-F      | Off          | Unoccupied          | 0                       | 0                      | 0                                  | 1,800             | -                                               | C                                                           |
| Summer      | 24 hours       | S - S    | Off          | Unoccupied          | 0                       | 0                      | 0                                  | 1,464             | -                                               | C                                                           |
| Winter      | 5AM - 5PM      | M-F      | Heating      | Occupied            | 128,000                 | 58                     | 43                                 | 1,320             | 76,560                                          | 56760                                                       |
| Winter      | 5PM - 5AM      | M-F      | Off          | Unoccupied          | 0                       | 0                      |                                    | 1,320             | -                                               | (                                                           |
| Winter      | 24 hours       | S - S    | Off          | Unoccupied          | 0                       | 0                      |                                    | 1,056             | -                                               | C                                                           |
|             |                |          |              |                     |                         |                        |                                    | 8,760             | 180,960                                         | 134,160                                                     |
|             |                |          |              | New O               | peration                |                        |                                    |                   |                                                 |                                                             |
| Season      | Time<br>Period | Days     | HVAC<br>Mode | Occupancy<br>Status | Air<br>Handler<br>(CFM) | Air<br>Handler<br>(kW) | Adjusted<br>Air<br>Handler<br>(kW) | Hours per<br>Year | Warehouse<br>Air Handler<br>Usage<br>(kWh/Year) | Adjusted<br>Warehouse<br>Air Handler<br>Usage<br>(kWh/Year) |
| Summer      | 5AM - 5PM      | M-F      | Cooling      | Occupied            | 32,000                  | 14.5                   | 10.75                              | 1,800             | 26,100                                          | 19350                                                       |
| Summer      | 3AM - 5AM      | M-F      | OSA Flush    | Unoccupied          | 128,000                 | 58                     | 43                                 | 300               | 17,400                                          | 12900                                                       |
| Summer      | 5PM - 3AM      | M-F      | Off          | Unoccupied          | 0                       | 0                      | 0                                  | 1,500             | -                                               | (                                                           |
| Summer      | 24 hours       | S - S    | Off          | Unoccupied          | 0                       | 0                      | 0                                  | 1,464             | -                                               | (                                                           |
| Winter      | 5AM - 5PM      | M-F      | Heating      | Occupied            | 128,000                 | 58                     | 43                                 | 1,320             | 76,560                                          | (                                                           |
| Winter      | 5PM - 5AM      | M-F      | Off          | Unoccupied          | 0 ·                     | 0                      |                                    | 1,320             | -                                               | 56760                                                       |
| Winter      | 24 hours       | S - S    | Off          | Unoccupied          | 0                       | 0                      |                                    | 1,056             | -                                               | (                                                           |
|             |                |          |              |                     |                         |                        |                                    | 8,760             | 120,060                                         | 89,010                                                      |

Impacts

|                                      |                                                      | En                                              | ergy Summary                                      | /                                  | L . <u>.</u>                  | · · · ·                                         |                                     |
|--------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------|
|                                      |                                                      |                                                 |                                                   |                                    |                               |                                                 |                                     |
|                                      | Basecase<br>Cooling and<br>Office AHU<br>Usage (kWh) | New Cooling<br>and Office<br>AHU Usage<br>(kWh) | Impacts for<br>Cooling and<br>Office AHU<br>(kWh) | Existing<br>Warehouse<br>AHU Usage | New<br>Warehouse<br>AHU Usage | Impacts for<br>Warehouse<br>AHU (Annual<br>kWh) | Total<br>Annual<br>Impacts<br>(kWh) |
| Stated On<br>Application             | 246,384                                              | 57,696                                          | 188,688                                           | 181,102                            | 120,154                       | 60,948                                          | 249,636                             |
| Recalculated based<br>on Application | 246,376                                              | 59,368                                          | 187,008                                           | 180,960                            | 120,060                       | 60,900                                          | 247,908                             |
| Evaluation Estimate                  | 135,762                                              | 59,368                                          | 76,394                                            | 134,160                            | 89,010                        | 45,150                                          | 121,544                             |
|                                      |                                                      |                                                 |                                                   |                                    |                               |                                                 |                                     |
|                                      |                                                      | De                                              | mand Summa                                        | Y                                  |                               | ,                                               |                                     |
|                                      |                                                      |                                                 |                                                   |                                    |                               |                                                 |                                     |
|                                      | Basecase<br>Cooling and<br>Office AHU<br>Demand (kW) | New Cooling<br>and Office<br>AHU Demand<br>(kW) | Impacts for<br>Cooling and<br>Office AHU<br>(kW)  | Existing<br>Warehouse<br>AHU Usage | New<br>Warehouse<br>AHU Usage | Impacts for<br>Warehouse<br>AHU (Annual<br>kWh) | Total<br>Annual<br>Impacts<br>(kWh) |
| Stated On<br>Application             | 309.7                                                | 104.7                                           | 205.0                                             | 58.0                               | 14.5                          | 43.5                                            | 248.5                               |
| Recalculated based<br>on Application | 309.7                                                | 110.3                                           | 199.4                                             | 58.0                               | 14.5                          | 43.5                                            | 242.9                               |
| Evaluation Estimate                  | 161.9                                                | 110.3                                           | 51.6                                              | 43.0                               | 10.8                          | 32.3                                            | 83.8                                |
|                                      |                                                      |                                                 |                                                   |                                    |                               |                                                 |                                     |
|                                      | Therm Sur                                            | nmary                                           | l                                                 |                                    |                               |                                                 |                                     |
|                                      |                                                      |                                                 |                                                   |                                    |                               |                                                 |                                     |
|                                      | Existing "Losses"<br>(therm)                         | New "Losses"<br>(therm)                         | Impacts for Pipe<br>insulation                    |                                    |                               |                                                 |                                     |
| Stated On                            |                                                      |                                                 |                                                   |                                    |                               |                                                 |                                     |
| Application                          | 1,625                                                | 206                                             | 1,419                                             |                                    |                               |                                                 |                                     |
| Recalculated based<br>on Application | 1,625                                                | 206                                             | 1,419                                             |                                    |                               |                                                 |                                     |
| Evaluation Estimate                  | 561                                                  | 206                                             | 355                                               |                                    |                               |                                                 | u,                                  |

| Site ID #                         | 3181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                           | 62978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Program                           | Customized Rebates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measure(s)                        | Plate & Frame Heat Exchanger Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Site Description                  | 1.5 Million Square Foot Office Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Measure<br>Description:           | This measure involved the installation of a Plate and Frame Heat<br>Exchanger (PFE) to take advantage of "Free Cooling". By installing<br>the PFE, the cooling towers and chilled water distribution system<br>could be used to provide cooling to the complex when wet bulb<br>temperatures permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Summery of Rebat<br>Calculations: | e Rebate calculations were performed using a temperature "Bin"<br>method calculation. A bin is defined as a five degree range of<br>outdoor dry bulb. The mean coincident wet bulb temperature<br>associated with each bin was calculated as the average wet bulb<br>temperature coincident with each of the observations of dry bulb.<br>Cooling loads were estimated using tons delivered from the central<br>and plant and outdoor temperature at the site. This data was<br>collected using the Building Management Control System (BMCS)<br>by the contractor that installed the system. Load profiles (in tons)<br>were generated as a function of temperature for both "On" and<br>"Off" hours, where on hours coincide with hours of occupancy. |
| Comments on<br>Calculations       | The calculations are based on actual operational data collected<br>from the central plant. Savings estimates for this site are based on<br>chiller savings only. These estimates are stated to be conservative<br>due to additional savings associated with a reduction in usage of<br>the secondary chiller loop pumps.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Evaluation Process                | The evaluation was carried out by performing an on-site survey and<br>reviewing the calculations. The on-site survey confirmed the<br>presence and operation of the PFE with the following exception. As<br>stated by the Chief Engineer, use of the PFE is limited to when the<br>wet bulb temperature is below 45°. The evaluation estimates reflect<br>this adjustment.                                                                                                                                                                                                                                                                                                                                                                              |

Impact Results for Site ID# 3181

|                                 | kW  | kWh       | Therm |
|---------------------------------|-----|-----------|-------|
| MDSS                            | 0   | 2,235,848 | 0     |
| Adjusted Engineering            | 0   | 908,302   | 0     |
| Engineering Realization<br>Rate | N/A | 0.41      | NA    |

٠

|                                                                |                                                                       | Off-Hr                                                                                  |                                                                                        |                                                                                | r                                                            | r*                 | On-Hr                                                                     | On-Hr                                                               |                                                                                              |                                                                                              |
|----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Coincident                                                     | Off-                                                                  | Load                                                                                    | Off-Hr Chiller                                                                         | Off-Hr Chiller                                                                 | On-                                                          |                    |                                                                           | Chiller                                                             | On-Hr Chiller                                                                                |                                                                                              |
| Wet Bulb                                                       | Hrs/Year                                                              |                                                                                         | Load (kW)                                                                              | ∪sage (kWh)                                                                    | Hrs/Year                                                     |                    | Load                                                                      | I ' I                                                               | Usage (kWh)                                                                                  |                                                                                              |
|                                                                |                                                                       | (Tons)                                                                                  |                                                                                        |                                                                                |                                                              |                    | (Tons)                                                                    | Load (kW)                                                           | •                                                                                            |                                                                                              |
| 23                                                             | 5                                                                     | 460                                                                                     | 391                                                                                    | 1,955                                                                          | · · ·                                                        |                    |                                                                           |                                                                     | · · · · · · · · · · · · · · · · · · ·                                                        |                                                                                              |
| 27                                                             | 25                                                                    | 475                                                                                     | 404                                                                                    | 10,094                                                                         | · · ·                                                        |                    | -                                                                         | <u> </u>                                                            | -                                                                                            |                                                                                              |
| 31                                                             | 76                                                                    | 490                                                                                     | 417                                                                                    | 31,654                                                                         | 4                                                            |                    | 490                                                                       | 417                                                                 | 1,666                                                                                        |                                                                                              |
| 36                                                             | 147                                                                   | 510                                                                                     | 434                                                                                    | 63,725                                                                         | 68                                                           |                    | 510                                                                       | 434                                                                 | 29,478                                                                                       |                                                                                              |
| 40                                                             | 586                                                                   | 530                                                                                     | 451                                                                                    | 263,993                                                                        | 89                                                           |                    | 530                                                                       | 451                                                                 | 40.095                                                                                       |                                                                                              |
| 44                                                             | 814                                                                   | 568                                                                                     | 483                                                                                    | 392,999                                                                        | 186                                                          |                    | 618                                                                       | 525                                                                 | 97,706                                                                                       |                                                                                              |
| 48                                                             | 1,062                                                                 | 597                                                                                     | 507                                                                                    | 538,912                                                                        | 358                                                          |                    | 668                                                                       | 568                                                                 | 203,272                                                                                      |                                                                                              |
| 52                                                             |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
|                                                                | 1,163                                                                 | 645                                                                                     | 548                                                                                    | 637,615                                                                        | 482                                                          |                    | 715                                                                       | 608                                                                 | 292,936                                                                                      |                                                                                              |
| 54                                                             | 658                                                                   | 677                                                                                     | 575                                                                                    | 378,646                                                                        | 517                                                          |                    | 820                                                                       | 697                                                                 | 360,349                                                                                      |                                                                                              |
| 57                                                             | 502                                                                   | 706                                                                                     | 600                                                                                    | 301,250                                                                        | 323                                                          |                    | 1,020                                                                     | 867                                                                 | 280,041                                                                                      |                                                                                              |
| 59                                                             | 322                                                                   | 740                                                                                     | 629                                                                                    | 202,538                                                                        | 218                                                          |                    | 1,454                                                                     | 1,236                                                               | 269,426                                                                                      |                                                                                              |
| 61                                                             | 287                                                                   | 836                                                                                     | 711                                                                                    | 203,942                                                                        | 133                                                          |                    | 1,965                                                                     | 1,670                                                               | 222,143                                                                                      |                                                                                              |
| 63                                                             | 206                                                                   | 940                                                                                     | 799                                                                                    | 164,594                                                                        | 94                                                           |                    | 1,872                                                                     | 1,591                                                               | 149,573                                                                                      |                                                                                              |
| 65                                                             | 159                                                                   | 1020                                                                                    | 867                                                                                    | 137,853                                                                        | 61                                                           |                    | 1,872                                                                     | 1,591                                                               | 97,063                                                                                       | ·-··                                                                                         |
| 66                                                             | 87                                                                    | 1120                                                                                    | 952                                                                                    | 82,824                                                                         |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                | 43                                                           |                    | 1,872                                                                     | 1,591                                                               | 68,422                                                                                       |                                                                                              |
| 67                                                             | 40                                                                    | 1190                                                                                    | 1,012                                                                                  | 40,460                                                                         | 25                                                           |                    | 1,872                                                                     | 1,591                                                               | 39,780                                                                                       |                                                                                              |
| 69                                                             | 13                                                                    | 1260                                                                                    | 1,071                                                                                  | 13,923                                                                         | 7                                                            |                    | 1,872                                                                     | 1,591                                                               | 11,138                                                                                       |                                                                                              |
|                                                                | 6,139                                                                 |                                                                                         |                                                                                        | 3,453,054                                                                      | 2,601                                                        |                    |                                                                           |                                                                     | 2,151,949                                                                                    |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              | ·····              |                                                                           |                                                                     | <u>'</u> {                                                                                   |                                                                                              |
| a number that                                                  | does not me                                                           | tch the app                                                                             | lication                                                                               |                                                                                | <u> </u>                                                     | <u> </u>           |                                                                           |                                                                     |                                                                                              |                                                                                              |
| a namber that                                                  | 0003 1101 111                                                         | iten ine app                                                                            |                                                                                        | · · · · · · · · · · · · · · · · · · ·                                          |                                                              |                    |                                                                           | <u> </u>                                                            |                                                                                              |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                | <u>                                     </u>                 | ·                  |                                                                           |                                                                     |                                                                                              |                                                                                              |
| leat exchanger                                                 |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           |                                                                     | ·                                                                                            |                                                                                              |
| Coincident                                                     | Off-                                                                  | Off-Hr                                                                                  | Total Site                                                                             | CHWS flow thru                                                                 | PFF Sumb                                                     | PFE Supply (tons-  | Off-Hr                                                                    | Off-Hr                                                              | Off-Hr Chiller                                                                               | <b>Evaluation Off</b>                                                                        |
| Wet Bulb                                                       |                                                                       | Load                                                                                    |                                                                                        |                                                                                |                                                              |                    | Load                                                                      | Chiller                                                             |                                                                                              | Hr Chiller                                                                                   |
| wet buio                                                       | Hrs/Year                                                              | (Tons)                                                                                  | CHWS flow                                                                              | PFE                                                                            | (tons)                                                       | hrs)               | (Tons)                                                                    | Load (kW)                                                           | Usage (kWh)                                                                                  | Usage                                                                                        |
| 23                                                             | 5                                                                     | 460                                                                                     | 1,380                                                                                  | 1,380                                                                          | 460                                                          | 2,300              | - (.0.1.5/                                                                |                                                                     |                                                                                              | 070Bc                                                                                        |
| 27                                                             | 25                                                                    | 475                                                                                     | 1,425                                                                                  | 1,425                                                                          | 400                                                          | 11,875             |                                                                           |                                                                     | ······································                                                       | ·                                                                                            |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
| 31                                                             | 76                                                                    | 490                                                                                     | 1,470                                                                                  | 1,470                                                                          | 490                                                          | 37,240             | -                                                                         | -                                                                   |                                                                                              |                                                                                              |
| 36                                                             | 147                                                                   | 510                                                                                     | 1,530                                                                                  | 1,530                                                                          | 510                                                          | 74,970             | -                                                                         | -                                                                   | •                                                                                            |                                                                                              |
| 40                                                             | 586                                                                   | 530                                                                                     | 1,590                                                                                  | 1,590                                                                          | 530                                                          | 310,580            | -                                                                         | - 1                                                                 | -                                                                                            |                                                                                              |
| 44                                                             | 814                                                                   | 568                                                                                     | 1,704                                                                                  | 1,704                                                                          | 568                                                          | 462,352            |                                                                           | -                                                                   |                                                                                              |                                                                                              |
| 48                                                             | 1,062                                                                 | 597                                                                                     | 1,791                                                                                  | 1,791                                                                          | 597                                                          | 634,014            | -                                                                         |                                                                     |                                                                                              | 538,912                                                                                      |
| 52                                                             | 1,163                                                                 | 645                                                                                     | 1,935                                                                                  | 1,935                                                                          | 323                                                          | 375,068            | 323                                                                       | 274                                                                 | 318,807                                                                                      | 637,615                                                                                      |
| 54                                                             |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
|                                                                | 658                                                                   | 677                                                                                     | 2,031                                                                                  | 2,031                                                                          | 169                                                          | 111,367            | 508                                                                       | 432                                                                 | 283,985                                                                                      | 378,646                                                                                      |
| 57                                                             | 502                                                                   | 706                                                                                     | 2,118                                                                                  | -                                                                              |                                                              |                    | 706                                                                       | 600                                                                 | 301,250                                                                                      | 301,250                                                                                      |
| 59                                                             | 322                                                                   | 740                                                                                     | 2,220                                                                                  | -                                                                              | -                                                            |                    | 740                                                                       | 629                                                                 | 202,538                                                                                      | 202,538                                                                                      |
| 61                                                             | 287                                                                   | 836                                                                                     | 2,508                                                                                  | -                                                                              | -                                                            |                    | 836                                                                       | 711                                                                 | 203,942                                                                                      | 203,942                                                                                      |
| 63                                                             | 206                                                                   | 940                                                                                     | 2,820                                                                                  | -                                                                              | -                                                            |                    | 940                                                                       | 799                                                                 | 164,594                                                                                      | 164,594                                                                                      |
| 65                                                             | 159                                                                   | 1020                                                                                    | 3,060                                                                                  | •                                                                              | ·····                                                        |                    | 1,020                                                                     | 867                                                                 | 137,853                                                                                      | 137,853                                                                                      |
| 66                                                             | 87                                                                    | 1120                                                                                    | 3,360                                                                                  | •                                                                              |                                                              |                    | 1,120                                                                     | 952                                                                 | 82,824                                                                                       | 82,824                                                                                       |
| 67                                                             |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           | · · · · · · · · · · · · · · · · · · ·                               |                                                                                              |                                                                                              |
|                                                                | 40                                                                    | 1190                                                                                    | 3,570                                                                                  |                                                                                | -                                                            |                    | 1,190                                                                     | 1,012                                                               | 40,460                                                                                       | 40,460                                                                                       |
| 69                                                             | 13                                                                    | 1260                                                                                    | 3,780                                                                                  | -                                                                              |                                                              |                    | 1,260                                                                     | 1,071                                                               | 13,923                                                                                       | 13,923                                                                                       |
|                                                                | 6,139                                                                 |                                                                                         |                                                                                        | 14,856                                                                         | 4,122                                                        | 2,019,765          |                                                                           |                                                                     | 1,736,253                                                                                    | 2,702,557                                                                                    |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                | <u> </u>                                                     |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
| lost ouch                                                      |                                                                       |                                                                                         |                                                                                        |                                                                                | <u> </u>                                                     |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
| leat exchanger                                                 |                                                                       |                                                                                         |                                                                                        |                                                                                | <u> </u>                                                     |                    |                                                                           |                                                                     |                                                                                              | <u> </u>                                                                                     |
| Coincident                                                     | On-                                                                   | On-Hr                                                                                   | Total Site                                                                             | CHWS flow thru                                                                 | PFE Sunnly                                                   | PFE Supply (tons-  | On-Hr                                                                     | On-Hr                                                               | On-Hr Chiller                                                                                | Evaluation On                                                                                |
| Wet Bulb                                                       | Hrs/Year                                                              | Load                                                                                    | CHWS flow                                                                              | PFE                                                                            | (tons)                                                       | hrs)               | Load                                                                      | Chiller                                                             | Usage (kWh)                                                                                  | Hr Chiller                                                                                   |
|                                                                | riisrtear                                                             | (Tons)                                                                                  | CH443 10W                                                                              | FFC                                                                            | (ions)                                                       | ur\$)              | (Tons)                                                                    | Load (kW)                                                           | Usage (Kwin)                                                                                 | Usage                                                                                        |
| 23                                                             |                                                                       | -                                                                                       |                                                                                        | -                                                                              |                                                              | -                  |                                                                           | -                                                                   |                                                                                              | ······································                                                       |
| 27                                                             |                                                                       | -                                                                                       | -                                                                                      | -                                                                              | <u> </u>                                                     |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
| 31                                                             | 4                                                                     | 490                                                                                     | - 1,470                                                                                | 1,470                                                                          |                                                              |                    |                                                                           |                                                                     |                                                                                              |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                | 490                                                          | 1,960              |                                                                           |                                                                     |                                                                                              | <u> </u>                                                                                     |
| 36                                                             | 68                                                                    | 510                                                                                     | 1,530                                                                                  | 1,530                                                                          | 510                                                          | 34,680             | -                                                                         |                                                                     | -                                                                                            |                                                                                              |
| 40                                                             | 00                                                                    | 530                                                                                     | 1,590                                                                                  | 1,590                                                                          | 530                                                          | 47,170             |                                                                           |                                                                     | -                                                                                            |                                                                                              |
|                                                                | 89                                                                    |                                                                                         |                                                                                        |                                                                                |                                                              | 114 040            |                                                                           |                                                                     |                                                                                              |                                                                                              |
| 40                                                             | 186                                                                   | 618                                                                                     | 1,854                                                                                  | 1,854                                                                          | 618                                                          | 114,948            | -                                                                         | -                                                                   | •                                                                                            |                                                                                              |
|                                                                |                                                                       |                                                                                         |                                                                                        |                                                                                | 618<br>668                                                   | 239,144            |                                                                           | -                                                                   |                                                                                              | 203,272                                                                                      |
| 44                                                             | 186                                                                   | 618<br>668                                                                              | 1,854<br>2,004                                                                         | 1,854<br>2,004                                                                 | 668                                                          | 239,144            | •                                                                         | -                                                                   | •                                                                                            |                                                                                              |
| 44<br>48<br>52                                                 | 186<br>358<br>482                                                     | 618<br>668<br>715                                                                       | 1,854<br>2,004<br>2,145                                                                | 1,854<br>2,004<br>2,145                                                        | 668<br>358                                                   | 239,144<br>172,315 | 358                                                                       | - 304                                                               | 146,468                                                                                      | 292,936                                                                                      |
| 44<br>48<br>52<br>54                                           | 186<br>358<br>482<br>517                                              | 618<br>668<br>715<br>820                                                                | 1,854<br>2,004<br>2,145<br>2,460                                                       | 1,854<br>2,004<br>2,145                                                        | 668<br>358                                                   | 239,144            | 358<br>820                                                                | -<br>304<br>697                                                     | 146,468<br>360,349                                                                           | 292,936<br>360,349                                                                           |
| 44<br>48<br>52<br>54<br>57                                     | 186<br>358<br>482<br>517<br>323                                       | 618<br>668<br>715<br>820<br>1,020                                                       | 1,854<br>2,004<br>2,145<br>2,460<br>3,060                                              | 1,854<br>2,004<br>2,145<br>-                                                   | 668<br>358<br>-<br>-                                         | 239,144<br>172,315 | 358<br>820<br>1,020                                                       |                                                                     | 146,468<br>360,349<br>280,041                                                                | 292,936<br>360,349<br>280,041                                                                |
| 44<br>48<br>52<br>54<br>57<br>59                               | 186<br>358<br>482<br>517<br>323<br>218                                | 618<br>668<br>715<br>820<br>1,020<br>1,454                                              | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362                                     | 1,854<br>2,004<br>2,145                                                        | 668<br>358                                                   | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454                                              |                                                                     | 146,468<br>360,349<br>280,041<br>269,426                                                     | 292,936<br>360,349<br>280,041<br>269,426                                                     |
| 44<br>48<br>52<br>54<br>57                                     | 186<br>358<br>482<br>517<br>323                                       | 618<br>668<br>715<br>820<br>1,020                                                       | 1,854<br>2,004<br>2,145<br>2,460<br>3,060                                              | 1,854<br>2,004<br>2,145<br>-                                                   | 668<br>358<br>-<br>-                                         | 239,144<br>172,315 | 358<br>820<br>1,020                                                       |                                                                     | 146,468<br>360,349<br>280,041                                                                | 292,936<br>360,349<br>280,041                                                                |
| 44<br>48<br>52<br>54<br>57<br>59                               | 186<br>358<br>482<br>517<br>323<br>218                                | 618<br>668<br>715<br>820<br>1,020<br>1,454                                              | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362<br>5,895                            | 1,854<br>2,004<br>2,145<br>-                                                   | 668<br>358<br>-<br>-<br>-                                    | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454                                              |                                                                     | 146,468<br>360,349<br>280,041<br>269,426                                                     | 292,936<br>360,349<br>280,041<br>269,426<br>222,143                                          |
| 44<br>48<br>52<br>54<br>57<br>59<br>61<br>63                   | 186<br>358<br>482<br>517<br>323<br>218<br>133<br>94                   | 618<br>668<br>715<br>820<br>1,020<br>1,454<br>1,965<br>1,872                            | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362<br>5,895<br>5,616                   | 1,854<br>2,004<br>2,145<br>-<br>-<br>-<br>-                                    | 668<br>358<br>-<br>-<br>-<br>-<br>-<br>-                     | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454<br>1,965<br>1,872                            | -<br>304<br>697<br>867<br>1,236<br>1,670<br>1,591                   | 146,468<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573                               | 292,936<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573                               |
| 44<br>48<br>52<br>54<br>57<br>59<br>61<br>63<br>65             | 186<br>358<br>482<br>517<br>323<br>218<br>133<br>94<br>61             | 618<br>668<br>715<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872                   | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362<br>5,895<br>5,616<br>5,616          | 1,854<br>2,004<br>2,145<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | 668<br>358<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872                   | -<br>304<br>697<br>867<br>1,236<br>1,670<br>1,591<br>1,591          | 146,468<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063                     | 292,936<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063                     |
| 44<br>48<br>52<br>54<br>57<br>59<br>61<br>63<br>65<br>66       | 186<br>358<br>482<br>517<br>323<br>218<br>133<br>94<br>61<br>43       | 618<br>668<br>715<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872<br>1,872          | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362<br>5,895<br>5,616<br>5,616<br>5,616 | 1,854<br>2,004<br>2,145<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | 668<br>358<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872<br>1,872          | -<br>304<br>697<br>867<br>1,236<br>1,670<br>1,591<br>1,591          | 146,468<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063<br>68,422           | 292,936<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063<br>68,422           |
| 44<br>48<br>52<br>54<br>57<br>61<br>63<br>65<br>66<br>66<br>67 | 186<br>358<br>482<br>517<br>323<br>218<br>133<br>94<br>61<br>43<br>25 | 618<br>668<br>715<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872<br>1,872<br>1,872 | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362<br>5,895<br>5,616<br>5,616<br>5,616 | 1,854<br>2,004<br>2,145<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 668<br>358<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872<br>1,872<br>1,872 | -<br>304<br>697<br>867<br>1,236<br>1,670<br>1,591<br>1,591<br>1,591 | 146,468<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063<br>68,422<br>39,780 | 292,936<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063<br>68,422<br>39,780 |
| 44<br>48<br>52<br>54<br>57<br>59<br>61<br>63<br>65<br>66       | 186<br>358<br>482<br>517<br>323<br>218<br>133<br>94<br>61<br>43       | 618<br>668<br>715<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872<br>1,872          | 1,854<br>2,004<br>2,145<br>2,460<br>3,060<br>4,362<br>5,895<br>5,616<br>5,616<br>5,616 | 1,854<br>2,004<br>2,145<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | 668<br>358<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 239,144<br>172,315 | 358<br>820<br>1,020<br>1,454<br>1,965<br>1,872<br>1,872<br>1,872          | -<br>304<br>697<br>867<br>1,236<br>1,670<br>1,591<br>1,591          | 146,468<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063<br>68,422           | 292,936<br>360,349<br>280,041<br>269,426<br>222,143<br>149,573<br>97,063<br>68,422           |

| Site ID #        | 3186                           |
|------------------|--------------------------------|
| Control#         |                                |
| Check #          | 60416                          |
| Program          | Customized Rebates             |
| Measure(s)       | Retrofit Humidification System |
| Site Description | Cotton Warehouses              |

| Measure<br>Description:               | Replace 14 existing 20 horsepower compressors with 8 high<br>efficiency 2 horsepower pumps. These systems provide<br>humidification for 14 cotton warehouses near Fresno. The<br>exisiting systems used separate water and air lines, with a<br>dedicated air compressor for each warehouse. For the new<br>system, 2 horsepower high efficiency pumps are used to force<br>pressurized water through a series of nozzles to provide<br>humidification. Six of the 2 horsepower pumps serve two<br>warehouses each and the remaining 2 pumps serve one<br>warehouse. The existing system was operated using time<br>clocks and the new system is operated using humidity sensors<br>mounted inside each warehouse. |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summery of<br>Rebate<br>Calculations: | Existing usage was computed based on the hours of operation<br>set for the existing time clocks in conjunction with calculated<br>motor demand. Loading on the motors was computed based<br>on field measurments of operating RPM as compared to the<br>manufacturers rated RPM. Post installation usage was<br>computed in a simillar fashion, but used operating hours<br>logged from identical pumps installed previousely. Pump<br>demand was computed based on nameplate data combined<br>with efficiency and loading from the PG&E Resource Binder.<br>Loading based on field measured RPM was also presented but<br>was not used.                                                                           |
| Comments on<br>Calculations:          | The calculations of savings are clean, straight forward and accurate. Assumptions used for efficiencies and loading all tended to be conservative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Evaluation<br>Process:                | The evaluation was carried out by reviewing the application form, conducting an on-site survey and then recalculating the impacts based the data collected on-site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | The site survey verified the presence and operation of the new<br>humidification system. An analysis of billing data verified the<br>energy savings as documented. Demand estimates were<br>recomputed due to the fact that the existing compressors did<br>not operate continusouly during the peak period. Base on the<br>reported hours of operation, the existing compressors were<br>operating only 2/3 of the period between 12 and 6 PM. For<br>this reason, the existing demand estimate was reduced to 2/3<br>of the application value and the demand impacts were                                                                                                                                        |

## recalculated.

Additional Notes:

Impact Results

|                                 | kW     | kWh     | Therm |
|---------------------------------|--------|---------|-------|
| MDSS                            | 109.63 | 340,350 | 0     |
| Adjusted Engineering            | 73.37  | 341,437 | 0     |
| Engineering Realization<br>Rate | 0.67   | 1.00    | 1.00  |

|          |       |          |            |            |             |             |             |             |             | Assumed Total  |            |            |          |
|----------|-------|----------|------------|------------|-------------|-------------|-------------|-------------|-------------|----------------|------------|------------|----------|
| Month    | Hours |          |            | <u> </u>   |             | kWh/Unit    | Total kW    | Total kWh   |             | Facility Usage |            |            |          |
| an       | 124   | 20       | 0.876      | 0.4969     | 8.46        | 1,049       | 118.48      | 14,692      |             | 50,373         |            |            |          |
| Feb      | 112   | 20       | 0.876      | 0.4969     | 8.46        | 948         | 118.48      | 13,270      |             | 45,498         |            |            |          |
| Mar      | 124   | 20       | 0.876      | 0.4969     | 8.46        | 1,049       | 118.48      | 14,692      |             | 50,373         |            |            |          |
| Apr      | 180   | 20       | 0.876      | 0.4969     | 8.46        | 1,523       | 118.48      | 21,327      |             | 73,122         |            |            |          |
| May      | 248   | 20       |            | 0.4969     | 8.46        | 2,099       | 118.48      | 29,384      |             | 100,746        |            |            |          |
| Jun      | 360   | 20       |            | 0.4969     | 8.46        | 3,047       | 118.48      | 42,654      |             | 146,244        |            |            |          |
| Jul      | 496   | 20       |            | 0.4969     | 8.46        | 4,198       | 118.48      | 58,768      |             | 201,491        |            |            |          |
| Aug      | 496   | 20       |            | 0.4969     | 8.46        | 4,198       | 118.48      | 58,768      |             | 201,491        |            |            | ]        |
| Sep      | 360   | 20       |            | 0.4969     | 8.46        | 3,047       | -118.48     | 42,654      |             | 146,244        |            |            |          |
| Oct      | 248   | 20       | 0.876      | 0.4969     | 8.46        | 2,099       | 118.48      | 29,384      |             | 100,746        |            |            |          |
| Nov      | 180   | 20       |            | 0.4969     | 8.46        | 1,523       | 118.48      | 21,327      |             | 73,122         |            |            |          |
| Dec      | 124   | 20       | 0.876      | 0.4969     | 8.46        | 1,049       | 118.48      | 14,692      |             | 50,373         |            |            |          |
|          | 3,052 |          |            |            |             |             |             | 361,615     |             | 1,239,822      |            |            |          |
|          |       |          |            |            |             |             | (           |             |             |                |            |            |          |
|          |       |          |            | Field      |             |             |             |             |             |                |            |            |          |
|          |       |          |            | Verified   |             |             | Application | Application | Application | Evaluation     | Evaluation | Evaluation | Evaluat  |
| Month    | Hours | Motor HP | Efficiency | Efficiency |             | kW/Unit     | kWh/Unit    | Total kW    | Total kWh   | kW/Unit        | kWh/Unit   | Total kW   | Total k  |
|          | 2402  | 2        |            | 0.825      | 0.58        | 1.11        | 2658        |             | 21,264      | 1.05           |            | 8.40       |          |
| Jan      | 98    |          | 0.782      | 0.825      | 0.58        | 1,11        | 108         | 8.85        | 864         | 1.05           |            | 8.40       |          |
| Feb      | 88    |          | 0.782      | 0.825      | 0.58        | 1.11        |             |             | 780         | 1.05           |            | 8.40       |          |
| Mar      | 98    |          |            | 0.825      | 0.58        | 1.11        | 108         | 8.85        | 864         | 1.05           | 102        | 8.40       |          |
| Арг      | 142   | 2        |            | 0.825      | 0.58        | 1.11        |             | 8.85        | 1,254       | 1.05           |            | 8.40       |          |
| May      | 195   | 2        |            | 0.825      | 0.58        | 1.11        | 216         |             | 1,728       | 1.05           |            | 8.40       |          |
| Jun      | 283   | 2        |            | 0.825      | 0.58        | 1.11        | 314         | 8.85        | 2,508       | 1.05           |            | 8.40       |          |
| Jul      | 390   |          |            | 0.825      | 0.58        | 1.11        |             | 8.85        | 3,456       | 1.05           |            |            |          |
| Aug      | 390   | 2        | 0.782      | 0.825      | 0.58        | 1.11        |             | 8.85        | 3,456       | 1.05           |            |            |          |
| Sep      | 283   |          |            | 0.825      | 0.58        | 1.11        | 314         | 8.85        | 2,508       | 1.05           |            | 8.40       |          |
| Oct      | 195   | 2        | 0.782      | 0.825      | 0.58        | 1.11        |             |             | 1,728       | 1.05           |            | 8.40       |          |
| Nov      | 142   |          |            | 0.825      | 0.58        | 1.11        | 4           | 8.85        | 1,254       | 1.05           |            | 8.40       |          |
| Dec      | 98    | 2        | 0.782      | 0.825      | 0.58        | 1.11        | 108         | 8.85        | 864         | 1.05           | 102        | 8.40       | 1        |
|          |       |          |            |            |             |             |             |             |             |                |            |            |          |
|          |       |          |            |            |             |             |             |             | 21,264      |                |            |            | 20,1     |
|          |       |          |            |            |             |             |             |             |             |                |            |            |          |
|          |       |          |            | Dem        | and Analysi | s .         |             |             |             |                |            |            |          |
|          |       |          |            | [          | 1           |             |             |             |             |                |            |            |          |
|          |       | 1        |            | Field      |             |             |             |             |             |                |            |            |          |
|          |       |          | }          | Verified   | Application | Application | Diversity   | Evaluation  | Evaluation  |                |            |            |          |
|          | HP    | Loading  | Efficiency | 1          | kW/Unit     | Total kW    | Factor      | kW/Unit     | Total kW    |                | 1          |            |          |
| Existing | 20    |          | 0.876      |            | 8.46        |             |             | 5.64        | 78.99       |                |            |            | <u> </u> |
| Retrofit | 2     |          |            |            |             | 8.85        |             | 0.70        |             |                | 1          |            | 1        |

| Energy Impacts |                            |                            |                 |  |  |  |  |
|----------------|----------------------------|----------------------------|-----------------|--|--|--|--|
|                | Existing<br>Usage<br>(kWh) | Retrofit<br>Usage<br>(kWh) | lmpact<br>(kWh) |  |  |  |  |
| Application    | 361,615                    | 21,264                     | 340,350         |  |  |  |  |
| Evaluation     | 361,615                    | 20,178                     | 341,437         |  |  |  |  |
|                |                            |                            |                 |  |  |  |  |
|                | Demand                     | Impacts                    |                 |  |  |  |  |
|                | Existing<br>Demand<br>(kW) | Retrofit<br>Demand<br>(kW) | lmpact<br>(kW)  |  |  |  |  |
| Application    | 118.48                     | 8.85                       | 109.63          |  |  |  |  |
| Evaluation     | 78.99                      | 5.62                       | 73.37           |  |  |  |  |

Page 3

| Site ID#:                                                     | 3191                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                                                       | 63754                                                                                                                                                                                                                                                                          |
| Measure                                                       | Replace Central Plant Equipment and Install EMS                                                                                                                                                                                                                                |
| Measure<br>Description:                                       | The retrofit site is a multi-building laboratory and office complex,<br>with 232,000 sqft of conditioned space. This building is cooled by<br>a chilled water system that includes an existing ice-water storage<br>system, and evaporative cooling towers for heat rejection. |
|                                                               | The equipment replacement includes a chiller changeout, and tower replacement.                                                                                                                                                                                                 |
|                                                               | MDSS records list this as Change/Add Other Equipment; action code 239.                                                                                                                                                                                                         |
| Summary of<br>Calculations in the<br>Original<br>Application: | The impacts are estimated using a bin models to simulate both the pre-retrofit system and the post-retrofit system. The measure level impacts recorded in this application are measure #1 central plant replacement, and measure #2 EMS expansion.                             |
| Comments on                                                   | The calculation are well documented in this application.                                                                                                                                                                                                                       |
| Calculations:                                                 | The chiller calculations are based upon the pre-retrofit chiller equipment rather than a baseline chiller system.                                                                                                                                                              |
|                                                               | Estimates for tower water loop pumps in the post-retrofit condition assume a 15 hp pump. On-site records show, however, that the new pumps installed are 10 hp.                                                                                                                |
| <b>Evaluation Process</b>                                     | <ul> <li>Calculations were prepared in order to investigate the significance<br/>of the minor calculation errors that were discovered.</li> </ul>                                                                                                                              |
| Additional Notes:                                             | An on-site inspection of this facility was conducted on November 14, 1996 with Daniel Faubion and Fernando Pineda.                                                                                                                                                             |
|                                                               | During this on-site a new equipment inventory was recorded and<br>the new EMS control system was explored (and described in detail<br>by the company mechanical superintendent).                                                                                               |
|                                                               | Analyses have shown that the application estimates of savings are reasonable, and were adopted as the evaluation estimate of savings.                                                                                                                                          |

## Impact Results for Site\_ID# 3191

|                                 | kW   | kWh     | Therm          |
|---------------------------------|------|---------|----------------|
| Application                     | 68.1 | 611,673 | 0              |
| MDSS                            | 68.1 | 611,673 | 0              |
| Evaluation Estimates            | 68.1 | 611,673 | 0              |
| Engineering Realization<br>Rate | 1.0  | 1.0     | NA             |
| Customer Billing<br>Summary     |      |         | <u>,,,,,, </u> |

.

| Based on the on-site audit                     | (conducted at this            | s facility) the HVAC equi | pment were inventorled                 |                 |                                        |            |         | _             |                  |             |
|------------------------------------------------|-------------------------------|---------------------------|----------------------------------------|-----------------|----------------------------------------|------------|---------|---------------|------------------|-------------|
|                                                |                               |                           | ······································ |                 |                                        |            | -···    |               |                  |             |
| Equipment                                      | Existing or New<br>Equipment? | Manufacturer              | Model Number                           |                 | Defriesses                             | Detect 110 |         |               |                  |             |
| Chiller                                        |                               |                           |                                        | Number of Units | Refrigerant                            | Rated HP   | Voltage | Notes         | <del></del>  -   | - <u></u> . |
|                                                | New                           | York                      | YTC3C3B2-CGG, YDTJ-76                  |                 | R123                                   | 180        | 460     | CH-1          |                  |             |
| Chiller                                        | New                           | York                      | YTC3C3B2-CGG, YDTJ-76                  | 1               | R123                                   | 180        | 460     | CH-2          |                  |             |
| Condenser Water Pump                           | New                           | Baldor Super E (Motor)    | 37G6766X36G1                           | 4†              |                                        | 10         | 460     | 12.7 Amps.    | 1 pump per tower | •           |
| Tower Fan                                      | New                           |                           | G47044                                 | 4†              |                                        | 10         | 460     | 1 fan per tow | er.              |             |
| Evaporative Cooling Tower                      | New                           | Baltimore Air Coil        | 15200CR                                | 4†              |                                        |            |         |               |                  |             |
| <ul> <li>Application Incorrectly cl</li> </ul> | alms 15 hp/conde              | nsing water pump.         |                                        |                 |                                        |            |         |               |                  |             |
| † Only 2 of the towers are                     |                               |                           | cation.                                |                 |                                        |            |         |               |                  |             |
|                                                |                               |                           |                                        | ·               |                                        |            |         |               |                  |             |
|                                                |                               |                           |                                        |                 | ······································ |            |         |               |                  | · · · · ·   |
|                                                |                               |                           |                                        |                 |                                        |            |         |               |                  |             |
| Blue font designates an inp                    | out.                          |                           |                                        |                 |                                        |            |         |               |                  |             |
| Red font designates a calci                    | ulation.                      |                           |                                        |                 |                                        |            |         |               | 1                |             |
| Green designates a result.                     |                               |                           | · · · · · · · · · · · · · · · · · · ·  |                 |                                        |            |         | 1             | 1                |             |

|            | ors were found in          | the englished                                  |                                                       | The effecte of                                 |                                |                         | n la avalated t  |                                       | · · · · · · · · · · · · · · · · · · · |              |
|------------|----------------------------|------------------------------------------------|-------------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------|------------------|---------------------------------------|---------------------------------------|--------------|
| mator end  | dis were round i           | I me application                               | i estinates.                                          | . Ing enects o                                 |                                | n moder accura          | LY IS EXPLOIDE I | 1918.                                 |                                       |              |
|            | The new conde              | nsing water pur                                | mps ware m                                            | is-specified ast                               | 15 hp in the app               | dication. On-si         | e records show   | that these are                        | actually 10 hp                        | umps.        |
|            |                            |                                                |                                                       |                                                |                                |                         |                  |                                       |                                       |              |
|            |                            | This affects the                               | measure i                                             | 1 "pump saving                                 | as calculations*               | - see page 8.6          | on the applica   | lon                                   |                                       |              |
|            |                            |                                                |                                                       |                                                |                                | - · · · · · · · · · · · |                  |                                       |                                       |              |
|            | Propo                      |                                                |                                                       |                                                | x 8.762/.906))                 | x .748                  |                  |                                       |                                       |              |
|            |                            |                                                | 27.72                                                 |                                                |                                |                         | <u> </u>         |                                       |                                       |              |
|            | ļ                          |                                                | Application                                           | estimate is for                                | 34.94 kW                       |                         |                  | ·                                     |                                       |              |
|            |                            |                                                |                                                       |                                                |                                |                         |                  |                                       |                                       | ·            |
|            | Propos                     |                                                | 102,706                                               | ) x (1992 + 94                                 | 5 + 768)                       |                         |                  |                                       |                                       |              |
|            |                            |                                                |                                                       | estimate is for                                | 120 464 644                    |                         |                  | <u> </u>                              |                                       |              |
|            | +                          |                                                | Philodian                                             |                                                | 123,334 800                    |                         |                  |                                       |                                       |              |
|            |                            | This also affect                               | s the meas                                            | une #2 "EMS pu                                 | mp savings*                    | see page 8.28           | n the applicatio | 5n                                    |                                       |              |
|            |                            |                                                |                                                       | [                                              |                                |                         |                  |                                       |                                       |              |
|            | Proposed Case              | kWh Savings =                                  | (27.72 kW                                             | / 34.94 kW) x (                                | (44,478 kWh EM                 | S Pump Savelr           | (cs)             |                                       | 1                                     |              |
|            |                            | =                                              | 35,287                                                | kWh                                            |                                |                         |                  |                                       |                                       |              |
|            |                            |                                                | Application                                           | estimate is for                                | 44,478 kWh s                   | aved                    |                  |                                       |                                       |              |
|            | 1                          |                                                |                                                       | L                                              |                                |                         |                  |                                       | 1                                     |              |
|            | Total Der                  | nand Savings =                                 | 7.22                                                  | kW increase in                                 | egnivas                        | - <u></u>               |                  |                                       | ļ                                     | ļ            |
|            |                            | l                                              |                                                       |                                                | L                              | ļ                       | ·                | l                                     | ····                                  |              |
|            | Total Er                   | ergy Savings =                                 | 17,557                                                | kWh increase I                                 | n savings                      | I                       | <u> </u>         | <u> </u>                              |                                       |              |
|            |                            |                                                |                                                       |                                                |                                | <u> </u>                | }                |                                       |                                       |              |
|            | Also chiller sa            |                                                | ialad with th                                         | A evisting evet                                | em representing                | haseline The            | haseline was a   | diusted in acco                       | rdance with Title                     | 20 stendard  |
|            | Trate official se          |                                                |                                                       |                                                |                                |                         |                  | <u>alasida ", acco</u>                |                                       | LU DIGINGUIO |
|            |                            | This affects the                               | e measure                                             | #1 "base chiller                               | usace' estimat                 | es see page i           | 5 on the appli   | cation                                |                                       |              |
|            |                            |                                                |                                                       |                                                | [                              |                         |                  |                                       |                                       |              |
|            |                            | Base Case kW =                                 | (282 KW                                               | 0.837 kW/ton                                   | ) / 0.86 KW/to                 | r                       |                  |                                       | 1                                     |              |
|            |                            | •                                              | 274.46                                                | ĸw                                             |                                | I                       |                  |                                       |                                       |              |
|            |                            |                                                | Application                                           | n estimate la fo                               | r 282 base kW                  | using 0.86 kW           | ton compresso    | afficiency                            | J                                     |              |
|            |                            | l                                              |                                                       | <u> </u>                                       |                                |                         |                  | ·                                     | · · · · · · · · · · · · · · · · · · · |              |
|            | B                          | ase Case KWh =                                 | 813,459                                               |                                                | W/ton) / 0.86                  | w/(on                   |                  | · · · · · · · · · · · · · · · · · · · |                                       |              |
|            |                            |                                                |                                                       |                                                | r 835 812 heed                 | kWh, using 0.8          | 6 kWiton com     | ressor efficien                       |                                       |              |
|            |                            | <u>├ · · · · · · · · · · · · · · · · · · ·</u> | ()ppileation                                          | i catiliate la je                              | T                              | The string was          |                  |                                       | ×                                     |              |
| ······     |                            |                                                | +                                                     | +                                              |                                | +                       |                  |                                       |                                       | <u>↓</u>     |
|            | De                         | mand Savings =                                 | 7.54                                                  | kW decrease h                                  | n savings                      |                         |                  |                                       |                                       |              |
|            |                            | 1                                              |                                                       |                                                |                                |                         |                  |                                       |                                       |              |
|            | E                          | nergy Savings =                                | 22,000                                                | kWh decrease                                   | in savings                     |                         |                  |                                       |                                       |              |
|            |                            |                                                | 1.                                                    |                                                |                                | 1                       |                  |                                       |                                       |              |
|            |                            | L                                              | ļ                                                     |                                                | <b>_</b>                       | . <u> </u>              | <u> </u>         | <b></b> .                             |                                       | l            |
|            |                            |                                                | <u> </u>                                              | ļ                                              | +                              |                         | ·                | +                                     |                                       | <u>+</u>     |
| imated imp | pacts:                     | <u>├</u>                                       | <b> </b>                                              |                                                | ·                              | ·                       | +                |                                       |                                       | <u> </u>     |
| 2122 10    |                            | 1                                              | L                                                     |                                                |                                | <u> </u>                | Į                | +                                     |                                       |              |
|            |                            |                                                |                                                       |                                                |                                |                         |                  |                                       | 1                                     | 1            |
|            | Estimate of er             | ergy impacts                                   |                                                       |                                                |                                | +                       |                  |                                       |                                       |              |
|            |                            |                                                | (811 872                                              |                                                | 557 kWb/voor                   | 22 000 11000            | (aer)            |                                       |                                       |              |
|            |                            | nergy Impacts =                                |                                                       |                                                | ,557 kWh/year                  | 22,000 kWh/             | year)            |                                       |                                       |              |
|            |                            | nergy Impacts =                                | 607,230                                               | kWh/year                                       |                                |                         | (981)            |                                       |                                       |              |
|            |                            | nergy Impacts =                                | 607,230                                               | kWh/year                                       | ,557 kWh/year<br>15 611,673 kW |                         | (98r)            |                                       |                                       |              |
|            | Annual E                   | nergy Impacts =                                | 607,230<br>The appli                                  | kWh/year                                       |                                |                         | (981)            |                                       |                                       |              |
|            | Annual E                   | nergy Impacts =                                | 607,230<br>The appli                                  | kWh/year                                       |                                |                         | /98/)            |                                       |                                       |              |
|            | Annual E<br>Estimate of pe | ak hour demand                                 | 607,230<br>The applied                                | kWh/year                                       | is 611,673 kW                  |                         | /Bar)            |                                       |                                       |              |
|            | Annual E<br>Estimate of pe | ak hour demand                                 | 607,230<br>The applied                                | kWh/year<br>cation estimate                    | is 611,673 kW                  |                         | /Bar)            |                                       |                                       |              |
|            | Annual E<br>Estimate of pe | ak hour demand                                 | 607,230<br>The applie<br>Impacts<br>(68.1 kW<br>67.78 | kWh/year<br>cation estimate<br>+ 7.22 kW - 7.1 | 18 611,673 kW                  |                         | PBr)             |                                       |                                       |              |

.

| Site ID#:                                                     | 3560                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Check #                                                       | 62983                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Measure                                                       | Insulation Retrofit to Steam and Condensate Return Piping                                                                                                                                                                                        |  |  |  |  |  |  |
| Measure<br>Description:                                       | Pipe insulation was added to 12" diameter 400 °F steam lines and 2" diameter 250 °F condensate return lines. Measure recorded in the MDSS as action code 270, Pipe/Duct Insulation.                                                              |  |  |  |  |  |  |
|                                                               | These steam lines run from a central plant building through underground tunnels, providing heat for several government buildings.                                                                                                                |  |  |  |  |  |  |
| Summary of<br>Calculations in the<br>Original<br>Application: | Savings are estimated in this application for reduced pipe losses following the installation of additional pipe insulation. The calculation used are based upon ASHRAE heat loss methods, as specified in the 1989 Fundamentals.                 |  |  |  |  |  |  |
|                                                               | Savings cited in the application suggest that approximately 3% of the total gas use is saved as a result of this retrofit.                                                                                                                       |  |  |  |  |  |  |
| Comments on                                                   | The application savings are thoroughly documented.                                                                                                                                                                                               |  |  |  |  |  |  |
| Calculations:                                                 | No errors were detected in the methods applied.                                                                                                                                                                                                  |  |  |  |  |  |  |
| <b>Evaluation Process</b>                                     | : Application calculations were thoroughly reviewed, and the central plant billing history was examined.                                                                                                                                         |  |  |  |  |  |  |
|                                                               | An on-site inspection found the pipe insulation in relatively good condition. In some instances, however, the jackets surrounding the steam pipe expansion fittings had been removed.                                                            |  |  |  |  |  |  |
|                                                               | Underground tunnel temperatures were measured during the on-<br>site, and found to be 81 °F. Application records and the site contact<br>indicated that these temperatures were often as high as 110 °F prior<br>to the retrofit.                |  |  |  |  |  |  |
|                                                               | Steam temperatures were also measured, high pressure condensate<br>return pipes were found to be 243 °F and low temperature<br>condensate return pipes (5" diameter) were 140 °F. These figures<br>are also consistent with application records. |  |  |  |  |  |  |
| Additional Notes:                                             | An on-site inspection of this facility was conducted with Frank Yates on November 12, 1996.                                                                                                                                                      |  |  |  |  |  |  |

# Impact Results for Site ID# 3560

|                                 | kW | kWh | Therm  |
|---------------------------------|----|-----|--------|
| MDSS                            | 0  | 0   | 80,730 |
| Evaluation Estimates            | 0  | 0   | 80,730 |
| Engineering Realization<br>Rate | NA | NA  | 1.0    |

.

| Account    | Vee- |         | E-1      | l tamb | And    | L days | 1      |        |        | 0         | O       | Maria    |          |                        |                              |
|------------|------|---------|----------|--------|--------|--------|--------|--------|--------|-----------|---------|----------|----------|------------------------|------------------------------|
|            | Year | January | February | March  | April  | May    | June   | July   | August | September | October | November | December | Oct-Sept Annual Therms | Therm Savings                |
| FPSAE00311 | 1992 | 302460  | 243316   | 206608 | 181903 | 201664 | 222332 | 281084 | 283773 | 198383    | 152465  | 159700   | 265216   | 2,585,379              | 143,584                      |
| 4          | 1993 | 258063  | 197208   | 167799 | 257502 | 180878 | 226550 | 247544 | 248647 | 223809    | 139558  | 208590   | 312660   | 2,936,549              | 494,754                      |
| [          | 1994 | 268391  | 216184   | 241408 | 220560 | 217185 | 264692 | 281464 | 312610 | 253247    | 155845  | 249686   | 339835   | 2,464,456              |                              |
|            | 1995 | 285505  | 265998   | 296947 | 205101 | 185037 | 132787 | 114803 | 124073 | 108839    | 127046  | 207428   | 313375   | 2,441,795              |                              |
|            | 1996 | 343209  | 260986   | 226637 | 197976 | 181533 | 144817 | 151876 | 145685 | 141227    | 0       | 0        | 0        |                        |                              |
|            |      |         |          |        |        |        |        |        |        |           |         |          |          | Average                | 319,169 Therm savings measur |
|            |      |         |          |        |        |        |        |        |        |           |         |          |          | Claimed                | 80,730                       |
|            |      |         |          |        |        |        |        |        |        |           |         |          |          | Percent of Bill        | 3%                           |
|            |      |         |          |        |        |        |        |        |        |           |         |          |          |                        |                              |

•

| Site ID #                         | 3584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                           | 63214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Program                           | Customized Rebates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Measure                           | High Efficiency Chillers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Site Description                  | High-Rise Office Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Measure<br>Description:           | Replace two existing steam fired absorption chillers with three identical, high efficiency electric chillers. The chillers installed are 500 ton centrifugal units manufactured by the Carrier Corporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Summery of Rebat<br>Calculations: | Temperature bin model of basecase and high-efficiency chillers was<br>used. A linear "load line" beginning with a peak cooling load<br>estimated to be 1,390 tons was used to estimate hourly building<br>cooling requirements. The load-line begins at 89 degrees and<br>decreases 15% for each 5 degree reduction in outdoor temperature.<br>The weather data used was from Nimitz Field, Alameda. Part-load<br>performance was stated to be based on manufacturers<br>specifications. Loading of the three chillers was done manually.<br>Baseline chiller energy consumption was calculated in a similar to<br>fashion, using performance data from two 750 ton chillers with<br>baseline efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Comments on<br>Calculations       | Impacts are summarized in the "Project Summary" attached to the application. Several spreadsheets are used to document the impact calculations reported in the project summary. Energy impacts from these spreadsheets agree with the project summary and the MDSS records. Demand impacts from these spreadsheets are slightly different than those found in the project summary and the MDSS. A secondary demand impact calculation is documented in the project summary itself. The efficiency values used for the spreadsheet calculations are slightly higher (better) than those found in the chiller specification sheets included with the application. It appears that the energy impacts were not recalculated to reflect the actual efficiencies of the units. As mentioned above, the demand impacts however were recalculated. Finally, the impacts were calculated using a baseline chiller with an efficiency of 0.70 kW/Ton. According to the <i>Energy Efficiency Standards for Residential and Nonresidential Buildings</i> , effective July 1992 (Page 34), the baseline efficiency used should be 0.74 kW/Ton. This based on a statement from the chief engineer that regardless of participating in the program, the chillers installed would have used R-134, an ozone friendly refrigerant, which impacts the baseline chiller efficiency. |
| Evaluation Process                | <ul> <li>The evaluation process was carried out in three parts: reviewing the application, conducting a site survey and using the site information to adjust the estimates of impacts.</li> <li>After reviewing the application, several pieces of information were identified that could be verified with the site survey. Primarily, the loading on the chiller plant, especially at times of peak, needed to be verified to validate the load line. Second, the facility hours of operation and loading on the chiller plant for the "off" hours.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

B-47

Finally, the make model and efficiency of the chillers could be verified.

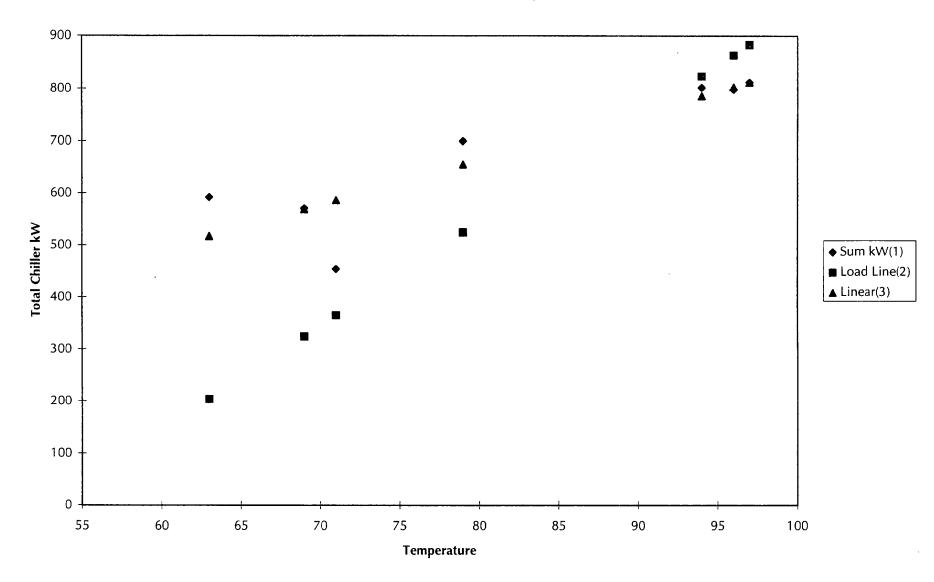
The primary objective of the site visit was to obtain data to validate the load line used in the impact calculations. Discussions with the chief engineer and a tour of the central plant reveled that the chiller kW could be tracked with the EMS system controlling all chillers. Several observations of load were recorded by the chief engineer during the second week of October, a period with record high temperatures.

The resulting data were used to develop a load line. These data and the resulting load line are displayed in Exhibits 1 & 2 attached. Both the observed data and the load line used in the application agree that the chiller plant will be fully loaded at peak temperatures. At below peak temperatures however, the observed and application load lines differ. Both load lines follow a linear profile, ending at an outdoor air temperature of 55 degrees, when the chillers are locked out. According to the chief engineer, below 55 degrees outside air dampers are opened to completely cool the building. The application load line assumes that the thermal load on the building at 55 degrees is nearly zero. Observed data indicate that there is still a load of approximately 240 tons when the outdoor air temperature reaches 55 degrees. For this reason, the load line used in the evaluation is higher than that of the application load line.

Operating hours collected from the plant engineer were substantially different than those reported in the application. According to the chief, the chillers are available for space conditioning from 5:30 AM to 7:00 PM Monday through Saturday, 6:00 AM to 5:00 PM Sunday and locked out on Holidays. The application states 24 hour operation, 365 days a year.

Evaluation impacts were computed by using the load line developed from EMS data, long term (TMY) San Francisco weather data, operating hours collected from the chief engineer and the correct baseline of 0.74 kW per ton. Results are summarized below and detailed in Exhibit-3. A last point that should be made is that impacts were generated for the constant load of 175 tons (reported as 150-200 by the chief engineer) needed to cool the computer areas. This load was reportedly ignored in the application, and accounts for approximately 25% of the annual energy impact.

|                                 | kW    | kWh       | Therm |
|---------------------------------|-------|-----------|-------|
| MDSS                            | 270.6 | 534,818   | 0     |
| Adjusted Engineering            | 332.0 | 1,068,678 | 0     |
| Engineering Realization<br>Rate | 1.23  | 2.00      | -     |


Impact Results for Site ID# 3584

Quantum Consulting Inc.

| EMS Data   |              |              |          |                                       |                                       |              |                |             |               |               |         |
|------------|--------------|--------------|----------|---------------------------------------|---------------------------------------|--------------|----------------|-------------|---------------|---------------|---------|
|            | Time         | Temp.        | Ch_1     | Ch_2                                  | Ch_3                                  | Sum kW(1)    | Load Line(2)   | Linear(3)   |               |               |         |
| 8-Oct      | 15:00        |              | 268.79   | 272.17                                | 271.02                                | 812          | 884            | 812         | Slope         | 8.686025      |         |
| 8-Oct      | 16:00        |              | 265.41   | 267.01                                | 266.03                                | 798          | 864            | 803         |               |               |         |
| 8-Oct      |              |              | 260.69   | 278.68                                | 262.73                                | 802          | 824            | 786         | Intercept     | -30.554       |         |
| 8-Oct      |              |              | 194      | 240                                   | 266                                   | 700          | 524            | 656         |               |               |         |
| 9-Oct      |              |              | 214.37   | 239.31                                | 0                                     | 454          | 364            | 586         |               |               |         |
| 9-Oct      |              |              | 184.18   | 197.45                                | 188.72                                | 570          | 324            | 569         |               |               |         |
| 14-Oct     | 11:00        |              | 187.65   | 210.01                                | 194.25                                | 592          | 204            | 517         |               |               |         |
| • • •      |              | 55           |          |                                       |                                       |              |                | 447         |               |               |         |
|            |              |              |          |                                       |                                       |              |                |             |               |               |         |
| Assumed Lo | oad Line fro | m applicatio |          |                                       |                                       |              | temperature fr |             |               |               |         |
|            |              | Temp         | Total kW | Load Line                             |                                       | 2) Load by t | emperature as  | stated in t | the applicat  | ion           |         |
|            |              | 97           |          | 884                                   |                                       | 3) Load by t | emperature us  | ing a linea | ar regressior | n with the EM | 1S data |
| ļ          |              | 96           |          | 864                                   |                                       |              |                |             |               |               |         |
|            |              | 94           |          | 824                                   |                                       |              |                |             |               |               |         |
|            |              | 87           | 684      | 684                                   |                                       |              |                |             |               |               | ~       |
|            |              | 82           | 571      | 584                                   |                                       |              |                |             |               |               |         |
|            |              | 79           |          | 524                                   |                                       |              |                |             |               |               |         |
|            |              | 77           | 427      | 484                                   |                                       |              |                |             | ····          |               |         |
|            |              | 72           | 372      | 384                                   |                                       |              |                |             |               |               |         |
|            |              | 71           |          | 364                                   |                                       |              |                |             |               |               |         |
|            |              | 69           |          | 324                                   |                                       |              |                |             |               |               |         |
|            |              | 67           | 285      | 284                                   |                                       |              |                |             |               |               |         |
|            |              | 63           |          | 204                                   | ļ                                     |              |                |             |               |               |         |
|            |              | 62           | 173      | 184                                   | · · · · · · · · · · · · · · · · · · · |              |                |             |               |               |         |
|            |              | 57           | 97       | 84                                    |                                       |              | <u></u> .      |             |               |               |         |
|            | Dalta        |              | F 07     |                                       |                                       |              |                |             |               | ļ             |         |
|            | Delta        | 30           |          | · · · · · · · · · · · · · · · · · · · |                                       |              |                |             |               |               |         |
|            | L            |              | 20       | l                                     |                                       |              |                |             |               |               |         |

Load VS Temp EX-2

EMS & Loadline kW vs Temperature



|             |                                                         |        | Actual - 0 | .50 kW/Ton | Baseline - 0 | .748 kW/Ton |  |  |  |
|-------------|---------------------------------------------------------|--------|------------|------------|--------------|-------------|--|--|--|
| Annual      | TMY Temp                                                | Approx |            |            |              |             |  |  |  |
| Hours       | Bin                                                     | Tons   | Ch kW      | Ch kWh     | Ch kW        | · Ch kWh    |  |  |  |
| 0           | 95-99                                                   | 1624   | -          | -          | -            | -           |  |  |  |
| 7           | 90-94                                                   | 1537   | 818        | 5,380      | 1,150        | 8,048       |  |  |  |
| 21          | 85-89                                                   | 1450   | 725        | 15,228     | 1,085        | 22,781      |  |  |  |
| 65          | 80-84                                                   | 1363   | 682        | 44,311     | 1,020        | 66,289      |  |  |  |
| 136         | 75-79                                                   | 1277   | 638        | 86,805     | 955          | 129,860     |  |  |  |
| 396         | 70-74                                                   | 1190   | 595        | 235,557    | 890          | 352,393     |  |  |  |
| 766         | 65-69                                                   | 1103   | 551        | 422,380    | 825          | 631,880     |  |  |  |
| 1132        | 60-64                                                   | 1016   | 508        | 575,033    | 760          | 860,249     |  |  |  |
| 785         | 55-59                                                   | 929    | 465        | 364,671    | 695          | 545,548     |  |  |  |
| 5452        | All Other                                               | 175    | 88         | 477,050    | 131          | 713,667     |  |  |  |
| Total Usage |                                                         |        |            | 2,226,413  |              | 3,330,714   |  |  |  |
| [           |                                                         |        |            |            |              |             |  |  |  |
|             | Energy Impact (kWh) 1,104,30<br>Demand Impact (kW) 332. |        |            |            |              |             |  |  |  |
|             |                                                         |        |            | Demand Imp | bact (KVV)   | 332.0       |  |  |  |

# Exhibit 3: Impact Calculations 3584

| Site ID#:                                                     | 4047                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                                                       | 60816                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measure                                                       | Economizer Retrofit                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Measure<br>Description:                                       | The retrofit site is a hospital, with 159,000 sq ft of conditioned space. Cooling for this hospital is provided by unitary single-packaged air conditioners. Forty three of these packaged air conditioners were retrofit with economizers.                                                                                                                                                                                                                 |
|                                                               | MDSS records list this as Add Economizer; action code 228.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Summary of<br>Calculations in the<br>Original<br>Application: | The economizer impacts are estimated using an outside air<br>temperature bin model. DX loads are calculated using an assumed<br>(constant) supply air volume in conjunction with mixed air<br>temperature and supply air temperature conditions for each bin.<br>One bin calculation was run for each unit.                                                                                                                                                 |
| Comments on<br>Calculations:                                  | The assumed building loads used in these models appear to be<br>incorrect. First, the load delivered by each packaged unit during the<br>highest outdoor temperature bins exceeds the capacity of each<br>system. Secondly, the bin model balance point at 50 °F outdoor<br>temperature has a building load that is 50-80% of the capacity of<br>each system. The building load should be dropping near zero at<br>the balance point.                       |
|                                                               | DX units are assumed to run 24 hours and 7 days per week.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Evaluation Process                                            | A bin model was rerun using updated assumptions surrounding<br>DX loading. Instead of running each unit independently, the bin<br>model was run using the combined capacity and supply delivery of<br>all 43 retrofit units.                                                                                                                                                                                                                                |
|                                                               | Additionally, DX schedules have been implemented in conjunction<br>with the economizer retrofit. A Johnson Controls MetaSys energy<br>management system (EMS) was installed at about the same time as<br>the economizers. This unitary controller now sets the schedule for<br>all DX units in the hospital. To capture true first year savings, this<br>information surrounding the first year impacts, was incorporated<br>within the modified bin model. |
| Additional Notes:                                             | An on-site inspection of this facility was conducted on November 13, 1996 with Ron Bass, the chief engineer.                                                                                                                                                                                                                                                                                                                                                |
|                                                               | During this inspection it was determined that the economizer<br>lockout had been mistakenly set to 65 °F. This setting was promptly<br>changed to 70 °F. The bin models in this analysis are run with the<br>65 °F lockout to capture the appropriate first year savings using the<br>65 °F setting.                                                                                                                                                        |
|                                                               | Interestingly, the economizer damper actuators in 33/43 units failed within the first year of installation. Eventually, all 43 actuators were replaced, and now the economizers function according to design.                                                                                                                                                                                                                                               |
|                                                               | In addition, the economizer relief dampers were all screwed shut,<br>and a new relief damper was installed upstream of the economizer.<br>This was done in an effort to prevent exhausted air (at the<br>economizer) from re-entering the mixed air stream through the                                                                                                                                                                                      |

\_\_\_\_

. .

outside air vent (since the outside air damper was located right next to the relief damper). This retrofit to the economizers should improve performance by ensuring that outside air is drawn into the system rather than a mixture of exhaust air and outside air.

|                                 | kW | kWh     | Therm |
|---------------------------------|----|---------|-------|
| MDSS                            | 0  | 567,618 | 0     |
| Evaluation Estimates            | 0  | 55,628  | 0     |
| Engineering Realization<br>Rate | NA | 0.10    | NA    |

Impact Results for Site ID# 4047

•

| The site contact furn                 | ished information su   | rrounding the o                       | peration of dire     | ct expansion ([ | DX) air conditio | ners: |
|---------------------------------------|------------------------|---------------------------------------|----------------------|-----------------|------------------|-------|
|                                       | The DX schedules a     | re a function of                      | occupancy for        | all daytypes:   |                  |       |
| DX Use Begins                         | DX Use Ends            | Percentage of<br>units on<br>schedule | Chiller<br>Operation |                 |                  |       |
| 8:00 AM                               | 5:00 PM                | 82%                                   | 3,285                |                 |                  |       |
| 12:00 AM Midnight                     | 12:00 AM Midnight      | 12%                                   | 8,760                |                 |                  |       |
| 7:00 AM                               | 6:00 PM                | 6%                                    | 4,015                |                 |                  |       |
| Weighted Averge                       |                        |                                       | 3,966                |                 |                  |       |
|                                       | All supply air fans ru | un continuously                       | during the sche      | eduled hours of | DX operation.    |       |
| · · · · · · · · · · · · · · · · · · · |                        |                                       |                      |                 |                  |       |
| Blue font designates                  | an input.              |                                       |                      |                 |                  |       |
| Red font designates                   | a calculation.         | ļ                                     |                      |                 |                  |       |
| Green designates a i                  | result.                |                                       |                      |                 |                  |       |

.

٠.

| Data used in these ca |                    | wided below beend            | laraely yean infor | mation supplied                       | by the pite conta  |                               | from the neetlest              | 100            | 1               |                   | ····-                                 |             |
|-----------------------|--------------------|------------------------------|--------------------|---------------------------------------|--------------------|-------------------------------|--------------------------------|----------------|-----------------|-------------------|---------------------------------------|-------------|
| Vala usou in mese ce  |                    | WIGO DOIOW DASOU             | laigely oport into |                                       | by the site contac | <u>n, or alternatively</u>    | nom me applica                 |                | ł ····          | -                 |                                       |             |
|                       | The application of | rovides make and r           | nodel for each of  | the DX units retr                     | ofit Assumptions   | in the applicatio             | are noted and a                | odfind bolow:  |                 |                   |                                       |             |
|                       | The units installe | d were identified in         | oroduct literature | and recorded                          | one Assumptions    | s in the applicatio           | i ale noted and t              | Billed Delow.  |                 |                   |                                       |             |
|                       |                    |                              |                    | and recorded                          |                    |                               |                                |                | h               |                   |                                       |             |
| Manufacturer          | Model              | Number of Units<br>Installed | Application CFM    | Application<br>Efficiency<br>(kW/ton) |                    | Evaluation<br>Capacity (tons) | Evaluation<br>Efficiency (EER) |                |                 |                   |                                       |             |
| Carrier               | 48HNT030           | 1                            | 1,100              | 1.26                                  | 1,100              | 2.5                           |                                | Specifications | could not be lo | ocated for this u | nit                                   |             |
| Carrier               | 48DJE008           | 6                            | 2,000              | 1.21                                  | 1,750              | 5.0                           | 11.00                          | Specifications | based on the 4  | 8HJE series       |                                       |             |
| Carrier               | 48DJE004           | 14                           | 1,200              | 1.20                                  | 1,200              | 3.0                           | 11.20                          | Specifications | based on the 4  | 8HJE series       |                                       |             |
| Day and Night         | 580AN024           | 1                            | 800                | 1.33                                  | 800                | 2.0                           |                                |                |                 |                   |                                       |             |
| Carrier               | 48HJD006           | 2                            | 2,000              | 1.00                                  | 1,750              | 5.0                           | 11.00                          | Specifications | based on the 4  | 8HJE series       |                                       |             |
| Carrier               | 50QQ024            | 1                            | 800                | 1.26                                  | 800                | 2.0                           |                                | Specifications | could not be lo | ocated for this u | init                                  |             |
| Carrier               | 48DJE005           | 16                           | 1,600              | 1.22                                  | 1,450              | 4.0                           | 11.05                          | Specifications | based on the 4  | 8HJE series       |                                       |             |
| Carrier               | 48DJE008           | 1                            | 3,000              | 1.32                                  | 3,000              | 7.5                           | 11.00                          | Specifications | based on the 4  | 8HJE series       |                                       |             |
| Carrier               | 48NLT024           | 1                            | 800                | 1.26                                  | 800                | 2.0                           | 8.50                           | Specifications | based on the 41 | BNLX series (9.5  | SEER recorded                         | as 8.5 EER) |
| Total                 |                    | 43                           |                    | 1.23                                  |                    |                               |                                |                | T               | 1                 | 1                                     |             |
|                       |                    |                              |                    |                                       |                    |                               |                                |                |                 |                   |                                       |             |
|                       | Various parameter  | ars are specified be         | bw                 | -                                     |                    |                               |                                |                |                 |                   | · · · · · · · · · · · · · · · · · · · |             |
|                       |                    |                              |                    |                                       |                    |                               |                                | 1              |                 |                   |                                       |             |
| Parameter             | Value Reported     | Units of Parameter           | Notes              |                                       |                    |                               |                                |                |                 |                   |                                       |             |
| DX lockout            | 55                 | F                            | With economizer.   | Pre-retrofit, ho                      | wever, there was   | no DX lockout.                |                                |                |                 | 1                 |                                       |             |
| Economizer Lockout    | 65                 | F                            | Upper temperatu    | re threshold. Th                      | is value was upda  | ated during the st            | e visit to 70 °F.              |                |                 |                   |                                       |             |
| Minlmum Outside Air   | 20%                | % of max supply ai           | Supplied by site   |                                       |                    |                               |                                |                |                 |                   |                                       |             |
| Peak Diversity Factor | 0.89               | dimensionless                | This peak hour c   | oincident diversit                    | y factor is an eve | aluation result for           | the hospital busin             | ess type.      |                 | 1                 |                                       |             |
| Peak DX Load          | 144                | tons                         | Based on site co   | intact estimate o                     | f part load at pea | ak and the total D            | X capacity retrof              | 11             |                 |                   |                                       |             |
| Return Air Temp.      | 75                 | Ŧ                            |                    |                                       |                    |                               |                                | 1              |                 |                   |                                       |             |
| Supply Air Temp.      | 50                 | F                            |                    |                                       |                    |                               |                                |                |                 |                   |                                       |             |
| DX Capacity           | 162.0              | tons                         | Total for all DX   | systems retrofit                      |                    |                               |                                |                |                 |                   |                                       |             |
| DX Efficiency         | 1.2                | kW/ton                       | Average based of   | n application rec                     | ords               |                               |                                |                |                 |                   |                                       |             |
| DX Supply Air         | 60,500             | OFM                          | Total for all DX   | systems retrofit                      |                    |                               |                                |                |                 |                   |                                       |             |
|                       |                    |                              |                    |                                       |                    |                               |                                |                |                 |                   |                                       |             |
|                       |                    |                              | •                  |                                       |                    | ]                             | [                              |                |                 | 1                 |                                       |             |
| Blue font designates  | an Input.          |                              |                    |                                       |                    |                               |                                |                |                 |                   |                                       |             |
| Red font designates a | a calculation.     |                              |                    |                                       |                    |                               |                                |                |                 |                   |                                       |             |
| Green designates a n  | esult.             |                              |                    |                                       |                    |                               |                                | 1              |                 |                   |                                       |             |

| Estimated ener          | av required to r    | neet the buildir   | ig load using th         | e 43 retrofit un    | its, without the         | economizer                            |                     | · · · ·             |                                       |                                       |                 |                  |                                       |
|-------------------------|---------------------|--------------------|--------------------------|---------------------|--------------------------|---------------------------------------|---------------------|---------------------|---------------------------------------|---------------------------------------|-----------------|------------------|---------------------------------------|
|                         |                     |                    |                          |                     |                          |                                       |                     |                     |                                       |                                       |                 |                  |                                       |
|                         | It was necessa      | ry to update ce    | rtain parameters         | provided in th      | e application a          | nd from the site                      | contact) to act     | nieve the approp    | priate building le                    | ad using the b                        | n model specifi | ed in the applic | ation.                                |
|                         | The following p     | arameters were     | updated:                 |                     |                          |                                       |                     |                     |                                       |                                       |                 |                  |                                       |
|                         |                     |                    |                          |                     |                          | L                                     |                     |                     |                                       |                                       | ·               |                  |                                       |
|                         | Supply Air Tem      | perature           | 55                       | Variable with o     | utdoor tempera           | ture to achieve                       | desired load at     | balance point       |                                       |                                       |                 |                  | · · · · · · · · · · · · · · · · · · · |
|                         |                     |                    |                          |                     |                          |                                       |                     |                     |                                       |                                       |                 |                  |                                       |
|                         | Weather data f      | rom the applica    | tion for Travis A        | FB/Fainfield we     | re used.                 | <u> </u>                              | <del>_</del>        | <u>-</u>            |                                       |                                       |                 |                  | · · · · · · · · · · · · · · · · · · · |
|                         |                     |                    |                          |                     |                          | ·                                     |                     |                     |                                       |                                       |                 |                  |                                       |
|                         | Median              | Annual             | Scheduled DX             |                     |                          |                                       |                     |                     |                                       |                                       |                 |                  |                                       |
| Outdoor                 | Outdoor             | Observations       | Operating                | <b>B</b> Y(1) + + ( | Target DX                |                                       | Mixed Air           | Supply Air          |                                       | Revised Chiller                       |                 |                  |                                       |
| Temperature<br>Bin (°F) | Temperature<br>(°F) | per Bin<br>(hours) | Hours per Bin<br>(hours) | DX Load<br>(tons)   | Energy Use<br>(kWh)      | CFM Delivered                         | Temperature<br>(°F) | Temperature<br>(°F) | Sensible Load<br>(Tons)               | Energy Use<br>(kWh)                   |                 |                  |                                       |
| 105-109                 | 107                 | (ilours)<br>5      | 2                        | 144                 | 394                      | 60,500                                | 81                  | 55                  | 144                                   | 394                                   |                 |                  |                                       |
| 100-104                 | 102                 | 16                 | 7                        | 132                 | 1155                     | 60,500                                | 80                  | 56                  | 132                                   | 1157                                  |                 |                  |                                       |
| 95-99                   | 97                  | 60                 | 27                       | 120                 | 3939                     | 60,500                                | 79                  | 57                  | 120                                   | 3947                                  | ······          |                  | <u> </u>                              |
| 90-94                   | 92                  | 126                | 57                       | 108                 | 7444                     | 60,500                                | 78                  | 59                  | 108                                   | 7467                                  |                 |                  |                                       |
| 85-89                   | 87                  | 197                | 89                       | 98                  | 10345                    | 60,500                                | 77                  | 60                  | 96                                    | 10392                                 |                 |                  | 1                                     |
| 80-84                   | 82                  | 295                | 134                      | 84                  | 13555                    | 60,500                                | 76                  | 61                  | 84                                    | 13640                                 |                 |                  |                                       |
| 75-79                   | 77                  | 430                | 195                      | 72                  | 16936                    | 60,500                                | 75                  | 62                  | 72                                    | 17082                                 |                 |                  |                                       |
| 70-74                   | 72                  | 563                | 255                      | 60                  | 18478                    | 60,500                                | 74                  | 63                  | 61                                    | 18699                                 |                 |                  | 1                                     |
| 65-69                   | 67                  | 773                | 350                      | 48                  | 20297                    | 60,500                                | 73                  | 64                  | 49                                    | 20640                                 |                 |                  |                                       |
| 60-64                   | 62                  | 1,177              | 533                      | 36                  | 23178                    | 60,500                                | 72                  | 66                  | 37                                    | 23762                                 |                 |                  |                                       |
| 55-59                   | 57                  | 1,593              | 722                      | 24                  | 20914                    | 60,500                                | 71                  | 67                  | 25                                    | 21786                                 |                 |                  |                                       |
| 50-54                   | 52                  | 1,407              | 638                      | 12                  | 9236                     | 60,500                                | 70                  | 68                  | 13                                    | 10079                                 |                 |                  | 1                                     |
| 45-49                   | 47                  | 987                | 447                      | 0                   | 0                        | 60,500                                | 69                  |                     |                                       |                                       |                 |                  | L                                     |
| 40-44                   | 42                  | 676                | 306                      | 0                   | 0                        | 60,500                                | 68                  |                     | · · · · · · · · · · · · · · · · · · · | ļ                                     | ·               |                  | ·                                     |
| 35-39                   | 37                  | 313                | 142                      | 0                   | 0                        | 60,500                                | 67                  | ļ                   |                                       |                                       | L               |                  | <u> </u>                              |
| 30-34                   | 32                  | 108                | 49                       | 0                   | 0                        | 60,500                                | 66                  | <u> </u>            | <u> </u>                              |                                       |                 | <u> </u>         | <u> </u>                              |
| 25-29                   | 27                  | 23                 | 10                       | 0                   | 0                        | 60,500                                | 65                  | ļ                   |                                       |                                       | ļ               |                  |                                       |
| 20-24                   | 22                  | 2                  | 1                        | 0                   | 0                        | 60,500                                | 64                  | l                   |                                       |                                       |                 |                  |                                       |
|                         | ·                   | 8,751              | 3,966                    | 934                 | 145,870                  |                                       | l                   |                     |                                       | 149,045                               | kWh             | 004 134/5        |                                       |
| <u>_</u>                |                     |                    | <u> </u>                 |                     | ·                        |                                       |                     |                     | <u> </u>                              | Application es                        | timate is 1,171 | 231 KWN          |                                       |
|                         |                     |                    |                          | f                   | <u>  · · · · · · · ·</u> |                                       |                     | +                   | +                                     |                                       |                 |                  | +                                     |
| Blue font desig         | nates an input.     |                    | <u> </u>                 | <u> </u>            |                          |                                       |                     | +                   | <u> -</u>                             | +                                     | <u> </u>        | ·                | 1                                     |
|                         | nates a calculat    | on.                | <u> </u>                 |                     | <u> </u>                 | +                                     | <u> </u>            | <u> </u>            |                                       | · · · · · · · · · · · · · · · · · · · | <u> </u>        | <u> </u>         |                                       |
|                         | signates a result   |                    | †                        | ļ                   |                          | · · · · · · · · · · · · · · · · · · · | 1                   | 1                   | 1                                     | 1                                     | 1               | 1                |                                       |

.

.

•

|                                       | ·                 |                  |                   |                                       | ·····            |                  |                 |                   |                    |                    |                  |              |                   |
|---------------------------------------|-------------------|------------------|-------------------|---------------------------------------|------------------|------------------|-----------------|-------------------|--------------------|--------------------|------------------|--------------|-------------------|
| Estimated ener                        | rgy required to   | meet the buildir | ig load using th  | e 43 retrofit un                      | ts, with the eco | nomizer          |                 |                   |                    |                    |                  |              |                   |
|                                       | ·····             | L                |                   |                                       |                  |                  |                 |                   |                    |                    |                  |              |                   |
|                                       | It was necessa    | ry to update ce  | rtain parameter   | s (provided in t                      | he application a | nd from the site | contact) to acl | nieve the appro   | priate building le | ad using the b     | n model specifi  | ed in the ap | olication.        |
|                                       | The following p   | arameters were   | updated:          |                                       |                  |                  |                 |                   |                    | •                  |                  |              |                   |
|                                       |                   |                  |                   |                                       |                  |                  |                 |                   |                    |                    |                  |              |                   |
|                                       | Supply Air Terr   | perature         | 55                | Variable with c                       | utdoor tempera   | ture to achieve  | desired load at | balance point     |                    |                    |                  |              |                   |
| · · · · · · · · · · · · · · · · · · · |                   |                  |                   |                                       |                  |                  |                 |                   |                    |                    |                  |              |                   |
|                                       | Weather data f    | rom the applica  | tion for Travis A | FB/Fairfield we                       | re used.         |                  |                 |                   |                    |                    |                  |              |                   |
|                                       |                   |                  |                   |                                       |                  |                  |                 |                   |                    |                    |                  |              |                   |
|                                       | Median            | Annuai           | Scheduled DX      |                                       |                  |                  |                 |                   |                    |                    |                  |              |                   |
| Outdoor                               | Outdoor           | Observations     | Operating         |                                       | Target DX        |                  | Mixed Air       | Supply Air        | Celculated DX      | Revised Chiller    |                  |              |                   |
| Temperature                           | Temperature       | per Bin          | Hours per Bin     | DX Load                               | Energy Use       | } 1              | Temperature     | Temperature       | Sensible Load      | Energy Use         |                  |              |                   |
| Bin (°F)                              | (°F)              | (hours)          | (hours)           | (tons)                                | (kWh)            | CFM Delivered    | (°F)            | (°F)              | (Tons)             | (kWh)              |                  |              |                   |
| 105-109                               | 107               | 5                | 2                 | 144                                   | 394              | 60,500           | 81              | 55                | 144                | 394                |                  |              |                   |
| 100-104                               | 102               | 16               | 7                 | 132                                   | 1155             | 60,500           | 80              | 56                | 132                | 1157               |                  |              |                   |
| 95-99                                 | 97                | 60               | 27                | 120                                   | 3939             | 60,500           | 79              | 57                | 120                | 3947               |                  |              |                   |
| 90-94                                 | 92                | 126              | 57                | 108                                   | 7444             | 60,500           | 78              | 59                | 108                | 7467               |                  |              |                   |
| 85-89                                 | 87                | 197              | 89                | 96                                    | 10345            | 60,500           | 77              | 60                | 96                 | 10392              |                  |              |                   |
| 80-84                                 | 82                | 295              | 134               | 84                                    | 13555            | 60,500           | 76              | 61                | 84                 | 13640              | <u> </u>         | ·            |                   |
| 75-79                                 | 77                | 430              | 195               | 72                                    | 16936            | 60,500           | 75              | 62                | 72                 | 17082              |                  |              |                   |
| 70-74                                 | 72                | 563              | 255               | 60                                    | 18478            | 60,500           | 74              | 63                | 61                 | 18699              |                  |              | •                 |
| 65-69                                 | 67                | 773              | 350               | 48                                    | 20297            | 60,500           | 73              | 64                | 49                 | 20640              | <u>-</u>         |              |                   |
| 60-64                                 | 62                | 1,177            | 533               | 36                                    | 23178            | 60,500           | 62              | 82                | 0                  | 0                  | <u> </u>         |              | ·   ·             |
| 55-59                                 | 57                | 1,593            | 722               | 24                                    | 20914            | 60,500           | 57              | 57                | 0                  | 0                  |                  |              |                   |
| 50-54                                 | 52                | 1,407            | 638               | 12                                    | 9236             | 60,500           | 52              | 52                | 0                  | 0                  | ····             |              |                   |
| 45-49                                 | 47                | 987              | 447               | 0                                     | 0                | 60,500           | 69              | UL                |                    |                    |                  |              |                   |
| 40-44                                 | 42                | 676              | 306               | 0                                     | 0                | 60,500           | 68              | <u> </u>          | <u> </u>           |                    |                  |              |                   |
| 35-39                                 | 37                | 313              | 142               | 0                                     | 0                | 60,500           | 67              |                   |                    |                    |                  |              | ·   - · · · · · · |
| 30-34                                 | 32                | 108              | 49                | 0                                     | 0                | 60,500           | 66              | <u> </u>          | <u> </u>           | h                  |                  |              |                   |
| 25-29                                 | 27                | 23               | 10                | 0                                     | 0                | 60,500           | 65              |                   | t                  |                    | <u> </u>         |              |                   |
| 20-24                                 | 22                | 2                | 1                 | 0                                     | 0,               | 60,500           | 64              | <u>  · · · · </u> |                    | h                  |                  |              |                   |
|                                       |                   | 8,751            | 3,966             | 934                                   | 145,870          |                  | ·               | <u> </u>          |                    | 93,417             | kWh              |              |                   |
|                                       |                   |                  |                   |                                       |                  |                  | ·               | † <b>—</b> ——     |                    |                    | timate is 603,6" | 3 HWh        |                   |
|                                       |                   |                  |                   |                                       |                  |                  |                 |                   |                    | Philippiloation 05 | 111010 13 00010  | 0 ATTIL      |                   |
|                                       |                   |                  |                   | · · · · · · · · · · · · · · · · · · · | 1                |                  |                 |                   |                    |                    | +                |              |                   |
| Blue font desig                       | nates an Input.   |                  |                   |                                       |                  |                  |                 |                   |                    |                    |                  |              |                   |
| Red font desig                        | nates a calculat  | on.              |                   |                                       |                  |                  |                 |                   |                    |                    | 1                |              |                   |
| Green font des                        | signates a result |                  |                   |                                       |                  |                  |                 |                   |                    |                    | 1                |              |                   |

| 4293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Replace Hydronic Circulation Pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The retrofit site is a 28 story office building, with 1,000,000 sq ft of conditioned space. This building is heated and cooled by a hydronic system, where cold and hot water is circulated in pipes above the suspended ceiling. Small pumps that were used to circulate the water on each floor, ranging in size from 1/8 hp to 1/3 hp, were replaced with new energy efficient models.                                                                                                                                                                                                 |
| The new pumps not only require less energy to pump water, but<br>also require less maintenance than the older pumps. Leaks were<br>common, and pump repair and lubrication required a significant<br>amount of maintenance staff attention. The new pumps are both<br>self-lubricating and very reliable.                                                                                                                                                                                                                                                                                 |
| MDSS records list this as HVAC Energy Efficiency Motor - Pump; action code 242.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The impacts are estimated using a pump schedule (5 days/week, 11<br>hours per day, and 52 weeks per year less 7 holidays per year),<br>and measured pump amperage reading for both the replaced<br>pumps and the new energy efficient models.                                                                                                                                                                                                                                                                                                                                             |
| The measured amperage loads for the retrofit pumps appear to be<br>incorrect. The pump sizes are clearly documented in the<br>application (including references to original design specification),<br>but the amperage measurements are too large, given the size of<br>each pump (hp).                                                                                                                                                                                                                                                                                                   |
| The demand impact recorded is the undiversified connected load of the pre-retrofit pumps. This should be the difference in load for the existing pumps minus the new energy efficient pumps.                                                                                                                                                                                                                                                                                                                                                                                              |
| Other estimates, surrounding the pump operating schedule, appear reasonable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| s: New pump specifications were gathered on-site, and pump operating schedules were verified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Energy and demand impact calculations were revised based upon these updated references.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| An on-site inspection of this facility was conducted on November 11, 1996 with Dick Esposito, Jim Kelsey and Lloyd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| During this on-site additional information were recorded<br>surrounding the pre-retrofit motor loading during the operating<br>schedule. Valves in the plumbing at the point of use are used to<br>adjust the quantity of hot or cold water supplied, based on<br>thermostat demand. Even when there was zero demand, the<br>pumps would operate continuously, though a bypass loop is<br>created using these demand valves. It was suggested that the pump<br>loads in bypass would be similar to the loads with demand.<br>In conjunction with pump replacement, a Novar EMS system was |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

-

installed, though not as part of this application. This EMS system now controls pump operating based on demand. A pneumatic switch will shut off pumps automatically when zones are satisfied. This benefit, however, is due to the EMS installation, not the pump replacement. Because of this, and because no estimate was available surrounding the percentage of time that pumps now experience zero demand, all evaluation estimates are based upon the pre-retrofit operating strategy used for these pumps.

Impact Results for Site ID# 4293

|                                 | kW    | kWh     | Therm |
|---------------------------------|-------|---------|-------|
| MDSS                            | 101.6 | 263,707 | 0     |
| Evaluation Estimates            | 28.15 | 78,560  | 0     |
| Engineering Realization<br>Rate | 0.28  | 0.30    | NA    |

. ·

| The contact provided                  | the schedule           | or pump operat    | tion              |                              |                      |                          |                                           |
|---------------------------------------|------------------------|-------------------|-------------------|------------------------------|----------------------|--------------------------|-------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | The assumptio          | ns from the app   | plication regard  | ing holiday opera            | ation were ado       | pted                     |                                           |
| Deuture                               | Pump Use               | Pump Use          | Hours/Day<br>Pump | Average Days<br>per Year per | Hours/Year<br>Pump   | Holidays per<br>Year per | Holiday<br>Adjusted<br>Hours/Year<br>Pump |
| Daytype                               | Begins                 | Ends<br>6:00 PM   | Operation<br>11   | Daytype<br>260.7             | Operation            | Daytype*                 | Operation                                 |
| Weekday                               | 7:00 AM                | Pumps off         | 0                 | 52.1                         | <u>2867.9</u><br>0.0 | 0                        | 2790.9<br>0.0                             |
| Saturday<br>Sunday                    | Pumps off<br>Pumps off | Pumps off         | 0                 | 52.1                         | 0.0                  | 0                        | 0.0                                       |
| Total                                 | <u>↓~~</u>             |                   | 11                | 365                          | 2868                 | 7                        | 2791                                      |
| * Seven holidays pe                   | er year (from the      | e application for | rm).              |                              |                      |                          |                                           |
|                                       |                        | · · · ·           |                   |                              |                      |                          |                                           |
| Blue font designates                  | an input.              |                   |                   |                              |                      |                          |                                           |
| Red font designates                   | a calculation.         |                   |                   |                              |                      |                          |                                           |
| Green designates a r                  | result.                |                   |                   |                              | ·····                | ļ                        |                                           |

•

|                      |                               |                                                                     |                                                                            |                                   | 1                                        | 1                                         |                                  | ļ                                |
|----------------------|-------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|
|                      | First, information            | are provided on the                                                 | ese equipment, accordi                                                     | ng to the applic                  | ation                                    |                                           |                                  |                                  |
|                      |                               |                                                                     |                                                                            |                                   |                                          |                                           |                                  |                                  |
| Equipment            | Existing or New<br>Equipment? | Manufacturer                                                        | Model Number                                                               | Number of<br>Pumps                | Application<br>Pump Size (hp)            | Application<br>Measured<br>Operating Amps | Application<br>Voltage           | Application<br>Watts per<br>Pump |
| Pump                 | Existing                      |                                                                     |                                                                            | 50                                | 0.333                                    | 5.4                                       | 117.0                            | 630.7                            |
| Pump                 | Existing                      |                                                                     |                                                                            | 74                                | 0.250                                    | 3.9                                       | 117.0                            | 453.6                            |
|                      | Existing                      |                                                                     |                                                                            | 124                               | 0.125                                    | 2.5                                       | 117.0                            | 294.3                            |
| Pump                 | New                           | Bell and Gosset                                                     | Circulator SLC-30                                                          | 248                               |                                          | 0.5                                       | 117.0                            | 59.4                             |
|                      | Then, based on p              | oump size alone, pu                                                 | mp connected load is                                                       | estimated (to ver                 | rify the accuracy o                      | measured figures                          | 3)                               |                                  |
| Equipment            | Existing or New<br>Equipment? | Manufacturer                                                        | Model Number                                                               | Number of<br>Pumps                | Application<br>Pump Size (hp)            | Calculated<br>Watts per<br>Pump*          |                                  |                                  |
| Pump                 | Existing                      |                                                                     |                                                                            | 50                                | 0.333                                    | 248.6                                     |                                  | 1                                |
| omp                  | Existing                      |                                                                     |                                                                            | 74                                | 0.250                                    | 186.5                                     |                                  | 1                                |
| Pump                 | Existing                      |                                                                     | · · · · · · · · · · · · · · · · · · ·                                      | 124                               | 0.125                                    | 93.3                                      |                                  | 1                                |
| Watts                | The calculated m              | ) x (((motor hp) x<br>notor loads are signi<br>timates use the calc | (0.746 kW/hp) x (0.75<br>ficantly smaller than the<br>sulated motor loads. | motor load)] /<br>a measured valu | (0.75 motor efficines recorded in the    | ency)}<br>application.                    |                                  |                                  |
|                      |                               |                                                                     |                                                                            |                                   |                                          |                                           |                                  |                                  |
| <u>_</u>             | To ensure that n              | ew motor loads are                                                  | equivalent, estimates v                                                    | vere also prepar                  | ed for each new m                        | otor                                      |                                  |                                  |
| Equipment            | Existing or New Equipment?    | Manufacturer                                                        | Model Number                                                               | Number of<br>Pumps                | Nameplate<br>Motor<br>Amperage<br>(amps) | Nameplate<br>Motor Load<br>(watts)        | Calculated<br>Watts per<br>Pump† |                                  |
| Pump                 | New                           | Bell and Gosset                                                     | Circulator SLC-30                                                          | 248                               | 0.740                                    | 85                                        | 76.5                             |                                  |
|                      |                               |                                                                     | <u> </u>                                                                   |                                   |                                          |                                           |                                  |                                  |
| It is assumed the    | at the new (smaller)          | ) motors will typicall                                              | y operate under a 90%                                                      | motor loading.                    |                                          |                                           |                                  |                                  |
|                      |                               |                                                                     |                                                                            |                                   |                                          | · · · ·                                   |                                  |                                  |
| Blue font designates | s an innut                    |                                                                     |                                                                            |                                   |                                          |                                           |                                  |                                  |

|                  |                                                                                                                                                                           |                                                                                                                                                                                      | lanata auman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ··· ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gy required to   | operate the pr                                                                                                                                                            |                                                                                                                                                                                      | aronic pumps:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In the pre-retro | fit condition al                                                                                                                                                          |                                                                                                                                                                                      | n continuously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | during the sche                                                                | duled hours of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | abolition of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | Hours per year                                                                                                                                                            | 2.791                                                                                                                                                                                | This is genera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lly consistent w                                                               | ith the applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | † ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pump noncoin     | ident kW                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | NC Demand =                                                                                                                                                               | ([248.6 V                                                                                                                                                                            | Vatts) x (50 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 hp pumps)]                                                                   | + I(186.5 Watt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s) x (74 1/4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) + [(samua a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (93.3 Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x 1124 1/8 hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | umps))) / 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                                                                                                                           | 47.12                                                                                                                                                                                | KW .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | ·                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | noncoincident d                                                                | emand is 101.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ; —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Estimate of en   | ergy use per y                                                                                                                                                            | ear for the                                                                                                                                                                          | pre-retrofit pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ps                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                | 7.12 x 2791 =                                                                                                                                                             | 131,508                                                                                                                                                                              | kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Estimate of de   | mand at the tir                                                                                                                                                           | ne of syste                                                                                                                                                                          | m peak for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pre-retrolit pur                                                               | nps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | Demand =                                                                                                                                                                  | 47.12                                                                                                                                                                                | kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                                                                                                           | This term                                                                                                                                                                            | is undiversified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | since all the pr                                                               | mps operate c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ontinuously du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | peak hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| gy required to   | operate the pe                                                                                                                                                            | ost-retrofit                                                                                                                                                                         | ydronic pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In the post-ret  | rofit condition a                                                                                                                                                         | all pumps r                                                                                                                                                                          | un continuously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | during the sch                                                                 | eduled hours o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | Hours per year                                                                                                                                                            | 2,791                                                                                                                                                                                | This is genera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lly consistent w                                                               | ith the applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ton estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pump noncoin     | cident kW                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | NC Demand =                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mps)] / 1000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           | 18.97                                                                                                                                                                                | kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           | The appli                                                                                                                                                                            | cation post-retro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ofit noncolncide                                                               | nt demand is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.73 kW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | l                                                                                                                                                                         | L                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <b> -</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Estimate of en   | ergy use per y                                                                                                                                                            | ear for the                                                                                                                                                                          | post-retrofit pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mps                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | L                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                | 8.97 x 2791 ⇒                                                                                                                                                             | 52,948                                                                                                                                                                               | kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | L                                                                                                                                                                         | L                                                                                                                                                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Estimate of de   | mand at the til                                                                                                                                                           | me of syste                                                                                                                                                                          | em peak for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | post-retrofit pu                                                               | mps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      | + <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ··               | Demand =                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                              | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           | inis term                                                                                                                                                                            | is undiversified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | since all the pi                                                               | imps operate c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ontinuousiy du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nng the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | peak nour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           | <u> </u>                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · <del> </del> -···· <b>·</b> —· - ···-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           | <u> </u>                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1015:            |                                                                                                                                                                           | +                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | <u> </u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -{· ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| esiimaie ni en   | ergy impacts                                                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                           | 70 500                                                                                                                                                                               | LWb/uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | ergy Impacts =                                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | loreor - 263 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07 WMbhar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | ergy Impacts =                                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is significantly                                                               | larger 263,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07 kWh/year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual En        |                                                                                                                                                                           | The appli                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is significantly                                                               | larger 263,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07 kWh/year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual En        | ergy Impacts =<br>ak hour deman                                                                                                                                           | The appli                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is significantly                                                               | larger 263,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07 kWh/year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual En        | ak hour deman                                                                                                                                                             | The appli<br>d impacts                                                                                                                                                               | cation estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is significantly                                                               | larger 263,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07 kWh/year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual En        |                                                                                                                                                                           | The applied impacts                                                                                                                                                                  | cation estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is significantly                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | In the pre-retro<br>Pump noncolm<br>Estimate of en<br>41<br>Estimate of de<br>gy required to<br>In the post-ret<br>Pump noncolm<br>Estimate of en<br>11<br>Estimate of de | In the pre-retrofit condition al<br>Hours per year<br>Pump noncoincident kW<br>NC Demand =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>= | In the pre-retrofit condition all pumps ru<br>Hours per year 2,791<br>Pump noncoincident kW<br>NC Demand = {{(248.6 V<br>= 47.12<br>The applic<br>Estimate of energy use per year for the<br>47.12 x 2791 = 131,508<br>Estimate of demand at the time of syste<br>Demand = 47.12<br>This term<br>gy required to operate the post-retrofit<br>In the post-retrofit condition all pumps r<br>Hours per year 2,791<br>Pump noncoincident kW<br>NC Demand = {(76.5 Wa<br>= 18.97<br>The applit<br>Estimate of energy use per year for the<br>18.97 x 2791 = 52,948<br>Estimate of demand at the time of syste<br>Demand = 18.97<br>This term | Nours per year       2,791       This is general         Pump noncoincident kW | In the pre-retrofit condition all pumps run continuously during the sche<br>hours per year 2,791 This is generally consistent w<br>Pump noncoincident kW<br>NC Demand = {[[248.6 Watts] x (50 1/3 hp pumps]] -<br>= 47.12 kW<br>The application baseline noncoincident d<br>Estimate of energy use per year for the pre-retrofit pumps<br>47.12 x 2791 = 131,508 kWh/year<br>Estimate of demand at the time of system peak for the pre-retrolit pumps<br>Demand = 47.12 kW<br>This term is undiversified since all the pumps<br>gy required to operate the post-retrofit hydronic pumps<br>In the post-retrofit condition all pumps run continuously during the sch<br>Hours per year 2,791 This is generally consistent w<br>Pump noncoincident kW<br>NC Demand = {(76.5 Watts) x (248 pumps)] / 1000<br>= 18.97 kW<br>The application post-retrofit noncoincide<br>Estimate of energy use per year for the post-retrofit noncoincide<br>Estimate of energy use per year for the post-retrofit pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Demand = 18.97 kW<br>This term is undiversified since all the pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps<br>18.97 kW<br>This term is undiversified since all the pumps<br>acts: | In the pre-retrolit condition all pumps run continuously during the scheduled hours of<br>Hours per year 2,791 This is generally consistent with the applican<br>Pump noncolincident KW<br>NC Demand = {([248.6 Watts) x (50 1/3 hp pumps)) + [(186.5 Watt<br>= 47.12 kW<br>The application baseline noncoincident demand is 101.0<br>Estimate of energy use per year for the pre-retrolit pumps<br>47.12 x 2791 = 131,508 kWh/year<br>Estimate of demand at the time of system peak for the pre-retrolit pumps<br>Demand = 47.12 kW<br>This term is undiversified since all the pumps operate of<br>Hours per year 2,791 This is generally consistent with the applican<br>in the post-retrolit condition all pumps run continuously during the scheduled hours of<br>Hours per year 2,791 This is generally consistent with the applican<br>Pump noncoincident kW<br>NC Demand = [(76.5 Watts) x (248 pumps)] / 1000<br>= 18.97 kW<br>The application post-retrolit noncoincident demand is<br>Estimate of energy use per year for the post-retrolit pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrolit pumps<br>Demand = 18.97 kW<br>This term is undiversified since all the pumps operate of<br>Demand = 18.97 kW<br>This term is undiversified since all the pumps operate of<br>Demand = 18.97 kW | In the pre-retrofit condition all pumps run continuously during the scheduled hours of operation<br>hours per year 2,791 This is generally consistent with the application estimate.<br>Pump noncoincident kW<br>NC Demand = (((248.6 Watts) x (50 1/3 hp pumps)) + ((186.5 Watts) x (74 1/4 h<br>= 47.12 kW<br>The application baseline noncoincident demand is 101.6 kW.<br>Estimate of energy use per year for the pre-retrofit pumps<br>47.12 x 2791 = 131,508 kWh/year<br>Estimate of demand at the time of system peak for the pre-retrofit pumps<br>Demand = 47.12 kW<br>This term is undiversified since all the pumps operate continuously du<br>gy required to operate the post-retrofit hydronic pumps:<br>In the post-retrofit condition all pumps run continuously during the scheduled hours of operation<br>Hours per year 2,791 This is generally consistent with the application estimate.<br>Pump noncoincident kW<br>NC Demand = ((76.5 Watts) x (248 pumps)) / 1000<br>= 18.97 kW<br>The application post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps<br>Demand = 18.97 kW<br>This term is undiversified since all the pumps operate continuously du<br>attact of energy use per year for the post-retrofit pumps<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps<br>Demand = 18.97 kW<br>This term is undiversified since all the pumps operate continuously du<br>Attact and at the time of system peak for the post-retrofit pumps<br>Demand = 18.97 kW | In the pre-retrofit condition all pumps run continuously during the scheduled hours of operation<br>Hours per year (2,791) This is generally consistent with the application estimate.<br>Pump noncoincident KW<br>NC Demand = [[[248.6 Watts] x (50 1/3 hp pumps]) + [(186.5 Watts] x (74 1/4 hp pumps]] + [<br>= 47.12 kW<br>The application baseline noncoincident demand is 101.6 kW.<br>Estimate of energy use per year for the pre-retrofit pumps<br>47.12 x 2791 = 131,508 kWh/year<br>Estimate of demand at the time of system peak for the pre-retrofit pumps<br>poerate the post-retrofit hydronic pumps;<br>In the post-retrofit condition all pumps run continuously during the scheduled hours of operation<br>Hours per year (2,791) This is generally consistent with the application estimate.<br>Pump noncoincident kW<br>NC Demand = 47.12 kW<br>This term is undiversified since all the pumps operate continuously during the system<br>gy required to operate the post-retrofit hydronic pumps;<br>In the post-retrofit condition all pumps run continuously during the scheduled hours of operation<br>Hours per year (2,791) This is generally consistent with the application estimate.<br>Pump noncoincident kW<br>NC Demand = [(76.5 Watts]) x (248 pumps)] / 1000<br>= 18.97 kW<br>The application post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit pumps<br>10.97 x 2791 = 52,048 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps<br>Demand = 18.97 kW<br>This term is undiversified since all the pumps operate continuously during the system<br>tets: | In the pre-retrofit condition all pumps un continuously during the scheduled hours of operation<br>thours per year 2,791 This is generally consistent with the application estimate.<br>Pump noncoincident kW<br>NC Demand = [[(248.6 Watts) x (50 1/3 hp pumps)] + [(186.5 Watts) x (74 1/4 hp pumps)] + [(83.3 Watts)<br>= 47.12 W<br>The application baseline noncoincident demand is 101.6 kW.<br>Estimate of energy use per year for the pre-retrofit pumps<br>47.12 x 2791 = 131,508 kWh/year<br>Estimate of demand at the time of system peak for the pre-retrofit pumps<br>Demand = 147.12 kW<br>This term is undiversified since all the pumps operate continuously during the system peak hour<br>Hours per year 2,791. This is generally consistent with the application estimate.<br>Pump noncoincident kW<br>Line the post-retrofit hydronic pumps:<br>In the post-retrofit condition all pumps run continuously during the scheduled hours of operation<br>NC Demand = ((76.5 Watts) x (248 pumps)) / 1000<br>= 18.97 kW<br>The application post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of energy use per year for the post-retrofit noncoincident demand is 14.73 kW.<br>Estimate of demand at the time of system peak for the post-retrofit pumps.<br>18.97 x 2791 = 52,948 kWh/year<br>Estimate of demand at the time of system peak for the post-retrofit pumps.<br>19.97 kW<br>This term is undiversified since all the pumps operate continuously during the system peak hour.<br>Not sets: | In the pre-retrolit condition all pumps run continuously during the scheduled hours of operation<br>Nours per year (2,791) This is generally consistent with the application estimate.<br>Pump noncoincident KW<br>NC Demand = [[[243.6 Watis] x (50 1/3 hp pumps]) + [[166.5 Watis] x (74 1/4 hp pumps]) + [[(b3.3 Watis] x 124 1/8 hp j<br>= 47.12 KW<br>The application baseline noncoincident demand is 101.6 kW.<br>Estimate of energy use per year for the pre-retrolit pumps<br>47.12 x 2791 = 131,508 kWh/year<br>Estimate of demand at the time of system peak for the pre-retrolit pumps<br>Demand = 47.12 kW<br>This term is undiversified since all the pumps operate continuously during the system peak hour<br>In the post-retrolit condition all pumps run continuously during the scheduled hours of operation<br>Nours per year 2,791 This is generally consistent with the application estimate.<br>Pump noncoincident KW<br>NC Demand = (7.12 kW<br>This term is undiversified since all the pumps operate continuously during the system peak hour<br>This term is undiversified since all the pumps operate continuously during the system peak hour<br>This term is undiversified since all the pumps operate continuously during the system peak hour<br>But the post-retrolit hydronic pumps'<br>In the post-retrolit condition all pumps run continuously during the scheduled hours of operation<br>Nours per year 2,791 This is generally consistent with the application estimate.<br>Pump noncoincident KW<br>Estimate of energy use per year for the post-retrolit pumps<br>18.97 xW<br>Demand = 18.97 KW<br>Demand = 18.97 KW<br>Aution all pumps per year for the post-retrolit pumps<br>Aution and at the diversified since all the pumps operate continuously during the system peak hour<br>Aution and a the system peak for the post-retrolit pumps<br>Aution and at the undiversified since all the pumps operate continuously during the system peak hour<br>Aution and a 18.97 KW |

| Site ID#:                                                     | 4538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check #                                                       | 57721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Measure                                                       | Install Economizers. Timeclock to Control Garage Exhaust Fans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measure<br>Description:                                       | The retrofit site is a 3 story office building, with 122,000 sq ft of conditioned space. The retrofit includes the installation of outside air economizer fans and dampers (using the existing gravity vents). The six retrofit economizer vents serve 6 air handlers located on the first and second floor (3 AHU on each floor). The third floor already operated with 100% outside air and therefore that cooling system was not retrofit.                                                                                                                                                                                       |
|                                                               | In addition, timeclocks were installed to control the operation of 3 garage exhaust fans. Under pre-retrofit operation, these fans ran 24 hours per day and 365 days per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                               | MDSS records list this as Add Economizer, and HVAC - Other; action codes 228, and 299, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Summary of<br>Calculations in the<br>Original<br>Application: | The economizer impacts are estimated using an outside air<br>temperature bin model. Chiller loads are calculated using an<br>assumed (constant) supply air volume of 72,000 CFM in<br>conjunction with the mixed air temperature and supply air<br>temperature conditions for each bin.                                                                                                                                                                                                                                                                                                                                             |
|                                                               | The garage exhaust fan calculations are based upon reduced hours of operation for those (due to control by timeclocks).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Comments on<br>Calculations:                                  | The assumed building loads for this site are in error. First, the site contact indicated that the chiller serving this building never runs at its full capacity. The Carrier GT225 chiller is served by 8 small reciprocating compressors, and even on the hottest days, only 5 of these compressors will normally run. In addition, the bin model balance point at 50 °F outdoor temperature should have a building load that is approaching zero; this model, however, indicates that the building still experiences a load of 156 tons in the 52 °F bin (even though the maximum reported load for the hottest bin is 214 tons). |
|                                                               | Secondly, the loads reported in the application bin model (for the first and second floor of this building) mistakenly include the third floor chiller loads. The third floor was not retrofit and so those loads should not be included in the savings calculations.                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Lastly, the supply air fans in this building are VAV with a reported<br>minimum setting that is 60% of the design supply air delivery.<br>However, the bin models assume a constant volume delivery of<br>72,000 CFM for the retrofit mixed air boxes.                                                                                                                                                                                                                                                                                                                                                                              |
|                                                               | Additionally, the economizer retrofit included the installation of six<br>new 5 hp fans serving the economizer vents. The application<br>estimates do not account for the added loads associated with these<br>fans.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | The calculations used to estimate the reduction in fan use for the garage fans fails to incorporate an adjustment for the typical fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

B-53

motor operating load.

**Evaluation Process:** Bin models were rerun using updated assumptions surrounding chiller loading. All mixed air temperature assumptions and supply air delivery assumptions were updated to be consistent with a VAV system.

Weather data were examined, including a determination of the distribution of temperatures as a function of time of day. Saturday savings (although estimated in the application) were removed because the chillers do not run on Saturdays, just the air handlers run (including new economizer fans).

Garage exhaust fan calculations were updated to include both onsite records for fan operation and updated assumptions regarding BHP motor loads.

### Impact Results for Site ID# 4538

|                                 | kW | kWh     | Therm |
|---------------------------------|----|---------|-------|
| MDSS                            | 0  | 449,007 | 0     |
| Evaluation Estimates            | 0  | 49,256  | 0     |
| Engineering Realization<br>Rate | NA | 0.11    | NA    |

Additional Notes: An on-site inspection of this facility was conducted on November 21, 1996 with David Starky.

|                     | Exhibit 4        | 538-1         |         |
|---------------------|------------------|---------------|---------|
| Eva                 | luation Energy I | mpact Summary |         |
|                     |                  |               |         |
|                     |                  |               |         |
| Impact Component    | Pre-Retrofit     | Post-Retrofit | Impact  |
| Chiller             | 189,668          | 99,278        | 90,390  |
| Economizer Fan      |                  | 92,826        | -92,826 |
| Garage Exhaust Fans | . 76,851         | 25,160        | 51,692  |
| Total               | 266,519          | 217,263       | 49,256  |

| The contact provided | the schedule u        | sed to start-up   | this facility eac    | h day, including     | the start-up of       | chiller operatio                      | n.                    |                                               |                           |                                        |
|----------------------|-----------------------|-------------------|----------------------|----------------------|-----------------------|---------------------------------------|-----------------------|-----------------------------------------------|---------------------------|----------------------------------------|
|                      |                       |                   |                      |                      |                       |                                       |                       |                                               |                           |                                        |
|                      | First, the gener      | al schedule of c  | laily operation:     |                      |                       |                                       |                       | · · · · · · · · · · · · · · · · · · ·         |                           |                                        |
|                      |                       |                   |                      |                      |                       |                                       |                       |                                               |                           |                                        |
| Weekday Schedule     | Exp                   | lanation of Proc  | edure Implemen       | nted                 |                       |                                       |                       |                                               |                           |                                        |
| 5:30 AM              | Building engine       | er arrives        |                      |                      |                       |                                       |                       |                                               |                           |                                        |
| 6:00 AM - 7:00 AM    | Starts boller sy      |                   | side air and hea     | ts up building       |                       |                                       |                       | ·····                                         |                           | <u></u>                                |
| 7:00 AM              | Begin introduct       | ion of fresh air  | (run supply air      | ans)                 |                       |                                       |                       |                                               |                           |                                        |
| 8:00 AM              | Start chillers        |                   |                      |                      |                       |                                       |                       |                                               |                           |                                        |
| 10:00 AM             | In the winter, c      | hillers are often | shut down            |                      |                       |                                       |                       |                                               |                           |                                        |
| 5:30 PM              | Hot water pum         | ps are shut off   |                      |                      |                       |                                       |                       |                                               |                           |                                        |
| 6:00 PM              | Everything is s       |                   |                      |                      |                       |                                       |                       | ··                                            |                           |                                        |
|                      |                       |                   |                      |                      |                       | ·                                     |                       |                                               |                           |                                        |
|                      |                       |                   |                      | ·                    |                       |                                       |                       |                                               |                           |                                        |
| Saturday Schedule    | Ēxo                   | lanation of Proc  | edure Implemer       | nted                 |                       |                                       |                       | ⊢ <b>-</b>                                    |                           |                                        |
| 8:00 AM              |                       | ion of fresh air  |                      |                      |                       | ····                                  | ·····                 |                                               |                           |                                        |
| 1:00 PM              |                       | ir and supply ai  |                      | <u> </u>             |                       |                                       |                       |                                               |                           |                                        |
|                      |                       |                   |                      | ~                    |                       | · · · · · · · · · · · · · · · · · · · | · ····                |                                               |                           |                                        |
|                      | Next the chille       | r schedules by    | davtvoe are rec      | orded                |                       | ·                                     |                       | ··· <u>·</u> ································ |                           |                                        |
|                      |                       |                   |                      |                      |                       |                                       |                       |                                               |                           |                                        |
|                      |                       | <u>.</u>          | 10 Midalaht          | 0.00 444             | 4:00 PM - 12          |                                       | 10 11:1-1-14          | 0.00 414                                      | 4.00 014 40               | ······································ |
|                      |                       |                   | 12 Midnight -        | 8:00 AM -            |                       |                                       | 12 Midnight -         | 8:00 AM -                                     | 4:00 PM - 12              |                                        |
|                      |                       |                   | 8:00 AM              | 4:00 PM<br>Hours/Day | Midnight<br>Hours/Day | Average Days                          | 8:00 AM<br>Hours/Year | 4:00 PM Hours                                 |                           | Annual Hours<br>per Year               |
|                      | Chiller Llee          | Chiller Use       | Hours/Day<br>Chiller | Chiller              | Chiller               | per Year per                          | Chiller               | per Year<br>Chiller                           | Hours per Year<br>Chiller | Chiller                                |
| Daytype              | Chiller Use<br>Begins | Ends              | Operation            | Operation            | Operation             | Daytype                               | Operation             | Operation                                     | Operation                 | Operation                              |
| Weekday              | 8:00 AM               | 6:00 PM           |                      | 8                    | 2                     | 260.7                                 |                       | 2085.7                                        | 521.4                     | 2607.1                                 |
| Saturday             | Chillers off          | Chillers off      | 0                    | 0                    | 0                     | 52.1                                  | 0.0                   | 0.0                                           | 0.0                       | 0.0                                    |
| Sunday               | Chillers off          | Chillers off      | 0                    | 0                    | 0                     | 52.1                                  | 0.0                   | 0.0                                           | 0.0                       | 0.0                                    |
| Total                | Crimers on            | Crimers on        | 0                    | 8                    | 2                     | 365                                   | 0.0                   | 2086                                          | 521                       | 2607.1                                 |
|                      | <u> </u>              |                   | V                    | 0                    | Z                     | 305                                   |                       | 2080                                          | 521                       | 2007.1                                 |
|                      |                       |                   |                      |                      |                       |                                       |                       |                                               | <u> _</u>                 | ·                                      |
|                      |                       |                   |                      | 12 Midnight -        | 8:00 AM -             | 4:00 PM - 12                          |                       |                                               |                           |                                        |
|                      |                       |                   |                      | 8:00 AM              | 4:00 PM               | Midnight                              |                       |                                               |                           |                                        |
|                      | 1                     |                   |                      | Holiday              | Holiday               | Holiday                               | Annual Holiday        |                                               |                           |                                        |
|                      |                       |                   |                      | Adjusted             | Adjusted              | Adjusted                              | Adjusted              |                                               |                           |                                        |
| ł                    | }                     |                   | Holidays per         | Hours/Year           |                       | Hours per Year                        |                       |                                               |                           |                                        |
|                      | Chiller Use           | Chiller Use       | Year per             | Chiller              | Chiller               | Chiller                               | Chiller               |                                               |                           |                                        |
| Daytype              | Begins                | Ends              | Daytype*             | Operation            | Operation             | Operation                             | Operation             |                                               |                           |                                        |
| Weekday              | 8:00 AM               | 6:00 PM           | 9                    | 0.0                  | 2013.7                | 503.4                                 | 2517.1                |                                               |                           |                                        |
| Saturday             | Chillers off          | Chillers off      | 0                    | 0.0                  | 0.0                   | 0.0                                   | 0.0                   |                                               | <u> </u>                  |                                        |
| Sunday               | Chillers off          | Chillers off      | 0                    | 0.0                  | 0.0                   | 0.0                                   | 0.0                   |                                               |                           |                                        |
| Total                |                       | <u> </u>          | 9                    | 0                    | 2014                  | 503                                   | 2517.1                |                                               | L                         | L <u></u>                              |

|                      | Lastly supply (   | air fan and econ  |                                                        | ating schodules                                               | were recorded                                          |                                         |                                                         |                                                         |                                                             |                                           |
|----------------------|-------------------|-------------------|--------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
|                      | Lastry, suppry a  |                   | onizer fan oper                                        | ating schedules                                               | were recorded                                          |                                         |                                                         |                                                         |                                                             |                                           |
| Daytype              | Fan Use<br>Begins | Fan Use Ends      | 12 Midnight -<br>8:00 AM<br>Hours/Day Fan<br>Operation | 8:00 AM -<br>4:00 PM<br>Hours/Day Fan<br>Operation            | 4:00 PM - 12<br>Midnight<br>Hours/Day Fan<br>Operation | Average Days<br>per Year per<br>Daytype | 12 Midnight -<br>8:00 AM<br>Hours/Year<br>Fan Operation | 8:00 AM -<br>4:00 PM Hours<br>per Year Fan<br>Operation | 4:00 PM - 12<br>Midnight<br>Hours per Year<br>Fan Operation | Annual Hours<br>per Year Fan<br>Operation |
| Weekday              | 7:00 AM           | 6:00 PM           | 1                                                      | 88                                                            | 2                                                      | 260.7                                   | 260.7                                                   | 2085.7                                                  | 521.4                                                       | 2867.9                                    |
| Saturday             | 8:00 AM           | 1:00 PM           | 0                                                      | 5                                                             | 0                                                      | 52.1                                    | 0.0                                                     | 260.7                                                   | 0.0                                                         | 260.7                                     |
| Sunday               | Fans off          | Fans off          | 0                                                      | 0                                                             | 0                                                      | 52.1                                    | 0.0                                                     | 0.0                                                     | 0.0                                                         | 0.0                                       |
| Tota                 |                   |                   | 1                                                      | 13                                                            | 2                                                      | 365                                     | 261                                                     | 2346                                                    | 521                                                         | 3128.6                                    |
|                      |                   |                   |                                                        |                                                               |                                                        |                                         |                                                         |                                                         | · ·                                                         | · · · · · · · · · · · · · · · · · · ·     |
|                      | Fan Use           |                   | Holidays per<br>Year per                               | 12 Midnight -<br>8:00 AM<br>Holiday<br>Adjusted<br>Hours/Year |                                                        |                                         | Annual Holiday<br>Adjusted<br>Hours per Year            |                                                         |                                                             |                                           |
| Daytype              | Begins            | Fan Use Ends      | Daytype*                                               |                                                               | Fan Operation                                          |                                         |                                                         |                                                         |                                                             |                                           |
| Weekday              | 7:00 AM           | 6:00 PM           | 9                                                      | 251.7                                                         | 2013.7                                                 | 503.4                                   | 2768.9                                                  |                                                         |                                                             |                                           |
| Saturday             | 8:00 AM           | 1:00 PM           | 0                                                      | 0.0                                                           | 260.7                                                  | 0.0                                     | 260.7                                                   |                                                         |                                                             |                                           |
| Sunday               | Fans off          | Fans off          | 0                                                      | 0.0                                                           | 0.0                                                    | 0.0                                     | 0.0                                                     |                                                         |                                                             |                                           |
| Tota                 | l <u> </u>        |                   | 9                                                      | 252                                                           | 2274                                                   | 503                                     | 3029.6                                                  |                                                         |                                                             |                                           |
| Eight holidays per   | r year (from the  | application form  | ) in addition to                                       | one day for pla                                               | nned shutdown:                                         | \$,<br>                                 |                                                         |                                                         |                                                             |                                           |
| The contact also pro | vided the sche    | dule for post-ret | rofit garage exh                                       | aust fan operat                                               | ion.                                                   |                                         |                                                         |                                                         |                                                             |                                           |
|                      |                   |                   | <br>                                                   |                                                               |                                                        |                                         |                                                         |                                                         |                                                             |                                           |
| Daytype              | Fan Use<br>Begins | Fan Use Ends      | Hours/Day Fan<br>Operation                             | Average Days<br>per Year per<br>Daytype                       | Hours/Year<br>Fan<br>Operation§                        |                                         |                                                         |                                                         |                                                             |                                           |
| Weekday              | 7:00 AM           | 6:00 PM           | 11                                                     | 260.7                                                         | 2867.9                                                 |                                         |                                                         |                                                         |                                                             |                                           |
| Saturday             | Fans off          | Fans off          | 0                                                      | 52.1                                                          | 0.0                                                    |                                         |                                                         |                                                         |                                                             |                                           |
| Sunday               | Fans off          | Fans off          | 0                                                      | 52.1                                                          | 0.0                                                    |                                         |                                                         |                                                         |                                                             |                                           |
| Tota                 | 1                 |                   | 11                                                     | 365                                                           | 2868                                                   |                                         |                                                         |                                                         |                                                             |                                           |
|                      |                   | l                 | I                                                      | 1                                                             |                                                        |                                         |                                                         | ł                                                       | 1                                                           | L                                         |

٠

| Blue font designates an input.     | <br>  | <br>         |          |  |  |
|------------------------------------|-------|--------------|----------|--|--|
| Red font designates a calculation. | <br>ļ | <br>         | <u> </u> |  |  |
| Green designates a result.         | <br>  | <br><u> </u> | L        |  |  |

| <u> </u>               |                                       |                         |                   |                                                  | •                                      | 1                  |              |            | ·····      |
|------------------------|---------------------------------------|-------------------------|-------------------|--------------------------------------------------|----------------------------------------|--------------------|--------------|------------|------------|
| During the on-site aud | dit conducted at th                   | his facility, the conta | ct provided a ma  | ny of the assump                                 | tions used to mo                       | odel this facility |              |            |            |
|                        |                                       |                         |                   |                                                  |                                        | +                  |              |            | ļ          |
|                        | First, various equ                    | ipment were record      | <u>a</u>          |                                                  |                                        |                    |              |            | ·········  |
|                        | Measure                               |                         |                   |                                                  | Units for                              | Maximum            | Units for    |            |            |
| Equipment              | 1                                     | Manufacturer            | Model Number      | Capacity                                         | Capacity                               | Observed Load      | Maximum Load | Vallage    | THUR DOWN  |
| Chiller¥               | Affected<br>Economizer                | Carrier                 | 30GT225           | 226.5                                            | tons                                   | 150                | tons         | Voltage    | Efficiency |
| Economizer Fan         | Economizer                            |                         | 3001225           | 5.0                                              | hp                                     | 3.75               |              | 000        | 0.075      |
| Economizer Fan         | · · · · · · · · · · · · · · · · · · · |                         |                   | 5.0                                              |                                        | 3.75               | hp           | 208        | 0.875      |
| Economizer Fan         | Economizer<br>Economizer              |                         |                   | 5.0                                              | hp<br>hp                               | 3.75               | hp<br>hp     | 208        | 0.875      |
| Economizer Fan         |                                       |                         |                   | 5.0                                              | hp hp                                  | 3.75               |              |            | 0.875      |
| Economizer Fan         | Economizer                            |                         |                   | 5.0                                              | hp                                     | 3.75               | hp<br>hp     | 208        | 0.875      |
| Economizer Fan         | Economizer                            |                         |                   | 5.0                                              | hp                                     | 3.75               | hp           |            |            |
| Boiler                 |                                       | Bryan                   | L-80-G            | 4,320                                            | kBtuh                                  | 3.75               |              | 208        | 0.875      |
| Garage Exhaust Fan     | NA<br>Coroso Exhet                    | General Electric        | 5K184AD205        | 4, <u>320</u> _                                  | hp                                     | 3.5                | ba           | 208        | 0.84       |
|                        | Garage Exhst                          | General Electric        | JA TOMALZUS       | 7.5                                              |                                        | 5.3                | hp<br>bo     |            | 0.84       |
| Garage Exhaust Fan     | Garage Exhst                          |                         |                   | 7.5                                              | hp<br>bp                               | 5.3                | hp           | 208        | +          |
| Garage Exhaust Fan     | Garage Exhst                          |                         |                   | 1.5                                              | hp                                     |                    | hp           | 208        |            |
| ¥ This chiller was ins |                                       | he 2 months after th    |                   | ofit was complete                                | d                                      |                    |              |            | <u> </u>   |
|                        |                                       | as taken off-line, but  |                   |                                                  |                                        | +                  |              |            |            |
| The existing chiller,  | a sou ton unit we                     | as laken on mine, but   |                   | echanical toom o                                 |                                        | <u> </u>           | <u>├</u>     |            | <u>}</u>   |
|                        | Secondly, various                     | parameters were s       | pacified          | · ··· <del>·</del> · · · · · · · · · · · · · · · |                                        |                    |              |            | +          |
|                        | Secondry, validus                     | paraliteters were s     |                   |                                                  |                                        |                    |              | — <u> </u> |            |
|                        |                                       |                         |                   |                                                  |                                        |                    |              |            |            |
| Parameter              | Value Reported                        | Units of Parameter      | Notes             |                                                  |                                        |                    |              |            |            |
| Chiller Lockout        | 50                                    | Ŧ                       |                   |                                                  |                                        |                    |              |            |            |
| Economizer Lockout     | 75                                    | ų                       | Upper temperatu   | re threshold                                     |                                        |                    |              |            |            |
| Minimum Outside Air    | 15%                                   | % of max supply air     |                   |                                                  |                                        |                    |              |            |            |
| Economizer CFM         | 60,000                                | OFM                     | Six economizer fa | ans @ 10,000 CFI                                 | M each                                 |                    |              |            |            |
| Peak Chiller Load      | 150                                   | tons                    | Based on site co  |                                                  | (                                      |                    |              |            |            |
| Economizer Lockout     | 45                                    |                         |                   | re threshold (not                                |                                        |                    |              |            |            |
| VAV Supply Fans        | 72,000                                | OFM                     |                   |                                                  |                                        | ,000-15,000 CFM    | each)        |            |            |
| VAV Supply Fans        | 60%                                   | min % of capacity       | The VAV supply    | fan is configured                                | for a maximum r                        | eduction of 40%.   |              |            |            |
| Return Air Temp.       | 75                                    | ۴                       |                   |                                                  |                                        |                    |              |            |            |
| Supply Air Temp.       | 50                                    | ۴                       |                   | L                                                |                                        |                    |              |            |            |
| Garage Exhaust Fan     | 8,760                                 | hours/year              |                   | ist fan hours of c                               |                                        |                    |              |            |            |
| Economizer Fan         | 100%                                  | percent of capacity     |                   |                                                  |                                        |                    | 0% loaded    |            |            |
| Economizer Fan         | 0%                                    | minimum OA              |                   | DA is required, ec                               | onomizer fans ar                       | el off.            | ļ            |            |            |
| Chiller Capacity       | 226.5                                 | tons                    | Rated capacity p  |                                                  | <u> </u>                               |                    |              |            | .          |
| Chiller Power          | 291.2                                 | kW                      | Rated capacity p  | er ARI 590-92                                    | ļ                                      | - [                |              |            |            |
|                        | 1                                     | L                       | L                 |                                                  | ·                                      |                    |              |            |            |
|                        |                                       | t roughly 5/8 of its    |                   | peak.                                            | f ···································· | +                  | {            |            | ·          |
|                        |                                       | cludes the third floo   |                   |                                                  | ·                                      |                    |              |            |            |
|                        |                                       | the chiller load is re  |                   |                                                  |                                        | .                  |              |            |            |
| Site contact indicat   | ted that 90% of th                    | e time the building     | loads are met by  | just 100 tons of                                 | niller capacity.                       |                    |              |            |            |
| ·······                |                                       |                         |                   | <u> </u>                                         |                                        |                    |              |            | -+         |
| ·····                  | <u> </u>                              |                         |                   | Į                                                | <u> </u>                               | -                  | <u> </u>     |            |            |
|                        | 1                                     |                         |                   |                                                  |                                        | ·                  | {            |            | ·          |
| Blue font designates   |                                       | <u> </u>                |                   |                                                  | <u> </u>                               |                    |              |            |            |
| Red font designates a  |                                       |                         |                   |                                                  |                                        |                    |              |            |            |
| Green designates a re  | esult.                                | <u>{</u>                | L                 | <u> </u>                                         | <u> </u>                               | <u> </u>           | L            | L          |            |

|                                       |                                  |                |                   | tal and find the     |                  | •              |                 |                |                 |                 |                |                | ·                     |                |                 | 1                                     |
|---------------------------------------|----------------------------------|----------------|-------------------|----------------------|------------------|----------------|-----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------------|----------------|-----------------|---------------------------------------|
| Estimated ener                        | By reduited to                   | meet the build | ing load on the   | ISLANG 2ND I         | oors, willout it | e economizer   |                 |                |                 |                 |                |                |                       |                |                 |                                       |
| } · · · · · · · · · · · · · · · · · · |                                  |                | ertain parameters | (newledged in        | the poplication  | and from the s | lin contact) to | achiova the ac | condate buildle | a load velaa li | a bia madal ar | collied in the | pollegiles            |                |                 |                                       |
| · ·                                   |                                  | parameters wer |                   |                      | the application  | and noni une s | ne contacty to  |                |                 | g toad using ti |                |                | pplication.           |                |                 |                                       |
| }                                     | The following                    | parameters wei | e upoateo.        |                      |                  |                |                 |                |                 |                 |                | ·····          |                       |                |                 |                                       |
|                                       | Supply air Fan                   | Capacity       | 60,000            | ·                    |                  |                |                 |                |                 |                 |                |                |                       |                |                 |                                       |
|                                       |                                  |                |                   |                      |                  |                |                 |                |                 |                 |                |                |                       |                |                 |                                       |
|                                       | Supply Air Ter<br>Return Air Ter |                | 55                |                      |                  |                |                 |                |                 |                 |                |                |                       |                |                 | 1                                     |
|                                       | Helum Alt Ter                    | iperature      | 12                |                      |                  |                |                 |                |                 |                 |                |                |                       |                |                 |                                       |
|                                       | Mean Outdoor<br>Air              | Midnight -     | Midnight -        | 4PM - 12<br>Midnight | Midnight -       | Midnight -     | 4PM - 12        | Floor 1 and 2  | Preliminary     |                 | Mixed Air      | Supply Air     | Calculated<br>Chiller | Revised        |                 |                                       |
| Outdoor Air                           | Temperature                      | 8AM Total Bin  |                   | Total Bin            | 8AM Chiller      | 8AM Chiller    | Midnlght        |                | Chiller Energy  |                 | Temperature    |                | Sensible Load         |                |                 | . <b>i</b>                            |
| Temperature                           | (°F)                             | Hours          | Hours             | Hours                | Hours            | Hours          | Chiller Hours   | (tons)         |                 | CFM Delivered   | (°F)           | (*F)           | (Tons)                | Use (kWh)      |                 | i 1                                   |
| 95-99                                 | 97                               | 0              | 1                 | 0                    | 0                | 1              | 0               | 100            | 92              | 60,000          | 78             | 55             | 112                   | 103            |                 |                                       |
| 90-94                                 | 92                               | 0              | 5                 | 0                    | 0                | 4              | 0               | 90             | 414             | 60,000          | 75             | 55             | 108                   | 497            |                 |                                       |
| 85-89                                 | 87                               | o o            | 19                | 2                    | 0                | 14             | 0               | 80             | 1436            | 60,000          | 74             | 55             | 104                   | 1866           |                 |                                       |
| 80-84                                 | 82                               | 0              | 56                | 7                    | 0                | 40             | 1               | 70             | 3722            | 57,000          | 74             | 55             | 95                    | 5068           |                 |                                       |
| 75-79                                 | 77                               | 1 1            | 110               | 24                   | 0                | 79             | 4               | 60 .           | 6408            | 54,000          | 73             | 55             | 87                    | 9257           |                 | · · · · · · · · · · · · · · · · · · · |
| 70-74                                 | 72                               | 6              | 346               | 69                   | 0                | 248            | 12              | 50             | 16723           | 51,000          | 72             | 55             | 78                    | 26098          |                 |                                       |
| 85-69                                 | 67                               | 45             | 583               | 215                  | 0                | 418            | 38              | 40             | 23450           | 48,000          | 71             | 55             | 69                    | 40680          |                 | · · · · · · · · · · · · · · · · · · · |
| 60-64                                 | 62                               | 291            | 640               | 535                  | 0                | 458            | 96              | 30             | 21368           | 45,000          | 70             | 55             | 81                    | 43269          |                 | Ĺ                                     |
| 55-59                                 | 57                               | 966            | 591               | 973                  | 0                | 423            | 174             | 20             | 15355           | 42,000          | 69             | 55             | 52                    | 40008          |                 | L                                     |
| 50-54                                 | 52                               | 916            | 384               | 746                  | 0                | 275            | 133             | 10             | 5250            | 39,000          | 67             | 55             | 43                    | 22821          |                 | L                                     |
| 45-49                                 | 47                               | 475            | 145               | 273                  | 0                | 104            | 49              | 0              | 0               | 36,000          | 66             | 55             | /                     | 0              |                 |                                       |
| 40-44                                 | 42                               | 175            | 30                | 68                   | 0                | 21             | 12              | <u> </u>       | 0               | 38,000          | 65             | 55             |                       | 0              |                 | ļ                                     |
| 35-39                                 | 37                               | 40             | 2                 | 6                    | 0                | 1              | 1               | 0              | 0               | 36,000          | 63             | 55             | ļ                     | <u> </u>       | L               |                                       |
| 30-34                                 | 32                               |                | 0                 | 0                    | 0                | 0              | 0               | 0              | 0               | 36,000          | 62             | 55             | ļ                     | 0              |                 | <b>⊢</b> I                            |
| Total                                 |                                  | 2916           | 2912              | 2918                 | 0                | 2086           | 521             |                | 94,219          | ·               |                |                |                       |                | kWh             | <u> </u>                              |
|                                       |                                  |                |                   |                      |                  |                |                 |                |                 | ·               |                |                |                       | Application es | timate is 738,3 | 44 κWh                                |
|                                       | L                                |                |                   |                      |                  |                |                 |                |                 |                 | <u> </u>       |                | <b> </b>              | <u>↓</u>       | <u> </u>        |                                       |
| Blue font desi                        |                                  |                | + <b></b> (       | •·····               | f                | <u> </u>       | [               |                | l               | {,              | <u> </u>       |                | <b>↓</b>              | {              | [               | <b>↓</b> _[                           |
| Red Iont desig                        |                                  |                | ┥                 |                      |                  |                |                 |                |                 |                 |                | ļ              |                       |                | <u> </u>        |                                       |
| Green lont de                         | signates a resu                  | <u>h</u>       | <u> </u>          |                      | L                | L              | L               | L              | <u>L</u>        | <u> </u>        | l              | L              | <u> </u>              |                | <u>i</u>        | <del>اا</del>                         |

٠,

`:

į,

| Catimated anar        |                    | ment the building           |                             | st and 2nd floor           | n with the ees            |                           |                  |                 | · · · ·                                 |                           | <del>_</del>             | <u>.</u>         | ····-                       |                                       |
|-----------------------|--------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|---------------------------|------------------|-----------------|-----------------------------------------|---------------------------|--------------------------|------------------|-----------------------------|---------------------------------------|
| <u>-stimated ener</u> | gy required to r   | neet the buildin            | g load on the I             | st and 2nd libbr           | s, with the eco           | nomizer                   |                  |                 |                                         |                           |                          |                  |                             | ·                                     |
|                       | It was necessa     | ry to update ce             | rtain parameter             | s (provided in th          | e application a           | nd from the site          | e contact) to ac | hieve the appro | priate building le                      | ad using the t            | bin model specifi        | ed in the applic | ation.                      |                                       |
|                       |                    | arameters were              |                             |                            |                           |                           |                  |                 |                                         |                           |                          |                  |                             |                                       |
|                       |                    |                             |                             |                            |                           |                           |                  |                 |                                         |                           |                          |                  |                             |                                       |
|                       | Supply air Fan     |                             | 60,000                      |                            |                           | •••••••                   |                  |                 |                                         |                           |                          |                  |                             |                                       |
|                       | Supply Air Terr    | ·                           | 55                          |                            |                           |                           |                  |                 |                                         |                           |                          |                  |                             |                                       |
|                       | Return Air Terr    | perature                    | 72                          |                            |                           |                           | <u> </u>         |                 |                                         |                           | 1                        | ··               |                             |                                       |
|                       | Mean Outdoor       |                             |                             |                            | AN 4-1-64                 | B #1 d _ 1 ~ 6 . 4        | 4PM - 12         |                 |                                         |                           | Calculated               | · ····           | Hours of                    | Energy Use o                          |
| Outdoor Air           | Air<br>Temperature | Midnight -<br>8AM Total Bin | Midnight -<br>8AM Total Bin | 4PM • 12<br>Midnight Total | Midnight -<br>8AM Chiller | Midnight -<br>8AM Chiller | Midnight         |                 | Mixed Air<br>Temperature                | Supply Air<br>Temperature | Chiller<br>Sensible Load | Chiller Energy   | Economizer<br>Ean Operation | New<br>Economizer                     |
| Temperature           | (°F)               | Hours                       | Hours                       | Bin Hours                  | Hours                     | Hours                     |                  | CFM Delivered   |                                         | (°F)                      | (Tons)                   | Use (kWh)        | (hours)                     | Fans (kWh)                            |
| 95-99                 | 97                 | 0                           | 1                           | 0                          | 0                         | 1                         | 0                | 60,000          | 76                                      | 55                        | 112                      | 103              |                             |                                       |
| 90-94                 | 92                 | 0                           | 5                           | 0                          | 0                         | 4                         | 0                | 60,000          | 75                                      | 55                        | 108                      | 497              |                             |                                       |
| 85-89                 | 87                 | 0                           | 19                          | 2                          | 0                         | 14                        | 0                | 60,000          | 74                                      | 55                        | 104                      | 1866             |                             | 1                                     |
| 80-84                 | 82                 | 0                           | 56                          | 7                          | 0                         | 40                        | 1                | 57,000          | 74                                      | 55                        | 95                       | 5068             |                             |                                       |
| 75-79                 | 77                 | 1                           | 110                         | 24                         | 0                         | 79                        | 4                | 54,000          | 73                                      | 55                        | 87                       | 9257             |                             |                                       |
| 70-74                 | 72                 | 6                           | 346                         | 69                         | 0                         | 248                       | 12               | 51,000          | 72                                      | 55                        | 78                       | 26098            | 1                           | 1                                     |
| 65-69                 | 67                 | 45                          | 583                         | 215                        | 0                         | 418                       | 38               | 48,000          | 67                                      | 55                        | 52                       | 30391            | 843                         | 16171                                 |
| 60-64                 | 62                 | 291                         | 640                         | 535                        | 0                         | 458                       | 96               | 45,000          | 62                                      | 55                        | 28                       | 20192            | 1466                        | 28122                                 |
| 55-59                 | 57                 | 966                         | 591                         | 973                        | 0                         | 423                       | 174              | 42,000          | 57                                      | 55                        | 8                        | 5804             | 2530                        | 48533                                 |
| 50-54                 | 52                 | 916                         | 384                         | 746                        | 0                         | 275                       | 133              | 39,000          | 55                                      | 55                        | 0                        | 0                |                             |                                       |
| 45-49                 | 47                 | 475                         | 145                         | 273                        | 0                         | 104                       | 49               | 36,000          | 55                                      |                           |                          |                  |                             | T                                     |
| 40-44                 | 42                 | 175                         | 30                          | 68                         | 0                         | 21                        | 12               | 36,000          | 72                                      |                           |                          |                  |                             |                                       |
| 35-39                 | 37                 | 40                          | 2                           | 6                          | 0                         | 1                         | 1                | 36,000          | 72                                      |                           |                          |                  |                             |                                       |
| 30-34                 | 32                 | 1                           | 0                           | 0                          | 0                         | 0                         | 0                | 36,000          | 72                                      |                           |                          |                  |                             |                                       |
| Total                 |                    | 2916                        | 2912                        | 2918                       | 0                         | 2086                      | 521              |                 |                                         |                           | 1                        | 99,278           | kWh                         | 92,826                                |
|                       |                    |                             |                             |                            |                           |                           | ļ                |                 |                                         |                           | [                        | Application es   | timate is 365.5             | 78 kWh.                               |
| Blue font desig       | nates an input.    |                             | ·                           |                            |                           |                           |                  |                 | · .                                     |                           | · .                      |                  |                             |                                       |
|                       | nates a calculat   | ion.                        |                             |                            |                           |                           |                  |                 | ]                                       | 1                         |                          |                  | {                           |                                       |
|                       | ignates a result   |                             |                             |                            |                           | )                         | · · · · · ·      | J               | , · · · · · · · · · · · · · · · · · · · | ]                         |                          | ]                |                             | · · · · · · · · · · · · · · · · · · · |

|             |                  | o operate the pre    |               | ·                       |                    |                                       | +                                     |        |
|-------------|------------------|----------------------|---------------|-------------------------|--------------------|---------------------------------------|---------------------------------------|--------|
|             | In the pre-ret   | rofit condition all  | three fans    | always run              | · · · · · · · · ·  |                                       | · · · · · · · · · · · · · · · · · · · |        |
|             |                  | Hours per year       | 8,760         | This is consist         | ent with the ap    | plication estima                      | ate.                                  |        |
|             | Fan noncoinc     | ident kW             | · · · · · · · | · · · · · · · · · · · · |                    |                                       |                                       |        |
|             |                  | NC Demand =          | (3.5+5.3+5    | 5.3 BHP) x (0.          | <br>746 kW/hp) / ( | 0.84 motor eff                        | iciency)                              |        |
| <u> </u>    |                  | =                    | 8.77          | kW                      | Application do     | es not adjust fo                      | or motor loading                      | (BHP). |
|             | Estimate of e    | nergy use per ye     | ar for gara   | ge exhaust fans         |                    | · · · · · · · · · · · · · · · · · · · |                                       |        |
| ·           |                  | 8.77 x 8760 =        | 76,851        | kWh/year                |                    |                                       |                                       |        |
| stimated en | ergy required to | o operate the po     | st-retrofit g | arage fans:             |                    |                                       |                                       |        |
| ······      | In the post-re   | etrofit condition th | ne three fa   | ns operate on           | a shedule (refe    | r to facility ope                     | ration inputs)                        |        |
|             |                  | Hours per year       | 2,868         | Application va          | ries considerabl   | y 4,380 hou                           | rs/year                               |        |
|             | Estimate of e    | nergy use per ye     | ar for gara   | ⊥<br>ge exhaust fans    |                    |                                       |                                       |        |
|             |                  | 8.77 x 2868 =        | 25.160        | kWh/year                |                    |                                       |                                       |        |

Appendix C Billing Regression Analysis

.

•

•

# C. BILLING REGRESSION ANALYSIS

This appendix documents the detailed analytical steps undertaken in the billing regression analysis of Pacific Gas and Electric Company's (PG&E's) 1995 Nonresidential Retrofit Program for the Commercial Sector (the Commercial Program). Both net and gross billing analysis models were implemented, however, the net model was unable to provide statistically valid results due to problems of multi-colinearity. This appendix begins with a discussion of the analysis periods and data sources used in the billing regression analysis. Then, the results of the data censoring that was applied to the billing analysis sample are provided. Next, the gross billing analysis regression model specification and SAE coefficients are presented, along with the relative precision calculations. Finally, the net billing analysis regression model specification and results are presented.

# C.1 OVERVIEW

The key objective of the billing analysis is to determine the first-year program energy impacts. A statistical analysis is employed to model the differences of customers' energy usage between preand post-installation periods. The model is specified using actual customer billing data and independent variables that explain changes in customers' energy usage, including engineering estimates of program participation. This statistically adjusted engineering (SAE) analysis is consistent with the requirements of the Load Impact Regression Model (LIRM) defined in the California Public Utilities Commission's (CPUC's) Measurement and Evaluation Protocols (the Protocols).

The results of the billing regression analysis are estimated as ratios, termed "SAE coefficients," of realized impacts to engineering impact estimates. Realized impacts represent the fractions of the engineering estimates actually "observed" or "detected" in the statistical analysis of actual billing data. The SAE coefficients estimated in the billing analysis regression models are relative to the results of the evaluation-based engineering estimates, not the PG&E Program ex ante estimates. The SAE coefficients, the estimation of which is the topic of this appendix, are then used to estimate program impacts and realization rates relative to the ex ante estimates.

As discussed below, the billing regression analysis was conducted on a sample of telephone surveyed participants and nonparticipants. Because many Commercial Program participants installed measures under multiple end uses, one integrated billing analysis approach was used to model the Lighting, HVAC and Refrigeration end uses.

### C.2 DATA SOURCES FOR BILLING REGRESSION ANALYSIS

The billing regression analysis for the 1995 Commercial Program Evaluation uses data from five primary data sources: the PG&E Management Decision Support System (MDSS) tracking database, the billing database, the telephone survey data, the engineering estimates of changes of usage between the pre- and post-installation periods, and the weather data tapes from PG&E's load research weather sites. A summary of the data elements used in the regression analysis are presented below.

### C.2.1 Program Participant Tracking System

The participant tracking system for the Retrofit Express (RE), Retrofit Efficiency Options (REO) and Customized Incentives Programs was maintained as part of the MDSS. It contains program applications, rebate and technical information about installed measures, including measure

description, quantity, rebate amount, and ex ante demand, ad energy and therm savings estimates. The MDSS database is linked to the billing database and other program databases through PG&E's customers control numbers.

# C.2.2 PG&E Billing Data

For this evaluation, the PG&E billing data were obtained from two different data sources within PG&E. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG&E's service territory, and was used in the sample design as described in *Appendix A: Sample Design*. The billing histories contained in this data base only run through September 1995.

The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG&E Load Data Services. This billing dataset contains bill readings that run through September 1996, and was therefore used in the billing regression analysis. In addition, the billing series from this database is the PG&E pro-rated monthly usage data, a series calculated by PG&E for each calendar month, from January 1992 to September 1996.

# C.2.3 Weather Data

The hourly dry bulb temperature collected for 25 PG&E load research weather sites was used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site was linked to that customer by using the PG&E-defined weather site to PG&E local office mapping.

# C.2.4 Telephone Survey Data

All available telephone surveys (except for the Canvass surveys, which do not collect detailed information regarding changes that have occurred at the premise) collected as part of the evaluation for the Commercial Sector Program were used in the billing regression analysis. Four telephone survey samples totaling 1,217 participants and 652 nonparticipants were collected for the Commercial Sector Evaluation. The 1,217 participant surveys included 614 Lighting participants, 487 HVAC participants, and 241 Refrigeration participants. Because of the significant levels of cross-over among participants across the Commercial Program end uses, one integrated billing regression model was developed to evaluate all three Commercial Program end uses.

The data collected in the telephone survey supplies information on energy-related changes at each site for the billing period covered by the billing regression analysis. For a detailed discussion of the telephone survey sample design and the final sample distribution, see *Appendix A: Sample Design*.

# C.2.5 Engineering Estimates

Engineering estimates of savings were estimated for each of the 1,217 participants. Separate estimates were calculated for every measure installed under the Commercial Sector Program. The engineering estimates were calculated based on expected savings from the pre-installation technology to the post-installation technology. For some technologies, such as Central A/Cs installed in the HVAC program, the savings estimates will differ from the impact estimates. This is due to the impacts being calculated relative to a baseline efficiency, compared to the savings estimates which are based on a pre-existing unit's efficiency. *Appendix B: Engineering Detailed Computational Methods* discusses the calculation of the savings estimates used in the billing analysis in greater detail.

For all measures, customer-specific engineering estimates were used in the SAE billing regression model, except for some Customized Incentive measures. For customers with EMS and "Other HVAC" Customized Incentive measures who were not on-site audited, the impact estimates supporting the application were used as the engineering estimates for the SAE analysis. From the engineering analysis based on the on-site audited measures, it was determined that the application's energy estimate was reasonable and accurate for all but one EMS application (which was not part of the SAE analysis).

For the "Other HVAC" Customized Incentive measures, the measures can be so unique and the impact estimates so dependent on building characteristics and other equipment installed at the facility, that it is very difficult to estimate an impact without performing an on-site audit. However, the level of documentation provided along with the applications was sufficient to allow for an assessment of the quality of the impact calculations made. A review of the applications associated with the "Other HVAC" Customized Incentive measures indicated that the applications provided the best data for use in the SAE analysis. In other words, performing an engineering analysis based solely on the application, without an on-site audit, would result in reverting to the application's estimate.

### C.3 DATA AGGREGATION AND ANALYSIS DATASET DEVELOPMENT

Because many measures installed under the Commercial Program affected multiple customer accounts within a unique site, the billing analysis had to be performed at the site level. Therefore, all account level data had to be aggregated up to the site level. In PG&E's billing data, an array of variables are defined to track a customer. These include the following:

- Control number, which is the finest level of aggregation, and is usually unique to a meter.
- Premise number, which is used to define a unique site, but can sometimes contain multiple buildings. The premise number may map to many control numbers, but a control number maps to a unique premise number.
- Corporation number, which is used to define a unique corporation, which can map to many premise numbers. A premise number maps to a unique corporation number.

Of the three, the premise number serves as the best indicator of a unique site. However, there are some premise numbers that contain multiple sites. To address this issue, service address was also used to help identify a unique site. If there was more than one service address for a premise number, it was broken out into multiple sites. Therefore, a unique site was defined as all of the control numbers within a unique combination of service address,<sup>1</sup> premise number, and corporation number. A unique Site ID was created based on this combination of address, premise, and corporation to serve as the key variable for linking data.

The billing data was provided at the control number level. Therefore, the monthly billing data was aggregated to the Site ID level. A concern with aggregating to the Site ID level is that there may be control numbers associated with a different premise number, service address, or corporation number that are in the same physical site and are being affected by the installed measures. If this is

<sup>&</sup>lt;sup>1</sup> Because of potential data entry errors in the billing system, or inconsistencies in tracking service addresses in the billing system, only the first eight characters of the service address were used. Generally, this would contain the numeric portion of the address and the first few characters of the street name. For the large majority of records in the billing system, premise number and service address were unique.

the case, the billing analysis will have the effect of underestimating the impacts. This a topic that will be discussed further in the *Data Censoring* section below.

The telephone surveys were sampled at the Site ID level, and all questions were phrased to ask about all of the control numbers associated with the Site ID.

The engineering estimates of change were also aggregated to the Site ID level. However, prior to aggregating to the Site ID level, the installation dates for each individual measure were analyzed to ensure that only the impacts occurring within the billing analysis periods were being aggregated. The selection of analysis periods is discussed in the next section.

All data elements mentioned above were linked to the final analysis database by Site ID. Exhibits C-1 through C-4 below provide the sample frame that was available for the billing analysis for each end use (Lighting, HVAC, and Refrigeration) and also for nonparticipants. The sample sizes are provided by business type and technology (for participants). The values presented are the unique number of the Site IDs within a given segment.

|                                     |        |        |                        |        |         | Bus        | iness T     | уре         |           |                     |                      |       |       |
|-------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group        | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program            |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Compact Fluorescent                 | 61     | 29     | 4                      | 57     | 9       | 11         | 19          | 17          | 6         | 3                   | 17                   | 3     | 236   |
| Incandescent to Fluorescent         | 5      | •      | -                      | 4      | -       | 1          | •           | 2           | 2         | -                   | 2                    | -     | 16    |
| Efficient Ballast                   | 8      | 7      | 2                      | 7      | 4       | -          | 2           | -           | 2         | -                   | 1                    | 1     | 34    |
| T8 Lamps and Electronic Ballasts    | 154    | 68     | 8                      | 115    | 30      | 17         | 29          | 8           | 25        | 8                   | 33                   | 9     | 504   |
| Optical Reflectors w/ Fluor. Delamp | 75     | 32     | 5                      | 34     | 13      | 11         | 10          | 1           | 10        | 5                   | 7                    | 4     | 207   |
| High Intensity Discharge            | 8      | 7      | 2                      | 13     | 1       | 1          | -           | 1           | 15        | 5                   | 5                    | 7     | 65    |
| Halogen                             | 13     | 4      | 2                      | 8      | -       | 2          | 1           | 1           | 1         | -                   | 6                    | 1     | 39    |
| Exit Signs                          | 38     | 12     | 3                      | 29     | 2       | 5          | 5           | 1           | 2         | 1                   | 7                    | 1     | 106   |
| Controls                            | 28     | 2      | 3                      | 34     | 1       | 1          | 5           | 2           | 4         | 1                   | 6                    | 5     | 92    |
| Retrofit Express Total              | 177    | 80     | 9                      | 120    | 42      | 27         | 33          | 21          | 34        | 14                  | 42                   | 15    | 614   |
| Customized Incentives Program       |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Compact Fluorescent                 |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Standard Fluorescent                |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| High Intensity Discharge            |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Halogen                             |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Exit Signs                          |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Controls                            |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Other                               |        |        |                        | 000000 |         | 800000     |             |             |           |                     | 100000               |       |       |
| Customized Incentives Total         | 5      | 1      | 0                      | 0      |         | 0          | 0           | 0           | ĺ         | 0                   | 1                    | 0     | 18    |
| Total                               | 177    | 80     | 9                      | 120    | 42      | 27         | 33          | 21          | 34        | 14                  | 42                   | 15    | 614   |

#### Exhibit C-1 Billing Analysis Sample Frame Pre-Censoring Indoor Lighting End-Use Technologies

# Exhibit C-2 Billing Analysis Sample Frame Pre-Censoring HVAC End-Use Technologies

|                                     |        |        |                        |        |         | Bu         | siness T    | уре         |           |                     |                      |       |       |
|-------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group        | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program            |        |        |                        |        | ·       |            |             |             |           |                     |                      |       |       |
| Central A/C                         | 93     | 32     | 1                      | 30     | 4       | 12         | 24          | 3           | 8         | 5                   | 27                   | 5     | 244   |
| Variable Speed Drive HVAC Fan       | 16     | 11     | 1                      | 2      | -       | -          | -           | 1           | -         | -                   | -                    | 1     | 32    |
| Package Terminal A/C                | 2      | -      | -                      | 7      | •       | 2          | -           | 15          |           | -                   | -                    | -     | 26    |
| Programmable Thermostat             | 53     | 12     | -                      | 14     | -       | 7          | 7           | 2           | 3         | 3                   | 15                   | 1     | 117   |
| Reflective Window Film              | 44     | 9      | 1                      | 3      | 3       | 2          | 12          | 4           | 5         | 2                   | 10                   | 2     | 97    |
| Water Chiller                       | 1      | 1      | -                      | 1.     | -       | -          | 1           | -           | -         | -                   | 2                    | -     | 6     |
| Other RE Measures                   | 1      | 1      | -                      | 1      | 1       | 1          | 1           | -           | -         | -                   | 1                    | -     | 7     |
| Retrofit Express Total              | 170    | 52     | 3                      | 49     | 8       | 19         | 37          | 23          | 13        | 8                   | 40                   | 7     | 429   |
| Retrofit Efficiency Options Program |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive            | 1      | -      | 1                      | _      | -       | -          | -           | -           | -         | -                   | -                    | -     | 2     |
| Water Chiller                       | -      | -      | -                      | 1      | -       | -          | 2           |             | -         | -                   | 1                    | -     | 4     |
| CAV to VAV                          | 1      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1     |
| Cooling Tower                       | •      | -      | -                      | 1      | -       | -          | -           | -           | -         | -                   | -                    | -     | ١     |
| Retrofit Efficiency Options Total   | 2      | -      | 1                      | 1      | -       | -          | 2           | -           | -         | -                   | 1                    | -     | 7     |
| Customized Incentives Program       |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive           | 2      | 1      | •                      | -      | 1       | -          | -           | -           | -         | -                   | 1                    | -     | 5     |
| High Efficiency Chiller             | 1      | -      | -                      | -      |         | -          | -           | -           |           | -                   | -                    | -     | 1     |
| Energy Management System            | 8      | -      | 2                      | 17     | 1       | -          | 2           | 1           | 1         |                     | •                    | •     | 32    |
| Other CI Measures                   | 9      | -      | 1                      | 4      | -       | -          | 5           | -           | 2         | -                   | 1                    | 1     | 23    |
| Customized Incentives Total         | 20     | 1      | 3                      | 20     | 2       | -          | 6           | 1           | 2         | -                   | 2                    | 1     | 58    |
| Total                               | 190    | 53     | 6                      | 68     | 10      | 19         | 43          | 24          | 15        | 8                   | 43                   | 8     | 487   |

# Exhibit C-3 Billing Analysis Sample Frame Pre-Censoring Refrigeration End-Use Technologies

|                                     |        |               |                        |            |            | Bus        | iness T       | уре         |               |                     |                      |               |                                               |
|-------------------------------------|--------|---------------|------------------------|------------|------------|------------|---------------|-------------|---------------|---------------------|----------------------|---------------|-----------------------------------------------|
| Program and Technology              | Office | Retail        | College/<br>University | School     | Grocery    | Restaurant | Health Care   | Hotel/Motel | Warehouse     | Personal<br>Service | Community<br>Service | Misc.         | Total                                         |
| Retrofit Express Program            |        |               |                        |            |            |            |               |             |               |                     |                      |               |                                               |
| Refrigeration Load Reduction        | -      |               |                        |            |            |            |               |             |               |                     |                      |               |                                               |
| Low Temperature Glass/Acrylic Door  | -      | -             |                        | -          | -          | -          | •             | -           | •             | -                   | -                    | - 1           | - 1                                           |
| Heatless Door                       |        | -             |                        |            | 2          | -          | -             | -           |               | -                   | -                    |               | 2                                             |
| Cooler/Freezer Door Gaskets         | -      | 1             | - 1                    | -          | 11         | 3          | -             | -           | -             | 1                   | -                    |               | 16                                            |
| Auto Closer for Cooler/Freezer      | -      | 1             | -                      | -          | 2          | 1          | -             | 1           |               | 1                   | -                    | •             | 6                                             |
| Medium Temperature Case w/ Door     | 1      | -             | •                      |            | 6          | 2          | -             | •           | -             | -                   | -                    | •             | 9                                             |
| Strip Curtains for Walk-in          | 1      | 1             | -                      | -          | 8          | 5          | -             | -           | 6             |                     | 1                    | -             | 22                                            |
| Low Temperature Case w/ Door        | -      | -             |                        | -          | 3          | 1          | -             | -           |               | -                   |                      | -             | 4                                             |
| Night Covers for Display Cases      | -      | 1             | - 1                    | -          | 21         | 1          |               | -           | -             | -                   |                      | -             | 23                                            |
| Compressor Upgrades                 |        |               |                        | L.,        |            |            |               |             | L             |                     |                      |               | ·                                             |
| Mechanical Subcooler                | -      | -             |                        | _ <u>.</u> | 1          | -          | -             | -           |               | 1 -                 |                      | -             | 1                                             |
| Multiplex Compresor System          | -      | •             |                        |            | 1          | •          |               |             | -             | -                   |                      | -             | 1                                             |
| Adjustable Speed Drive              | -      | •             |                        |            | -          | -          | -             |             | 1             |                     | -                    | •             | 1                                             |
| Floating Head Pressure Controls     |        | -             | -                      |            | -          |            | -             | •           |               |                     | -                    | -             |                                               |
| Condenser Upgrades                  |        |               | <b>.</b>               |            | ·          |            |               |             |               |                     |                      |               |                                               |
| Oversized Air-Cooled Condenser      |        | -             | •                      |            | 1          | -          |               |             | -             | -                   |                      | - 1           | 1                                             |
| Oversized Evaporative Condenser     | -      |               |                        |            |            | -          |               |             | 1             |                     | -                    | 1             | 2                                             |
| Evaporator Upgrades                 |        |               |                        |            |            |            | L             |             |               | •                   |                      |               | ·                                             |
| Walk-in Cooler PSC Evaporator Motor |        | •             |                        | -          | 1          |            | -             | <u> </u>    |               | -                   | - 1                  | - 1           |                                               |
| Display PSC Evaporator Motor        | -      | •             |                        |            | 2          | -          |               |             | •             |                     | -                    | -             | 2                                             |
| Other                               |        | L             | 4                      | <u> </u>   |            |            |               | h           |               | •                   |                      |               | <u>ل</u> ــــــــــــــــــــــــــــــــــــ |
| Anti-Sweat Heater Control           |        | -             | -                      | -          | 1          | -          |               | · ·         | -             | -                   |                      | -             | 1                                             |
| Suction Line Insulation             | 1      | -             | -                      |            | 1          |            |               | -           | 1             | <u> </u>            | 1 -                  |               | 3                                             |
| Display Case Electronic Ballast     |        | 1             |                        |            | 4          |            |               |             | 1             | -                   | <u></u>              |               | 6                                             |
| Non-Electric Condensate Evaporator  | 3      | 4             | 1                      | 2          | 17         | 120        |               | 1           | 1             | 3                   | 12                   | 1             | 165                                           |
| Retrofit Express Total              | 5      | 8             | 1                      | 2          | 63         | 128        | -             | 1           | 8             | 4                   | 13                   | 2             | 235                                           |
| Customized Incentives Program       |        |               | • • • • • •            |            | <u></u>    |            |               |             |               | <u> </u>            |                      |               |                                               |
| Compressor Upgrades                 |        |               |                        |            |            |            |               |             |               |                     |                      |               |                                               |
| Floating Head Pressure Controls     | -      | -             | - 1                    |            | -          |            | - 1           |             | -             | - 1                 | - 1                  | - 1           |                                               |
| Booster Desuperheaters              | -      |               | 1.                     |            | <u> </u>   | · ·        |               | •           | <u> </u>      | - 1                 | -                    | -             | <u> </u>                                      |
| Condenser Upgrades                  |        |               |                        | L          | • • • • •  |            |               | <b>.</b>    | L             |                     | <b>-</b>             | •             |                                               |
| Oversized Condensers                | -      |               | •                      | Γ.         | - 1        | <u> </u>   | -             | - 1         | - 1           | - 1                 | -                    | - 1           | <u> </u>                                      |
| Other                               |        | •             | •                      | <b>-</b>   | •          | <b></b>    | • • • • • • • | • • • • • • |               | <b>.</b>            | <u> </u>             | <u></u>       | · · · · ·                                     |
| Refrigeration EMS                   |        | 1             | - 1                    | <u> </u>   | 2          | -          | <u> </u>      | -           |               | - 1                 | <u> </u>             | 1             | 4                                             |
| Refrigeration Add/Change            | 1      |               | 1 .                    |            | <u>† -</u> | <u> </u>   | <u> </u>      | <u> </u> .  | <u> </u>      | -                   | † <u>.</u> –         | $\frac{1}{1}$ | 2                                             |
| Refrigeration Other                 |        | 1             | <u>⊢ </u>              |            | <u> </u>   | <u> </u>   | <u> </u>      | <u> </u>    | $\frac{1}{1}$ | <u> </u> .          | <u> </u>             |               | 2                                             |
| Customized Incentives Total         |        | $\frac{1}{1}$ | 1.                     |            | 2          | -          |               | 1.          | 1             | -                   | <u> </u>             | 2             | 7                                             |
| Total                               | 6      | 8             | 1                      | 2          | 64         | 128        |               | 1           | 10            | 4                   | 13                   | 3             | 241                                           |

## Exhibit C-4 Billing Analysis Sample Frame Pre-Censoring Nonparticipants

|                              |        |        |                        |        |         | Bus        | iness T     | уре         |           |                     |                      |       |       |
|------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Total                        | 75     | 130    | 2                      | 28     | 190     | 35         | 28          | 16          | 58        | 6                   | 34                   | 50    | 652   |

### C.4 ANALYSIS PERIODS

When the billing regression analysis is used to model the change of consumption attributable to the program measures, the first step is to isolate the pre- and post-installation periods for each customer in the analysis database so that the impact of these measures can be verified.

In accordance with the Protocols, participants are defined by the "paid date" instead of "installation date." Therefore, all customers actually installed measures in 1992, 1993, 1994 or 1995, with 1995 installations accounting for approximately two-thirds of total installations.

#### C.4.1 Selection of Installation Date

Although installation date is a field in the MDSS it is rarely collected (only 2 percent of the time). Because the "paid date" can be off by as much as 3 years from the installation date, another approach was developed to estimate installation date. For 68 percent of the MDSS records, a preand post-installation inspection date was collected. From these two variables, an interval containing the installation date could be determined. Another date field in the MDSS that is populated 100 percent of the time is the date the application was received by PG&E. This date always occurs after the pre-installation inspection date (when populated) and rarely exceeds the post-installation inspection date (when populated) by more than a month (6 percent). In fact, the application received date and post-installation inspection date are within a month of each other 78 percent of the time. Therefore, the application received date was used as a proxy for the installation date.

In addition, the telephone survey asked every participant to estimate the installation date. If the installation date provided through the self reported survey fell between the pre- and post-installation inspection dates, the customer reported date was used over the application received date.

### C.4.2 Selection of Analysis Periods

Billing data were available from January 1992 through September 1996. To maximize the number of post installation months, a post period of October 1995 through September 1996 was used. Because the majority of installations occurred during 1995, the only feasible pre-periods were October 1992 through September 1993 and October 1993 through September 1994. Survey data gathered change information dating back from the beginning of 1993. Therefore, both preinstallation periods could be used. However, the further back the pre-installation period is chosen, the more likely there are to be changes that have occurred at the site. To minimize the number of changes that have occurred outside the program between the pre- and post-installation periods (and to minimize the errors associated with self-reported changes and dates the changes occurred), the October 1993 through September 1994 pre-installation period was selected.

The only disadvantage to selecting the more recent pre-installation period is that some participants may have actually installed the participating measure during or before the pre-installation period. There were no rebated Lighting or Refrigeration installations, and only 18 rebated HVAC installations (2 percent of HVAC) in the analysis sample that occurred prior to the pre-installation period. In addition, only 2 percent of the rebated Lighting and Refrigeration installations, and 8 percent of the rebated HVAC installations occurred during the pre-installation period.

For installations that occurred prior to the pre-installation period, the engineering impact is set to zero. For installation that occurred during either the pre- or post-installation period, the engineering impact is only aggregated over the months for which there is an impact that should be realized.

Exhibits C-5 through C-7 provide the cumulative participation by month for the participants that are part of the billing analysis sample frame.



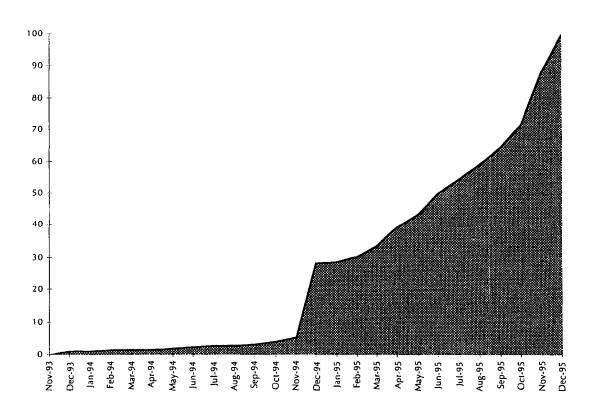



Exhibit C-6 Commercial HVAC Rebated Technologies By Estimated Installation Date

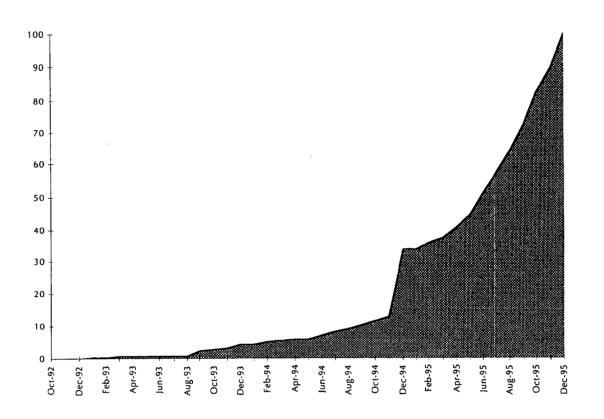
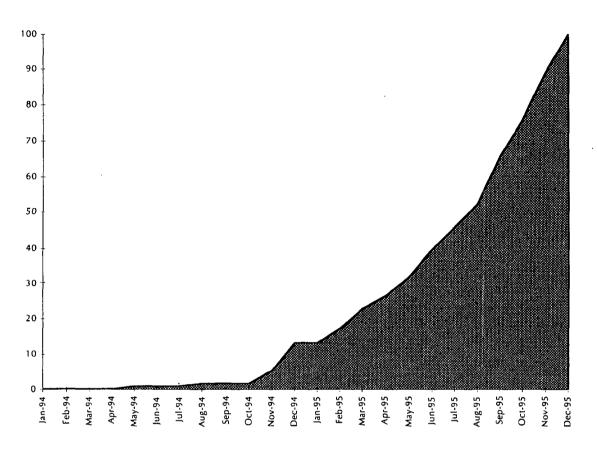




Exhibit C-7 Commercial Refrigeration Rebated Technologies By Estimated Installation Date



## C.5 DATA CENSORING

Three types of data censoring screens were applied to the billing analysis sample frame to remove customers that have invalid billing data, that may not have had their bill properly aggregated to the Site ID level, or that were extremely large users.

## C.5.1 Invalid Usage

For customers to be included in the final billing analysis, customers had to have billing data that met the following three criteria.

The pre- and post-installation annual bills had to have been comprised of at least six non-zero monthly bills. If there were seven or more monthly bills with zero energy, the customer was removed from the analysis. If there were between one and six monthly bills with zero energy, the remaining months were prorated to an annual estimate.

The pre-installation annual bill could not be more than three times or less than one third of the post-installation bill. If this occurred, the customer was removed from the analysis.

The pre-installation annual bill could not be more than twice or less than one half the postinstallation bill, unless the telephone survey responses indicated that the customer had a change at the site that may have caused an increase or decrease in usage, respectively. For example, if a customer doubled their usage and reported an increase in square footage, or an increase in employees, or an additional measure installed, the customer remained in the sample. However, if the customer reported no changes, or only changes that would indicate a decrease in usage, such as a removal of a measure, then the customer was removed from the analysis.

Exhibit C-8 presents the number of participants and nonparticipants that were deleted for each of the above criteria. Note that only 22 nonparticipants were deleted, whereas 123 participants were deleted. This is due to the fact that the nonparticipants were pre-screened to have relatively valid billing data prior to being selected into the nonparticipant survey sample frame. The participants, however, were often a census and no pre-screening was done on their billing data prior to being selected into the participant. Of the 123 participants, 87 were deleted due to the zero bill criteria.

| Participant or<br>Nonparticipant | Zero<br>Monthly<br>Bills >6? | Usage Doubled or<br>Cut in Half, No<br>Corresponding<br>Change at Site? | Usage<br>Tripled or<br>Cut to a<br>Third? | Number<br>Removed<br>From<br>Analysis |
|----------------------------------|------------------------------|-------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|
| NP                               | NO                           | NO                                                                      | YES                                       | 4                                     |
| NP                               | NO                           | YES                                                                     | YES                                       | 3                                     |
| NP                               | YES                          | NO                                                                      | NO                                        | 3                                     |
| NP                               | YES                          | NO                                                                      | YES                                       | 3                                     |
| NP                               | YES                          | YES                                                                     | NO                                        | 1                                     |
| NP                               | YES                          | YES                                                                     | YES                                       | 8                                     |
| TOTAL                            |                              |                                                                         |                                           | 22                                    |
| P                                | NO                           | NO                                                                      | YES                                       | 17                                    |
| Р                                | NO                           | NO                                                                      | YES                                       | 3                                     |
| Р                                | NO                           | YES                                                                     | NO                                        | 2                                     |
| Р                                | NO                           | YES                                                                     | YES                                       | 7                                     |
| Р                                | NO                           | YES                                                                     | YES                                       | 6                                     |
| Р                                | NO                           | YES                                                                     | YES                                       | 1                                     |
| Р                                | YES                          | NO                                                                      | NO                                        | 2                                     |
| Р                                | YES                          | NO                                                                      | NO                                        | 8                                     |
| Р                                | YES                          | NO                                                                      | YES                                       | 5                                     |
| Р                                | YES                          | NO                                                                      | YES                                       | 2                                     |
| Р                                | YES                          | YES                                                                     | NO                                        | 5                                     |
| Р                                | YES                          | YES                                                                     | NO                                        | 5                                     |
| Р                                | YES                          | YES                                                                     | NO                                        | 1                                     |
| Р                                | YES                          | YES                                                                     | YES                                       | 38                                    |
| Р                                | YES                          | YES                                                                     | YES                                       | 21                                    |
| TOTAL                            |                              | · · · · ·                                                               |                                           | 123                                   |

#### Exhibit C-8 Distribution of Customers Removed from Billing Analysis By Data Censoring Criteria Customers with Invalid Billing Data

## C.5.2 Large Customers

Customers whose annual post-installation energy consumption exceeded three million kWh were excluded from the billing analysis. Customers of this size were deleted for a number of reasons.

First, there were 98 participants dropped for this reason, compared to only 10 nonparticipants. This indicated that the nonparticipants would not provide a good control for this group of participants. Very large customers are more likely to participate because they are more aware of the program, since they have more contact with PG&E representatives. Therefore, it is difficult to find a sample of nonparticipants that adequately represents these customers.

Large customers installing measures that provide relatively low levels of savings are particularly problematic in billing analyses of this type. It is very difficult to detect an annual impact even as large as 10,000 kWh in a customer's bill which exceeds 10 million kWh, for example. In addition, large customers are more likely to have made changes at the site, which could significantly affect their energy usage. If the model does not adequately capture all of these changes (possibly due to the unique nature of the change, or an error in the self-reported survey responses) it is likely that the coefficient on the program *energy* impact may reflect the change. While this is true of all customers, regardless of size, it is more of a concern for larger customers because the magnitude of their changes can have significant influence over the results of the model.

## C.5.3 Aggregation to Site ID Level

As mentioned above, one concern with aggregating to the Site ID level is that there may be control numbers associated with a different premise number, service address, or corporation number that are in the same physical site and are being affected by the installed measures. If this is the case, the billing analysis will have the effect of underestimating the impacts. Therefore, a comparison was made between the engineering energy impact and the pre- and post-installation bills to identify any customers where this problem of bill aggregation may exist.

There were 148 participants that were identified as having total Commercial Sector Program energy impacts that were either more than 50 percent of their pre-installation usage or more than 100 percent of their post-installation usage. These 148 participants were further analyzed to determine whether the impact was large relative to usage because of a problem in aggregating the bill, or if the engineering estimates were just over-estimated, in which case the customer would not be removed from the billing analysis.

Three criteria were used to determine if there was a problem with aggregating the bill for these 148 participants. If a participant failed any of these criteria, the customer was removed from the analysis on the basis that the bills were not properly aggregated and the entire impact will not be detected in an analysis of the customer's billing data.

If the customer's annual kWh per square foot was in the bottom tenth percentile of all participants, the customer was removed.

If the customer's annual kWh per employee was in the bottom tenth percentile of all participants, the customer was removed.

The first billing data pull, which consisted of every nonresidential customer in PG&E's service territory over the period of January 1992 to September 1995, was compared to the second data pull, which is being used for the billing analysis. Customer bills from the first billing data pull were aggregated to the Site ID level in the same way described above. These annual aggregated bills were compared to the aggregated bills used in the analysis. If the aggregated bills from the first data pull were more than 50 percent larger than the bills being used in the billing analysis, the customer was removed. This would indicate that either not all of the control numbers that link to a site were provided in the second data pull or, more likely, since 1995 (when the first billing data was pulled and when the customer participated) there has been customer turnover at the site, and there are now additional premise numbers that no longer link to one unique site.

As a results of these three criteria, 102 of the 148 premises were removed. Of the 102 removed customers, 45 failed the invalid usage data screening checks as well. Therefore, only 57 premises were removed solely on these data screening criteria alone.

Exhibit C-9 presents the number of participants that were removed from the analysis for each of the above criteria.

#### Exhibit C-9 Distribution of Customers Removed from Billing Analysis By Data Censoring Criteria Customers with Billing Aggregation Problems

| Low Usage<br>per Sqft? | Low Usage Per<br>Employee? | Low Usage<br>Relative to 1995<br>Billing Data Pull? | Number of<br>Participants<br>Removed |
|------------------------|----------------------------|-----------------------------------------------------|--------------------------------------|
| YES                    | NO                         | NO                                                  | 3                                    |
| YES                    | YES                        | NO                                                  | 1                                    |
| YES                    | YES                        | YES                                                 | 1                                    |
| NO                     | NO                         | YES                                                 | 5                                    |
| NO                     | YES                        | NO                                                  | 1                                    |
| NO                     | YES                        | YES                                                 | . 2                                  |
| YES                    | NO                         | NO                                                  | 27                                   |
| YES                    | NO                         | YES                                                 | 11                                   |
| YES                    | YES                        | NO                                                  | 9                                    |
| YES                    | YES                        | YES                                                 | 7                                    |
| NO                     | NO                         | YES                                                 | 1                                    |
| NO                     | YES                        | NO                                                  | 2                                    |
| NO                     | YES                        | YES                                                 | 1                                    |
| YES                    | NO                         | NO                                                  | 12                                   |
| YES                    | NO                         | YES                                                 | 2                                    |
| YES                    | YES                        | NO                                                  | 11                                   |
| YES                    | YES                        | YES                                                 | 6                                    |
| TOTAL                  |                            |                                                     | 102                                  |

# C.5.4 Other Censoring

In addition to all of the above censoring, three other participants were removed from the analysis for the following reasons. One customer was removed from the analysis because the customer was noted as a "Z-Customer" in the MDSS. PG&E does not claim impacts on "Z-Coded" customers.

Another site had a retrofit performed that will affect a neighboring customer's utility bill. The refrigeration equipment (compressors and condensers) serving the participant are maintained and operated by a nonparticipant. The participant buys liquid ammonia from the nonparticipant via lines running under an adjacent road (driveway) and suction gas is returned to the nonparticipant following use. The impacts of this retrofit (which affect ice production) will be realized by the manufacturer of the liquid ammonia product, a nonparticipant. Therefore, the participating customer was removed from the analysis.

Finally, two other customers were identified as having added the rebated measure installed under the Commercial Program, causing a net increase in energy from the pre- to post-installation period. One of these customers was previously identified as being a large customer and deleted. Therefore, only one extra customer was removed.

Exhibit C-10 summarizes the total number of participants and nonparticipants that were removed from the billing analysis. Exhibits C-11 to C-14 present the final sample sizes used in the billing analysis by business type and technology for participants and by business type for nonparticipants.

#### Exhibit C-10 Distribution of Customers Removed from Billing Analysis By Data Censoring Criteria

| Participant or<br>Nonparticipant | Zero<br>Monthly<br>Bills >67 | Usage<br>Doubled or<br>Cut in Half, No<br>Corresponding<br>Change at Site? | Usage<br>Tripled or<br>Cut to a<br>Third? | PG&E's<br>Z-Coded<br><u>Cust</u> omer? | Impact<br>Affects NP<br>Site? | Rebated<br>Measure<br>Increases<br>Usage? | Large<br>Customer? | Bill Not<br>Aggregated<br>Properly? | Number<br>Removed<br>From<br>Analysis |
|----------------------------------|------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------|--------------------|-------------------------------------|---------------------------------------|
| NP                               | NO                           | NO                                                                         | NO                                        | NO                                     | NO                            | NO                                        | YES                | NO                                  | 10                                    |
| NP                               | NO                           | NO                                                                         | YES                                       | NÓ                                     | NO                            | NÔ                                        | NO                 | NO                                  | 4                                     |
| NP                               | NO                           | YES                                                                        | YES                                       | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 3                                     |
| NP                               | YES                          | NO                                                                         | NO                                        | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 3                                     |
| NP                               | YES                          | NO                                                                         | YES                                       | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 3                                     |
| NP                               | YES                          | YÉS                                                                        | NO                                        | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 1                                     |
| NP                               | YES                          | YES                                                                        | YES                                       | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 8                                     |
| TOTAL                            |                              |                                                                            |                                           |                                        |                               |                                           |                    |                                     | 32                                    |
| Р                                | NO                           | NO                                                                         | NO                                        | NO                                     | NO                            | NO                                        | NO                 | YES                                 | 57                                    |
| Р                                | NO                           | NO                                                                         | NO                                        | NO                                     | NO                            | NO                                        | YES                | NO                                  | 98                                    |
| P                                | NO                           | NO                                                                         | NO                                        | NO                                     | NO                            | YES                                       | YES                | NO                                  | 1                                     |
| Р                                | NO                           | NO                                                                         | NO                                        | NO                                     | NO                            | YES                                       | NO                 | NO                                  | 1                                     |
| Р                                | NO                           | NO                                                                         | NO                                        | NO                                     | YES                           | NO                                        | NO                 | NO                                  | 1                                     |
| Р                                | NO                           | NO                                                                         | NO                                        | YES                                    | NO                            | NO                                        | NO                 | NO                                  | 1                                     |
| P                                | NO                           | NO                                                                         | YES                                       | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 17                                    |
| Ρ                                | NO                           | NO                                                                         | YES                                       | NO                                     | NO                            | NO                                        | NO                 | YES                                 | 3                                     |
| Р                                | NO                           | YES                                                                        | NO                                        | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 2                                     |
| Р                                | NO                           | YES                                                                        | YES                                       | NO                                     | NÖ                            | NÖ                                        | NO                 | NO                                  | 7                                     |
| Р                                | NO                           | YES                                                                        | YES                                       | NO                                     | NO                            | NO                                        | NO                 | YES                                 | 6                                     |
| Р                                | NO                           | YES                                                                        | YES                                       | NO                                     | NO                            | NO                                        | YES                | NO                                  | 1                                     |
| Р                                | YES                          | NO                                                                         | NO                                        | NO                                     | NO                            | NO                                        | NO                 | NÖ                                  | 2                                     |
| Р                                | YES                          | NO                                                                         | NO                                        | NO                                     | NO                            | NO                                        | NO                 | YES                                 | 8                                     |
| Р                                | YES                          | NO                                                                         | YES                                       | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 5                                     |
| Р                                | YES                          | NO                                                                         | YES                                       | NO                                     | NO                            | NO                                        | NO                 | YES                                 | 2                                     |
| Р                                | YES                          | YES                                                                        | NO                                        | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 5                                     |
| P                                | YES                          | YES                                                                        | NO                                        | NO                                     | NO                            | NÔ                                        | NO                 | YES                                 | 5                                     |
| P                                | YES                          | YES                                                                        | NO                                        | NO                                     | NO                            | NO                                        | YES                | NO                                  | 1                                     |
| Р                                | YES                          | YES                                                                        | YES                                       | NO                                     | NO                            | NO                                        | NO                 | NO                                  | 38                                    |
| P                                | YES                          | YES                                                                        | YES                                       | NO                                     | NO                            | NO                                        | NO                 | YES                                 | 21                                    |
| TOTAL                            |                              |                                                                            |                                           |                                        |                               |                                           |                    |                                     | 282                                   |

# Exhibit C-11 Billing Analysis Sample Used Post-Censoring Indoor Lighting End-Use Technologies

|                                     |        | <u></u> |                        |        |         | Bus        | siness T    | уре                          |               |                     |                      | <u> </u> |        |
|-------------------------------------|--------|---------|------------------------|--------|---------|------------|-------------|------------------------------|---------------|---------------------|----------------------|----------|--------|
| Program and Technology Group        | Office | Retail  | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Matel                  | Warehouse     | Personal<br>Service | Community<br>Service | Misc.    | Total  |
| Retrofit Express Program            |        |         |                        |        |         |            |             |                              |               |                     |                      |          |        |
| Compact Fluorescent                 | 46     | 20      | 2                      | 47     | 8       | 10         | 15          | 13                           | 5             | 3                   | 12                   | 2        | 183    |
| Incandescent to Fluorescent         | 5      | 0       | 0                      | 3      | 0       | 1          | 0           | 1                            | 0             | 0                   | 1                    | 0        | 11     |
| Efficient Ballast                   | 5      | 7       | 1                      | 4      | 4       | 0          | 1           | 0                            | 1             | 0                   | 1                    | 0        | 24     |
| T8 Lamps and Electronic Ballasts    | 109    | 53      | 2                      | 95     | 29      | 13         | 25          | 6                            | 16            | 8                   | 22                   | 6        | 384    |
| Optical Reflectors w/ Fluor. Delamp | 60     | 24      | 2                      | 26     | 12      | 10         | 8           | 1                            | 5             | 5                   | 4                    | 2        | 159    |
| High Intensity Discharge            | 3      | 5       | 1                      | 10     | 0       | 0          | 0           | 1                            | 10            | 4                   | 2                    | 5        | 41     |
| Halogen                             | 8      | 3       | 1                      | 7      | 1       | 2          | 1           | 1                            | 1             | 0                   | 5                    | 1        | 31     |
| Exit Signs                          | 29     | 10      | 1                      | 22     | 2       | 5          | 4           | 0                            | 2             | 1                   | 5                    | 1        | 82     |
| Controls                            | 14     | 1       | 0                      | 25     | 0       | 1          | 3           | 2                            | 2             | 1                   | 4                    | 4        | 57     |
| Retrofit Express Total              | 123    | 61      | 3                      | 99     | 40      | 22         | 27          | 16                           | 20            | 13                  | 30                   | 10       | 464    |
| Customized Incentives Program       |        |         |                        |        |         |            |             |                              |               |                     |                      |          |        |
| Compact Fluorescent                 |        | 0.53    | [                      | 1.2    |         |            |             | -1K-1                        |               | 2                   |                      |          |        |
| Standard Fluorescent                |        |         |                        |        |         | 1          | 1.          | To be a second of the second |               | 11 <sup>-11-7</sup> | 11                   |          |        |
| High Intensity Discharge            |        |         |                        |        |         |            |             |                              | Contrating of | 6.00                | 5.577                |          | 1 C PA |
| Halogen                             |        | 61861   |                        |        | Sec. 3  |            |             | 2.1                          |               |                     |                      |          |        |
| Exit Signs                          | 122    |         |                        |        |         |            |             |                              |               |                     |                      |          |        |
| Controls                            |        | right - |                        |        |         |            |             |                              |               |                     |                      |          |        |
| Other                               |        |         |                        | S2191  | 50.4 T  | S. 6       |             |                              | -             |                     |                      |          |        |
| Customized Incentives Total         | 5      | 0       | 0                      | 0      | 9       | 0          | 0           | 0                            | 1             | 0                   | 0                    | 0        | 15     |
| Total                               | 123    | 61      | 3                      | 99     | 40      | 22         | 27          | 16                           | 20            | 13                  | 30                   | 10       | 464    |

## Exhibit C-12 Billing Analysis Sample Used Post-Censoring HVAC End-Use Technologies

|                                     | Business Type |        |                        |        |         |            |             |             |           |                     |                      |       |       |
|-------------------------------------|---------------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group        | Office        | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program            |               |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                         | 75            | 26     | -                      | 24     | 4       | 10         | 20          | 3           | 8         | 4                   | 19                   | 5     | 198   |
| Variable Speed Drive HVAC Fan       | 12            | 10     | -                      | 2      |         | -          | -           | -           | -         | -                   | -                    | 1     | 25    |
| Package Terminal A/C                | 2             | -      | •                      | 7      | -       | 2          | -           | 13          | -         | -                   | -                    | -     | 24    |
| Programmable Thermostat             | 36            | 10     | -                      | 13     | -       | 6          | 7           | 2           | 2         | 2                   | 10                   | 1     | 89    |
| Reflective Window Film              | 34            | 9      | -                      | 3      | 3       | 2          | 7           | 3           | 3         | 2                   | 8                    | 2     | 76    |
| Water Chiller                       | •             | 1      | -                      | 1      | -       | -          | -           | •           | -         | -                   | 2                    | -     | 4     |
| Other RE Measures                   | -             | 1      | -                      | -      | 1       | 1          | -           | -           | -         | -                   | -                    | •     | 3     |
| Retrofit Express Total              | 131           | 45     | -                      | 41     | 8       | 17         | 27          | 19          | 11        | 7                   | 30                   | 7     | 343   |
| Retrofit Efficiency Options Program |               |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive            | •             | -      | •                      | •      | -       | -          | -           | •           | -         | -                   | -                    | -     | -     |
| Water Chiller                       | -             | -      | •                      | 1      | -       | -          | -           | •           | -         | -                   | -                    | -     | 1     |
| CAV to VAV                          | -             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | •     | -     |
| Cooling Tower                       | -             | -      | -                      | 1      | ,<br>   |            | -           | -           | -         | -                   | -                    | -     | 1     |
| Retrofit Efficiency Options Total   | •             | -      | •                      | 1      | -       | -          | -           | -           |           | -                   | •                    | -     | 1     |
| Customized Incentives Program       |               |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive           | 1             | -      | -                      | -      | 1       | -          | -           | -           | -         | -                   | -                    | -     | 2     |
| High Efficiency Chiller             | •             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | •                    | -     | -     |
| Energy Management System            | 4             | -      | -                      | 14     | 1       | -          | -           | -           | 1         | -                   | •                    | -     | 20    |
| Other CI Measures                   | 2             | •      | 1                      | 1      | -       | -          | -           | -           | 1         | •                   |                      | -     | 5     |
| Customized Incentives Total         | 7             | •      | 1                      | 15     | 2       | -          | -           | -           | 1         | -                   | -                    | -     | 26    |
| Total                               | 138           | 45     | 1                      | 55     | 10      | 17         | 27          | 19          | 12        | 7                   | 30                   | 7     | 368   |

ς.

# Exhibit C-13 Billing Analysis Sample Used Post-Censoring Refrigeration End-Use Technologies

|                                     |        |        |                        |        |           | Bu         | siness T    | уре         |           |                     |                      |       |          |
|-------------------------------------|--------|--------|------------------------|--------|-----------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|----------|
| Program and Technology              | Office | Retail | College/<br>University | School | Grocery   | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total    |
| Retrofit Express Program            |        |        |                        |        |           |            |             |             |           |                     |                      |       |          |
| Refrigeration Load Reduction        |        |        |                        |        |           |            |             |             |           |                     |                      |       |          |
| Low Temperature Glass/Acrylic Door  | -      | -      | -                      | -      | -         | -          | -           |             | -         | - 1                 | -                    | -     | -        |
| Heatless Door                       | -      | -      | -                      | -      | 2         | -          | -           | -           | -         |                     | -                    | •     | 2        |
| Cooler/Freezer Door Gaskets         | -      | 1      | -                      | -      | 11        | 3          | -           | -           | -         | 1                   | -                    | -     | 16       |
| Auto Closer for Cooler/Freezer      | -      | 1      | -                      |        | 2         | 1          | -           | 1           | -         | 1                   | -                    | -     | 6        |
| Medium Temperature Case w/ Door     | -      | -      |                        |        | 6         | 1          | -           | -           | -         | <u> </u>            |                      |       | 7        |
| Strip Curtains for Walk-in          | 1      | 1      | -                      | -      | 7         | 5          | -           | -           | 1         | -                   | 1                    |       | 16       |
| Low Temperature Case w/ Door        | -      | -      | •                      | -      | 3         | 1          | -           | -           | -         | -                   |                      | -     | 4        |
| Night Covers for Display Cases      |        | 1      | -                      | -      | 21        | 1          | -           |             | -         | -                   | -                    | -     | 23       |
| Compressor Upgrades                 |        |        |                        |        |           |            |             |             |           | I                   | 1                    |       |          |
| Mechanical Subcooler                | -      | -      | -                      | -      | 1         |            | -           | -           | -         | - 1                 | - 1                  | -     | 1        |
| Multiplex Comprssor System          | -      |        |                        |        | 1         |            |             |             |           |                     |                      | -     |          |
| Adjustable Speed Drive              | •      |        |                        |        | -         | -          | -           |             |           | -                   | -                    | -     | -        |
| Floating Head Pressure Controls     | -      | -      |                        | -      | -         |            | -           | -           |           | <u> </u>            |                      |       | -        |
| Condenser Upgrades                  |        |        | <b>_</b>               |        |           |            | ·           | · · · · ·   |           |                     | L                    |       |          |
| Oversized Air-Cooled Condenser      | •      | -      | - 1                    | -      | 1         | -          | -           | -           | -         | - 1                 | -                    | -     | 1        |
| Oversized Evaporative Condenser     |        | -      | -                      | -      | -         | -          | -           | -           |           | •                   |                      | -     | -        |
| Evaporator Upgrades                 |        |        |                        |        |           |            |             |             |           | L                   |                      |       | ·        |
| Walk-in Cooler PSC Evaporator Motor | -      | -      | -                      |        | 1         |            |             |             | -         |                     | -                    | -     | 1        |
| Display PSC Evaporator Motor        | -      | -      | -                      | -      | 2         | •          | -           |             | -         | -                   |                      | -     | 2        |
| Other                               |        |        |                        |        |           | L          |             |             |           | <u> </u>            |                      |       |          |
| Anti-Sweat Heater Control           | -      | -      | -                      | -      | 1         | •          | -           | -           | -         | -                   | -                    | •     | 1        |
| Suction Line Insulation             | 1      |        | •                      |        | 1         | -          | -           | -           | -         | -                   | -                    |       | 2        |
| Display Case Electronic Ballast     | -      | 1      | -                      | -      | 4         | •          | -           | -           | -         | -                   |                      | -     | 5        |
| Non-Electric Condensate Evaporator  | 3      | 3      | 1                      | 2      | 11        | 87         | -           | 1           | 1         | 3                   | 9                    |       | 121      |
| Retrofit Express Total              | 4      | 7      | 1                      | 2      | 56        | 94         | - 1         | 1           | 2         | 4                   | 10                   |       | 181      |
| Customized Incentives Program       |        | •••••• |                        |        | · · · · · |            | <u> </u>    |             |           |                     |                      |       |          |
| Compressor Upgrades                 |        |        |                        |        |           |            |             |             |           |                     |                      |       |          |
| Floating Head Pressure Controls     | -      | -      | -                      | -      | -         |            | -           | -           | -         | -                   | r .                  | 1     |          |
| Booster Desuperheaters              | -      | -      | •                      | -      | -         | -          | -           | -           | -         | -                   |                      |       |          |
| Condenser Upgrades                  |        | •      |                        |        | A         |            |             |             |           |                     |                      |       | L        |
| Oversized Condensers                |        | -      | -                      | -      | •         | -          | -           | -           | -         | -                   |                      | -     | -        |
| Öther                               |        | •      | <b></b>                |        | ·         |            |             | L           |           |                     |                      |       | <u> </u> |
| Refrigeration EMS                   |        | -      | -                      | -      | 2         | -          | -           | •           | -         | -                   | -                    |       | 2        |
| Refrigeration Add/Change            | 1      | -      | -                      |        | -         |            | -           | -           | -         | -                   | -                    |       | 1        |
| Refrigeration Other                 | -      | -      | -                      | -      |           | -          |             | -           | -         | -                   |                      | -     |          |
| Customized Incentives Total         | 1      | -      | - 1                    |        | 2         | -          | · ·         | -           | -         | <u> </u>            | •                    |       | 3        |
| Total                               | 5      | 7      | 1                      | 2      | 57        | 94         |             | 1           | 2         | 4                   | 10                   | -     | 183      |

### Exhibit C-14 Billing Analysis Sample Used Post-Censoring Nonparticipants

|                              |        |        |                        |        |         | Bus        | iness T     | /pe         |           |                     | ·                    |       |       |
|------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Total                        | 74     | 124    | 1                      | 26     | 185     | 34         | 27          | 15          | 53        | 6                   | 31                   | 44    | 620   |

### C.6 MODEL SPECIFICATION

The billing regression analysis for the Commercial Program Evaluation used two different multivariate regression models under an integrated framework of providing unbiased and robust model estimates in the commercial sector. The key feature of the approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variation in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for participants as a function of pre-installation year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group.

The resulting SAE coefficients are used to adjust the engineering estimates of expected annual energy impacts for the entire participant population. These impacts are presented in *Section 4* and are used to compute program realization rates.

#### C.6.1 Baseline Model

The baseline model explains post-installation energy usage as a function of the pre-installation energy usage, weather changes, and customer self-reports of factors that could affect energy usage. In order to isolate the program impact from the energy usage changes, only the comparison group is used to fit this model. The baseline model has the following functional form:

$$kWh_{post,i} = \sum_{j} (\alpha_{j} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i} + \sum_{k} \eta_{k}Chg_{i,k} + \varepsilon$$

Where

 $kWh_{post,i}$  and  $kWh_{pre,i}$  are customer i's annualized energy usage for the post- and preinstallation periods, respectively;

 $\Delta$ CDD<sub>i</sub> and  $\Delta$ HDD<sub>i</sub> are the annual change of cooling and heating degree days (base 65°F) between the post-installation year and pre-installation year;

 $E e_{i_i}$  is an indicator variable (0/1) for the ith customer, which equals 1 if the customer has electric heating;

 $Chg_{i,k}$  are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees and square footage;

 $\alpha_j$  is the indicator variable (0/1) for the jth business type, which equals 1 if the customer is in that business type and 0 otherwise;

 $\beta$ ,  $\gamma$  and  $\phi$  are the estimated slopes on their respective independent variables. Separate slopes on pre-usage are estimated by business type; and,

 $\boldsymbol{\epsilon}$  is the random error term of the model.

For each customer in the analysis dataset, a post-installation predicted usage value is calculated using the parameters of the baseline models estimated for the 1994 to 1996 analysis period. They both take the same functional form with different segment-level intercept series ( $\alpha_j$ ) and slopes ( $\beta$ ,  $\gamma$  and  $\phi$ ):

 $k\hat{W}h_{post,i} = F_{pre}(kWh_{pre}, \Delta CDD, \Delta HDD) = \sum_{j} (\alpha_{j} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i}$ 

Exhibit C-15 summarizes the final baseline model results that were estimated using 620 customers, as discussed in the *Data Censoring* section. Exhibit C-15 summaries the independent variables used in the baseline model, together with the t-statistics and the sample sizes available for each parameter estimate used to predict the post-period usage. The final functional relation is estimated as follows:

Baseline Model (1994 to 1996):

$$\begin{split} k\hat{W}h_{96,i} &= -40834*OFF\_LG+1349*OFF\_SM-19849*RET\_LG-120*RET\_SM\\ &+942*SCHOOLS+5378*GROCERY+8461*SUPERMKT+4756*REST\\ &+10964*HEALTH+2403*HOTEL+4167*WAREHOUS+675*PERSONAL\\ &+4795*COMMUN+37895*MISCBT\\ &+1.13*OFF\_LG4+0.91*OFF\_SM4+0.99*RET\_LG4+1.00*RET\_SM4\\ &+1.00*SCHOOLS4+0.98*GROCERY4+0.98*SUPERMKT4+0.99*REST4\\ &+0.99*COLLEGE4+0.94*HEALTH4+1.02*HOTEL4+1.04*WAREHOUS4\\ &+0.94*PERSONAL4+0.95*COMMUN4+0.95*MISCBT4\\ &+0.0000456*CDD_{96-94,i}*kWh_{94,i}+0.0000324*HDD_{96-94,i}*kWh_{94,i} \end{split}$$

| Parameter Descriptions | Analysis<br>Variable Name              | Units   | Parameter<br>Estimate | t-Statistic | Sample<br>Size |
|------------------------|----------------------------------------|---------|-----------------------|-------------|----------------|
| Intercepts             | Variable Maille                        | Units   | Estimate              | t-Statistic | 5120           |
| •                      |                                        | (0,1)   | 40924                 | 0.00        | 10             |
| Large Office           | OFF_LG                                 | (0,1)   | -40834                | 0.99        | 19             |
| Small Office           | OFF_SM                                 | (0,1)   | 1349                  | 0.07        | 55             |
| Large Retail           | RET_LG                                 | (0,1)   | 19849                 | 0.44        | 22             |
| Small Retail           | RET_SM                                 | (0,1)   | -121                  | 0.01        | 102            |
| Schools                | SCHOOLS                                | (0,1)   | 942                   | 0.04        | 26             |
| Grocery                | GROCERY                                | (0,1)   | 5378                  | 0.33        | 127            |
| Supermarket            | SUPERMKT                               | (0,1)   | 8461                  | 0.30        | 58             |
| Restaruant             | REST                                   | (0,1)   | 4756                  | 0.19        | 34             |
| College/University     | COLLEGE                                | (0,1)   | 0                     | •           | 1              |
| Health Care            | HEALTH                                 | (0,1)   | 10964                 | 0.50        | 27             |
| Hotel/Motel            | HOTEL                                  | (0,1)   | 2403                  | 0.07        | 15             |
| Warehouse              | WAREHOUS                               | (0,1)   | 4167                  | 0.19        | 53             |
| Personal Service       | PERSONAL                               | (0,1)   | 675                   | 0.01        | 6              |
| Community Service      | COMMUN                                 | (0,1)   | 4795                  | 0.25        | 31             |
| Miscellaneous          | MISCBT                                 | (0,1)   | 37895                 | 1.95        | 44             |
| Pre Usage              |                                        |         |                       |             |                |
| Large Office           | OFF_LG4                                | kWh     | 1.13                  | 27.16       | 19             |
| Small Office           | OFF_SM4                                | kWh     | 0.91                  | 7.39        | 55             |
| Large Retail           | RET_LG4                                | kWh     | 0.99                  | 26.44       | 22             |
| Small Retail           | RET_SM4                                | kWh     | 1.00                  | 9.48        | 102            |
| Schools                | SCHOOLS4                               | kWh     | 1.00                  | 33.42       | 26             |
| Grocery                | GROCERY4                               | kWh     | 0.98                  | 8.90        | 127            |
| Supermarket            | SUPERMKT4                              | kWh     | 0.98                  | 38.46       | 58             |
| Restaruant             | REST4                                  | kWh     | 0.99                  | 10.94       | 34             |
| College/University     | COLLEGE4                               | kWh     | 0.99                  | 3.36        | 1              |
| Health Care            | HEALTH4                                | kWh     | 0.94                  | 28.61       | 27             |
| Hotel/Motel            | HOTEL4                                 | kWh     | 1.02                  | 9.50        | 15             |
| Warehouse              | WAREHOUS4                              | kWh     | 1.04                  | 53.01       | 53             |
| Personal Service       | PERSONAL4                              | kWh     | 0.94                  | 4.37        | 6              |
| Community Service      | COMMUN4                                | kWh     | 0.95                  | 25.30       | 31             |
| Miscellaneous          | MISCBT4                                | kWh     | 0.95                  | 35.82       | 44             |
| Weather Variables      | ······································ |         |                       |             |                |
| Change in HDD          | HDD9694                                | HDD*kWh | 0.0000324             | 1.06        | 620            |
| Change in CDD          | CDD9694                                | CDD*kWh | 0.0000456             | 0.78        | 620            |

# Exhibit C-15 Billing Regression Analysis Final Baseline Model Outputs

# C.6.2 SAE Model

Using the predicted post-installation usage values estimated in the baseline model, a simultaneous equation model is specified to estimate the SAE coefficients on energy impact. The SAE simultaneous system can be described as follows:

$$kWh_{96,i} - F_{94}(kWh_{94}, \Delta CDD \ \Delta HDD) = \sum_{m} \beta_{m} Eng_{m} + \sum_{k} \eta_{k} Chg_{i,k} + \mu_{i}$$

The difference between predicted and actual usage in 1996 was used as the dependent variable in a SAE model. Based upon the estimated participation month, the pro-rated engineering estimates and change variables were used to explain the deviation of the actual usage from the predicted usage. As discussed above, the predicted usage is estimated using only the comparison group to forecast the 1996 usage as a function of 1994 usage and change of cooling and heating degree days from 1994 to 1996. This usage prediction presents what would have happened in the absence of the program.

### C.7 BILLING REGRESSION ANALYSIS RESULTS

The coefficients of the engineering impact, termed the SAE coefficients, are used to calculate the expost gross energy impacts. Independent realization rates are estimated to provide PG&E with business type- and technology group-level results. Exhibit C-16 summarizes the final SAE model results that were estimated using 935 participants, as discussed in the *Data Censoring* section. Exhibit C-16 summarises the independent variables used in the SAE model, together with the t-statistics and the sample sizes available for each parameter estimate.

| Parameter Descriptions      | Units                                 | Parameter<br>Estimate | t-Statistic | Sample<br>Size |
|-----------------------------|---------------------------------------|-----------------------|-------------|----------------|
| SAE Coefficients            | Onto                                  | Lotinute              |             |                |
| Lighting End Use            |                                       |                       |             |                |
| Office Flourescents         | kWh                                   | -1.00                 | 14.67       | 116            |
| Other Flourescents          | kWh                                   | -0.68                 | 7.41        | 261            |
| Controls                    | kWh                                   | -1.38                 | 2.09        | 57             |
| Warehouse HIDs              | kWh                                   | 0.02                  | 0.07        | 10             |
| School HIDS                 | kWh                                   | 0.11                  | 0.30        | 10             |
| Other RE Lighting           | kWh                                   | -1.26                 | 2.15        | 119            |
| Custom Lighting             | kWh                                   | -0.51                 | 3.07        | 15             |
| HVAC End Use                |                                       |                       |             |                |
| Central A/Cs                | kWh                                   | -2.07                 | 3.67        | 184            |
| ASDs                        | kWh                                   | -1.90                 | 6.75        | 27             |
| Chillers                    | kWh                                   | -1.58                 | 2.39        | 5              |
| EMS                         | kWh                                   | -1.03                 | 8.38        | 20             |
| Other Custom HVAC           | kWh                                   | -0.65                 | 4.76        | 5              |
| Office Thermostats          | kWh                                   | 0.05                  | 1.06        | 36             |
| Other RE/REO HVAC           | kWh                                   | -0.90                 | 2.89        | 153            |
| Refrigeration               | · · · · · · · · · · · · · · · · · · · |                       |             |                |
| Custom Refrigeration        | kWh                                   | -0.75                 | 2.00        | 3              |
| RE/REO Refrigeration        | kWh                                   | -0.53                 | 1.98        | 181            |
| Other End Uses              | kWh                                   |                       |             |                |
| Other                       | kWh                                   | -1.71                 | 2.90        | 62             |
| Change Variables            | kWh                                   |                       |             |                |
| Cooling System Replacement  | (0,1)*kWh                             | -0.03                 | 0.70        | 10             |
| Lighting System Replacement | (0,1)*kWh                             | -0.08                 | 4.17        | 48             |
| Change in Employees         | (±1,0)*kWh                            | 0.01                  | 0.64        | 57             |
| Square Foot Change          | ± sqft                                | 4.42                  | 2.37        | 27             |
| Heating System Replacement  | (0,1)*kWh                             | -0.07                 | 0.04        | 4              |
| Other Equipment Change      | (0,1)*kWh                             | 0.03                  | 1.17        | 42             |
| Remove Equipment            | (0,1)*kWh                             | 0.08                  | 0.64        | 2              |
| Refrigeration Replacement   | (0,1)*kWh                             | 0.00                  | 0.01        | 3              |
| Add Equipement              | (0,1)*kWh                             | 0.11                  | 0.49        | 11             |
| Other Additions             | (0,1)*kWh                             | 0.14                  | 12.41       | 375            |

## Exhibit C-16 Billing Regression Analysis Final Model Outputs

The dependent variable is the difference between the actual and predicted 1996 usage using the 1994 baseline model.

SAE coefficients are calculated for 16 different combinations of business type and measure. Primarily those measures that have broad participation and relatively high expected impacts were supported by separate SAE coefficients. In addition, a separate SAE coefficient was calculated for other Commercial Program measures outside Lighting, HVAC, and Refrigeration.

Attempts were made to estimate the SAE coefficients at a finer level of segmentation, but generally either one of two problems were encountered. First, available sample sizes were too small to

support a finer level of segmentation. Second, certain parameters were correlated with each other and needed to be combined into a single parameter (a standard econometric solution to solving the problem of colinearity). For example, it was determined that there was a high incidence of compact and standard fluorescent installations at the same site in office buildings. Therefore, there was enough correlation between the compact and fluorescent engineering estimates to warrant combining the two estimates into a single fluorescent estimate in the model.

All but three of the SAE coefficients are significant at the 95 percent confidence level (t-statistics greater than 1.96). In addition, all of the statistically significant SAE coefficients were the correct sign, and therefore were used in the calculation of the final ex post energy calculations. The three SAE coefficients that were not significant at the 95 percent confidence interval (HIDs in warehouses and schools, and thermostats in offices) were not used in the final ex post energy calculations. Because each of the insignificant SAE coefficients were also the wrong sign, they were set to zero. Therefore, no energy impacts are being claimed for these three segments.

All the of the HVAC technologies are represented in the SAE billing analysis, except for REO Variable Frequency Drives (VFD), REO CAV to VAV, and Customized Incentive Chillers, as shown in Exhibit C-12. Although these measures represent only ten percent of the energy impact, an approach needed to be developed for adjusting the engineering energy impact estimate for these measures.

The REO VFD measure is very similar to those installed under the RE and Customized Incentive programs, and the engineering estimate is calculated using the same approach. Therefore, engineering energy impact estimate for the REO VFD measure was adjusted by the SAE coefficient estimated for the RE and Customized Incentive measures.

Three approaches were considered for adjusting the engineering energy impact estimate for the REO CAV to VAV measure: (1) applying the Other RE HVAC SAE coefficient, (2) applying the Other Custom HVAC SAE coefficient, or (3) leaving the engineering estimate unadjusted. Because the REO CAV to VAV measure is usually installed in large businesses, typical of those installing Customized Incentive measures, the Other Custom HVAC SAE coefficient was used to adjust the engineering energy impact estimate for the REO CAV to VAV measure. This is also the most conservative approach since the SAE coefficient is only 0.65.

The engineering energy impact for Chillers was estimated differently for Customized Incentive applications than for RE and REO applications, due to the different types of businesses that install these measures. Therefore, the engineering energy impact estimate for Customized Incentive Chillers was left unadjusted, which is conservative compared to the alternative approach of applying the 1.58 SAE coefficient estimated for the RE and REO applications.

The SAE coefficient of 0.65 for Other Custom HVAC measures is based on a sample size of only five sites, compared to the 43 unique sites that installed "Other" Customized Incentive HVAC measures in 1995. In addition, these five sites represent only seven percent of the total ex ante energy impact contributed by these 43 sites. Also, one third of the customers installing "Other" Customized Incentive HVAC measures have usage over 3 million kWh per year, which are not represented in the SAE analysis.

The larger customers (usage over 3 million kWh per year), however, are very well represented in the on-site audit sample, for which calibrated engineering energy impacts were estimated. Sixteen sites, which represent 53 percent of the total ex ante energy impact, were on-site audited, one of which was included in the SAE billing analysis. The ratio of the engineering energy impact estimate to the ex ante estimate is 0.79 for the on-site audit sample. This can be directly compared to the SAE coefficient, because ex ante estimates were used as the engineering energy impact estimates for the billing analysis, as mentioned above.

Three approaches were considered for estimating the ex post gross energy impact for the "Other" Customized Incentive HVAC measures:

- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population.
- The 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate from the on-site audit sample could be applied to the ex ante estimate of gross energy impact for the population.
- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population that is most similar to the SAE sample, and the 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate could be applied to the population most similar to the on-site audit sample.

The approach of applying the SAE coefficient to the ex ante estimate of gross energy impact for the population, which is the most conservative method, was chosen for two reasons. First, the SAE coefficient provides a statistically adjusted result that is significant at the 95 percent confidence level. Second, the 0.79 ratio based on the on-site audit is very sensitive to a few individual on-site results. For example, the ratio of the engineering to ex ante estimate is 1.51 for the site with the largest energy impact. If the engineering estimate was set equal to the ex ante estimate for this customer, the overall ratio for all on-sites would be 0.64. Conversely, if the site with the second largest energy impact, which has a ratio of 0.41, had an engineering estimate set equal to the ex ante estimate, the overall ratio would be 0.95.

The SAE coefficient of 0.75 for Customized Incentive Refrigeration measures is based on a sample size of only three sites, compared to the 53 unique sites that installed Customized Incentive Refrigeration measures in 1995. Adjusting the engineering estimates of energy impact by 0.75 for all Customized Incentive measures should be considered conservative because it is likely that a sample size of three may not be representative of the population. An alternative approach would be to adjust only those measures that are similar to the three represented in the billing analysis, and leave the remaining measures unadjusted. It was found that the ratio of the engineering energy to the ex ante gross energy estimate was 98 percent over all 53 unique sites, and 94 percent for the three sites used in the SAE analysis. Because the ratio for the SAE sample is similar to the population's ratio and because the SAE coefficient was statistically significant at the 95 percent confidence level, the conservative approach of adjusting all Customized Incentive Refrigeration measures by 0.75 was chosen.

Impact estimates from the MDSS for other end uses were included in the model for customers that installed measures outside the Lighting, HVAC, and Refrigeration end uses. Although this result is statistically significant and the correct sign, it is not recommended that this value be used because the sample may not be representative of the population of participants installing these measures.

The majority of the change variables that were included in the model were not statistically significant at the 95 percent confidence level. Most of the parameter estimates are the correct sign, and those that are not have very low t-statistics. All but one variable, was determined solely on telephone survey responses. The change variable termed "other additions" was determined by comparing the predicted estimate of post-installation usage, based on the baseline model, to the actual post-installation usage. If the predicted usage is less than the actual post-installation usage, it is likely that some change occurred at the premise that would cause the usage to increase. An analysis of these customers revealed that two thirds of them indicated through the telephone survey that some change did occur at the premise. However, almost half of these customers did not provide a date for when the change occurred. Therefore, the "other additions" variable was

created in an attempt to capture other changes that would cause usage to increase, which were not explained by the other independent variables in the model.

The final SAE coefficients for the Lighting, HVAC, and Refrigeration end uses are provided in Exhibits C-17 through C-19, respectively. The SAE coefficients are multiplied by the evaluation estimates of gross energy impact to calculate the gross ex post energy impacts.

| Exhibit C-17                                                    |
|-----------------------------------------------------------------|
| Commercial Indoor Lighting Gross Energy Impact SAE Coefficients |
| By Business Type and Technology Group                           |

| Business Type                       |        |        | _                      |        |         | SAE        | Coeffic     | ients       |           |                     |                      |       |       |
|-------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group        | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program            |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Compact Fluorescent                 | 1.00   | 0.68   | 0.68                   | 0.68   | 0.68    | 0.68       | 0.68        | 0.68        | 0.68      | 0.68                | 0.68                 | 0.68  |       |
| Incandescent to Fluorescent         | 1.00   | 0.68   | 0.68                   | 0.68   | 0.68    | 0.68       | 0.68        | 0.68        | 0.68      | 0.68                | 0.68                 | 0.68  |       |
| Efficient Ballast                   | 1.00   | 0.68   | 0.68                   | 0.68   | 0.68    | 0.68       | 0.68        | 0.68        | 0.68      | 0.68                | 0.68                 | 0.68  |       |
| T8 Lamps and Electronic Ballasts    | 1.00   | 0.68   | 0.68                   | 0.68   | 0.68    | 0.68       | 0.68        | 0.68        | 0.68      | 0.68                | 0.68                 | 0.68  |       |
| Optical Reflectors w/ Fluor. Delamp | 1.00   | 0.68   | 0.68                   | 0.68   | 0.68    | 0.68       | 0.68        | 0.68        | 0.68      | 0.68                | 0.68                 | 0.68  |       |
| High Intensity Discharge            | 1.26   | 1.26   | 1.26                   | 0.00   | 1.26    | 1.26       | 1.26        | 1.26        | 0.00      | 1.26                | 1.26                 | 1.26  | 翻翻    |
| Halogen                             | 1.26   | 1.26   | 1.26                   | 1.26   | 1.26    | 1.26       | 1.26        | 1.26        | 1.26      | 1.26                | 1.26                 | 1.26  |       |
| Exit Signs                          | 1.26   | 1.26   | 1.26                   | 1.26   | 1.26    | 1.26       | 1.26        | 1.26        | 1.26      | 1.26                | 1.26                 | 1.26  |       |
| Controls                            | 1.38   | 1.38   | 1.38                   | 1.38   | 1.38    | 1.38       | 1.38        | 1.38        | 1.38      | 1.38                | 1.38                 | 1.38  |       |
| Retrofit Express Total              |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Customized Incentives Program       |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Compact Fluorescent                 | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| Standard Fluorescent                | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| High Intensity Discharge            | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| Halogen                             | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| Exit Signs                          | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| Controls                            | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| Other                               | 0.51   | 0.51   | 0.51                   | 0.51   | 0.51    | 0.51       | 0.51        | 0.51        | 0.51      | 0.51                | 0.51                 | 0.51  |       |
| Customized Incentives Total         |        | 888888 |                        |        |         |            |             |             |           |                     |                      |       |       |
| Total                               |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |

# Exhibit C-18 Commercial HVAC Gross Energy Impact SAE Coefficients By Business Type and Technology Group

| Business Type                       |         | <u> </u>                    |                        |        |         | SAE        | Coeffic     | ients       |           |                     |                      |       |       |
|-------------------------------------|---------|-----------------------------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group        | Office  | Retail                      | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program            |         |                             |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                         | 2.069   | 2.069                       | 2.069                  | 2.069  | 2.069   | 2.069      | 2.069       | 2.069       | 2.069     | 2.069               | 2.069                | 2.069 |       |
| Variable Speed Drive HVAC Fan       | 1.901   | 1.901                       | 1.901                  | 1.901  | 1.901   | 1.901      | 1.901       | 1.901       | 1.901     | 1.901               | 1.901                | 1.901 |       |
| Package Terminal A/C                | 0.898   | 0.898                       | 0.898                  | 0.898  | 0.898   | 0.898      | 0.898       | 0.898       | 0.898     | 0.898               | 0.898                | 0.898 |       |
| Programmable Thermostat             | 0.000   | 0.898                       | 0.898                  | 0.898  | 0.898   | 0.898      | 0.898       | 0.898       | 0.898     | 0.898               | 0.898                | 0.898 |       |
| Reflective Window Film              | 0.898   | 0.898                       | 0.898                  | 0.898  | 0.898   | 0.898      | 0.898       | 0.898       | 0.898     | 0.898               | 0.898                | 0.898 |       |
| Water Chiller                       | 1.582   | 1.582                       | 1.582                  | 1.582  | 1.582   | 1.582      | 1.582       | 1.582       | 1.582     | 1.582               | 1.582                | 1.582 |       |
| Other Measures                      | 0.898   | 0.898                       | 0.898                  | 0.898  | 0.898   | 0.898      | 0.898       | 0.898       | 0.898     | 0.898               | 0.898                | 0.898 |       |
| Retrofit Express Total              |         |                             |                        |        |         |            |             |             |           | 1 TR                |                      |       |       |
| Retrofit Efficiency Options Program |         |                             |                        |        |         |            |             |             |           |                     |                      | _     |       |
| Variable Frequency Drive            | 1.901   | 1.901                       | 1.901                  | 1.901  | 1.901   | 1.901      | 1.901       | 1.901       | 1.901     | 1.901               | 1.901                | 1.901 |       |
| Water Chiller                       | 1.582   | 1.582                       | 1.582                  | 1.582  | 1.582   | 1.582      | 1.582       | 1.582       | 1.582     | 1.582               | 1.582                | 1.582 |       |
| CAV to VAV                          | 0.653   | 0.653                       | 0.653                  | 0.653  | 0.653   | 0.653      | 0.653       | 0.653       | 0.653     | 0.653               | 0.653                | 0.653 |       |
| Cooling Tower                       | 0.898   | 0.898                       | 0.898                  | 0.898  | 0.898   | 0.898      | 0.898       | 0.898       | 0.898     | 0.898               | 0.898                | 0.898 |       |
| Retrofit Efficiency Options Total   |         |                             |                        |        |         |            |             |             |           |                     |                      |       |       |
| Customized Incentives Program       |         |                             |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive           | 1.901   | 1.901                       | 1.901                  | 1.901  | 1.901   | 1.901      | 1.901       | 1.901       | 1.901     | 1.901               | 1.901                | 1.901 |       |
| High Efficiency Chiller             | 1.000   | 1.000                       | 1.000                  | 1.000  | 1.000   | 1.000      | 1.000       | 1.000       | 1.000     | 1.000               | 1.000                | 1.000 |       |
| Energy Management System            | 1.026   | 1.026                       | 1.026                  | 1.026  | 1.026   | 1.026      | 1.026       | 1.026       | 1.026     | 1.026               | 1.026                | 1.026 |       |
| Other Measures                      | 0.653   | 0.653                       | 0.653                  | 0.653  | 0.653   | 0.653      | 0.653       | 0.653       | 0.653     | 0.653               | 0.653                | 0.653 |       |
| Customized Incentives Total         |         | a contraction of the second |                        |        |         |            |             |             |           |                     |                      |       |       |
| Total                               | Canal S |                             |                        |        | 1       |            |             |             | - 12      |                     | 1                    | C.L.  |       |

## Exhibit C-19 Commercial Refrigeration Gross Energy Impact SAE Coefficients By Business Type and Technology Group

| Business Type                       | r      |        |                        |        |         | SAE        | Coeffic     | ients       |           |                     |                      |       | 7                        |
|-------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|--------------------------|
| Program and Technology              | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total                    |
| Retrofit Express Program            |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |
| Refrigeration Load Reduction        |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |
| Low Temperature Glass/Acrylic Door  | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Heatless Door                       | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Cooler/Freezer Door Gaskets         | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Auto Closer for Cooler/Freezer      | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Medium Temperature Case w/ Door     | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Strip Curtains for Walk-in          | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Low Temperature Case w/ Door        | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Night Covers for Display Cases      | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Compressor Upgrades                 |        |        |                        | -      |         |            |             |             |           |                     |                      |       |                          |
| Mechanical Subcooler                | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Multiplex Compresor System          | 0.526  |        |                        |        | 0.526   |            | 0.526       | _           |           | 0.526               |                      |       |                          |
| Adjustable Speed Drive              | 0.526  | 0.526  | 0.526                  | 0.526  |         |            | 0.526       | 0.526       | 0.526     | 0.526               |                      | 0.526 |                          |
| Floating Head Pressure Controls     | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Condenser Upgrades                  |        |        |                        |        | <b></b> |            |             |             |           | ن                   |                      |       | note control             |
| Oversized Air-Cooled Condenser      | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Oversized Evaporative Condenser     | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Evaporator Upgrades                 |        |        |                        |        |         |            |             |             |           |                     | · · · ·              | u     | 1111111111               |
| Walk-in Cooler PSC Evaporator Motor | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Display PSC Evaporator Motor        | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Other                               |        |        |                        |        |         |            |             |             |           |                     |                      |       | 0000000                  |
| Anti-Sweat Heater Control           | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Suction Line Insulation             | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Display Case Electronic Ballast     | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Non-Electric Condensate Evaporator  | 0.526  | 0.526  | 0.526                  | 0.526  | 0.526   | 0.526      | 0.526       | 0.526       | 0.526     | 0.526               | 0.526                | 0.526 |                          |
| Retrofit Express Total              |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |
| Customized Incentives Program       |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |
| Compressor Upgrades                 |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |
| Floating Head Pressure Controls     | 0.753  | 0.753  | 0.753                  | 0.753  | 0.753   | 0.753      | 0.753       | 0.753       | 0.753     | 0.753               | 0.753                | 0.753 |                          |
| Booster Desuperheaters              | 0.753  | 0.753  | 0.753                  | 0.753  | 0.753   | 0.753      | 0.753       | 0.753       | 0.753     | 0.753               | 0.753                | 0.753 |                          |
| Condenser Upgrades                  |        |        | ·                      | ·      |         |            |             |             | <u> </u>  |                     |                      |       | at a later of the second |
| Oversized Condensers                | 0.753  | 0.753  | 0.753                  | 0.753  | 0.753   | 0.753      | 0.753       | 0.753       | 0.753     | 0.753               | 0.753                | 0.753 |                          |
| Other                               |        |        |                        | L      | h       |            | <u> </u>    |             |           |                     |                      |       |                          |
| Refrigeration EMS                   | 0.753  | 0.753  | 0.753                  | 0.753  | 0.753   | 0.753      | 0.753       | 0.753       | 0.753     | 0.753               | 0.753                | 0.753 |                          |
| Refrigeration Add/Change            | 0.753  | 0.753  | 0.753                  | 0.753  | 0.753   | 0.753      | 0.753       | 0.753       | 0.753     | 0.753               | 0.753                | 0.753 |                          |
| Refrigeration Other                 | 0.753  | 0.753  | 0.753                  | 0.753  | 0.753   | 0.753      | 0.753       | 0.753       | 0.753     | 0.753               | 0.753                | 0.753 |                          |
| Customized Incentives Total         |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |
| Total                               |        |        |                        |        |         |            |             |             |           |                     |                      |       |                          |

# C.7.1 Relative Precision Calculation

Relative precision at 90 percent and 80 percent confidence levels for the adjusted gross energy impact estimates are calculated for each of the SAE analysis segments. As mentioned above, there are a total of sixteen analysis segments that were explicitly modeled, and the relative precision estimates based upon the model output are presented in Exhibit C-20 below. In order to calculate

the total program level adjusted gross impact and relative precision, the segment-level results were weighted by their unadjusted engineering energy impact estimates in the following equations.

Total Adjusted Energy Impact =  $\sum_{i} \beta_{i} \text{Eng}_{i}$ 

Where  $\beta_i$  and Eng<sub>i</sub> are the SAE coefficients and unadjusted engineering impact estimates for segment i, respectively. The program level standard error can be estimated as:<sup>2</sup>

$$StdErr = \sqrt{\sum_{i} (CV_{i} * \beta_{i} * Eng_{i})^{2}}$$

Where  $CVi = (std(\beta i)/\beta i)$  is the coefficient of variation in segment i, estimated in the billing regression model. Finally, the relative precision at 90 percent and 80 percent confidence levels were calculated as

 $RP = \frac{t * StdErr}{Total Adj. Energy Impact}$ 

Where t equals 1.645 and 1.282 for the 90 percent and 80 percent confidence levels, respectively.

<sup>&</sup>lt;sup>2</sup> This procedure assumes that the samples in different segments are independent and can be treated as strata in a stratified sampling.

#### Exhibit C-20 Relative Precision Calculation

| SAE Analysis Level                  | Engineering Gross<br>Energy Impact<br>Estimate (MWh) | SAE<br>Coefficient | t-Statistic_ | Relative<br>Precision<br>at 80% | Relative<br>Precision<br>at 90% |
|-------------------------------------|------------------------------------------------------|--------------------|--------------|---------------------------------|---------------------------------|
| Lighting End Use                    |                                                      |                    |              |                                 |                                 |
| Office Flourescents                 | 51,455                                               | 1.00               | 14.67        | 9%                              | 11%                             |
| Other Flourescents                  | 76,591                                               | 0.68               | 7.41         | 17%                             | 22%                             |
| Controls                            | 5,318                                                | 1.38               | 2.09         | <u>61%</u>                      | 79%                             |
| Warehouse HIDs                      | 4,306                                                | 0.00               | -            | -                               | •                               |
| School HIDS                         | 815                                                  | 0.00               | -            | -                               |                                 |
| Other RE Lighting                   | 17,534                                               | 1.26               | 2.15         | 60%                             | 77%                             |
| Customized Incentives Lighting      | 10,242                                               | 0.51               | 3.07         | 42%                             | 54%                             |
| Total                               | 166,261                                              | 0.83               |              | 13%                             | 16%                             |
| HVAC End Use                        |                                                      |                    |              |                                 |                                 |
| Central A/Cs                        | 878                                                  | 2.07               | 3.67         | 35%                             | 45%                             |
| ASDs                                | 8,971                                                | 1.90               | 6.75         | 19%                             | 24%                             |
| Chillers                            | 2,966                                                | 1.58               | 2.39         | 54%                             | 69%                             |
| EMS                                 | 10,290                                               | 1.03               | 8.38         | 15%                             | 20%                             |
| Other Customized Incentives HVAC    | 18,668                                               | 0.65               | 4.76         | 27%                             | 35%                             |
| Office Thermostats                  | 1,332                                                | 0.00               |              |                                 |                                 |
| Other RE/REO HVAC                   | 6,087                                                | 0.90               | 2.89         | 44%                             | 57%                             |
| Total                               | 49,192                                               | 1.03               |              | 12%                             | 15%                             |
| Refrigeration                       |                                                      |                    |              |                                 |                                 |
| Customized Incentives Refrigeration | 18,206                                               | 0.75               | 2.00         | 64%                             | 82%                             |
| RE/REO Refrigeration                | 8,566                                                | 0.53               | 1.98         | 65%                             | 83%                             |
| Total                               | 26,772                                               | 0.68               |              | 51%                             | 65%                             |

# C.8 NET BILLING ANALYSIS

In addition to conducting a billing analysis to estimate gross energy impacts, a net billing analysis was performed, with the objective of estimating SAE coefficients that could be applied to gross engineering estimates to calculate net energy impact. The net billing analysis model specification differs from the gross billing analysis model, which used two different multivariate regression models (a baseline model using a control group and an SAE model using participants). Instead, the net billing analysis model runs one integrated model combining both the participants and nonparticipants.

A disadvantage of combining both participants and nonparticipants into one model of net energy savings is that the resulting sample is not random. In particular, participants self-select into the program and therefore may not be randomly distributed. As a result, there are certain unobserved characteristics that influence the decision to participate. If these characteristics are not accounted for in the model, the net savings model could produce biased coefficient estimates.

One solution to this problem is to include an Inverse Mills Ratio in the model to correct for selfselection. This method was developed by Heckman (1976, 1979<sup>3</sup>) and is used by others (Goldberg and Train, 1996<sup>4</sup>) to address the problem of self-selection into energy retrofit programs. The Mills Ratio technique assumes that the unobserved factors that are influencing participation are distributed normally. The influence of these unobserved factors on participation can be approximated by a Mills Ratio which itself is distributed normally. Using the Mills Ratio corrects for the self-selection bias in the net savings regression as the unobserved factors affecting participation are now controlled for in the model. As a result, standard regression techniques should produce unbiased coefficient estimates.

Goldberg and Train (1996) develop the technique of using an additional Mills Ratio in the savings regression to account for the possibility that participation is correlated with the size of energy savings. The second Mills Ratio is interacted with a measure of energy savings, which allows the amount of net savings to vary with participation. The rationale for the second term is that those customers who have potentially large savings are more likely to participate in the program. Consequently, the unobserved factors that are influencing participation are also affecting the amount of savings. The additional Mills Ratio accounts for the fact that amount of savings will be correlated with participation.

To correct for self-selection, a probit model of program participation is estimated separately for each of the Lighting, HVAC, and Refrigeration retrofit programs. Upon estimation, the parameters of the participation model are then used to calculate an Inverse Mills Ratio for both participants and nonparticipants. This Mills Ratio is then included in the net savings regression that combines both participants and nonparticipants. If the Mills Ratio controls for those unobserved factors that determine participation, and the other model assumptions are met, then the net savings model can then be estimated as if participation in the program is randomly determined.

Using the Inverse Mills Ratio to correct for selection relies on several assumptions. First, the net savings due to the program, whether expressed as naturally occurring savings or a net-to-gross ratio, must be normally distributed. In addition, the Mills Ratio must not be highly correlated with the other independent variables used in the net billing regression. In this application, both of these assumptions are found to be violated. Net savings due to the program is biased upward toward large customers and is not distributed normally. The Mills Ratio term used in the net savings regression is also found to be highly correlated with other independent variables, which introduces multi-collinearity into the model. As a result of these violations, the regression analysis using the Mills Ratio technique does not yield reliable estimates in this application. A description of the methods used for this application are given in the following sections. *Section C.8.1* describes the data and variables used for the probit participation model and *Section C.8.2* gives the estimation results. *Section C.8.4* gives the estimation results from the Net Billing Model.

<sup>&</sup>lt;sup>3</sup><u>Heckman, I.</u> 'The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models.", Annals of Economic and Social Measurement, Vol. 5, pp. 475-492, 1976.

Heckman, I. "Sample Selection Bias as a Specification Error." Econometrica, Vol. 47, pp. 153-161, 1979.

<sup>&</sup>lt;sup>4</sup><u>Goldberg. Miriam and Kenneth Train.</u> 'Net Savings Estimation: An analysis of Regression and Discrete Choice Approaches', prepared for the CADMAC Subcommittee on Base Efficiency by Xenergy, Inc. Madison, WI, March 1996.

# C.8.1 Probit Model of Participation

The first stage of calculating the Mills Ratio is to develop a probit model of program participation. The probit model is a discrete choice model with a dependent variable of either zero or one reflecting whether or not an event occurred. In this case, individuals received a value of one if they participated in the retrofit program and a zero otherwise. The sample includes all 1,217 participants and 652 nonparticipants, and includes information obtained from the telephone surveys as well as billing data. All of these 1,869 survey respondents were used to estimate the participants in the HVAC program, and 241 are participants in the Refrigeration program. For those customers with missing information, an average value is assigned based on both building type and program participation.

For each of the three retrofit programs, the participation model specification is the same:

Participation =  $\alpha + \beta' X + \gamma' Y + \vartheta' Z + \varepsilon$ 

A description of the explanatory variables is given in Exhibit C-21. The dependent variable PARTICIPATION has a value of one if the customer participated in the 1995 Retrofit program and a zero if they did not participate. The independent variables used are those characteristics that are likely to influence program participation. The first set of variables (X) used in the participation probit describe the customer's business activity. These consist of indicator variables for various building types. The second group of variables (Y) reflect the building characteristics. These include customer size and energy use as well as recent changes in high energy equipment. The third group of variables (Z) contain information on participation in other PG&E programs. Finally, the error term ( $\varepsilon$ ) is assumed to be normally distributed for the probit specification.

# Exhibit C-21 Explanatory Variables Description

| Variable |       | Variable |                                                                   |
|----------|-------|----------|-------------------------------------------------------------------|
| Name     | Units | Туре     | Description                                                       |
| ADDLIGHT | 0,1   | Y        | Customer added light equipment since 1/93                         |
| AVGUSE   | Kwh   | Y        | Average monthly electricity use over 1992-1994                    |
| ADDCOOL  | 0,1   | Y        | Customer added cooling equipment since 1/93                       |
| ADDREF   | 0,1   | Y        | Customer added refrigeration equipment since 1/93                 |
| ARCOOL   | 0,1   | Y        | Cooling equipment was added and removed since 1/93                |
| ARLIGHT  | 0,1   | Y        | Lighting equipment was added and removed since 1/93               |
| ARREF    | 0,1   | Y        | Refrigeration equipment was added and removed since 1/93          |
| CCHGPGE  | 0,1   | Y        | Cooling change was part of a PG&E program                         |
| LCHGPGE  | 0,1   | Y        | Lighting change was part of a PG&E program                        |
| COLLEGE  | 0,1   | X        | College                                                           |
| COMMSERV | 0,1   | X        | Community service building                                        |
| GROCERY  | 0,1   | X        | Grocery                                                           |
| HEALTH   | 0,1   | x        | Health Care Building                                              |
| HOTEL    | 0,1   | x        | Hotel                                                             |
| MISCCOM  | 0,1   | X        | Miscellanious commercial building                                 |
| OFFICE   | 0,1   | х        | Office building                                                   |
| PERSONAL | 0,1   | x        | Personal service building                                         |
| RESTRNT  | 0,1   | x        | Restaurant                                                        |
| SCHOOL   | 0,1   | x        | School                                                            |
| RETAIL   | 0,1   | x        | Retail Building                                                   |
| WAREHSE  | 0,1   | x        | Warehouse                                                         |
| MEDCUST  | 0,1   | Y        | Medium sized customer, based on electricty use                    |
| LARGCUST | 0,1   | Y        | Large sized customer, based on electricity use                    |
| LIGHT95  | 0,1   | Y        | Lighting change done in 1995 or later                             |
| COOL95   | 0,1   | Y        | Cooling change done in 1995 or later                              |
| HEAT95   | 0,1   | Y        | Heating change done in 1995 or later                              |
| OTHER95  | 0,1   | Y        | Other equipment change done in 1995 or later                      |
| GASHEAT  | 0,1   | Y        | Customer has gas heating                                          |
| ELECHEAT | 0,1   | Y        | Customer has electric heating                                     |
| DUALHEAT | 0,1   | Y        | Customer has dual heating                                         |
| HAWARE   | 0,1   | Z        | Customer is an HVAC part and became aware of the PG&E program     |
|          |       |          | either before or at the same time the new equipment was selected  |
| LAWARE   | 0,1   | Z        | Customer is an lighting part and became aware of the PG&E program |
|          | -     |          | either before or at the same time the new equipment was selected  |

# C.8.2 Probit Estimation Results

The results of the probit estimation for each program are given in Exhibits C-22, C-23, and C-24.

| Variable | Coefficient | Standard | Significance |
|----------|-------------|----------|--------------|
| Name     | Estimate    | Error    | Level        |
| ADDLIGHT | -0.21       | 0.17     | 22%          |
| AVGUSE   | 0.00        | 0.00     | 1%           |
| ADDCOOL  | 0.02        | 0.17     | 91%          |
| ADDREF   | -0.25       | 0.26     | 34%          |
| ARCOOL   | 0.08        | 0.15     | 58%          |
| ARLIGHT  | -1.02       | 0.17     | 1%           |
| ARREF    | -0.34       | 0.27     | 22%          |
| CCHGPGE  | 0.47        | 0.28     | 10%          |
| LCHGPGE  | -0.13       | 0.20     | 51%          |
| COLLEGE  | -0.36       | 0.31     | 24%          |
| COMMSERV | -0.10       | 0.14     | 50%          |
| GROCERY  | -1.51       | 0.13     | 10%          |
| HEALTH   | -0.65       | 0.17     | 16%          |
| HOTEL    | -0.29       | 0.21     | 1%           |
| MISCCOM  | -1.17       | 0.15     | 8%           |
| OFFICE   | -0.22       | 0.12     | 2%           |
| PERSONAL | -0.45       | 0.20     | 1%           |
| RESTRNT  | -1.17       | 0.14     | 1%           |
| SCHOOL   | -0.52       | 0.13     | 1%           |
| RETAIL   | -0.66       | 0.13     | 2%           |
| WAREHSE  | -0.39       | 0.17     | 2%           |
| MEDCUST  | 0.41        | 0.08     | 1%           |
| LARGCUST | 0.58        | 0.10     | 1%           |
| LIGHT95  | -0.11       | 0.24     | 66%          |
| COOL95   | 0.10        | 0.27     | 70%          |
| HEAT95   | 0.34        | 0.27     | 21%          |
| OTHER95  | -0.36       | 0.25     | 14%          |
| GASHEAT  | 0.18        | 0.10     | 6%           |
| ELECHEAT | -0.06       | 0.11     | 60%          |
| DUALHEAT | 0.14        | 0.29     | 63%          |
| HAWARE   | -0.65       | 0.09     | 1%           |

# Exhibit C-22 Lighting Program Probit Estimation Results

| Variable | Coefficient | Standard | Significance |
|----------|-------------|----------|--------------|
| Name     | Estimate    | Error    | Level        |
| ADDLIGHT | 0.13        | 0.24     | 59%          |
| AVGUSE   | 0.00        | 0.00     | 3%           |
| ADDCOOL  | -0.33       | 0.26     | 20%          |
| ADDREF   | -0.09       | 0.46     | 84%          |
| ARCOOL   | -0.71       | 0.26     | 1%           |
| ARLIGHT  | 0.07        | 0.20     | 73%          |
| ARREF    | -0.30       | 0.53     | 58%          |
| CCHGPGE  | 1.33        | 0.44     | 1%           |
| LCHGPGE  | 0.56        | 0.24     | 2%           |
| COLLEGE  | -1.12       | 0.48     | 2%           |
| COMMSERV | -0.50       | 0.23     | 3%           |
| GROCERY  | -2.16       | 0.24     | 1%           |
| HEALTH   | -0.37       | 0.24     | 11%          |
| HOTEL    | -0.39       | 0.3      | 19%          |
| MISCCOM  | -1.74       | 0.26     | 1%           |
| OFFICE   | -0.24       | 0.19     | 20%          |
| PERSONAL | -0.70       | 0.29     | 2%           |
| RESTRNT  | -1.43       | 0.22     | 1%           |
| SCHOOL   | -0.70       | 0.20     | 1%           |
| RETAIL   | -1.07       | 0.21     | 1%           |
| WAREHSE  | -0.81       | 0.26     | 1%           |
| MEDCUST  | -0.13       | 0.12     | 25%          |
| LARGCUST | -0.11       | 0.15     | 46%          |
| LIGHT95  | 0.31        | 0.28     | 26%          |
| COOL95   | -0.63       | 0.55     | 25%          |
| HEAT95   | -0.26       | 0.44     | 56%          |
| OTHER95  | -0.11       | 0.36     | 75%          |
| GASHEAT  | 0.62        | 0.16     | 1%           |
| ELECHEAT | 0.40        | 0.18     | 3%           |
| DUALHEAT | 0.33        | 0.43     | 45%          |
| LAWARE   | -0.79       | 0.12     | 1%           |

# Exhibit C-23 HVAC Program Probit Estimation Results

| Variable | Coefficient | Standard | Significance |
|----------|-------------|----------|--------------|
| Name     | Estimate    | Error    | Level        |
| ADDLIGHT | -0.08       | 0.32     | 80%          |
| AVGUSE   | 0.00        | 0.00     | 62%          |
| ADDCOOL  | -0.06       | 0.33     | 86%          |
| ADDREF   | -0.16       | 0.27     | 56%          |
| ARCOOL   | -0.51       | 0.34     | 13%          |
| ARLIGHT  | -0.29       | 0.26     | 27%          |
| ARREF    | 0.44        | 0.24     | 7%           |
| CCHGPGE  | 0.66        | 0.62     | 29%          |
| LCHGPGE  | 0.39        | 0.30     | 20%          |
| COLLEGE  | -0.66       | 0.60     | 23%          |
| COMMSERV | -1.52       | 0.42     | 1%           |
| GROCERY  | -0.38       | 0.14     | 1%           |
| HEALTH   | -6.56       | 0.83     | 99%          |
| HOTEL    | -1.00       | 0.44     | 2%           |
| MISCCOM  | -1.00       | 0.23     | 1%           |
| OFFICE   | -1.09       | 0.24     | 1%           |
| PERSONAL | -1.81       | 0.67     | 1%           |
| RESTRNT  | 0.80        | 0.16     | 1%           |
| SCHOOL   | -0.85       | 0.23     | 1%           |
| RETAIL   | -0.90       | 0.21     | 1%           |
| WAREHSE  | -0.50       | 0.27     | 7%           |
| MEDCUST  | -0.33       | 0.14     | 2%           |
| LARGCUST | -0.35       | 0.15     | 2%           |
| LIGHT95  | 0.77        | 0.30     | 1%           |
| COOL95   | 0.81        | 0.40     | 4%           |
| HEAT95   | 0.21        | 0.41     | 60%          |
| OTHER95  | -0.32       | 0.52     | 54%          |
| GASHEAT  | -0.28       | 0.13     | 4%           |
| ELECHEAT | -0.33       | 0.16     | 4%           |
| DUALHEAT | 0.16        | 0.46     | 73%          |
| LAWARE   | -0.86       | 0.21     | 1%           |
| HAWARE   | -1.48       | 0.36     | 1%           |

# Exhibit C-24 Refrigeration Program Probit Estimation Results

In general, the estimation results conform to expectations. For the Lighting probit, customer size as reflected by energy use has a positive impact on program participation. In addition, those customers with gas heating and with a recent cooling equipment change are also more likely to participate. All of the building type variables have negative coefficient estimates, which reflects the fact that each building type has more nonparticipants than participants included in the sample. Finally, recent additions and removals in lighting equipment as well as changes in HVAC equipment have a negative effect on program participation.

For the HVAC probit, large customers based on average monthly electricity use tend to participate in the program. Recent changes in lighting and cooling due to PG&E programs also have a positive impact on program participation. As with the lighting model, all of the building types have negative coefficient estimates.

For the Refrigeration model, smaller customers tend to participate more relative to the mediumand large-sized customers. In addition, restaurants are more likely to participate in the program while other business types are less likely to participate. Recent changes in cooling and lighting equipment also tend to increase participation.

Upon estimation, the coefficient estimates are used to calculate the Inverse Mills Ratio for use in the net savings regression. The product of all of the independent variables and respective coefficient estimates are used in the following calculation

Mills Ratio = =  $\phi(Q)/\Phi(Q)$  (for participants) =  $-\phi(Q)/\Phi(-Q)$  (for nonparticipants)  $Q = \alpha + \beta' X + \gamma' Y + \vartheta' Z$ 

where  $\phi$  is the standard normal probability density function and  $\Phi$  is the standard normal cumulative density function. Again, this Mills Ratio is used as a measure of the influence that unobserved factors have on program participation. In the following sections, the Mills Ratio is included in the net billing regression as an additional explanatory variable to correct for the problem of self-selection into the Lighting program.

### C.8.3 Net Billing Model

The net billing regression analysis for the Commercial Program Evaluation uses a model specification similar to the baseline model used in the gross billing analysis, with three significant differences.

- Both participants and nonparticipants are used in the model.
- The engineering impact estimates are included as independent variables in the model. For nonparticipants, these values are all zero.
- The Mills Ratio is entered into the model in two ways. First, the three Mills Ratios, corresponding to each end use, are included as independent variables. Second, the three Mills Ratios are interacted with the total engineering impact estimate for each corresponding end use.

The resulting SAE coefficients on the energy impacts are then used to adjust the engineering estimates of expected annual energy impacts for the entire participant population to estimate the net ex post energy impacts. The net billing analysis model has the following functional form:

$$kWh_{post,i} = \sum_{j} (\alpha_{j} + \beta_{j}kWh_{pre,i}) + \gamma(\Delta CDD_{i}) * kWh_{pre,i} + \phi(\Delta HDD_{i}) * Elec_{i} * kWh_{pre,i} + \sum_{k} \eta_{k}Chg_{i,k} + \sum_{m} (\rho_{m}Eng_{m,i}) + \delta_{1}Mills_{light,i} + \delta_{2}Mills_{HVAC,i} + \delta_{3}Mills_{refrig,i} + \delta_{4}Mills_{light,i} * Eng_{light,i} + \delta_{5}Mills_{HVAC,i}Eng_{HVAC,i} + \delta_{6}Mills_{refrig,i}Eng_{refrig,i} + \varepsilon$$

Where

kWh<sub>post,i</sub> and kWh<sub>pre,i</sub> are customer i's annualized energy usage for the post- and preinstallation periods, respectively;

 $\Delta$ CDD<sub>i</sub> and  $\Delta$ HDD<sub>i</sub> are the annual change of cooling and heating degree days (base 65°F) between the post-installation year and pre-installation year;

 $E e_{i_i}$  is an indicator variable (0/1) for the ith customer, which equals 1 if the customer has electric heating;

 $Chg_{i,k}$  are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees and square footage;

 $Eng_{m,i}$  are the engineering impact estimates for technology m, customer i;

Mills light is the Mills Ratio for the Lighting end use for customer i;

Mills<sub>HVACi</sub> is the Mills Ratio for the HVAC end use for customer i;

Mills refrigi is the Mills Ratio for the Refrigeration end use for customer I;

Eng<sub>light</sub> is the engineering estimate for all Lighting technologies for customer i;

Eng<sub>HVAC</sub>; is the engineering estimate for all HVAC technologies for customer i;

Engrefrigi is the engineering estimate for all Refrigeration technologies for customer i;

 $\alpha_{i}$  is the indicator variable (0/1) for the jth business type, which equals 1 if the customer is in that business type and 0 otherwise;

 $\beta$ ,  $\gamma$  and  $\phi$  are the estimated slopes on their respective independent variables. Separate slopes on pre-usage are estimated by business type; and,

 $\rho_m$  are the SAE coefficients for the engineering impact estimates for technology m;

 $\delta$  are the coefficients on the individual Mills ratios, and on the Mills ratios interacted with the engineering energy impacts;

 $\epsilon$  is the random error term of the model.

This model was run with the same set of 620 nonparticipants and 935 participants that were used in the gross billing analysis model. The results of the model are presented below. The parameter estimates, t-statistics and sample sizes are presented for all of the SAE coefficients and Mills ratios.

|                                      |          | Parameter   | <u> </u>                              | Sample |
|--------------------------------------|----------|-------------|---------------------------------------|--------|
| Parameter Descriptions               | Units    | Estimate    | t-Statistic                           | Size   |
| SAE Coefficients                     |          |             | · · · · · · · · · · · · · · · · · · · |        |
| Lighting End Use                     |          |             |                                       |        |
| Office Flourescents                  | kWh      | -0.35       | 0.75                                  | 116    |
| Other Flourescents                   | kWh      | -0.70       | 1.40                                  | 261    |
| Controls                             | kWh      | -0.60       | 0.83                                  | 57     |
| Warehouse HIDs                       | kWh      | 0.08        | 0.14                                  | 10     |
| School HIDS                          | kWh      | 0.13        | 0.23                                  | 10     |
| Other RE Lighting                    | kWh      | -0.05       | 0.07                                  | 119    |
| Customized Incentives Lighting       | kWh      | -0.47       | 0.92                                  | 15     |
| HVAC End Use                         |          |             |                                       |        |
| Central A/Cs                         | kWh      | -3.64       | 3.41                                  | 184    |
| ASDs                                 | kWh      | -2.53       | 2.40                                  | 27     |
| Chillers                             | kWh      | -1.85       | 1.76                                  | 5      |
| EMS                                  | kWh      | -2.20       | 3.17                                  | 20     |
| Other Customized Incentives HVAC     | kWh      | -1.31       | 1.60                                  | 5      |
| Office Thermostats                   | kWh      | -0.83       | 0.85                                  | 36     |
| Other RE/REO HVAC                    | kWh      | -1.70       | 1.75                                  | 153    |
| Refrigeration                        |          |             |                                       |        |
| Customized Incentives Refrigeration  | kWh      | <u>5.78</u> | 2.08                                  | 3      |
| RE/REO Refrigeration                 | kWh      | 4,72        | 2.02                                  | 181    |
| Other End Uses                       | kWh      |             |                                       |        |
| Other                                | kWh      | -2.18       | 3.94                                  | 62     |
| Mills Ratios                         |          |             |                                       |        |
| Single Mills                         |          |             |                                       |        |
| Lighting                             | unitless | -3083       | 1.18                                  | 1555   |
| HVAC                                 | unitless | 2980        | 1.08                                  | 1555   |
| Refrigeration                        | unitless | 4051        | 1.00                                  | 1555   |
| Double Mills, Interacted with Impact |          |             |                                       |        |
| Lighting                             | kWh      | 0.07        | 0.33                                  | 464    |
| HVAC                                 | kWh      | 0.54        | 1.56                                  | 368    |
| Refrigeration                        | kWh      | -1.92       | 2.21                                  | 183    |

# Exhibit C-25 Net Billing Regression Analysis Final Model Outputs

It was found that there was a significant problem of multi-collinearity with the net billing model. The double Mills ratios (the Mills ratio interacted with the engineering energy impacts) were found to be extremely highly correlated with the corresponding engineering energy impacts. Exhibit C-26 below presents the correlation of estimates between the double Mills and the engineering energy impacts.

#### Exhibit C-26 Correlation Between Double Mills Ratios and Energy Impact Estimates

|                                     | Double Mills Ratios |       |               |  |
|-------------------------------------|---------------------|-------|---------------|--|
| Parameter Descriptions              | Lighting            | HVAC  | Refrigeration |  |
| Engineering Energy Impact Estimates |                     |       |               |  |
| Lighting End Use                    |                     |       |               |  |
| Office Flourescents                 | -0.99               | -0.06 | -0.014        |  |
| Other Flourescents                  | -0.98               | -0.11 | -0.0132       |  |
| Controls                            | -0.50               | -0.04 | -0.0121       |  |
| Warehouse HIDs                      | -0.91               | -0.07 | -0.0137       |  |
| School HIDS                         | -0.78               | -0.06 | -0.0109       |  |
| Other RE Lighting                   | -0.65               | -0.09 | -0.01         |  |
| Customized Incentives Lighting      | -0.95               | -0.06 | -0.0061       |  |
| HVAC End Use                        |                     |       |               |  |
| Central A/Cs                        | -0.06               | -0.85 | -0.0035       |  |
| ASDs                                | -0.12               | -0.96 | -0.008        |  |
| Chillers                            | -0.05               | -0.81 | -0.004        |  |
| EMS                                 | -0.08               | -0.98 | -0.008        |  |
| Other Customized Incentives HVAC    | -0.10               | -0.99 | -0.0075       |  |
| Office Thermostats                  | -0.05               | -0.87 | -0.0054       |  |
| Other RE/REO HVAC                   | -0.09               | -0.95 | -0.0066       |  |
| Refrigeration                       |                     |       |               |  |
| Customized Incentives Refrigeration | -0.01               | 0.00  | -0.9916       |  |
| RE/REO Refrigeration                | -0.01               | -0.01 | -0.9936       |  |
| Other End Uses                      |                     |       |               |  |
| Other                               | 0.07                | -0.02 | -0.003        |  |

As a result of the multi-collinearity problem, the majority of the SAE coefficients in the net billing model are insignificant at the 95 percent confidence level. In addition, the high correlation between the double Mills Ratios and the engineering impact estimates results in relatively meaningless parameter estimates. For example, because the HVAC double Mills Ratio is 99 percent negatively correlated with the "other Custom HVAC" energy impact estimate, the SAE coefficient on the energy impact will tend to become more negative as the parameter estimate on the Mills Ratio becomes more positive. Therefore, because of the positive parameter estimate of 0.54 on the HVAC double Mills Ratio, we see the SAE coefficient on the "other Custom HVAC" energy impact being driven down to a value of -1.31 (from -.65 in the gross billing analysis). This would indicate a net ex post impact estimate that is twice as large as the gross ex post impact estimate. Conversely, the negative parameter on the Refrigeration double Mills Ratio is causing the SAE coefficient on the refrigeration energy impacts to become positive.

A number of alternative model specifications were implemented, however all suffered from the problem of multi-collinearity. Therefore, the results of the net billing analysis were not incorporated into the final net ex post energy impact estimates. *Appendix D* discusses the results of the net to gross analysis that was conducted to estimate the final net ex post energy impact estimates.

Appendix D Net-to-Gross Analysis

.

#### D. NET-TO-GROSS METHOD

In this appendix, the methods used to derive net-to-gross (NTG) results for the evaluation of PG&E's 1995 Nonresidential Energy Efficiency Incentives (EEI) Programs, Commercial Sector Technologies is presented. After a brief review of data sources in *Section D.1*, the approaches to estimating free-ridership and spillover from participant self-reports are described in *Sections D.2* and *D.3*, respectively. Finally, investigation into the use of more sophisticated discrete choice modeling techniques to estimate HVAC program net effects is discussed in *Section D.4*.

# D.1 DATA SOURCES

Data used in the NTG analysis include 487 telephone surveys from HVAC end use participants surveyed from April through August 1996, and 451 HVAC end use nonparticipants surveyed from June through August 1996. Other data used in the analysis include 156 telephone surveys from canvass nonparticipants and 634 canvass nonparticipants who were "thanked and terminated" because they had not made an equipment retrofit or installation. The canvass nonparticipants were surveyed from June through July 1996.

# D.2 SELF-REPORT-BASED ESTIMATES OF FREE-RIDERSHIP

The RE/REO/Customized Incentives participants surveyed installed or adopted the following technology groups. (Participants who installed multiple technologies may be included in more than one technology group.)

| Technology Group        | N   |
|-------------------------|-----|
| Central Air Conditioner | 244 |
| Adjustable Speed Drive  | 32  |
| HVAC Controls           | 119 |
| Package Terminal        | 26  |
| Reflective Window Film  | 97  |
| Water Chillers          | 10  |
| Other                   | 11  |
| Custom                  | 58  |

Because free-ridership often varies by technology, results were calculated for each technology group. However, caution should be employed in interpreting the analysis results, given the small group sizes for some technology groups.

# D.2.1 Methods for Scoring Free-Ridership

Multiple methods were used in scoring free-ridership. The methods used vary slightly from each other and elaborate on the technique described in the work plan. All of them use participant

responses to survey questions regarding the timing of and reasons for equipment replacement actions. The complete text of the participant surveys may be found in *Appendix S-1*.

Six methods were used in this analysis. Each is described below.

Method 1 is the method described in the work plan. If the customer indicated that he had not been shopping for new HVAC equipment before becoming aware of the program, he was scored initially as a net participant. A customers was then classified as a free-rider if he met the following two conditions: (1) stated that he would have installed high-efficiency equipment within the year and had already selected the equipment; and (2) stated that he would have purchased high-efficiency equipment if the program had not existed.

To be classified as a free-rider under *Method 2*; a customer must have: (1) stated that he became aware of the program *after* making an equipment selection; (2) stated that he had already decided to purchase high-efficiency equipment before becoming aware of the program; and (3) stated that he would have purchased high-efficiency equipment if the program had not existed. As a consistency check, if a customer indicated that he would not have replaced the equipment (an unprompted response), free-ridership was scored as "0" for the site. This method generates high NTG ratios because of the final condition that must be met in order to be scored as a free-rider. Most customers reported that they would not have replaced equipment and hence were scored as net participants.

With *Method 3*, if the customer stated that he would have purchased high-efficiency equipment if the program had not existed, he was scored as a free-rider. Additional questions were used to "override" this preliminary assignment. If he answered that he hadn't considered purchasing new equipment before becoming aware of the program or hadn't yet decided on equipment, then the site was rescored as a net participant. If the customer indicated that he had not been shopping but had been approached by a vendor/contractor, then free-ridership was set at "0." As a last check, information volunteered by customers was used to revert the customer back to free-ridership status, if appropriate.

Method 4 is identical to Method 3 except deferred free-riders<sup>1</sup> are assigned a NTG ratio value of "0.5."

*Method 5* is similar to the method described in the work plan except additional questions are used to validate results. If the customer indicated that he had not been shopping for new HVAC equipment before becoming aware of the program, then he is scored initially as a net participant. A customer was then classified as a free-rider if he met the two conditions stated in Method 1. If the customer stated that the most important factor in his decision to install the equipment was the rebate, free-ridership was set to "0." However, if, when asked why he hadn't installed the equipment prior to participating, the customer stated that he was planning to, the site was scored as a free-rider.

Method 6 is similar to Methods 1 and 5, except that customers citing information and referral services associated with the program as the most important factor in deciding to install the equipment were scored as net participants. An opportunity to revert to free-ridership status was also allowed with this method.

<sup>• &</sup>lt;sup>1</sup> Deferred free-riders are those who were planning on installing energy-efficient equipment prior to becoming aware of the program but whose purchase was accelerated by the program.

# D.2.2 Free-Ridership Results

NTG results weighted by avoided cost (AC) and calculated by subtracting the free-ridership rates obtained through each of the methods described above are presented in Exhibit D-1. Results are presented overall and by segment. Technologies classified as "other" include air handlers (2), cooling towers (3), evaporative condensers (5), and constant-to-variable air volume (1).

|                      |                |                  | RE/REO           | Technology g  | groups         |                     |        |        |         |
|----------------------|----------------|------------------|------------------|---------------|----------------|---------------------|--------|--------|---------|
| -                    | Adjustable     |                  |                  |               | Reflective     |                     |        |        | - ···   |
|                      | Speed<br>Drive | HVAC<br>Controls | Water<br>Chiller | Central<br>AC | Window<br>Film | Package<br>Terminal | Other  | Custom | Overall |
| N                    | 32             | 119              | 10               | 244           | 97             | 26                  | 11     | 58     | 597     |
| %<br>Avoided<br>Cost | 12.37%         | 11.82%           | 9.37%            | 4.13%         | 3.07%          | 0.86%               | 15.02% | 31.63% | 88.27%  |
| Method<br>1          | 0.897          | 0.807            | 0.700            | 0.835         | 0.699          | 0.943               | 0.876  | 0.854  | 0.843   |
| Method<br>2          | 0.868          | 0.893            | 0.875            | 0.933         | 0.970          | 0.966               | 0.970  | 0.849  | 0.871   |
| Method<br>3          | 0.793          | 0.872            | 0.855            | 0.758         | 0.968          | 0.623               | 0.769  | 0.899  | 0.876   |
| Method<br>4          | 0.713          | 0.806            | 0.785            | 0.730         | 0.828          | 0.647               | 0.750  | 0.833  | 0.811   |
| Method<br>5          | 0.823          | 0.794            | 0.700            | 0.769         | 0.694          | 0.943               | 0.876  | 0.840  | 0.825   |
| Method<br>6          | 0.731          | 0.787            | 0.700            | 0.758         | 0.697          | 0.943               | 0.876  | 0.840  | 0.819   |

Exhibit D-1 NTG Weighted by Avoided Cost

Overall, weighted NTG results range from a low of 0.811 for Method 4 to a high of 0.876 for Method 4. Results obtained using Method 1 (initially proposed in the workplan) were consistent with those from the other methods, and the Method 1 result of 0.843 overall NTG was used as the basis for subsequent adjustment for spillover.

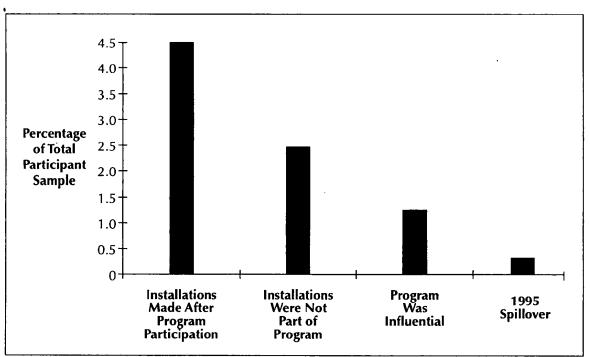
# D.3 SELF-REPORT-BASED ESTIMATES OF SPILLOVER

HVAC spillover can be defined as HVAC efficiency improvements implemented outside the program but influenced by the program. Preliminary estimates of HVAC spillover rates were generated by analyzing responses to a combination of questions asked of 487 participants and 1,241 nonparticipants.

# D.3.1 Methods for Scoring Spillover

The integrated approach to estimating HVAC spillover is summarized below.

All surveyed respondents were asked if they had installed HVAC equipment outside the program since January 1993. Participants who answered "yes" to the first question were asked if these changes were made after participating in the program. Nonparticipants, and participants who said the changes were made after participation, were asked if they made the equipment changes through a PG&E program.


Participants who passed the first two screening questions and had not changed out HVAC equipment through a PG&E program, and nonparticipants who passed the first two screening questions and were aware of the program at the time of equipment purchase, were asked how influential the program was in their decision. Those who said that the program had influenced their decision2 were included in the preliminary estimate of program spillover.

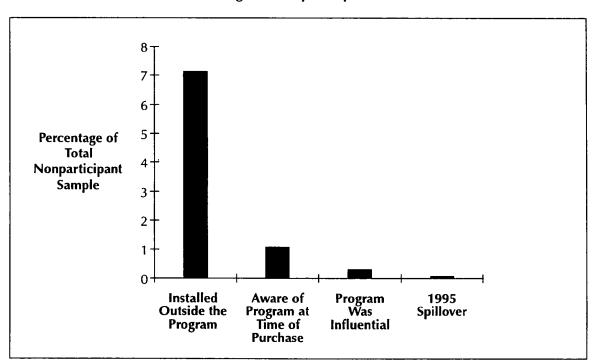
Survey-based estimates were be applied to the HVAC participant population and the HVAC nonparticipant population along with estimates of impact per site, resulting in a final spillover impact.

It should be noted that this analysis provides a preliminary indication of spillover rates and more in-depth analysis is required to quantify spillover impacts.

### D.3.2 Spillover Result – Participants

Results of the sequential analysis of survey responses to estimate a participant spillover rate of 0.41 percent are illustrated in Exhibit D-2.






<sup>&</sup>lt;sup>2</sup> "To what extent did participating in the program influence your additional equipment selection?" Values of 2, 3, 4, and 5 (slightly influential to very influential) were considered to demonstrate program influence on the purchase.

Forty-five surveyed participants (9 percent of the total participant sample) reported that since January 1993 they had added HVAC equipment. Forty-nine percent of those participants who added equipment (4.5 percent of the total participant sample) added the equipment after participating in the program. Twenty-seven percent (2 percent of the total participant sample) did not install the equipment through the program. Six of these respondents (1 percent of the total participant sample) reported the program influenced their additional HVAC equipment installations. Of these 6, 2 installed additional HVAC equipment in 1995. Two of 489 participants yields an initial unweighted spillover rate of 0.41 percent for 1995.

# D.3.3 Spillover Results – Nonparticipants

Results of the sequential analysis of survey responses to estimate a nonparticipant spillover rate of 0.08 percent are illustrated in Exhibit D-3.





One hundred twenty-six of 1,241 program nonparticipants reported making HVAC changes outside the program, of which 88 respondents confirmed their installations were not done through the program. Thirteen respondents (1 percent of the total nonparticipant sample) reported they were aware of the program before they purchased the equipment. Of these 13, 3 respondents reported their knowledge of the program was influential on their equipment selection. One of these 3 respondents installed HVAC equipment in 1995. One of 1,241 nonparticipants yields an unweighted spillover estimate of 0.08 percent for 1995.

Because the levels of self-reported spillover are so low and based on such a small number of responses, it was decided not to apply a correction for either participant or nonparticipant spillover. One minus the self-reported rate of free-ridership (0.843) was therefore used as the self-

reported NTG ratio for the HVAC program overall, with the corresponding measure-specific NTG ratios used for individual technologies.

In the following section, efforts to refine the self-reported NTG results through the use of discrete choice modeling are discussed.

# D.4 OVERVIEW OF DISCRETE CHOICE METHOD

In this section, discrete choice modeling techniques are assessed for their practicality in estimating net-to-gross (NTG) ratios and free-ridership rates. This approach is similar to that used to evaluate high-efficiency equipment purchases in PG&E's 1995 Commercial Lighting Energy Efficiency Incentives (EEI) Program. In that analysis, the technology examined is high-efficiency fluorescent lighting, which comprises over 70 percent of the total energy impact of the Lighting program. Because fluorescent lighting measures adopted both in and outside of the Lighting program. For the 1995 PG&E HVAC Commercial EEI Program (the HVAC program), the technologies that are best suited for discrete choice analysis are split and package units.<sup>3</sup> However, these measures account for less than 3 percent of the total energy impact due to the HVAC program. Information is available on the type of measures adopted outside the program, but not on whether these measures are standard or high-efficiency. This requires that assumptions be made regarding the efficiency of these measures in order to specify a model.

The approach adopted in this section is to explore different logit model specifications using a variety of assumptions regarding the technology adopted outside the program. These different models provide a range of possible NTG ratios based on whether customers outside the program purchase standard or high-efficiency HVAC equipment. The wide range of estimates across model specifications illustrates the sensitivity of these models to the accurate information regarding the efficiency characteristics of equipment purchased outside the program.

A discrete choice logit model is used to estimate both a NTG ratio and the free-ridership rate associated with the HVAC program. The decision to purchase high-efficiency equipment is explained in the logit model by the cost and savings of the equipment, any rebate offered by the HVAC program, awareness of the HVAC program, and other customer characteristics. In this application, the specific technologies examined are split and package HVAC units. Once estimated, the model can be used to determine the probability of purchasing high-efficiency equipment in the absence of the HVAC program. This is simulated by setting program awareness and the rebate amount equal to zero in the logit purchase model.

The data used to estimate the logit models of high-efficiency purchases is described in Section D.4.1 and Section D.4.2. The logit model specification and variable definitions are given in Section D.4.3. The estimation results are discussed in Section D.4.4 and the net-to-gross ratios are calculated in Section D.4.5.

# D.4.1 Data Sources for the Net-to-Gross Analysis

The data used for the NTG analysis are a combination of telephone survey information and the program information contained in the MDSS dataset. The sample is divided into both a high-efficiency equipment purchase group and a group of customers that purchase HVAC equipment outside the HVAC program. The sample used to estimate the logit model contains information on

<sup>&</sup>lt;sup>3</sup> There was not enough data available for purchases made outside of the HVAC program to estimate additional logit models for other HVAC technologies.

332 customers adopting 424 separate HVAC measures both in and outside the HVAC program. Of these, 255 customers did 338 separate measures within the HVAC program. The remaining 77 customers did 86 measures outside the program.

# D.4.2 Estimating HVAC Equipment Economic Variables

For those customers that installed high-efficiency equipment within the HVAC program, the incremental cost, savings, and rebate data from the MDSS dataset is used in the model. For those customers who installed equipment outside of the HVAC program, the costs are determined by technology type to reflect the comparable technology inside the program. The costs and savings information for high-efficiency equipment is used as it most likely reflects what the customer evaluates when making the purchase decision. If a split system is installed outside the program, the incremental costs, savings, and rebate for the high-efficiency split system are assigned. Similarly, if a package unit is purchased outside the program.<sup>4</sup>

# D.4.3 Logit Purchase Model Specification

The logit model is a discrete choice model with a dependent variable of either zero or one. In this application, customers are given a value of one if they purchased high-efficiency HVAC equipment and a zero if they purchased standard efficiency HVAC equipment. The logit model specification is defined as:

# $PURCHASE = \beta'X + \gamma'Y + \vartheta'Z + \varepsilon$

The variable group X contains variables that capture the influence of the HVAC program such as awareness of the program and rebate amount. Building characteristics variables such as intercepts specific to energy use, and changes to high energy equipment are contained in Y. Variable group Z contains variables indicating building type. The error term  $\varepsilon$  is assumed to be distributed logistic consistent with the logit model specification.

Variable definitions are given in Exhibit D-4. The effect of the HVAC program on equipment purchases is reflected through PERREBATE and AWARE. PERREBATE is defined as the incremental cost of the measure minus the rebate divided by the incremental cost of the measure. This value reflects the fraction of incremental cost that is not covered by the rebate and has to be paid by the customer. AWARE is awareness of the HVAC program as reported in the telephone survey. If a customer indicates that they are unaware of the HVAC program, they are assigned a rebate amount of zero in the model.

<sup>&</sup>lt;sup>4</sup> For HVAC measures done outside the HVAC program, capacity is assumed to be less than 65,000 Btuh. The smaller sizes are assumed since they comprise over 70 percent of the measures done in the program. In addition, measures adopted outside the program are likely to involve smaller rather than larger measures.

Exhibit D-4 Description of Variables Used in High-Efficiency Purchase Logit Model

| Variable Name | Units    | Variable Type | Description                                             |
|---------------|----------|---------------|---------------------------------------------------------|
| USELEVEL1     | constant | Ŷ             | Monthly electricity usage in the lowest 20 % range      |
| USELEVEL2     | constant | Y             | Monthly electricity usage in the 20-40 percentile       |
| USELEVEL3     | constant | Y             | Monthly electricity usage in the 40-60 percentile       |
| USELEVEL4     | constant | Y             | Monthly electricity usage in the 60-80 percentile       |
| USELEVEL5     | constant | Y             | Monthly electricity usage in the 80-100 percentile      |
| PERREBATE     | ratio    | х             | (cost -rebate)/ cost = % of costs not covered by rebate |
| AWARE         | 0,1      | х             | Aware of the HVAC program                               |
| ELECHEAT      | 0,1      | Y             | Customer has electric heat                              |
| ADDLIGHT      | 0,1      | Y             | Added lighting since 1/93                               |
| ARLIGHT       | 0,1      | Y             | Added and removed lighting since 1/93                   |
| ADDHEAT       | 0,1      | Y             | Added heating equipment since 1/93                      |
| ARHEAT        | 0,1      | Y             | Added and removed heating equipment since 1/93          |
| OFFICE        | 0,1      | Z             | Office building                                         |
| COMMSERV      | 0,1      | Z             | Community service building                              |
| GROCERY       | 0,1      | Z             | Grocery                                                 |
| HEALTH        | 0,1      | Z             | Health building                                         |
| WAREHSE       | 0,1      | Z             | Warehouse                                               |
| RESTRNT       | 0,1      | Z             | Restaurant                                              |
| RETAIL        | 0,1      | Z             | Retail                                                  |
| MISSCOM       | 0,1      | Z             | Miscellaneous commercial                                |

# D.4.4 Logit Model Estimation Results

The models explored in this section are developed based on different assumptions regarding the efficiency of the equipment purchased outside the program. The first model assumes that all purchases made outside the program were for standard efficiency HVAC equipment. The second model assumes that for half those customers outside the HVAC program and that were aware of the program, high-efficiency equipment was purchased. Similarly, a third model assumes that half of those in the sample that were unaware of the HVAC program and purchased equipment outside of the program purchased high-efficiency equipment. The final model assumes that half of those outside the program, both unaware and aware, purchase high-efficiency equipment.

Likelihood ratio tests done for each of the four models show significant explanatory power for each model. As shown in Exhibit D-9, estimated probabilities of purchasing high-efficiency HVAC equipment are relatively high for program participants, which conforms to expectations. In addition, other measures of predictive power such as Somers' D and the Goodman-Kruskal Gamma test have values above 0.7, which also indicates good predictive power. The estimation results for each model are discussed below.

# Model 1: Purchases outside the program are standard efficiency

The first model specification assumes that all purchases made outside the program are for standard efficiency HVAC equipment. Those that participated in the HVAC program are given a one for the dependent variable while those purchasing outside the program have a zero value.

The coefficient estimates are given in Exhibit D-5. The effect of the HVAC program is captured in PERREBATE, the net incremental cost paid by the customer for high-efficiency equipment.<sup>5</sup> As expected, the net cost ratio as expressed by PERREBATE has a strong negative effect on purchasing high-efficiency equipment. As the net cost increases, the likelihood of purchasing high-efficiency over standard equipment decreases. The effect of this variable is misleading, however, due to the assumption of standard efficiency purchases outside the HVAC program. If there are customers adopting high-efficiency measures outside the HVAC program, the Model 1 specification assigns too much importance to the rebate and the estimated effects of the program are inflated using this specification.

|           | Coefficient | Standard | Significance |
|-----------|-------------|----------|--------------|
| Variable  | Estimate    | Error    | Level        |
| USELEVEL1 | 4.6         | 0.67     | 1%           |
| USELEVEL2 | 4.6         | 0.66     | 1%           |
| USELEVEL3 | 5.06        | 0.69     | 1%           |
| USELEVEL4 | 4.49        | 0.66     | 1%           |
| USELEVEL5 | 4.47        | 0.64     | 1%           |
| PERREBATE | -5.73       | 0.62     | 1%           |
| ELECHEAT  | -0.05       | 0.47     | 92%          |
| ADDLIGHT  | 0.01        | 0.62     | 99%          |
| ARLIGHT   | -0.27       | 0.49     | 58%          |
| ADDHEAT   | 0.33        | 1.12     | 77%          |
| ARHEAT    | -0.17       | 0.57     | 77%          |
| OFFICE    | 0.17        | 0.51     | 74%          |
| COMMSERV  | 0.2         | 0.74     | 78%          |
| GROCERY   | -2.66       | 0.91     | 1%           |
| HEALTH    | -0.84       | 0.59     | 16%          |
| WAREHSE   | 0.15        | 0.83     | 86%          |
| RESTRNT   | 0.03        | 0.91     | 97%          |
| RETAIL    | -1.32       | 0.57     | 2%           |
| MISSCOM   | -0.53       | 0.88     | 55%          |

#### Exhibit D-5 Model 1: Standard Efficiency for Measures Outside HVAC Program Logit Estimation Results

# Model 2: Half of those outside the HVAC program and are aware of the program purchase high-efficiency equipment

Model 2 assumes that of those aware of the HVAC program and making purchases outside the program, half of the customers are purchasing high-efficiency equipment. This is simulated by randomly assigning those customers outside of the program and aware of the program a value of one for the dependent variable.

<sup>&</sup>lt;sup>5</sup> For Model 1 and Model 2, an awareness variable is not included. This is due from these specifications having most of those aware customers purchasing high-efficiency equipment. As a result, awareness becomes an almost perfect predictor of high-efficiency purchases, which makes the model unestimatable.

The estimation results for Model 2 are given in Exhibit D-6. As with Model 1, the coefficient estimate on PERREBATE is negative and statistically significant. The larger magnitude of the estimate is due to the greater portion of the sample that is assumed to purchase high-efficiency equipment and are aware of the program relative to Model 1.

|          | Exhibit D-6                                   |
|----------|-----------------------------------------------|
| Model 2: | 50% of Those Outside and Aware of the Program |
|          | Purchase High-Efficiency Equipment            |
|          | Logit Estimation Results                      |

|           | Coefficient | Standard | Significance |
|-----------|-------------|----------|--------------|
| Variable  | Estimate    | Error    | Level        |
| USELEVEL1 | 6.1         | 0.93     | 1%           |
| USELEVEL2 | 6.27        | 0.91     | 1%           |
| USELEVEL3 | 6.66        | 0.9      | 1%           |
| USELEVEL4 | 6.07        | 0.87     | 1%           |
| USELEVEL5 | 6.08        | 0.87     | 1%           |
| PERREBATE | -7.47       | 0.77     | 1%           |
| ELECHEAT  | 0.35        | 0.64     | 59%          |
| ADDLIGHT  | 0.43        | 0.85     | 61%          |
| ARLIGHT   | 0.29        | 0.67     | 67%          |
| ARHEAT    | -0.17       | 0.77     | 83%          |
| OFFICE    | -0.51       | 0.65     | 44%          |
| COMMSERV  | -0.07       | 0.96     | 94%          |
| GROCERY   | -3.12       | 1.06     | 1%           |
| HEALTH    | -0.68       | 0.83     | 42%          |
| WAREHSE   | 0.34        | 0.98     | 73%          |
| RESTRNT   | -0.47       | 1.15     | 68%          |
| RETAIL    | -1.23       | 0.78     | 12%          |
| MISSCOM   | -1.19       | 1.13     | 29%          |

# Model 3: Half of those outside the HVAC program and are unaware of the program purchase high-efficiency equipment

In this specification, half of those customers that are unaware of the program are randomly assigned as purchasing high-efficiency equipment. These estimation results are given in exhibit D-7.

Model 3 has both AWARE and PERREBATE to reflect the influence of the HVAC program on highefficiency equipment purchases. However, those that are unaware of the program are assumed to be purchasing high-efficiency equipment. As a result, the effect of both program awareness and rebate amount is diminished, since high-efficiency equipment is being purchased by those unaware of the program and are receiving no rebate. This is clearly evident in the coefficient estimate for PERREBATE, which is positive and statistically insignificant for this specification.

|           | Coefficient | Standard | Significance |
|-----------|-------------|----------|--------------|
| Variable  | Estimate    | Error    | Level        |
| USELEVEL1 | -0.62       | 1.24     | 61%          |
| USELEVEL2 | -0.64       | 1.26     | 61%          |
| USELEVEL3 | -0.55       | 1.25     | 66%          |
| USELEVEL4 | -0.81       | 1.25     | 52%          |
| USELEVEL5 | -1.02       | 1.26     | 41%          |
| PERREBATE | 0.62        | 1.12     | 58%          |
| AWARE     | 3.2         | 0.85     | 1%           |
| ELECHEAT  | -0.66       | 0.44     | 13%          |
| ADDLIGHT  | 0.07        | 0.61     | 91%          |
| ARLIGHT   | -0.31       | 0.46     | 49%          |
| ARHEAT    | -0.34       | 0.52     | 52%          |
| OFFICE    | 0.77        | 0.46     | 13%          |
| COMMSERV  | -0.02       | 0.66     | 97%          |
| GROCERY   | -2.18       | 0.84     | 1%           |
| HEALTH    | 0.15        | 0.61     | 81%          |
| WAREHSE   | 0.33        | 0.82     | 69%          |
| RESTRNT   | 0.85        | 0.92     | 35%          |
| RETAIL    | -1.01       | 0.53     | 6%           |
| MISSCOM   | -0.62       | 0.74     | 41%          |

### Exhibit D-7 Model 3: 50% of Those Outside and Unaware of the Program Purchase High-Efficiency Equipment Logit Estimation Results

### Model 4: Half of those outside the HVAC program, both aware and unaware, purchase highefficiency equipment.

In this model, customers are randomly assigned as purchasing high-efficiency HVAC equipment, with no distinction made based on awareness of the HVAC program. The estimation results are similar to those from Model 3. AWARE is positive and significant and greater in magnitude than the estimate in Model 3, which reflects the greater number of those customers aware of the HVAC program assumed to be purchasing high-efficiency equipment. However, the estimate for PERREBATE is again positive and insignificant, giving the counterintuitive result that higher net incremental costs have a positive effect on high-efficiency equipment purchases.

|           | Coefficient | Standard | Significance |
|-----------|-------------|----------|--------------|
| Variable  | Estimate    | Error    | Level        |
| USELEVEL1 | 2.77        | 2.39     | 25%          |
| USELEVEL2 | 0.09        | 1.98     | 96%          |
| USELEVEL3 | -1.06       | 1.94     | 59%          |
| USELEVEL4 | 0.11        | 1.93     | 95%          |
| USELEVEL5 | -1.49       | 1.96     | 45%          |
| PERREBATE | 0.82        | 1.8      | 65%          |
| AWARE     | 4.59        | 1.32     | 1%           |
| ELECHEAT  | -0.36       | 0.7      | 61%          |
| ADDLIGHT  | 0.35        | 0.92     | 70%          |
| ARLIGHT   | -0.67       | 0.6      | 27%          |
| ARHEAT    | -0.26       | 0.74     | 73%          |
| OFFICE    | -0.1        | 0.73     | 89%          |
| COMMSERV  | -0.21       | 1.07     | 85%          |
| GROCERY   | -3.14       | 1.02     | 1%           |
| HEALTH    | -1.24       | 0.81     | 13%          |
| WAREHSE   | -1.43       | 1        | 15%          |
| RESTRNT   | -0.53       | 1.06     | 62%          |
| RETAIL    | -1.22       | 0.78     | 12%          |
| MISSCOM   | -1.44       | 1.08     | 18%          |

### Exhibit D-8 Model 4: 50% of Those Outside the Program Both Aware and Unaware Purchase High-Efficiency Equipment Logit Estimation Results

The wide variety of parameter estimates across the four models illustrates how sensitive these models are to underlying assumptions. The consequences of the wide range of estimates is demonstrated through the estimated NTG ratios discussed in *Section D.4.6*.

#### Estimated Probabilities

The estimated model parameter can be used to calculate the probability of purchasing highefficiency for each the four models. Probabilities are calculated with and in absence of the HVAC program. With the logit model, the probability of purchasing is given by:

PURCHASE = exp(Q) / 1 + exp(Q)

where  $Q = \beta' X + \gamma' Y + \vartheta' Z + \varepsilon$ 

The estimated probabilities for each model are given in Exhibit D-9.

|         |                      | With<br>Program | In Absence<br>Of Program |
|---------|----------------------|-----------------|--------------------------|
| Model 1 | Program Participants | 0.89            | 0.23                     |
|         | Nonparticipants      | 0.43            | 0.19                     |
| Model 2 | Program Participants | 0.94            | 0.18                     |
|         | Nonparticipants      | 0.33            | 0.16                     |
| Model 3 | Program Participants | 0.89            | 0.48                     |
|         | Nonparticipants      | 0.62            | 0.37                     |
| Model 4 | Program Participants | 0.94            | 0.52                     |
|         | Nonparticipants      | 0.5             | 0.31                     |

Exhibit D-9 Estimated Probabilities of Purchasing High-Efficiency HVAC Equipment

As expected, HVAC program participants have a high probability of purchasing high-efficiency equipment. For program participants, estimated probabilities for purchasing high-efficiency range from 0.89 to 0.94. Similarly, those purchasing outside the program have a lower estimated probability of purchasing high-efficiency equipment, with estimates ranging from 0.33 to 0.62.

The probability of a high-efficiency equipment purchase in absence of the HVAC program is estimated by removing the effect of the HVAC program from the model. This is done by setting both the awareness variable and the rebate amount equal to zero. When the rebate is set to zero in PERREBATE, the customer is faced with paying the entire incremental cost of the high-efficiency measure. Using the new PERREBATE and AWARE values, the purchases probability is recalculated using the logistic density function given above. All other variable values remain the same as they are not expected to change in absence of the HVAC program.

The new probabilities of a high-efficiency purchase in absence of the HVAC program are also given in Exhibit D-9. In the absence of the HVAC program, the probability of purchasing high-efficiency equipment drops substantially. The new estimated probability of purchasing high-efficiency equipment in absence of the program ranges from 0.18 to 0.52 for those purchasing within HVAC program. For outside the HVAC program, the estimated probability of a high-efficiency purchase ranges from 0.16 to 0.37.

# D.4.5 Net-To-Gross Ratio Calculations

The NTG ratio is calculated using the probability of purchasing high-efficiency equipment both with and without the existence of the HVAC program. The expected impact with the program is the probability of choosing high-efficiency equipment multiplied by the energy impact of the equipment. Similarly, the expected energy impact in absence of the HVAC program is the probability of purchasing high-efficiency equipment without the program multiplied by the energy impact of the equipment. The NTG ratio is the net savings due to the program divided by the expected energy that results from having the program. This method is also used to estimate free-ridership rates and nonparticipant spillover. As a comparison across models indicates, the estimated impact of the program is sensitive to the assumptions made regarding the efficiency of the equipment purchased outside the program.

For those that participated in the HVAC program, the expected energy savings is:

EXPECTED IMPACT<sub>w</sub><sup>HEIN</sup> =  $P_w^{HEIN} * IMPACT$ 

where  $P_w^{HEIN}$  = Probability of a high-efficiency purchase made by a program participant with the existence of the HVAC program

IMPACT = Energy impact of the high-efficiency equipment adopted

For those who purchase high-efficiency equipment outside the HVAC program, the expected savings is calculated in the same manner:

EXPECTED IMPACT<sub>w</sub><sup>HEOUT</sup> =  $P_w^{HEOUT} * IMPACT$ 

where  $P_w^{HEOUT}$  = Probability of a high-efficiency purchase for a customer outside of the program with the existence of the HVAC program

The calculations for expected energy impacts in the absence of the program follow the same format. For program participants and those purchasing HVAC equipment outside the program, the expected energy savings in absence of the program is given by:

EXPECTED IMPACT  $_{WO}^{HEIN} = P_{WO}^{HEIN} * IMPACT$ 

EXPECTED IMPACT<sub>WO</sub><sup>HEOUT</sup> =  $P_{WO}^{HEOUT} * IMPACT$ 

where  $P_{wo}^{HEIN}$  = Probability of a high-efficiency purchase made by a program participant without the HVAC program

 $P_{WO}^{HEOUT}$  = Probability of a high-efficiency purchase for a customer outside of the program without the HVAC program

These calculations are made for each of the four models for both program participants and nonparticipants and the results are given in Exhibit D-10.

The expected impact for both groups of HVAC purchasers with and without the HVAC program is used to calculate the net energy savings due to the HVAC program as well as a NTG ratio. To calculate the NTG ratio, the net energy savings for each group is weighted up to the population. For program participants, the weight reflects the total energy impact by building type represented in the sample. For those that did high-efficiency outside the HVAC program but also participated in the HVAC program in some other fashion, the weight assigned is the same assigned to the program participants. If the customer purchased HVAC equipment outside the program and did not participate in the HVAC program in any way, the weight assigned reflects the number of similar customers in the nonparticipant population.

|                                        |                          | Estimated Ene                     | ergy Impact            |                           |
|----------------------------------------|--------------------------|-----------------------------------|------------------------|---------------------------|
|                                        | With<br>Program<br>(GWh) | In Absence<br>Of Program<br>(GWh) | Net<br>Impact<br>(GWh) | Net-to-<br>Gross<br>Ratio |
| Model 1                                |                          |                                   |                        |                           |
| HE Equipment Purchased Inside Program  | 1.30                     | 0.32                              | 0.98                   | 0.76                      |
| HE Equipment Purchased Outside Program | 0.00                     | 0.00                              | NA                     |                           |
| Model 2 /                              |                          |                                   |                        |                           |
| HE Equipment Purchased Inside Program  | 1.37                     | 0.25                              | 1.12                   | 2.88                      |
| HE Equipment Purchased Outside Program | 3.64                     | 0.81                              | 2.83                   |                           |
| Model 3                                |                          |                                   |                        |                           |
| HE Equipment Purchased Inside Program  | 1.33                     | 0.68                              | 0.65                   | 0.49                      |
| HE Equipment Purchased Outside Program | 0.00                     | 0.00                              | NA                     |                           |
| Model 4                                |                          |                                   |                        |                           |
| HE Equipment Purchased Inside Program  | 1.39                     | 0.69                              | 0.71                   | 1.31                      |
| HE Equipment Purchased Outside Program | 7.11                     | 5.99                              | 1.11                   |                           |

# Exhibit D-10 Estimated Energy Impacts and Net-to-Gross Ratios

To calculate the NTG ratio, the net savings is divided by the expected energy savings with the program. For Model 1 and Model 3, there is no estimated spillover from the HVAC program.<sup>6</sup> As a result, the NTG ratio is determined from the estimated impact of the program on program participants. For program participants the NTG ratio (NTG) is

# NTG<sup>HEIN</sup> = (EXPECTED IMPACT<sub>W</sub><sup>HEIN</sup> - EXPECTED IMPACT<sub>WO</sub><sup>HEIN</sup>) / EXPECTED IMPACT<sub>W</sub><sup>HEIN</sup>

The NTG ratio is estimated for each model and the results are summarized in Exhibit D-7. For Model 1 where all purchases outside the program are assumed to be for standard efficiency equipment, the estimated NTG ratio for program participants is

(130.00 - 31.63) / 130.00

# = 0.76

The level of free-ridership among program participants is one minus the NTG ratio, or 0.24. This means that 24 percent of the estimated program impact among participants would have been achieved without the HVAC program.

The NTG ratio is calculated in the same manner for Model 3 where half of those unaware of the program are assumed to purchase high efficiency equipment. For program participants in Model 3, the estimated NTG ratio is 0.49. This lower ratio results from the positive coefficient estimate on PERREBATE, which tends to diminish the effect of the HVAC program.

<sup>&</sup>lt;sup>6</sup> For Model 1, all measures done outside of the HVAC program are assumed to be standard efficiency. For Model 3, high efficiency measures done outside the program are assumed to be done by those unaware of the program. In either case, removing the HVAC program has no effect on those outside the program and results in zero spillover.

Model 2 and Model 4 include nonparticipant spillover that should be incorporated into the NTG ratio estimate. In these models, spillover occurs for that portion of the sample that is assumed to make high efficiency purchases outside of the HVAC program. These customers are assigned a weight reflecting the number of similar customers in the nonparticipant population and as a consequence, estimated spillover is high relative to the impact to program participants.

The NTG ratio calculation for Model 2 and Model 4 is given by

NTG = (NET IMPACT<sup>HEIN</sup> + NET IMPACT<sup>HEOUT</sup>) / EXPECTED IMPACT<sub>w</sub><sup>HEIN</sup>

where NET IMPACT<sup>HEIN</sup> = EXPECTED IMPACT<sub>w</sub><sup>HEIN</sup> - EXPECTED IMPACT<sub>wo</sub><sup>HEIN</sup> NET IMPACT<sup>HEOUT</sup> = EXPECTED IMPACT<sub>w</sub><sup>HEOUT</sup> - EXPECTED IMPACT<sub>wo</sub><sup>HEOUT</sup>

The estimated NTG ratios incorporating nonparticipant spillover in Model 2 and Model 4 are also given in Exhibit D-7. Using the estimated impacts from Model 2, the NTG ratio including nonparticipant spillover is

NTG = ( 1.12 + 2.83) / 1.37 = 2.88

Similarly, the estimated nonparticipant spillover for Model 4 is also relatively high at 1.31.

These spillover estimates are unreliable due to the data limitations already discussed. Nevertheless, the high magnitude is indicative of the potential for a large nonparticipant spillover effect due to the HVAC program. This suggests that further study with more specific data is warranted.

Given the range of NTG estimates, it is possible to solve for the assumptions consistent with the self reported NTG ratio. Since the self reported NTG ratio is 0.84, Model 1 provides the closest estimate of with a NTG ratio of 0.76. This suggests that of the four model specifications, assuming purchases outside the HVAC program are for standard efficiency equipment is most consistent with the self reported information.

# D.4.6 Summary

As an alternative to self-reported NTG results, several different logit models specifications for highefficiency HVAC equipment purchases were explored. Different models were developed based on assumptions concerning HVAC equipment purchased outside the HVAC program. The estimation results illustrate the sensitivity of these models to assumptions made regarding the energy efficiency of HVAC equipment purchased outside the program. NTG ratio estimates range from 0.49 to 2.88 across the four models presented in this section. Accurate information regarding the energy efficiency of a large sample of equipment purchased outside the HVAC program, similar to the data collected for the Lighting program, is essential for developing a model that more accurately estimates the NTG ratio for the HVAC program.

Because the results of the discrete choice analysis did not provide a basis for modifying the NTG ratios calculated from survey data, the results of the self-reported NTG analysis were used in the evaluation to adjust gross impact results.

Appendix E Results Tables

# Commercial HVAC Ex Ante Gross Energy Impacts By Business Type and Technology Group

| Business Type                        |            |           |                        |           | Comme     | rcial HVAC | First-Year En | ergy Impacts | (kWh)     |                       |                      |         |            |
|--------------------------------------|------------|-----------|------------------------|-----------|-----------|------------|---------------|--------------|-----------|-----------------------|----------------------|---------|------------|
| Program and Technology Group         | Office     | Retail    | College/<br>University | School    | Grocery   | Restaurant | Health Care   | Hatel/Motel  | Warehouse | Personal<br>Service   | Community<br>Service | Misc.   | Total      |
| Retrofit Express Program             |            |           |                        |           |           |            |               |              |           | <u>نىيى بەركىچى ب</u> |                      |         |            |
| Central A/C                          | 492,811    | 121,008   | 30,832                 | 177,227   | 15,702    | 89,913     | 188,710       | 9,118        | 10,906    | 56,177                | 239,896              | 30,432  | 1,462,731  |
| Variable Speed Drive HVAC Fan        | 1,165,644  | 1,982,649 | 324,599                | 22,590    | 26,355    | -          | 33,885        | 22,590       | 37,650    | 737,940               |                      | 30,120  | 4,384,022  |
| Package Terminal A/C                 | 8,478      | 1,462     | 4,474                  | 50,099    | -         | 16,810     | 37,077        | 140,648      | 451       | -                     | 4,572                |         | 264,071    |
| Programmable Thermostat              | 1,817,833  | 330,586   | 4,093                  | 888,845   | 24,558    | 126,883    | 143,255       | 16,372       | 209,846   | 114,916               | 425,135              | 148,440 | 4,250,762  |
| Reflective Window Film               | 1,621,117  | 71,295    | 101,442                | 40,106    | 49,564    | 28,256     | 193,332       | 92,862       | 84,291    | 75,991                | 209,556              | 37,002  | 2,604,815  |
| Water Chiller                        | 10,212     | 16,800    | -                      | 20,750    | •         | -          | 52,402        | •            | •         | •                     | 7,292                | •       | 107,456    |
| Other RE Measures                    | 103,228    | •         |                        | 354,235   | 55,811    | 30,231     | 131,625       | 147,000      | -         | 21,000                | 116,292              | •       | 959,422    |
| Retrofit Express Total               | 5,219,323  | 2,523,799 | 465,441                | 1,553,852 | 171,990   | 292,093    | 780,286       | 428,589      | 343,144   | 1,006,024             | 1,002,745            | 245,994 | 14,033,280 |
| Retrofit Efficiency Options Program  |            |           |                        |           |           |            |               |              |           | ·····                 |                      |         |            |
| Variable Frequency Drive             | 762,580    | 185,380   | 625,423                | •         | -         | -          | -             | -            | -         | -                     | •                    | •       | 1,573,383  |
| Water Chiller                        | 903,243    | 517,676   | •                      | -         | •         | -          | 550,464       | -            | -         | -                     | 232,560              | -       | 2,203,943  |
| CAV to VAV                           | 2,654,240  | •         | •                      | -         | -         | -          | -             |              | •         | •                     |                      | -       | 2,654,240  |
| Cooling Tower                        | 26,455     | 44,520    | -                      | -         | •         | •          | 185,846       |              | -         | •                     | •                    | -       | 256,821    |
| Retrofit Efficiency Options Total    | 4,346,518  | 747,576   | 625,423                | 0         | 0         | 0          | 736,310       | 0            | 0         | 0                     | 232,560              | 0       | 6,688,386  |
| Customized Incentives Program        |            |           |                        |           |           |            |               |              |           |                       |                      |         |            |
| HVAC Variable Speed Drive            | 1,012,569  | -         | -                      | •         | 1,237,948 | -          | 359,734       | 187,963      | •         | •                     | 536,740              | -       | 3,334,954  |
| High Efficiency Chiller              | 1,185,146  | •         | •                      | -         | -         |            | •             | •            | -         | -                     | -                    | •       | 1,185,146  |
| Energy Management System             | 2,440,817  | -         | 1,195,981              | 3,677,546 | 727,266   | -          | 1,910,025     | 587,031      | 11,382    | 83,936                | -                    | -       | 10,633,984 |
| Other Customized Incentives Measures | 9,393,471  | -         | 803,606                | 400,888   |           | -          | 2,493,372     | -            | 352,106   | 2,318,100             | 252,588              | -       | 16,014,131 |
| Customized Incentives Total          | 14,032,003 | 0         | 1,999,587              | 4,078,434 | 1,965,214 | 0          | 4,763,131     | 774,994      | 363,488   | 2,402,036             | 789,328              | 0       | 31,168,215 |
| Total                                | 23,597,844 | 3,271,375 | 3,090,451              | 5,632,286 | 2,137,204 | 292,093    | 6,279,727     | 1,203,583    | 706,632   | 3,408,060             | 2,024,633            | 245,994 | 51,889,884 |

# Commercial HVAC Ex Ante Net Energy Impacts By Business Type and Technology Group

| Business Type                        |            |           |                        |           | Comme     | ercial HVAC | First-Year En | ergy Impact | s (kWh)   |                    |                                        |         |            |
|--------------------------------------|------------|-----------|------------------------|-----------|-----------|-------------|---------------|-------------|-----------|--------------------|----------------------------------------|---------|------------|
| Program and Technology Group         | Office     | Retail    | College/<br>University | chool     | rocery    | staurant    | ealth Care    | otel/Motel  | Varehouse | 'ersonal<br>ervice | Cammunity<br>Service                   | disc.   | Į.         |
| Retrofit Express Program             |            | <u> </u>  | <u> </u>               | <u> </u>  | <u>.</u>  | Ř           | <u> </u>      | ž           | <u> </u>  | <u> </u>           | <u> </u>                               | ž.      | <u> </u>   |
| Central A/C                          | 330,183    | 81,075    | 20.658                 | 118,742   | 10.520    | 60,242      | 126,436       | 6.109       | 7.307     | 37.639             | 160,730                                | 20.389  | 980.030    |
| Variable Speed Drive HVAC Fan        | 780,981    | 1,328,374 | 217.482                | 15,135    | 17,658    |             | 22,703        | 15,135      | 25.225    | 494,420            | -                                      | 20,180  | 2,937,294  |
| Package Terminal A/C                 | 5,680      | 979       | 2,998                  | 33,567    |           | 11,262      | 24,842        | 94.234      | 302       |                    | 3,063                                  |         | 176,928    |
| Programmable Thermostat              | 1,217,948  | 221,493   | 2,742                  | 595,526   | 16,454    | 85,012      | 95,981        | 10,969      | 140,597   | 76,994             | 284,840                                | 99,455  | 2,848,009  |
| Reflective Window Film               | 1,086,148  | 47,768    | 67,966                 | 26,871    | 33,208    | 18,932      | 129,532       | 62,218      | 56,475    | 50,914             | 140,403                                | 24,791  | 1,745,225  |
| Water Chiller                        | 6,842      | 11,256    | -                      | 13,902    | •         |             | 35,109        | -           | -         | -                  | 4,886                                  | -       | 71,995     |
| Other RE Measures                    | 69,224     | •         | -                      | 237,337   | 37,393    | 20,255      | 88,189        | 98,490      |           | 14,070             | 77,916                                 | -       | 642,874    |
| Retrofit Express Total               | 3,497,006  | 1,690,945 | 311,846                | 1,041,080 | 115,233   | 195,702     | 522,791       | 287,155     | 229,907   | 674,036            | 671,839                                | 164,816 | 9,402,355  |
| Retrofit Efficiency Options Program  |            |           |                        | <u> </u>  |           |             |               | <u> </u>    |           |                    | ······································ |         |            |
| Variable Frequency Drive             | 510,928    | 124,205   | 419,033                | •         | -         | •           | -             | -           | -         | -                  | -                                      |         | 1,054,166  |
| Water Chiller                        | 605,173    | 346,843   | -                      | -         | -         |             | 368,810       |             | •         | -                  | 155,815                                | -       | 1,476,641  |
| CAV to VAV                           | 1,778,340  | -         |                        |           | -         | •           | -             | •           | -         | -                  | -                                      | -       | 1,778,340  |
| Cooling Tower                        | 17,725     | 29,828    | •                      | -         | -         | -           | 124,517       | -           | - •       | -                  |                                        | •       | 172,070    |
| Retrofit Efficiency Options Total    | 2,912,166  | 500,876   | 419,033                | 0         | 0         | 0           | 493,327       | 0           | 0         | 0                  | 155,815                                | 0       | 4,481,217  |
| Customized Incentives Program        |            |           |                        |           |           |             |               |             |           |                    |                                        |         | <u> </u>   |
| HVAC Variable Speed Drive            | 759,427    | -         | -                      | -         | 928,461   | -           | 269,801       | 140,972     | •         | -                  | 402,555                                | •       | 2,501,216  |
| High Efficiency Chiller              | 888,860    | •         | -                      | -         | •         | -           | -             | •           | -         | -                  | -                                      |         | 888,860    |
| Energy Management System             | 1,830,613  | •         | 896,986                | 2,758,160 | 545,450   |             | 1,432,519     | 440,273     | 8,537     | 62,952             | -                                      | -       | 7,975,490  |
| Other Customized Incentives Measures | 7,045,105  | -         | 602,705                | 300,666   | •         | •           | 1,870,029     | -           | 264,080   | 1,738,575          | 189,441                                | -       | 12,010,601 |
| Customized Incentives Total          | 10,524,005 | 0         | 1,499,691              | 3,058,826 | 1,473,911 | 0           | 3,572,349     | 581,246     | 272,616   | 1,801,527          | 591,996                                | 0       | 23,376,167 |
| Total                                | 16,933,177 | 2,191,821 | 2,230,569              | 4,099,906 | 1,589,144 | 195,702     | 4,588,468     | 868,400     | 502,523   | 2,475,564          | 1,419,650                              | 164,816 | 37,259,739 |

# Commercial HVAC Unadjusted Engineering Gross Energy Impacts By Business Type and Technology Group

| Business Type                        |            |           |                        |           | Com       | mercial HVA | First-Year Eng | engy Impacts (is | Wh)       |                     |                      |         |            |
|--------------------------------------|------------|-----------|------------------------|-----------|-----------|-------------|----------------|------------------|-----------|---------------------|----------------------|---------|------------|
| Program and Technology Group         | Office     | Retail    | College/<br>University | school    | Cracery   | lestaurant  | tealth Care    | lotel/Motel      | Narehouse | tersonal<br>Service | Community<br>service | dire.   | otal       |
| Retrofit Express Program             |            |           |                        |           |           |             |                |                  | · · · · · | اب و ما ال خان و    |                      |         |            |
| Central A/C                          | 254.050    | 136.003   | 19,785                 | 90,645    | 26,794    | 78,603      | 61,902         | 7,769            | 24,139    | 43,173              | 116,657              | 18,432  | 877,953    |
| Variable Speed Drive HVAC Fan        | 1,479,717  | 2,721,680 | 507,527                | 18,746    | 68,866    |             | 64,206         | 73,709           | 53,118    | 984,390             | -                    | 44,681  | 6,016.641  |
| Package Terminal A/C                 | 8,526      | 1,744     | 4,100                  | 46,812    | •         | 15,571      | 35,488         | 133,992          | 455       | •                   | 5,225                |         | 251,913    |
| Programmable Thermostat              | 1,332,230  | 308,045   | 10,437                 | 663,682   | 39,192    | 143,991     | 138,112        | 21,854           | 242,702   | 149,303             | 499,702              | 62,911  | 3,612,161  |
| Reflective Window Film               | 1,705,804  | 75,063    | 112,236                | 42,226    | 52,184    | 29,750      | 203,551        | 97,770           | 88,747    | 80,007              | 210,713              | 38,958  | 2,738,008  |
| Water Chiller                        | 39,017     | 42,285    | •                      | 43,263    | •         | -           |                | -                | •         | -                   | 16,223               |         | 140,788    |
| Other RE Measures                    | 141,670    | -         | •                      | 208, 197  | 26,376    | 13,581      | 74,184         | 68,208           |           | 9,744               | 54,141               | -       | 596,101    |
| Retrofit Express Total               | 4,962,015  | 3,284,820 | 654,085                | 1,113,570 | 213,413   | 281,496     | 577,443        | 403,302          | 409,160   | 1,266,617           | 902,661              | 164,982 | 14,233,565 |
| Retrofit Efficiency Options Program  |            |           |                        |           |           |             |                |                  |           |                     |                      |         | ·          |
| Variable Frequency Drive             | 214,730    | 52,110    | 260,026                | -         | -         | -           |                |                  |           | •                   |                      | •       | 526,865    |
| Water Chiller                        | 68,677     | 373,053   | -                      | -         | •         | -           | 586,872        | •                | -         | -                   | 235,846              |         | 1,264,448  |
| CAV IO VAV                           | 2,654,240  | •         |                        | •         |           | -           | -              |                  |           | -                   | •                    |         | 2,654,240  |
| Cooling Tower                        | 30,878     | 39,340    | -                      | -         | -         | -           | 150,446        |                  | -         |                     |                      | -       | 220,664    |
| Retrofit Efficiency Options Total    | 2,968.524  | 464,503   | 260,026                | 0         | 0         | 0           | 737,318        | 0                | 0         | 0                   | 235,846              | 0       | 4,666,217  |
| Customized Incentives Program        |            |           |                        |           |           |             |                |                  |           |                     |                      |         |            |
| HVAC Variable Speed Drive            | 849,781    |           |                        | -         | 754,971   | -           | 359,734        | 187,963          | -         |                     | 275,431              | •       | 2,427,880  |
| High Efficiency Chiller              | 1,560,525  | •         | -                      | -         |           | •           | · ·            | -                |           | -                   | -                    | •       | 1,560,525  |
| Energy Management System             | 2,440,817  | •         | 1,195,981              | 3,333,251 | 727,266   | •           | 1,910,025      | 587,031          | 11,382    | 83,936              | -                    | -       | 10,289,689 |
| Other Customized Incentives Measures | 9,393,471  |           | 803,606                | 400,888   |           | -           | 2,493,372      |                  | 352,106   | 2,316,100           | 252,588              |         | 16,014,131 |
| Customized Incentives Total          | 14,244,594 | 0         | 1,999,587              | 3,734,139 | 1,482,238 | 0           | 4,763,131      | 774,994          | 363,488   | 2,402,036           | 528,019              | 0       | 30,292,226 |
| Total                                | 22,175,134 | 3,749,323 | 2,913,698              | 4,847,709 | 1,695,651 | 281,496     | 6,077,892      | 1,178,296        | 772,648   | 3,668,653           | 1,666,526            | 164,982 | 49,192,007 |

# Commercial HVAC Gross Energy Impact SAE Energy Coefficients By Business Type and Technology Group

| Business Type                        |        |        |                        |         |         | SAE        | Coeffic     | ients       |           |                     |                      |       |          |
|--------------------------------------|--------|--------|------------------------|---------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|----------|
| Program and Technology Group         | Office | Retail | College/<br>University | School  | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | [otal    |
| Retrofit Express Program             |        |        |                        | <u></u> |         |            |             |             |           |                     |                      |       | <u> </u> |
| Central A/C                          | 2.07   | 2.07   | 2.07                   | 2.07    | 2.07    | 2.07       | 2.07        | 2.07        | 2.07      | 2.07                | 2.07                 | 2.07  |          |
| Variable Speed Drive HVAC Fan        | 1.90   | 1.90   | 1.90                   | 1.90    | 1.90    | 1.90       | 1.90        | 1.90        | 1.90      | 1.90                | 1.90                 | 1.90  |          |
| Package Terminal A/C                 | 0.90   | 0.90   | 0.90                   | 0.90    | 0.90    | 0.90       | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                 | 0.90  |          |
| Programmable Thermostat              | 0.00   | 0.90   | 0.90                   | 0.90    | 0.90    | 0.90       | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                 | 0.90  |          |
| Reflective Window Film               | 0.90   | 0.90   | 0.90                   | 0.90    | 0.90    | 0.90       | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                 | 0.90  |          |
| Water Chiller                        | 1.58   | 1.58   | 1.58                   | 1.58    | 1.58    | 1.58       | 1.58        | 1.58        | 1.58      | 1.58                | 1.58                 | 1.58  |          |
| Other RE Measures                    | 0.90   | 0.90   | 0.90                   | 0.90    | 0.90    | 0.90       | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                 | 0.90  |          |
| Retrofit Express Total               |        |        |                        |         |         |            |             |             |           |                     |                      |       |          |
| Retrofit Efficiency Options Program  |        |        |                        |         |         |            |             | · · ·       |           |                     | ;                    |       |          |
| Variable Frequency Drive             | 1.90   | 1.90   | 1.90                   | 1.90    | 1.90    | 1.90       | 1.90        | 1.90        | 1.90      | 1.90                | 1.90                 | 1.90. |          |
| Water Chiller                        | 1.58   | 1.58   | 1.58                   | 1.58    | 1.58    | 1.58       | 1.58        | 1.58        | 1.58      | 1.58                | 1.58                 | 1.58  |          |
| CAV to VAV                           | 0.65   | 0.65   | 0.65                   | 0.65    | 0.65    | 0.65       | 0.65        | 0.65        | 0.65      | 0.65                | 0.65                 | 0.65  |          |
| Cooling Tower                        | 0.90   | 0.90   | 0.90                   | 0.90    | 0.90    | 0.90       | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                 | 0.90  |          |
| Retrofit Efficiency Options Total    |        |        |                        |         |         |            |             |             |           |                     |                      |       |          |
| Customized Incentives Program        |        |        |                        |         |         |            | ••          |             |           |                     |                      |       |          |
| HVAC Variable Speed Drive            | 1.90   | 1.90   | 1.90                   | 1.90    | 1.90    | 1.90       | 1.90        | 1.90        | 1.90      | 1.90                | 1.90                 | 1.90  |          |
| High Efficiency Chiller              | 1.00   | 1.00   | 1.00                   | 1.00    | 1.00    | 1.00       | 1.00        | 1.00        | 1.00      | 1.00                | 1.00                 | 1.00  |          |
| Energy Management System             | 1.03   | 1.03   | 1.03                   | 1.03    | 1.03    | 1.03       | 1.03        | 1.03        | 1.03      | 1.03                | 1.03                 | 1.03  |          |
| Other Customized Incentives Measures | 0.65   | 0.65   | 0.65                   | 0.65    | 0.65    | 0.65       | 0.65        | 0.65        | 0.65      | 0.65                | 0.65                 | 0.65  |          |
| Customized Incentives Total          |        |        |                        |         |         |            |             |             |           |                     |                      |       |          |
| Total                                |        |        |                        |         |         |            |             |             |           |                     |                      |       |          |

# Commercial HVAC Ex Post Gross Energy Impacts By Business Type and Technology Group

| Business Type                        |                  |           |                        |           | Comme     | rcial HVAC | First-Year En | ergy Impact | s (kWh)   |                     |                      |         |            |
|--------------------------------------|------------------|-----------|------------------------|-----------|-----------|------------|---------------|-------------|-----------|---------------------|----------------------|---------|------------|
|                                      | Office           | Retail    | College/<br>University | chool     | Grocery   | estaurant  | lealth Care   | otel/Motel  | Varehouse | Personal<br>Service | Community<br>Service | Aisc.   | otal       |
| Program and Technology Group         | <u>ـــة_ـ</u> ــ | <u> </u>  | _ حَق                  | <u> </u>  | <u>.</u>  | <u> </u>   | <u>Ŧ</u> l    | <u>Ř</u>    |           | <u> </u>            | <u> </u>             | Σ       | └──₽──┤    |
| Retrofit Express Program             |                  |           |                        |           |           |            |               | -           |           |                     |                      |         |            |
| Central A/C                          | 525,642          | 281,396   | 40,936                 | 187,548   | 55,439    | 162,633    | 128,079       | 16,074      | 49,946    | 89,327              | 241,370              | 38,137  | 1,816,527  |
| Variable Speed Drive HVAC Fan        | 2,813,602        | 5,175,127 | 965,036                | 35,644    | 130,946   | -          | 122,085       | 140,154     | 101,000   | 1,871,764           | -                    | 84,959  | 11,440,318 |
| Package Terminal A/C                 | 7,654            | 1,566     | 3,680                  | 42,023    | -         | 13,979     | 31,857        | 120,285     | 408       | -                   | 4,690                | -       | 226,144    |
| Programmable Thermostat              | 0                | 276,534   | 9,369                  | 595,792   | 35,183    | 129,262    | 123,984       | 19,618      | 217,875   | 134,030             | 448,586              | 56,476  | 2,046,708  |
| Reflective Window Film               | 1,532,208        | 67,385    | 100,755                | 37,906    | 46,846    | 26,707     | 182,729       | 87,769      | 79,668    | 71,823              | 189,158              | 34,973  | 2,457,926  |
| Water Chiller                        | 61,742           | 66,913    | •                      | 68,460    | -         | •          |               | -           | •         | •                   | 25,672               | -       | 222,787    |
| Other RE Measures                    | 127,178          | •         | •                      | 186,899   | 23,678    | 12,192     | 66,595        | 61,231      | -         | 8,747               | 48,603               | -       | 535,124    |
| Retrofit Express Total               | 5,068,027        | 5,868,921 | 1,119,777              | 1,154,273 | 292,092   | 344,772    | 655,330       | 445,131     | 448,897   | 2,175,692           | 958,078              | 214,545 | 18,745,534 |
| Retrofit Efficiency Options Program  |                  |           |                        |           |           |            |               |             |           |                     |                      |         |            |
| Variable Frequency Drive             | 408,297          | 99,084    | 494,425                | •         | -         | -          | -             | -           | -         | -                   | -                    | •       | 1,001,806  |
| Water Chiller                        | 108,676          | 590,332   | •                      | -         | -         | •          | 928,687       |             | •         | •                   | 373,211              | -       | 2,000,905  |
| CAV to VAV                           | 1,733,726        | -         | •                      | •         | •         | •          | •             | •           | •         | •                   | -                    |         | 1,733,726  |
| Cooling Tower                        | 27,719           | 35,316    | •                      | •         | •         | •          | 135,056       | •           | -         | -                   | -                    | •       | 198,091    |
| Retrofit Efficiency Options Total    | 2,278,418        | 724,732   | 494,425                | 0         | 0         | 0          | 1,063,743     | 0           | 0         | 0                   | 373,211              | 0       | 4,934,528  |
| Customized Incentives Program        |                  |           |                        |           |           | -          |               |             |           |                     |                      |         |            |
| HVAC Variable Speed Drive            | 1,615,813        | -         | •                      | -         | 1,435,537 | -          | 684,015       | 357,401     | -         | -                   | 523,716              | -       | 4,616,483  |
| High Efficiency Chiller              | 1,560,525        | -         | -                      |           | -         | -          | -             | -           |           | -                   | -                    | •       | 1,560,525  |
| Energy Management System             | 2,504,659        | -         | 1,227,263              | 3,420,436 | 746,289   | -          | 1,959,984     | 602,385     | 11,680    | 86,131              |                      | •       | 10,558,827 |
| Other Customized Incentives Measures | 6,135,731        | -         | 524,908                | 261,856   | -         | -          | 1,628,648     | -           | 229,992   | 1,514,162           | 164,988              | •       | 10,460,286 |
| Customized Incentives Total          | 11,816,728       | 0         | 1,752,171              | 3,682,292 | 2,181,826 | 0          | 4,272,647     | 959,787     | 241,672   | 1,600,293           | 688,704              | 0       | 27,196,121 |
| Total                                | 19,163,174       | 6,593,652 | 3,366,373              | 4,836,565 | 2,473,918 | 344,772    | 5,991,719     | 1,404,918   | 690,569   | 3,775,985           | 2,019,993            | 214,545 | 50,876,182 |

# Commercial HVAC Net-to-Gross Adjustments By Business Type and Technology Group

| Business Type                        |        |        |                        |        |          | Net-to-G            | iross Ad    | justmen     | its       |                     |                      |       |            |
|--------------------------------------|--------|--------|------------------------|--------|----------|---------------------|-------------|-------------|-----------|---------------------|----------------------|-------|------------|
| Program and Technology Group         | Office | Retail | College/<br>University | school | Grocery  | Restaurant          | Health Care | Hotel/Motel | Marehouse | Personal<br>Service | Community<br>Service | Misc. | [otal      |
| Retrofit Express Program             |        |        |                        |        |          |                     |             |             |           |                     | _                    |       |            |
| Central A/C                          | 0.84   | 0.84   | 0.84                   | 0.84   | 0.84     | 0.84                | 0.84        | 0.84        | 0.84      | 0.84                | 0.84                 | 0.84  |            |
| Variable Speed Drive HVAC Fan        | 0.90   | 0.90   | 0.90                   | 0.90   | 0.90     | 0.90                | 0.90        | 0.90        | 0.90      | 0.90                | 0.90                 | 0.90  |            |
| Package Terminal A/C                 | 0.94   | 0.94   | 0.94                   | 0.94   | 0.94     | 0.94                | 0.94        | 0.94        | 0.94      | 0.94                | 0.94                 | 0.94  |            |
| Programmable Thermostat              | 0.81   | 0.81   | 0.81                   | 0.81   | 0.81     | 0.81                | 0.81        | 0.81        | 0.81      | 0.81                | 0.81                 | 0.81  |            |
| Reflective Window Film               | 0.70   | 0.70   | 0.70                   | 0.70   | 0.70     | 0.70                | 0.70        | 0.70        | 0.70      | 0.70                | 0.70                 | 0.70  |            |
| Water Chiller                        | 0.70   | 0.70   | 0.70                   | 0.70   | 0.70     | 0.70                | 0.70        | 0.70        | 0.70      | 0.70                | 0.70                 | 0.70  |            |
| Other RE Measures                    | 0.88   | 0.88   | 0.88                   | 0.88   | 0.88     | 0.88                | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                 | 0.88  |            |
| Retrofit Express Total               |        |        |                        |        |          | i ( <sub>El</sub> i |             |             |           |                     |                      |       |            |
| Retrofit Efficiency Options Program  |        |        |                        |        |          |                     |             |             |           |                     |                      |       |            |
| Variable Frequency Drive             | 0.88   | 0.88   | 0.88                   | 0.88   | 0.88     | 0.88                | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                 | 0.88  |            |
| Water Chiller                        | 0.70   | 0.70   | 0.70                   | 0.70   | 0.70     | 0.70                | 0.70        | 0.70        | 0.70      | 0.70                | 0.70                 | 0.70  |            |
| CAV to VAV                           | 0.88   | 0.88   | 0.88                   | 0.88   | 0.88     | 0.88                | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                 | 0.88  |            |
| Cooling Tower                        | 0.88   | 0.88   | 0.88                   | 0.88   | 0.88     | 0.88                | 0.88        | 0.88        | 0.88      | 0.88                | 0.88                 | 0.88  |            |
| Retrofit Efficiency Options Total    |        |        |                        |        |          |                     |             | 1           |           |                     |                      |       |            |
| Customized Incentives Program        |        |        | ·                      |        |          |                     |             |             |           |                     |                      |       |            |
| HVAC Variable Speed Drive            | 0.85   | 0.85   | 0.85                   | 0.85   | 0.85     | 0.85                | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                 | 0.85  |            |
| High Efficiency Chiller              | 0.85   | 0.85   | 0.85                   | 0.85   | 0.85     | 0.85                | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                 | 0.85  | 1.M. 1     |
| Energy Management System             | 0.85   | 0.85   | 0.85                   | 0.85   | 0.85     | 0.85                | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                 | 0.85  |            |
| Other Customized Incentives Measures | 0.85   | 0.85   | 0.85                   | 0.85   | 0.85     | 0.85                | 0.85        | 0.85        | 0.85      | 0.85                | 0.85                 | 0.85  | - 4<br>- 4 |
| Customized Incentives Total          |        |        |                        |        | 11)<br>1 |                     |             |             |           |                     |                      |       |            |
| Total                                |        |        |                        |        |          |                     |             |             |           |                     |                      |       |            |

# Commercial HVAC Ex Post Net Energy Impacts By Business Type and Technology Group

| Business Type                        |            |           |                        |           | Commer    | cial HVAC  | First-Year En | ergy Impact | ts (kWh)  |                     |                      |         |            |
|--------------------------------------|------------|-----------|------------------------|-----------|-----------|------------|---------------|-------------|-----------|---------------------|----------------------|---------|------------|
| Program and Technology Group         | Office     | Retail    | College/<br>University | chool     | Crocery   | testaurant | tealth Care   | totel/Motel | Varehouse | Personal<br>iervice | Community<br>Service | disc.   | otal       |
| Retrofit Express Program             |            |           |                        | N         | <u>v</u>  | <u></u>    |               |             |           |                     |                      | <u></u> |            |
| Central A/C                          | 438,911    | 234,966   | 34,182                 | 156,603   | 46,292    | 135,798    | 106,946       | 13,422      | 41,705    | 74,588              | 201,544              | 31,844  | 1,516,800  |
| Variable Speed Drive HVAC Fan        | 2,523,801  | 4,642,089 | 865,637                | 31,973    | 117,458   | -          | 109,510       | 125,718     | 90,597    | 1,678,972           |                      | 76,209  | 10,261,966 |
| Package Terminal A/C                 | 7,218      | 1,477     | 3,470                  | 39,628    | -         | 13,182     | 30,042        | 113,429     | 385       |                     | 4,423                | •       | 213,253    |
| Programmable Thermostat              | 0          | 223,163   | 7,561                  | 480,804   | 28,393    | 104,314    | 100,055       | 15,832      | 175,825   | 108,162             | 362,009              | 45,576  | 1,651,693  |
| Reflective Window Film               | 1,071,013  | 47,102    | 70,428                 | 26,496    | 32,745    | 18,668     | 127,727       | 61,351      | 55,688    | 50,204              | 132,221              | 24,446  | 1,718,090  |
| Water Chiller                        | 43,220     | 46,839    |                        | 47,922    | -         | -          | -             | -           | -         | -                   | 17,970               | -       | 155,951    |
| Other RE Measures                    | 111,408    | -         | •                      | 163,724   | 20,742    | 10,680     | 58,338        | 53,638      | · •       | 7,663               | 42,576               | -       | 468,768    |
| Retrofit Express Total               | 4,195,571  | 5,195,635 | 981,279                | 947,150   | 245,630   | 282,642    | 532,618       | 383,389     | 364,200   | 1,919,590           | 760.743              | 178,075 | 15,986,522 |
| Retrofit Efficiency Options Program  |            |           |                        |           |           |            |               |             |           |                     |                      |         |            |
| Variable Frequency Drive             | 357,668    | 86,798    | 433,116                | -         | -         | -          | •             | -           | -         | -                   | -                    |         | 877,582    |
| Water Chiller                        | 76,073     | 413,232   | -                      | •         | -         | -          | 650,081       | •           | -         |                     | 261,247              | -       | 1,400,633  |
|                                      | 1,518,744  | -         | -                      | -         | -         | -          | •             | -           | •         | -                   | -                    | -       | 1,518,744  |
| Cooling Tower                        | 24,282     | 30,937    | •                      | -         | •         | -          | 118,309       | -           | -         | •                   | -                    | -       | 173,528    |
| Retrofit Efficiency Options Total    | 1,976,768  | 530,966   | 433,116                | 0         | 0         | 0          | 768,390       | 0           | 0         | 0                   | 261,247              | 0       | 3,970,487  |
| Customized Incentives Program        |            |           |                        |           |           |            |               |             |           |                     |                      |         |            |
| HVAC Variable Speed Drive            | 1,379,905  | ·         | -                      | -         | 1,225,949 | •          | 584,149       | 305,221     | -         | -                   | 447,254              | -       | 3,942,476  |
| High Efficiency Chiller              | 1,332,688  | •         |                        | -         | •         | •          | •             | -           | -         | •                   | •                    | •       | 1,332,688  |
| Energy Management System             | 2,138,979  | -         | 1,048,083              | 2,921,052 | 637,331   | •          | 1,673,826     | 514,437     | 9,974     | 73,556              | -                    | •       | 9,017,238  |
| Other Customized Incentives Measures | 5,239,914  | •         | 448,272                | 223,625   |           | •          | 1,390,866     | -           | 196,414   | 1,293,094           | 140,900              | -       | 8,933,084  |
| Customized Incentives Total          | 10,091,486 | 0         | 1,496,354              | 3,144,677 | 1,863,279 | 0          | 3,648,840     | 819,658     | 206,388   | 1,366,651           | 588,154              | 0       | 23,225,487 |
| Total                                | 16,263,825 | 5,726,602 | 2,910,749              | 4,091,827 | 2,108,909 | 282,642    | 4,949,848     | 1,203,047   | 570,588   | 3,286,240           | 1,610,144            | 178,075 | 43,182,496 |

# Commercial HVAC Gross Energy Realization Rates By Business Type and Technology Group

| Business Type                        |        |        |                        |        | Gro     | ss Energ   | y Realiz    | zation R    | ates      |                     |                      |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 1.07   | 2.33   | 1.33                   | 1.06   | 3.53    | 1.81       | 0.68        | 1.76        | 4.58      | 1.59                | 1.01                 | 1.25  | 1.24  |
| Variable Speed Drive HVAC Fan        | 2.41   | 2.61   | 2.97                   | 1.58   | 4.97    | -          | 3.60        | 6.20        | 2.68      | 2.54                | -                    | 2.82  | 2.61  |
| Package Terminal A/C                 | 0.90   | 1.07   | 0.82                   | 0.84   | -       | 0.83       | 0.86        | 0.86        | 0.90      | -                   | 1.03                 | -     | 0.86  |
| Programmable Thermostat              | 0.00   | 0.84   | 2.29                   | 0.67   | 1.43    | 1.02       | 0.87        | 1.20        | 1.04      | 1.17                | 1.06                 | 0.38  | 0.48  |
| Reflective Window Film               | 0.95   | 0.95   | 0.99                   | 0.95   | 0.95    | 0.95       | 0.95        | 0.95        | 0.95      | 0.95                | 0.90                 | 0.95  | 0.94  |
| Water Chiller                        | 6.05   | 3.98   | -                      | 3.30   | -       | -          | -           | -           | -         | -                   | 3.52                 | -     | 2.07  |
| Other RE Measures                    | 1.23   | -      | -                      | 0.53   | 0.42    | 0.40       | 0.51        | 0.42        | -         | 0.42                | 0.42                 | -     | 0.56  |
| Retrofit Express Total               | 0.97   | 2.33   | 2.41                   | 0.74   | 1.70    | 1.18       | 0.84        | 1.04        | 1.31      | 2.16                | 0.96                 | 0.87  | 1.34  |
| Retrofit Efficiency Options Program  |        |        | <u> </u>               |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | 0.54   | 0.53   | 0.79                   | -      | -       | •          | •           | -           | -         | -                   | -                    | -     | 0.64  |
| Water Chiller                        | 0.12   | 1.14   | -                      | -      | -       | -          | 1.69        | -           | -         | -                   | 1.60                 | -     | 0.91  |
| CAV to VAV                           | 0.65   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0.65  |
| Cooling Tower                        | 1.05   | 0.79   | •                      | -      | -       | -          | 0.73        | -           | -         | -                   | -                    | -     | 0.77  |
| Retrofit Efficiency Options Total    | 0.52   | 0.97   | 0.79                   | -      | •       | -          | 1.44        | -           | -         | -                   | 1.60                 | -     | 0.74  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | 1.60   | -      | -                      | -      | 1.16    | -          | 1.90        | 1.90        | -         | -                   | 0.98                 | •     | 1.38  |
| High Efficiency Chiller              | 1.32   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1.32  |
| Energy Management System             | 1.03   | -      | 1.03                   | 0.93   | 1.03    | -          | 1.03        | 1.03        | 1.03      | 1.03                | -                    | -     | 0.99  |
| Other Customized Incentives Measures | 0.65   | -      | 0.65                   | 0.65   | -       | -          | 0.65        | -           | 0.65      | 0.65                | 0.65                 | -     | 0.65  |
| Customized Incentives Total          | 0.84   | -      | 0.88                   | 0.90   | 1.11    | -          | 0.90        | 1.24        | 0.66      | 0.67                | 0.87                 | -     | 0.87  |
| Total                                | 0.81   | 2.02   | 1.09                   | 0.86   | 1.16    | 1.18       | 0.95        | 1.17        | 0.98      | 1.11                | 1.00                 | 0.87  | 0.98  |

# Commercial HVAC Net Energy Realization Rates By Business Type and Technology Group

| Business Type                        |        |        |                        |        | Ne      | t Energy   | / Realiza   | ation Ra    | tes       |                     |                      |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Fotal |
| Retrofit Express Program             |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 1.33   | 2.90   | 1.65                   | 1.32   | 4.40    | 2.25       | 0.85        | 2.20        | 5.71      | 1.98                | 1.25                 | 1.56  | 1.55  |
| Variable Speed Drive HVAC Fan        | 3.23   | 3.49   | 3.98                   | 2.11   | 6.65    | -          | 4.82        | 8.31        | 3.59      | 3.40                |                      | 3.78  | 3.49  |
| Package Terminal A/C                 | 1.27   | 1.51   | 1.16                   | 1.18   | -       | 1.17       | 1.21        | 1.20        | 1.27      | -                   | 1.44                 | -     | 1.21  |
| Programmable Thermostat              | 0.00   | 1.01   | 2.76                   | 0.81   | 1.73    | 1.23       | 1.04        | 1.44        | 1.25      | 1.40                | 1.27                 | 0.46  | 0.58  |
| Reflective Window Film               | 0.99   | 0.99   | 1.04                   | 0.99   | 0.99    | 0.99       | 0.99        | 0.99        | 0.99      | 0.99                | 0.94                 | 0.99  | 0.98  |
| Water Chiller                        | 6.32   | 4.16   | -                      | 3.45   | -       | -          | -           | -           | -         | -                   | 3.68                 | -     | 2.17  |
| Other RE Measures                    | 1.61   | -      | -                      | 0.69   | 0.55    | 0.53       | 0.66        | 0.54        | •         | 0.54                | 0.55                 | -     | 0.73  |
| Retrofit Express Total               | 1.20   | 3.07   | 3.15                   | 0.91   | 2.13    | 1.44       | 1.02        | 1.34        | 1.58      | 2.85                | 1.13                 | 1.08  | 1.70  |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | 0.70   | 0.70   | 1.03                   | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0.83  |
| Water Chiller                        | 0.13   | 1.19   | -                      | -      | -       | -          | 1.76        | -           | -         | -                   | 1.68                 | -     | 0.95  |
| CAV to VAV                           | 0.85   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0.85  |
| Cooling Tower                        | 1.37   | 1.04   | -                      | -      | -       | -          | 0.95        | -           | -         | -                   | -                    | -     | 1.01  |
| Retrofit Efficiency Options Total    | 0.68   | 1.06   | 1.03                   | -      | -       | -          | 1.56        | -           | -         | -                   | 1.68                 | -     | 0.89  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     | -                    |       |       |
| HVAC Variable Speed Drive            | 1.82   | -      | -                      | -      | 1.32    | -          | 2.17        | 2.17        | -         | -                   | 1.11                 | -     | 1.58  |
| High Efficiency Chiller              | 1.50   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1.50  |
| Energy Management System             | 1.17   | -      | 1.17                   | 1.06   | 1.17    | -          | 1.17        | 1,17        | 1.17      | 1.17                | -                    | -     | 1.13  |
| Other Customized Incentives Measures | 0.74   | -      | 0.74                   | 0.74   | -       | -          | 0.74        | -           | 0.74      | 0.74                | 0.74                 | -     | 0.74  |
| Customized Incentives Total          | 0.96   | -      | 1.00                   | 1.03   | 1.26    | -          | 1.02        | 1.41        | 0.76      | 0.76                | 0.99                 | -     | 0.99  |
| Total                                | 0.96   | 2.61   | 1.30                   | 1.00   | 1.33    | 1.44       | 1.08        | 1.39        | 1.14      | 1.33                | 1.13                 | 1.08  | 1.16  |

# Commercial HVAC Ex Ante Gross Demand Impacts By Business Type and Technology Group

| Business Type                        |        |        |                        | Comme  | rcial H | VAC Fir    | st-Year     | Deman       | d Impa    | cts (kW)            | )                    |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |         |            | <u></u>     |             |           |                     |                      |       |       |
| Central A/C                          | 369    | 114    | 19                     | 264    | 20      | 52         | 75          | 10          | 27        | 35                  | 150                  | 19    | 1,153 |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | - 1    | -       | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Package Terminal A/C                 | 6      | 1      | 3                      | 73     | -       | 10         | 15          | 151         | 1         | -                   | 3                    | -     | 263   |
| Programmable Thermostat              | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Reflective Window Film               | 695    | 31     | 43                     | 17     | 21      | 12         | 83          | 40          | 36        | 33                  | 90                   | 16    | 1,116 |
| Water Chiller                        | 8      | 16     | -                      | 31     | -       | -          | 29          | -           | -         | -                   | 5                    | -     | 88    |
| Other RE Measures                    | 78     | -      | -                      | 183    | 21      | 12         | 156         | 54          | -         | 8                   | 46                   | -     | 557   |
| Retrofit Express Total               | 1,156  | 161    | 66                     | 569    | 62      | 86         | 357         | 254         | 64        | 75                  | 293                  | 35    | 3,178 |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | 15     | 4      | 4                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 23    |
| Water Chiller                        | 679    | 337    | -                      | -      | -       | -          | 201         | -           | -         | -                   | 168                  | -     | 1,385 |
| CAV to VAV                           | 83     | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 83    |
| Cooling Tower                        | 18     | 42     | -                      | -      | -       | -          | 30          | -           | -         | -                   | -                    | -     | 90    |
| Retrofit Efficiency Options Total    | 796    | 382    | 4                      | 0      | 0       | 0          | 231         | 0           | 0         | 0                   | 168                  | 0     | 1,581 |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | 26     | -      | -                      | -      | 22      | -          | -           | -           | -         | -                   | 28                   | -     | 76    |
| High Efficiency Chiller              | 468    | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 468   |
| Energy Management System             | -      | -      | -                      | 47     | -       | -          | 22          | 78          | -         | -                   | -                    | -     | 147   |
| Other Customized Incentives Measures | 1,397  | •      | -                      | 79     | -       | -          | 26          | -           | 110       | 115                 | -                    | -     | 1,727 |
| Customized Incentives Total          | 1,891  | 0      | 0                      | 126    | 22      | 0          | 48          | 78          | 110       | 115                 | 28                   | 0     | 2,417 |
| Total                                | 3,843  | 544    | 69                     | 694    | 83      | 86         | 636         | 332         | 174       | 191                 | 489                  | 35    | 7,176 |

# Commercial HVAC Ex Ante Net Demand Impacts By Business Type and Technology Group

| Business Type                        |        |        |                        | Comme  | ercial H | VAC Fir    | st-Year     | Deman       | d Impa    | cts (kW)            |                      |       |          |
|--------------------------------------|--------|--------|------------------------|--------|----------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|----------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery  | Restaurant | Health Care | Hotel/Motei | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total    |
| Retrofit Express Program             |        |        |                        |        |          |            |             |             |           |                     |                      |       | <u> </u> |
| Central A/C                          | 247    | 76     | 13                     | 177    | 13       | 35         | 50          | 7           | 18        | 24                  | 100                  | 13    | 773      |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Package Terminał A/C                 | 4      | 1      | 2                      | 49     | -        | 7          | 10          | 101         | 1         | -                   | 2                    | -     | 176      |
| Programmable Thermostat              | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Reflective Window Film               | 465    | 20     | 29                     | 12     | 14       | 8          | 56          | 27          | 24        | 22                  | 60                   | 11    | 748      |
| Water Chiller                        | 5      | 11     | -                      | 21     | -        | -          | 19          | •           | -         | -                   | 3                    | -     | 59       |
| Other RE Measures                    | 52     | -      | -                      | 123    | 14       | 8          | 104         | 36          | -         | 5                   | 31                   | -     | 373      |
| Retrofit Express Total               | 774    | 108    | 44                     | 381    | 41       | 58         | 239         | 170         | 43        | 50                  | 196                  | 23    | 2,129    |
| Retrofit Efficiency Options Program  |        |        |                        |        |          |            |             |             |           |                     |                      |       |          |
| Variable Frequency Drive             | 10     | 2      | 3                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 15       |
| Water Chiller                        | 455    | 225    | -                      | -      | -        | -          | 135         | -           | -         | -                   | 113                  | -     | 928      |
| CAV to VAV                           | 56     | -      | -                      | -      | -        | -          | -           | -           | -         | -                   |                      | -     | 56       |
| Cooling Tower                        | 12     | 28     | -                      | -      | -        | -          | 20          | -           |           | -                   | -                    | -     | 60       |
| Retrofit Efficiency Options Total    | 533    | 256    | 3                      | 0      | 0        | 0          | 155         | 0           | 0         | 0                   | 113                  | 0     | 1,059    |
| Customized Incentives Program        |        |        |                        |        |          |            |             |             |           |                     |                      |       |          |
| HVAC Variable Speed Drive            | 20     | -      | -                      | -      | 16 -     | -          | -           | -           | -         | -                   | 21                   | -     | 57       |
| High Efficiency Chiller              | 351    | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 351      |
| Energy Management System             | -      | -      | -                      | 35     | -        | -          | 17          | 59          | -         | -                   | -                    | -     | 110      |
| Other Customized Incentives Measures | 1,048  | -      | -                      | 59     | -        | -          | 20          | -           | 82        | 86                  | -                    | -     | 1,295    |
| Customized Incentives Total          | 1,418  | 0      | 0                      | 94     | 16       | 0          | 36          | 59          | 82        | 86                  | 21                   | 0     | 1,813    |
| Total                                | 2,726  | 364    | 47                     | 475    | 57       | 58         | 430         | 229         | 125       | 137                 | 330                  | 23    | 5,001    |

# Commercial HVAC Ex Post Gross Demand Impacts By Business Type and Technology Group

| Business Type                        |        |        |                        | Comme  | ercial H | VAC Fi     | rst-Year    | Deman       | d Impa    | cts (kW)            |                      |       |       |
|--------------------------------------|--------|--------|------------------------|--------|----------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery  | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 398    | 121    | 19                     | 79     | 21       | 55         | 83          | 9           | 28        | 38                  | 146                  | 19    | 1,016 |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Package Terminal A/C                 | 7      | 2      | 2                      | 22     | -        | 10         | 17          | 147         | 1         | -                   | 3                    | -     | 212   |
| Programmable Thermostat              | -      | -      | -                      | -      | -        | -          | -           | -           | •         | •                   | -                    | -     | 0     |
| Reflective Window Film               | 322    | 14     | 19                     | 2      | 9        | 6          | 39          | 16          | 15        | 15                  | 35                   | 7     | 499   |
| Water Chiller                        | 34     | 27     | -                      | 4      | -        | -          | -           | -           | -         | -                   | 8                    | -     | 73    |
| Other RE Measures                    | 131    | -      | -                      | 27     | 9        | 7          | 76          | 18          | -         | 3                   | 17                   | -     | 288   |
| Retrofit Express Total               | 893    | 163    | 40                     | 134    | 39       | 78         | 214         | 190         | 44        | 56                  | 210                  | 25    | 2,088 |
| Retrofit Efficiency Options Program  | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     |       |
| Variable Frequency Drive             | -      | -      |                        | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Water Chiller                        | 10     | 149    | -                      | -      | -        | -          | 235         | -           | -         | -                   | 127                  | -     | 522   |
| CAV to VAV                           | 83     | -      | -                      | -      | -        | -          | -           | -           | -         | <u>:</u>            | -                    | -     | 83    |
| Cooling Tower                        | 23     | 40     | -                      | -      | -        | -          | 90          | -           | -         | -                   | -                    | -     | 153   |
| Retrofit Efficiency Options Total    | 116    | 189    | 0                      | 0      | 0        | 0          | 325         | 0           | 0         | 0                   | 127                  | 0     | 758   |
| Customized Incentives Program        |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| High Efficiency Chiller              | 401    | -      | -                      | -      | -        | -          |             | -           | -         | -                   | -                    | -     | 401   |
| Energy Management System             | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Other Customized Incentives Measures | 648    | •      | -                      | 41     | -        | -          | 13          | -           | 73        | 115                 | -                    | -     | 891   |
| Customized Incentives Total          | 1,049  | 0      | 0                      | 41     | 0        | 0          | 13          | 0           | 73        | 115                 | 0                    | 0     | 1,292 |
| Total                                | 2,059  | 353    | 40                     | 175    | 39       | 78         | 553         | 190         | 118       | 171                 | 337                  | 25    | 4,138 |

# Commercial HVAC Ex Post Net Demand Impacts By Business Type and Technology Group

| Business Type                        |        |        |                        | Comme  | ercial H | VAC Fir    | st-Year     | Deman       | d Impa    | cts (kW)            | )                    |       |       |
|--------------------------------------|--------|--------|------------------------|--------|----------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery  | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 332    | 101    | 16                     | 66     | 17       | 46         | 69          | 8           | 23        | 32                  | 122                  | 15    | 848   |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Package Terminal A/C                 | 7      | 1      | 2                      | 21     | -        | 10         | 16          | 138         | 1         | -                   | 3                    | -     | 200   |
| Programmable Thermostat              | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Reflective Window Film               | 225    | 10     | 13                     | 2      | 7        | 4          | 27          | 11          | 11        | 10                  | 25                   | 5     | 349   |
| Water Chiller                        | 24     | 19     | -                      | 3      | -        | -          | -           | -           | -         | -                   | 6                    | -     | 51    |
| Other RE Measures                    | 115    | -      | -                      | 23     | 8        | 7          | 66          | 15          | -         | 3                   | 15                   | -     | 252   |
| Retrofit Express Total               | 704    | 131    | 31                     | 115    | 32       | 66         | 178         | 173         | 35        | 45                  | 170                  | 20    | 1,700 |
| Retrofit Efficiency Options Program  |        |        |                        |        |          |            |             |             | -         |                     |                      |       |       |
| Variable Frequency Drive             | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| Water Chiller                        | 7      | 104    | -                      | -      | -        | -          | 165         | -           | -         | -                   | 89                   | -     | 365   |
| CAV to VAV                           | 73     | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 73    |
| Cooling Tower                        | 20     | 35     | -                      | -      | -        | -          | 79          | -           | -         | -                   | -                    | -     | 134   |
| Retrofit Efficiency Options Total    | 100    | 140    | 0                      | 0      | 0        | 0          | 243         | 0           | 0         | 0                   | 89                   | 0     | 572   |
| Customized Incentives Program        |        |        |                        |        |          |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -      | -      | -                      | -      | -        | -          | -           | -           | -         | -                   | -                    | -     | 0     |
| High Efficiency Chiller              | 342    | -      | -                      | -      | -        | -          | -           | - 1         | -         | -                   | -                    | -     | 342   |
| Energy Management System             | -      | -      | -                      | -      | -        | -          | -           | - 1         | -         | -                   | -                    | -     | 0     |
| Other Customized Incentives Measures | 554    | -      | -                      | 35     | -        | -          | 11          | -           | 63        | 98                  | -                    | -     | 761   |
| Customized Incentives Total          | 896    | 0      | 0                      | 35     | 0        | 0          | 11          | 0           | 63        | 98                  | 0                    | 0     | 1,103 |
| Total                                | 1,700  | 271    | 31                     | 150    | 32       | 66         | 433         | 173         | 98        | 143                 | 259                  | 20    | 3,376 |

# Commercial HVAC Gross Demand Impact Realization Rates By Business Type and Technology Group

| Business Type                        |        |        |                        |        | Gros    | s Dema     | nd Real     | ization     | Rates     |                     |                      |       |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| Central A/C                          | 1.08   | 1.06   | 1.00                   | 0.30   | 1.06    | 1.06       | 1.11        | 0.97        | 1.02      | 1.08                | 0.97                 | 0.97  | 0.88  |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -       | -          | -           |             | -         | -                   |                      | -     | -     |
| Package Terminal A/C                 | 1.16   | 1.11   | 0.89                   | 0.31   | -       | 1.06       | 1.13        | 0.97        | 1.07      | -                   | 1.10                 |       | 0.81  |
| Programmable Thermostat              | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Reflective Window Film               | 0.46   | 0.45   | 0.43                   | 0.13   | 0.45    | 0.46       | 0.47        | 0.41        | 0.43      | 0.46                | 0.39                 | 0.42  | 0.45  |
| Water Chiller                        | 4.49   | 1.70   | -                      | 0.12   | -       | -          | -           | -           | -         | -                   | 1.84                 | -     | 0.83  |
| Other RE Measures                    | 1.68   | -      | -                      | 0.14   | 0.44    | 0.61       | 0.49        | 0.33        | -         | 0.41                | 0.37                 | -     | 0.52  |
| Retrofit Express Total               | 0.77   | 1.01   | 0.61                   | 0.24   | 0.64    | 0.91       | 0.60        | 0.75        | 0.69      | 0.74                | 0.72                 | 0.72  | 0.66  |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             | 2         |                     |                      |       |       |
| Variable Frequency Drive             | -      | -      | _                      | - ]    | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Water Chiller                        | 0.01   | 0.44   | -                      | -      | -       | -          | 1.17        | -           | -         | -                   | 0.76                 | -     | 0.38  |
| CAV to VAV                           | 1.00   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 1.00  |
| Cooling Tower                        | 1.27   | 0.96   | -                      | -      | -       | -          | 3.02        | -           | -         | -                   | -                    | -     | 1.70  |
| Retrofit Efficiency Options Total    | 0.15   | 0.50   | -                      | -      | -       | -          | 1.41        | -           | -         | -                   | 0.76                 | -     | 0.48  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| High Efficiency Chiller              | 0.86   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | 0.86  |
| Energy Management System             | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Other Customized Incentives Measures | 0.46   | -      | -                      | 0.52   | -       | -          | 0.52        | -           | 0.67      | 1.00                | -                    | -     | 0.52  |
| Customized Incentives Total          | 0.55   | -      | -                      | 0.32   | -       | -          | 0.28        | -           | 0.67      | 1.00                | -                    | -     | 0.53  |
| Total                                | 0.54   | 0.65   | 0.58                   | 0.25   | 0.47    | 0.91       | 0.87        | 0.57        | 0.68      | 0.90                | 0.69                 | 0.72  | 0.58  |

# Commercial HVAC Net Demand Impact Realization Rates By Business Type and Technology Group

| Business Type                        |        |        |                        |        | Net     | Deman      | id Reali    | zation F    | lates     |                     |                      |         |       |
|--------------------------------------|--------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|---------|-------|
| Program and Technology Group         | Office | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc.   | Total |
| Retrofit Express Program             |        |        |                        |        |         |            |             |             | £         |                     |                      | <u></u> |       |
| Central A/C                          | 1.34   | 1.33   | 1.24                   | 0.37   | 1.32    | 1.32       | 1.38        | 1.20        | 1.27      | 1.35                | 1.21                 | 1.21    | 1.10  |
| Variable Speed Drive HVAC Fan        | -      | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -       | -     |
| Package Terminal A/C                 | 1.64   | 1.56   | 1.25                   | 0.43   | -       | 1.50       | 1.59        | 1.37        | 1.50      | -                   | 1.54                 | -       | 1.13  |
| Programmable Thermostat              | -      | -      | -                      | -      | -       | -          | -           | -           | •         | -                   | -                    | -       | -     |
| Reflective Window Film               | 0.48   | 0.47   | 0.45                   | 0.13   | 0.46    | 0.48       | 0.49        | 0.43        | 0.45      | 0.48                | 0.41                 | 0.44    | 0.47  |
| Water Chiller                        | 4.69   | 1.77   | -                      | 0.12   | -       | -          | -           | -           | -         | -                   | 1. <b>93</b>         | -       | 0.87  |
| Other RE Measures                    | 2.19   | -      | -                      | 0.19   | 0.58    | 0.79       | 0.64        | 0.43        | -         | 0.54                | 0.49                 | -       | 0.68  |
| Retrofit Express Total               | 0.91   | 1.21   | 0.71                   | 0.30   | 0.77    | 1.14       | 0.75        | 1.01        | 0.81      | 0.89                | 0.87                 | 0.86    | 0.80  |
| Retrofit Efficiency Options Program  |        |        |                        |        |         |            |             |             |           | ·· ·                |                      |         |       |
| Variable Frequency Drive             | -      | -      | -                      | -      | -       | -          | -           |             | -         | -                   | -                    | -       | -     |
| Water Chiller                        | 0.02   | 0.46   | -                      | -      | -       | -          | 1.22        | -           | -         | -                   | 0.79                 | -       | 0.39  |
| CAV to VAV                           | 1.31   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -       | 1.31  |
| Cooling Tower                        | 1.66   | 1.25   | -                      | -      | -       | -          | 3.95        | -           | -         | -                   | -                    | -       | 2.23  |
| Retrofit Efficiency Options Total    | 0.19   | 0.55   | -                      | -      | -       | -          | 1.57        | -           | -         | -                   | 0.79                 | -       | 0.54  |
| Customized Incentives Program        |        |        |                        |        |         |            |             |             |           |                     |                      |         | ]     |
| HVAC Variable Speed Drive            | -      | -      | -                      | -      | -       | -          |             | -           | -         | -                   | -                    | -       | -     |
| High Efficiency Chiller              | 0.98   | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -       | 0.98  |
| Energy Management System             | -      | -      | •                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -       | -     |
| Other Customized Incentives Measures | 0.53   | -      | -                      | 0.59   | -       | -          | 0.59        | -           | 0.76      | 1.14                | -                    | -       | 0.59  |
| Customized Incentives Total          | 0.63   | -      | -                      | 0.37   | -       | -          | 0.32        | -           | 0.76      | 1.14                | -                    | -       | 0.61  |
| Total                                | 0.62   | 0.74   | 0.67                   | 0.31   | 0.56    | 1.14       | 1.01        | 0.76        | 0.78      | 1.05                | 0.79                 | 0.86    | 0.68  |

# Commercial HVAC Ex Ante Gross Therm Impacts By Business Type and Technology Group

| Business Type                        |          |        |                        |                                              | Corm    | nercial HV | AC First-Ye | ar Therm I  | mpacts    |                     |                      |       |            |
|--------------------------------------|----------|--------|------------------------|----------------------------------------------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|------------|
| Program and Technology Group         | Office   | Retail | College/<br>University | School                                       | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total      |
| Retrofit Express Program             |          |        |                        |                                              |         |            |             |             |           |                     |                      |       |            |
| Central A/C                          | •        | -      | -                      | -                                            | -       | -          | -           | -           | -         | -                   | -                    | -     | -          |
| Variable Speed Drive HVAC Fan        |          | -      | -                      | -                                            | -       |            | -           | -           | -         |                     | -                    | -     |            |
| Package Terminal A/C                 | · ·      | -      | · ·                    | -                                            | -       | •          | -           | -           | •         | -                   | •                    | -     |            |
| Programmable Thermostat              |          | •      | -                      | -                                            | -       | -          | -           |             | -         | -                   | •                    |       | -          |
| Reflective Window Film               | ·        | -      | -                      | · ·                                          |         | •          |             | -           |           |                     | -                    | •     |            |
| Water Chiller                        |          | -      |                        | -                                            | -       | -          | -           | -           | -         | -                   | -                    | •     | -          |
| Other RE Measures                    |          | -      | -                      |                                              | -       | -          | •           | -           | -         | -                   | -                    |       | -          |
| Retrofit Express Total               | i        |        | -                      | -                                            |         | -          | -           |             |           | · ·                 | -                    | -     | - 1        |
| Retrofit Efficiency Options Program  |          |        | ·                      | <u>,                                    </u> |         |            | <b>1</b>    |             |           |                     |                      |       | · <u>·</u> |
| Variable Frequency Drive             | · 1      | -      | -                      | -                                            | -       | -          | - 1         | -           |           | -                   | -                    |       | -          |
| Water Chiller                        |          | •      | -                      | -                                            | -       |            | -           | -           |           | -                   | -                    | -     | -          |
| CAV to VAV                           | -        | -      | -                      | -                                            | -       |            | -           |             |           | •                   | -                    |       | •          |
| Cooling Tower                        | · ·      | -      | •                      |                                              | •       | -          | -           | -           | •         |                     | •                    | -     |            |
| Retrofit Efficiency Options Total    |          | -      | -                      | -                                            | -       | -          | -           | -           | -         |                     |                      | -     | -          |
| Customized Incentives Program        |          |        |                        | ·                                            |         |            | •           |             |           |                     | <u> </u>             |       | <u>,</u>   |
| HVAC Variable Speed Drive            | <u> </u> |        | -                      | -                                            | -       | -          | -           |             | -         | •                   | -                    |       | -          |
| High Efficiency Chiller              |          | -      | -                      | •                                            | -       | -          | •           |             | -         | -                   | -                    | -     |            |
| Energy Management System             | 71,670   | -      | -                      | 379,573                                      | -       | -          | 597,692     | 9,327       | 615       |                     | •                    | -     | 1,058,877  |
| Other Customized Incentives Measures | 660,671  | -      | 23,700                 | 28,726                                       | -       | -          | 263,911     | -           | 192       | -                   | 13,403               | 8,243 | 998,846    |
| Customized Incentives Total          | 732,341  | 0      | 23,700                 | 408,299                                      | 0       | 0          | 861,603     | 9,327       | 807       | 0                   | 13,403               | 8,243 | 2,057,723  |
| Total                                | 732,341  | 0      | 23,700                 | 408,299                                      | 0       | 0          | 861,603     | 9,327       | 807       | 0                   | 13,403               | 8,243 | 2,057,723  |

# Commercial HVAC Ex Ante Net Therm Impacts By Business Type and Technology Group

| Business Type                        |         |        |                        | ····    | Comr    | nercial HV       | AC First-Ye | ar Therm    | mpacts    |                               |                      |       |           |
|--------------------------------------|---------|--------|------------------------|---------|---------|------------------|-------------|-------------|-----------|-------------------------------|----------------------|-------|-----------|
| Program and Technology Group         | Office  | Retail | College/<br>University | School  | Grocery | Restaurant       | Health Care | fotel/Motel | Narehouse | <sup>ersonal</sup><br>iervice | Community<br>Service | Misc. | leto      |
| Retrofit Express Program             |         |        |                        | ·R^     |         |                  |             |             |           |                               |                      |       | <u></u>   |
| Central A/C                          | - 1     | -      | -                      | -       | -       |                  | -           | •           | -         | -                             | -                    | •     |           |
| Variable Speed Drive HVAC Fan        | -       | -      | -                      | -       |         | -                |             | -           | •         | -                             | -                    |       |           |
| Package Terminal A/C                 | · ·     | -      |                        | -       | · .     |                  | -           | • •         |           |                               | -                    |       |           |
| Programmable Thermostat              |         | -      |                        | -       | -       | -                | -           | •           |           | -                             |                      | -     |           |
| Reflective Window Film               |         |        |                        | - 1     |         | -                |             |             |           |                               | -                    |       |           |
| Water Chiller                        |         |        | -                      |         |         |                  | -           | -           | •         |                               | -                    | •     |           |
| Other RE Measures                    |         |        |                        | -       |         |                  |             |             |           | -                             | -                    |       |           |
| Retrofit Express Total               | -       |        |                        | - 1     | -       | -                | -           | •           | -         | -                             | -                    | -     |           |
| Retrofit Efficiency Options Program  |         |        | ı <u> </u>             | ·       |         | <u></u>          |             |             | <u></u>   | <u> </u>                      | <u> </u>             |       | <u> </u>  |
| Variable Frequency Drive             | · · ·   | . 7    |                        | -       | •       |                  | -           | -           | -         | -                             | -                    | -     |           |
| Water Chiller                        |         | -      |                        |         |         |                  | -           | -           | -         |                               |                      | -     |           |
| CAV to VAV                           | -       | -      |                        | -       |         |                  | -           |             |           |                               | -                    | •     |           |
| Cooling Tower                        | •       |        | -                      | -       |         | -                | -           | •           | -         |                               |                      | •     | -         |
| Retrofit Efficiency Options Total    | · ·     | •      | -                      | -       | -       |                  | · ·         | -           | -         | •                             | -                    |       |           |
| Customized Incentives Program        |         |        |                        |         |         | · <u>·</u> ····· |             |             | <u> </u>  |                               | ·                    |       | ·         |
| HVAC Variable Speed Drive            | · · ·   | •      | -                      | -       | -       |                  | ·           |             |           | -                             | -                    | -     | -         |
| High Efficiency Chiller              |         | -      | -                      | -       | -       |                  | -           | •.          | -         |                               | -                    | -     | · ·       |
| Energy Management System             | 53,753  | -      | -                      | 284,680 |         | -                | 448,269     | 6,995       | 461       | -                             |                      |       | 794,158   |
| Other Customized Incentives Measures | 495,503 | -      | 17,775                 | 21,545  |         | -                | 197,933     | -           | 144       | -                             | 10,052               | 6,182 | 749,135   |
| Customized Incentives Total          | 549,256 | 0      | 17,775                 | 306,224 | 0       | 0                | 646,202     | 6,995       | 605       | 0                             | 10,052               | 6,182 | 1,543,292 |
| Total                                | 549,256 | 0      | 17,775                 | 306,224 | 0       | 0                | 646,202     | 6,995       | 605       | 0                             | 10,052               | 6,182 | 1,543,292 |

# Commercial HVAC Ex Post Gross Therm Impacts By Business Type and Technology Group

| Business Type                        |         |         |                        |         | Сотя    | ercial HV  | AC First-Y  | ear_Therm   | Impacts   |                     |                      | <u></u> |           |
|--------------------------------------|---------|---------|------------------------|---------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|---------|-----------|
| Program and Technology Group         | Office  | Retail  | College/<br>University | School  | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc.   | Total     |
| Retrofit Express Program             |         |         |                        |         |         |            |             |             |           | <u> </u>            |                      | <u></u> |           |
| Central A/C                          | -       | -       |                        | •       |         | •          | -           | -           | -         | -                   | -                    |         | · ·       |
| Variable Speed Drive HVAC Fan        |         | •       |                        | -       | -       | •          | •           | -           | -         |                     | -                    |         |           |
| Package Terminal A/C                 | •       | -       | -                      |         | •       | -          | -           | -           | -         | •                   | -                    |         |           |
| Programmable Thermostat              | -       | -       | -                      | -       | -       |            |             | •           | -         | -                   |                      |         |           |
| Reflective Window Film               | -       | -       | •                      | •       | -       | -          |             | -           |           |                     |                      |         |           |
| Water Chiller                        | -       | -       | -                      |         | -       | -          | -           | -           | •         |                     | -                    |         |           |
| Other RE Measures                    |         | -       | •                      | -       | -       | -          | -           | -           | •         | -                   | -                    | -       |           |
| Retrofit Express Total               | · ·     | -       | •                      | -       | -       | -          | · ·         | -           | -         | -                   | -                    | -       | -         |
| Retrofit Efficiency Options Program  |         | <u></u> | <u> </u>               | •       |         |            | <u> </u>    |             |           |                     | <u></u> _            |         |           |
| Variable Frequency Drive             |         | •       | -                      | -       | -       | -          | •           | -           | -         |                     | -                    | -       | •         |
| Water Chiller                        | •       | -       | -                      | -       | -       | -          | -           |             | -         | -                   | -                    | -       |           |
| CAV to VAV                           | -       | •       | -                      | •       | -       | -          | - 1         | -           |           |                     | -                    |         | -         |
| Cooling Tower                        | -       | -       | -                      | -       | -       | -          | -           | -           |           | •                   | -                    | -       | •         |
| Retrofit Efficiency Options Total    | ·       | -       | -                      | -       | •       | -          | · ·         | •           | -         | -                   | -                    | -       | -         |
| Customized Incentives Program        |         |         |                        |         |         |            | ·           |             |           |                     |                      |         |           |
| HVAC Variable Speed Drive            | -       | -       | -                      | -       | -       | •          | -           | -           | -         | -                   | •                    |         | -         |
| High Efficiency Chiller              | •       | -       | -                      | •       | -       | •          |             | -           |           | -                   | -                    | -       | -         |
| Energy Management System             | 71,670  | -       | -                      | 379,573 | -       | -          | 597,692     | 9,327       | 615       |                     | •                    |         | 1,058,877 |
| Other Customized Incentives Measures | 659,610 | -       | 23,700                 | 28,726  | -       |            | 263,911     | -           | 192       | -                   | 13,403               | 8,243   | 997,785   |
| Customized Incentives Total          | 731,280 | 0       | 23,700                 | 408,299 | 0       | 0          | 861,603     | 9,327       | 807       | 0                   | 13,403               | 8,243   | 2,056,662 |
| Total                                | 731,280 | 0       | 23,700                 | 408,299 | 0       | 0          | 861,603     | 9,327       | 807       | 0                   | 13,403               | 8,243   | 2,056,662 |

# Commercial HVAC Ex Post Net Therm Impacts By Business Type and Technology Group

| Business Type                        |         |        |                        |         | Com     | mercial HV | AC First-Ye | ar Therm In | npacts    |                     |                      |       |           |
|--------------------------------------|---------|--------|------------------------|---------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-----------|
| Program and Technology Group         | Office  | Retail | College/<br>University | School  | Grocery | Restaurant | Health Care | Hotel/Matel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total     |
| Retrofit Express Program             |         |        |                        |         |         |            |             |             |           |                     |                      |       |           |
| Central A/C                          | -       | -      | -                      | -       | -       | -          | -           | -           | -         | -                   | -                    | -     | -         |
| Variable Speed Drive HVAC Fan        | -       | -      | -                      | -       | •       | -          |             | -           | -         | -                   | -                    | -     | -         |
| Package Terminal A/C                 | -       | -      | -                      | -       | -       | -          | -           | -           |           | -                   | -                    | •     | -         |
| Programmable Thermostat              | -       | -      | •                      | -       | -       | -          | -           | -           | •         | -                   | -                    | -     | •         |
| Reflective Window Film               | •       | -      | -                      | -       | -       | -          | -           | ÷           |           | -                   | -                    | -     | •         |
| Water Chiller                        | -       | -      | -                      | -       | -       | -          | · ·         |             |           | -                   | -                    |       |           |
| Other RE Measures                    | · ·     |        |                        | -       | •       | -          |             | •           | •         | -                   | -                    |       | -         |
| Retrofit Express Total               | - T     | -      | -                      | -       | •       | -          | -           | -           | •         |                     | -                    |       |           |
| Retrofit Efficiency Options Program  |         |        |                        |         |         | •          | <u> </u>    | <u> </u>    | <u> </u>  | ·                   |                      |       | <u> </u>  |
| Variable Frequency Drive             | -       | -      | -                      | -       | -       | - 1        | -           | -           | -         | -                   |                      | -     | -         |
| Water Chiller                        | •       | •      | -                      | -       | -       | -          | -           | -           | •         | -                   | -                    | •     | -         |
| CAV to VAV                           | -       | -      |                        | -       | •       | -          | -           | -           | •         | -                   | -                    | -     | -         |
| Cooling Tower                        | -       | -      | -                      | -       | •       | -          | -           |             | -         | -                   |                      | -     | -         |
| Retrofit Efficiency Options Total    | -       | -      | -                      | -       | -       | -          | -           | •           | -         | -                   | -                    | -     | -         |
| Customized Incentives Program        |         |        |                        |         |         |            |             | <u> </u>    | ·         |                     | ·                    |       | <u></u>   |
| HVAC Variable Speed Drive            | •       | -      | -                      | -       | •       | · ·        | -           |             |           | -                   | -                    | -     | -         |
| High Efficiency Chiller              | -       | -      | -                      |         |         | -          | •           | -           | -         | -                   | -                    | -     | -         |
| Energy Management System             | 61,206  | •      | -                      | 324,155 |         |            | 510,429     | 7,965       | 525       | -                   |                      | -     | 904,281   |
| Other Customized Incentives Measures | 563,307 | •      | 20,240                 | 24,532  | -       | · ·        | 225.380     | -           | 164       | -                   | 11,446               | 7,040 | 852,108   |
| Customized Incentives Total          | 624,513 | 0      | 20,240                 | 348,687 | 0       | 0          | 735,809     | 7,965       | 689       | 0                   | 11,446               | 7,040 | 1,756,389 |
| Total                                | 624,513 | 0      | 20,240                 | 348,687 | 0       | 0          | 735,809     | 7,965       | 689       | 0                   | 11,446               | 7,040 | 1,756,389 |

# Commercial HVAC Gross Therm Realization Rates By Business Type and Technology Group

| Business Type                        | Gross Therm Realization Rates |        |                        |        |         |            |             |             |           |                     |                      |       |          |
|--------------------------------------|-------------------------------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|----------|
| Program and Technology Group         | Office                        | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total    |
| Retrofit Express Program             | [                             |        |                        |        |         |            |             |             |           |                     |                      |       |          |
| Central A/C                          | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Variable Speed Drive HVAC Fan        | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Package Terminal A/C                 | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     |          |
| Programmable Thermostat              | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Reflective Window Film               | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Water Chiller                        | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Other RE Measures                    | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Retrofit Express Total               | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Retrofit Efficiency Options Program  |                               |        |                        |        |         |            |             |             |           |                     |                      |       |          |
| Variable Frequency Drive             | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Water Chiller                        | -                             | -      | -                      |        | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| CAV to VAV                           | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Cooling Tower                        | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Retrofit Efficiency Options Total    | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | <u> </u> |
| Customized Incentives Program        |                               |        |                        |        |         |            |             |             |           |                     |                      |       |          |
| HVAC Variable Speed Drive            | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| High Efficiency Chiller              | -                             | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -        |
| Energy Management System             | 1.00                          | -      | -                      | 1.00   | -       | -          | 1.00        | 1.00        | 1.00      | -                   | -                    | -     | 1.00     |
| Other Customized Incentives Measures | 1.00                          | -      | 1.00                   | 1.00   | -       | -          | 1.00        | -           | 1.00      | -                   | 1.00                 | 1.00  | 1.00     |
| Customized Incentives Total          | 1.00                          | -      | 1.00                   | 1.00   | _       | -          | 1.00        | 1.00        | 1.00      | -                   | 1.00                 | 1.00  | 1.00     |
| Total                                | 1.00                          | -      | 1.00                   | 1.00   | -       | -          | 1.00        | 1.00        | 1.00      | -                   | 1.00                 | 1.00  | 1.00     |

# Commercial HVAC Net Therm Realization Rates By Business Type and Technology Group

| Business Type                        | Net Therm Realization Rates |        |                        |        |         |            |             |             |           |                     |                      |       |       |
|--------------------------------------|-----------------------------|--------|------------------------|--------|---------|------------|-------------|-------------|-----------|---------------------|----------------------|-------|-------|
| Program and Technology Group         | Office                      | Retail | College/<br>University | School | Grocery | Restaurant | Health Care | Hotel/Motel | Warehouse | Personal<br>Service | Community<br>Service | Misc. | Total |
| Retrofit Express Program             |                             |        |                        |        |         |            |             | <u></u>     |           |                     |                      |       |       |
| Central A/C                          | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Variable Speed Drive HVAC Fan        | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Package Terminal A/C                 | -                           | -      | -                      | -      | -       | -          |             | -           | -         | -                   | -                    | -     | -     |
| Programmable Thermostat              | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Reflective Window Film               | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     |       |
| Water Chiller                        | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Other RE Measures                    | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Retrofit Express Total               | -                           | -      | -                      | -      | -       | -          |             | -           | -         | -                   | -                    | -     | -     |
| Retrofit Efficiency Options Program  |                             |        | ·,                     |        |         | Exi x      |             |             |           |                     |                      |       |       |
| Variable Frequency Drive             | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     |       |
| Water Chiller                        | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| CAV to VAV                           | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Cooling Tower                        | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Retrofit Efficiency Options Total    | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Customized Incentives Program        |                             |        |                        |        |         |            |             |             |           |                     |                      |       |       |
| HVAC Variable Speed Drive            | -                           | -      | -                      | -      | _       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| High Efficiency Chiller              | -                           | -      | -                      | -      | -       | -          | -           | -           | -         | -                   | -                    | -     | -     |
| Energy Management System             | 1.14                        | -      | -                      | 1.14   | -       | -          | 1.14        | 1.14        | 1.14      | -                   | -                    | -     | 1.14  |
| Other Customized Incentives Measures | 1.14                        | -      | 1.14                   | 1.14   | -       | -          | 1.14        | -           | 1.14      | -                   | 1.14                 | 1.14  | 1.14  |
| Customized Incentives Total          | 1.14                        | -      | 1.14                   | 1.14   | -       | -          | 1.14        | 1.14        | 1.14      | -                   | 1.14                 | 1.14  | 1.14  |
| Total                                | 1.14                        | -      | 1.14                   | 1.14   | -       | -          | 1.14        | 1.14        | 1.14      | -                   | 1.14                 | 1.14  | 1.14  |

# Commercial HVAC Measures Measure Code Key

| Business Type                       | PG&E Measure Classification            |                                                  |  |
|-------------------------------------|----------------------------------------|--------------------------------------------------|--|
| Program and Technology Group        | Measure Code                           | Action Code                                      |  |
| Retrofit Express Program            |                                        |                                                  |  |
| Central A/C                         | S1-S4                                  |                                                  |  |
| Variable Speed Drive HVAC Fan       | S22                                    | ·                                                |  |
| Package Terminal A/C                | \$6                                    |                                                  |  |
| Programmable Thermostat             | S17, S18, S19                          |                                                  |  |
| Reflective Window Film              | S20                                    |                                                  |  |
| Water Chiller                       | S9, S10, S11, S16                      |                                                  |  |
| Other RE Measures                   | \$5, \$7, \$14, \$15, \$12, \$21       |                                                  |  |
| Retrofit Efficiency Options Program |                                        |                                                  |  |
| Variable Frequency Drive            | S91, S93                               | " ( <u>, , , , , , , , , , , , , , , , , , ,</u> |  |
| Water Chiller                       | S97, S98, S99                          |                                                  |  |
| CAV to VAV                          | \$86                                   |                                                  |  |
| Cooling Tower                       | S94, S95, S96                          |                                                  |  |
| Customized Incentives Program       | ······································ |                                                  |  |
| HVAC Variable Speed Drive           | SO                                     | 248                                              |  |
| High Efficiency Chiller             | SO                                     | 232                                              |  |
| Energy Management System            | SO                                     | 204                                              |  |
| Other CI Measures                   | SO                                     | All Others                                       |  |

Appendix F Summary of Gross Program Impacts by Costing Period

#### F. SUMMARY OF GROSS PROGRAM IMPACTS BY COSTING PERIOD

Ex post program gross demand and energy impacts are summarized by time-of-use (TOU) costing periods in Exhibit F-1, in order to support Pacific Gas and Electric Company's (PG&E's) cost-effectiveness calculations. The adjustment factors presented in Exhibit F-1 were obtained from Tables 3-7 and 3-8 of PG&E's Advice Filing 1978-G/1608-D, dated October 1, 1996. The gross demand and energy impacts by costing period reported in Exhibit F-1 are calculated by multiplying the program's ex post gross demand and energy impact by the corresponding adjustment factor.

## Exhibit F-1 Ex Post Gross Demand and Energy Savings by Costing Period For Commercial HVAC Technologies

|                                                                                                   | Time-of-Use Impact Distribution                                     |                            |             |                             |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|-------------|-----------------------------|--|--|
| PG&E Cost Period                                                                                  | Program kW<br>Savings<br>Coincident<br>with System<br>Max in Period | kW<br>Adjustment<br>Factor | kWh Savings | kWh<br>Adjustment<br>Factor |  |  |
| Summer On-Peak:<br>May 1 to Oct. 31<br>12:00 PM - 6:00 PM<br>Weekdays                             | 4,138                                                               | 1.00                       | 6,715,656   | 0.13                        |  |  |
| Summer Partial Peak:<br>May 1 to Oct. 31<br>8:30 AM - 12:00 PM<br>& 6:00 PM - 9:30 PM<br>Weekdays | 3,732                                                               | 0.90                       | 6,715,656   | 0.13                        |  |  |
| Summer Off-Peak:<br>May to Oct. 31<br>9:30 PM - 8:30 AM                                           | 2,201                                                               | 0.53                       | 15,211,979  | 0.30                        |  |  |
| Winter Partial Peak:<br>Nov. 1 to April 31<br>8:30 AM - 9:30 PM<br>Weekdays                       | 2,131                                                               | 0.52                       | 13,329,560  | 0.26                        |  |  |
| Winter Off-Peak:<br>Nov. 1 to April 31<br>9:30 PM - 8:30 AM<br>Other                              | 1,779                                                               | 0.43                       | 8,903,332   | 0.18                        |  |  |

Appendix G Protocol Tables 6 & 7

-

## G. PROTOCOL TABLES 6 AND 7

#### 1995 COMMERCIAL ENERGY EFFICIENCY INCENTIVES PROGRAM EVALUATION OF HVAC TECHNOLOGIES

#### **PG&E STUDY ID #326**

This Appendix presents Tables 6 and 7 for the above referenced study as required under the "Protocols and Procedures for the Verification of Cost, Benefits, and Shareholder Earnings from Demand Side Management Programs" (the Protocols), as adopted by the California Public Utility Commission (CPUC) Decision 93-05-063, Revised January 1996 Pursuant to Decisions 94-05-063, 94-10-059, 94-12-021, and 95-12-054.

#### Table 6 Assumptions

In some instances, interpretation of the Protocols allows for a variety of results to be presented. For HVAC technologies, the interpretation of these terms are:

- Items 1.A, 1.B, 2.C, 3.C: The change model of estimates did not require an evaluation of base usage for these technologies.
- Item 2.B: The per-unit gross and net impacts required by the Protocols specify one term in the denominator, square footage. The interpretation of this term is:
  - Square footage estimates of the conditioned area were derived using the square foot variables in the MDSS (for the participant group only). This is the total area of the facility, not just the retrofit area.
- Item 2.B: The per-unit constant of 104,133,197 (Sq. Ft., used in the denominator) was taken directly from Table E-3 of the Technical Appendix of the Annual Summary Report on Demand Side Management Programs in 1995 and 1996, revised in December 1996.
- Items 6 and 7: The number of measures reported are the purchased number in the MDSS. As such, they reflect a variety of units of measure, including square feet, number of units, feet of window film, number of thermostats, etc.

The Table 7 synopsis of analytical methods applied follows Items 1 through 7 of Protocol Table 6.

#### Protocol Table 6 Items 1-5 PG&E HVAC Study ID #326

| Table Item       |                                                                                            |            | Relative Precision |                   |  |
|------------------|--------------------------------------------------------------------------------------------|------------|--------------------|-------------------|--|
| ltem<br>Number   | Description                                                                                | Estimate   | 90%<br>Confidence  | 80%<br>Confidence |  |
| 1.A <del>t</del> | Pre-installation usage, Base usage, and Base usage per designated<br>unit* of measurement. | N/A        | N/A                | N/A               |  |
| -1. <b>B</b> †   | Impact Year usage, Impact year usage per designated unit* of<br>measurement.               | N/A        | N/A                | N/A               |  |
| 2.A              | Gross Peak kW (Demand) Impacts                                                             | 4,138      | 29%                | 22%               |  |
|                  | Gross kWh (Energy) Impacts                                                                 | 50,876,182 | 15%                | 12%               |  |
|                  | Gross thm (Therm) Impacts                                                                  | 2,056,662  | 29%                | 22%               |  |
|                  | Net Peak kw (Demand) Impacts                                                               | 3,376      | 29%                | 23%               |  |
|                  | Net kWh (Energy) Impacts                                                                   | 43,182,496 | 16%                | 12%               |  |
|                  | Net thm (Therm) Impacts                                                                    | 1,756,389  | 29%                | 23%               |  |
| 2.B              | Per designated unit* Gross Demand Impacts                                                  | 0.00004    | 29%                | 22%               |  |
|                  | Per designated unit* Gross Energy Impacts                                                  | 0.49       | 15%                | 12%               |  |
|                  | Per designated unit Gross Therm Impacts                                                    | 0.01975    | 29%                | 22%               |  |
|                  | Per designated unit* Net Demand Impacts                                                    | 0.00003    | 29%                | 23%               |  |
|                  | Per designated unit* Net Energy Impacts                                                    | 0.41       | 16%                | 12%               |  |
|                  | Per designated unit Net Therm Impacts                                                      | 0.01687    | 29%                | 23%               |  |
| 2.C+             | Percent change in usage (relative to base usage) of the participant                        | N/A        | N/A                | N/A               |  |
| 2.D              | group and comparison group.<br>Gross Demand Realization Rate                               | 0.58       | 29%                | 22%               |  |
| 2.0              |                                                                                            | 0.98       | 15%                |                   |  |
|                  | Gross Energy Realization Rate<br>Gross Therm Realization Rate                              | 1.00       | 29%                | 12%<br>22%        |  |
|                  | Net Demand Realization Rate                                                                | 0.68       | 29%                |                   |  |
|                  |                                                                                            | 1.16       | 29%<br>16%         | 23%               |  |
|                  | Net Energy Realization Rate                                                                | -          |                    | 12%               |  |
| 2.4              | Net Therm Realization Rate                                                                 | 1.14       | 29%                | 23%               |  |
| 3.A              | Net-to-Gross ratio based on Avg. Load Impacts                                              | 0.85       | 3%                 | 2%                |  |
| 3.B              | Net-to-Gross ratio based on Avg. Load Impacts per designated<br>unit* of measurement.      | 0.85       | 3%                 | 2%                |  |
| 3.C†             | Net-to-Gross ratio based on Avg. Load Impacts as a percent change from base usage          | N/A        | N/A                | N/A               |  |
| 4.A              | Pre-installation Avg. (mean) Sq. Foot (participant group)                                  | 35,414     | 15.1%              | 11.8%             |  |
|                  | Pre-installation Avg. (mean) Sq. Foot (comparison group)                                   | 25,230     | 25.5%              | 19.9%             |  |
|                  | Pre-installation Avg. Hours of Operation (participant group)                               |            |                    |                   |  |
|                  | Pre-installation Avg. Hours of Operation (comparison group)                                |            | 5 A                |                   |  |
| 4.B              | Post-installation Avg. (mean) Sq. Foot (participant group)                                 | 35,919     | 15.2%              | 11.9%             |  |
|                  | Post-installation Avg. (mean) Sq. Foot (comparison group)                                  | 25,934     | 26.6%              | 20.7%             |  |
|                  | Post-installation Avg. Hours of Operation (participant group)                              |            |                    |                   |  |
|                  | Post-installation Avg. Hours of Operation (comparison group)                               |            |                    |                   |  |

The change model estimates of impact did not require an evaluation of base usage
The per designated unit used was Sq. Ft.
Shaded cells were not evaluated because per designated unit calculations did not use these estimates.

|                                          | Number of Measures Paid in 1995 |                                  |                               |  |  |
|------------------------------------------|---------------------------------|----------------------------------|-------------------------------|--|--|
| Program and Technology Group Description | All Participants<br>(Item 6.B)  | Participant Sample<br>(Item 6.A) | Comparison Grou<br>(Item 6.C) |  |  |
| Retrofit Express Program                 |                                 |                                  |                               |  |  |
| Central A/C                              | 1,229                           | 5 <b>69</b>                      | 323                           |  |  |
| Variable Speed Drive HVAC Fan            | 6,227                           | 3,033                            | 0                             |  |  |
| Package Terminal A/C                     | 973                             | 543                              | 16                            |  |  |
| Programmable Thermostat                  | 1,138                           | 531                              | 1                             |  |  |
| Reflective Window Film                   | 186,427                         | 119,798                          | 0                             |  |  |
| Water Chiller                            | 9                               | 7                                | 18                            |  |  |
| Other RE Measures                        | 200                             | 121                              | 33                            |  |  |
| Total for Retrofit Express:              | 196,202                         | 124,602                          | 391                           |  |  |
| Retrofit Efficiency Options Program      |                                 |                                  |                               |  |  |
| Variable Frequency Driver                | 12                              | 6                                |                               |  |  |
| Water Chiller                            | 8                               | 4                                |                               |  |  |
| CAV to VAV                               | 2                               | 1                                |                               |  |  |
| Cooling Tower                            | 4                               | 1                                | Standard Standard Street      |  |  |
| Total for Retrofit Efficiency Options:   | 26                              | 12                               | 0                             |  |  |
| Customized Incentives Program            |                                 |                                  |                               |  |  |
| HVAC Variable Speed Drive                | 23                              | 4                                |                               |  |  |
| High Efficiency Chiller                  | 2                               | 1                                |                               |  |  |
| Energy Management System                 | 62                              | 33                               |                               |  |  |
| Other Customized Incentives Measures     | 55                              | 28                               |                               |  |  |
| Total for Customized Incentives:         | 142                             | 66                               | 0                             |  |  |
| TOTAL:                                   | 196,370                         | 124,680                          | 391                           |  |  |

# Protocol Table 6 Item 6: HVAC Measure Count Data PG&E Study ID #326

| · · · · · · · · · · · · · · · · · · · | HVAC       |            |  |  |  |
|---------------------------------------|------------|------------|--|--|--|
| Business Type                         | # of Part. | % of Part. |  |  |  |
| Office                                | 353        | 31%        |  |  |  |
| Retail                                | 122        | 11%        |  |  |  |
| Col/Univ                              | 17         | 1%         |  |  |  |
| School                                | 114        | 10%        |  |  |  |
| Grocery                               | 42         | 4%         |  |  |  |
| Restaurant                            | 53         | 5%         |  |  |  |
| Health Care/Hospital                  | 123        | 11%        |  |  |  |
| Hotel/Motel                           | 59         | 5%         |  |  |  |
| Warehouse                             | 58         | 5%         |  |  |  |
| Personal Service                      | 57         | 5%         |  |  |  |
| Community Service                     | 116        | 10%        |  |  |  |
| Misc. Commercial                      | 34         | 3%         |  |  |  |
| TOTAL:                                | 1148       | 100%       |  |  |  |

# Protocol Table 6 Item 7.A: HVAC Market Segment Data by Business Type PG&E Study ID # 326

|                             | HVAC       |            |  |  |
|-----------------------------|------------|------------|--|--|
| Industry (3-Digit SIC Code) | # of Part. | % of Part. |  |  |
| 652                         | 151        | 13%        |  |  |
| 821                         | 114        | 10%        |  |  |
| 701                         | 58         | 5%         |  |  |
| 581                         | 53         | 5%         |  |  |
| 866                         | 44         | 4%         |  |  |
| 801                         | 33         | 3%         |  |  |
| 541                         | 32         | 3%         |  |  |
| 799                         | 23         | 2%         |  |  |
| 806                         | 22         | 2%         |  |  |
| 802                         | 21         | 2%         |  |  |
| 422                         | 19         | 2%         |  |  |
| 594                         | 18         | 2%         |  |  |
| 653                         | 18         | 2%         |  |  |
| 531                         | 17         | 1%         |  |  |
| 533                         | 17         | 1%         |  |  |
| 650                         | 17         | 1%         |  |  |
| 809                         | 16         | 1%         |  |  |
| 737                         | 15         | 1%         |  |  |
| 602                         | 14         | 1%         |  |  |
| 832                         | 14         | 1%         |  |  |
| 919                         | 14         | 1%         |  |  |
| 805                         | 13         | 1%         |  |  |
| 873                         | 13         | 1%         |  |  |
| 822                         | 12         | 1%         |  |  |
| 804                         | 11         | 1%         |  |  |
| 573                         | 10         | 1%         |  |  |
| 753                         | 10         | 1%         |  |  |
| 811                         | 10         | 1%         |  |  |
| 922                         | 10         | 1%         |  |  |
| 633                         | 9          | 1%         |  |  |
| 864                         | 9          | 1%         |  |  |
| 504                         | 8          | 1%         |  |  |
| 591                         | 8          | 1%         |  |  |
| 603                         |            | 1%         |  |  |
| 431                         |            | 1%         |  |  |
| 508                         | 7          | 1%         |  |  |
| 599                         | 7          | 1%         |  |  |
| 913                         |            | 1%         |  |  |
| 506                         | 6          | 1%         |  |  |
| 514                         | 6          | 1%         |  |  |
| 571                         | <u> </u>   | 1%         |  |  |
| 606                         | 6          | 1%         |  |  |
| 641                         | 6          | 1%         |  |  |
| 723                         | 6          | 1%         |  |  |
| 074                         | 5          | 0%         |  |  |
| 458                         | 5          | 0%         |  |  |

|                             | HVAC          |            |  |  |
|-----------------------------|---------------|------------|--|--|
| Industry (3-Digit SIC Code) | # of Part.    | % of Part. |  |  |
| 481                         | 5             | 0%         |  |  |
| 551                         | 5             | 0%         |  |  |
| 553                         | 5             | 0%         |  |  |
| 651                         | 5             | 0%         |  |  |
| 721                         | 5             | 0%         |  |  |
| 738                         | 5             | 0%         |  |  |
| 769                         | 5             | 0%         |  |  |
| 835                         | 5             | 0%         |  |  |
| 836                         | . 5           | 0%         |  |  |
| 871                         | 5             | 0%         |  |  |
| 495                         | 4             | 0%         |  |  |
| 525                         | 4             | 0%         |  |  |
| 614                         | 4             | 0%         |  |  |
| 824                         | 4             | 0%         |  |  |
| 484                         | 3             | 0%         |  |  |
| 501                         | 3             | 0%         |  |  |
| 507                         | 3             | 0%         |  |  |
| 546                         | 3             | 0%         |  |  |
| 554                         | 3             | 0%         |  |  |
| 593                         | 3             | 0%         |  |  |
| 655                         | 3             | 0%         |  |  |
| 672                         |               | 0%         |  |  |
| 735                         | 3             | 0%         |  |  |
| 861                         |               | 0%         |  |  |
| 863                         |               | 0%         |  |  |
| 872                         |               | 0%         |  |  |
| 943                         |               | 0%         |  |  |
| 413                         | 2             | 0%         |  |  |
| 472                         | 2             | 0%         |  |  |
| 483                         | 2             | 0%         |  |  |
| 509                         | 2             | 0%         |  |  |
| 512                         | 2             | 0%         |  |  |
| 517                         | 2             | 0%         |  |  |
| 519                         | 2             | 0%         |  |  |
| 523                         | 2             | 0%         |  |  |
| 539                         | 2             | 0%         |  |  |
| 544                         | 2             |            |  |  |
| 566                         | <u> </u>      | 0%         |  |  |
| 592                         | 2             | 0%         |  |  |
|                             | $\frac{2}{2}$ | 0%         |  |  |
| 596                         | 2             | 0%         |  |  |
| 609                         |               | 0%         |  |  |
| 615                         | 2             | 0%         |  |  |
| 636                         | 2             | 0%         |  |  |
| 662                         | 2             | 0%         |  |  |
| 722                         | 2             | 0%         |  |  |
| 729                         | 2             | 0%         |  |  |

- -

|                             | HVAC       |            |  |  |
|-----------------------------|------------|------------|--|--|
| Industry (3-Digit SIC Code) | # of Part. | % of Part. |  |  |
| 733                         | 2          | 0%         |  |  |
| 734                         | 2          |            |  |  |
| 736                         | 2          | 0%         |  |  |
| 754                         | 2          | 0%         |  |  |
| 762                         | 2          | 0%         |  |  |
| 783                         | 2          | 0%         |  |  |
| 784                         | 2          | 0%         |  |  |
| 791                         | 2          | 0%         |  |  |
| 793                         | 2          | 0%         |  |  |
| 807                         | 2          | 0%         |  |  |
| 823                         | 2          | 0%         |  |  |
| 839                         | 2          | 0%         |  |  |
| 841                         | 2          | 0%         |  |  |
| 862                         | 2          | 0%         |  |  |
| 869                         | 2          | 0%         |  |  |
| 874                         | 2          | 0%         |  |  |
| 962                         | 2          | 0%         |  |  |
| 075                         | 1          | 0%         |  |  |
| 421                         |            | 0%         |  |  |
|                             | <u> </u>   |            |  |  |
| 423                         | 1          | 0%         |  |  |
| 449                         | 1          | 0%         |  |  |
| 473                         | 1          | 0%         |  |  |
| 478                         | 1          | 0%         |  |  |
| 492                         | 1          | 0%         |  |  |
| 493                         | 1          | 0%         |  |  |
| 502                         | 1          | 0%         |  |  |
| 542                         | 1          | 0%         |  |  |
| 543                         | 1          | 0%         |  |  |
| 549                         | 1          | 0%         |  |  |
| 556                         | 1          | 0%         |  |  |
| 562                         | 1          | 0%         |  |  |
| 564                         | 1          | 0%         |  |  |
| 569                         | 1          | 0%         |  |  |
| 572                         | 1          | 0%         |  |  |
| 598                         | 1          | 0%         |  |  |
| 616                         | 1          | 0%         |  |  |
| 631                         | <u> </u>   | 0%         |  |  |
| 702                         | 1          | 0%         |  |  |
| 725                         | 1          | 0%         |  |  |
| 726                         | <u> </u>   | 0%         |  |  |
| 731                         | 1          | 0%         |  |  |
| 732                         |            | 0%         |  |  |
| 781                         | <u></u>    | 0%         |  |  |
| 794                         | <u> </u>   | 0%         |  |  |
| 829                         | <u> </u>   | 0%         |  |  |
|                             | <u> </u>   | <u>0%</u>  |  |  |
| 833                         | <u> </u>   | 0%         |  |  |

|                             | HVAC       |                         |  |  |  |
|-----------------------------|------------|-------------------------|--|--|--|
| Industry (3-Digit SIC Code) | # of Part. | % of Part.              |  |  |  |
| 842                         | 1          | 0%                      |  |  |  |
| 931                         | 1          | 0%                      |  |  |  |
| 941                         | 1          | 0%                      |  |  |  |
| 944                         | 1          | 0%                      |  |  |  |
| 951                         | 1          | 0%                      |  |  |  |
| 964                         | . 1        | 0%                      |  |  |  |
| 971                         | 1          | 0%                      |  |  |  |
| 002                         | 0          | 0%                      |  |  |  |
| 072                         | 0          | 0%                      |  |  |  |
| 076                         | 0          | 0%                      |  |  |  |
| 078                         | 0          | 0%                      |  |  |  |
| 411                         | 0          | 0%                      |  |  |  |
| 415                         | 0          | 0%                      |  |  |  |
| 417                         | 0          | 0%                      |  |  |  |
| 451                         | 0          | 0%                      |  |  |  |
| 498                         | 0          | 0%                      |  |  |  |
| 503                         | 0          | 0%                      |  |  |  |
| 505                         | 0          | 0%                      |  |  |  |
| 511                         | 0          | 0%                      |  |  |  |
| 516                         | 0          | 0%                      |  |  |  |
| 518                         | 0          | 0%                      |  |  |  |
| 521                         | 0          | 0%                      |  |  |  |
| 526                         | 0          | 0%                      |  |  |  |
| 540                         | 0          | 0%                      |  |  |  |
| 552                         | 0          | 0%                      |  |  |  |
| 555                         | 0          | 0%                      |  |  |  |
| 557                         | 0          | 0%                      |  |  |  |
| 559                         | 0          | 0%                      |  |  |  |
| 560                         | 0          | 0%                      |  |  |  |
| 561                         | 0          | 0%                      |  |  |  |
| 563                         | 0          | 0%                      |  |  |  |
| 565                         | 0          | 0%                      |  |  |  |
| 621                         | 0          | 0%                      |  |  |  |
| 632                         | 0          | 0%                      |  |  |  |
| 703                         | 0          | 0%                      |  |  |  |
| 703 704                     | 0          |                         |  |  |  |
| 724                         | 0          | <u>    0%    </u><br>0% |  |  |  |
|                             |            |                         |  |  |  |
| 751                         | 0          | 0%                      |  |  |  |
| 752                         | 0          | 0%                      |  |  |  |
| 782                         | 0          | 0%                      |  |  |  |
| 792                         | 0          | 0%                      |  |  |  |
| 808                         | 0          | 0%                      |  |  |  |
| 830                         | 0          | 0%                      |  |  |  |
| 921                         | 0          | 0%                      |  |  |  |
| 953                         | 0          | 0%                      |  |  |  |
| TOT                         | TAL: 1148  | 100%                    |  |  |  |

## PROTOCOL TABLE 7

#### 1995 COMMERCIAL ENERGY EFFICIENCY INCENTIVES PROGRAM EVALUATION OF HVAC TECHNOLOGIES PG&E STUDY ID #326

The purpose of this section is to provide the documentation for data quality and processing as required in Table 7 of the California Public Utility Commission (CPUC) Evaluation and Measurement Protocols (the Protocols). Although other important considerations are addressed throughout this section, major topics are organized and presented in the same order as they are listed in Table 7 for ease of reference and review. When responses to the items are discussed in detail elsewhere in the report, only a brief summary will be given in this section to avoid redundancy.

#### A. OVERVIEW INFORMATION

#### 1. Study Title and Study ID Number

Study Title: Evaluation of PG&E's 1995 Nonresidential Energy Efficiency Incentives Program for Commercial Sector HVAC Technologies.

Study ID Number: 326

#### 2. Program, Program Year and Program Description

- *Program:* PG&E Nonresidential Energy Efficiency Incentives Program, Commercial Sector.
- Program Year: Rebates Received in the 1995 Calendar Year.

Program Description:

The Nonresidential Energy Efficiency Incentives Program offered by PG&E has three components: the Retrofit Express (RE) Program, the Retrofit Efficiency Options (REO) and the Customized Incentive Program.

The RE and REO Programs offer fixed rebates to PG&E's customers that install specific gas or electric energy-efficient equipment in their facilities. The Both Program cover most common energy-saving measures: lighting, air conditioning, refrigeration/food service, and motors. To receive a rebate, the customer is required to submit proof of purchase along with the application. This Program is primarily marketed to small and medium commercial, industrial, and agricultural customers. The maximum total rebate amount of the RE Program is \$300,000 per account. This includes participation in any combination of the lighting, air conditioning, refrigeration/food service, and motor program options.

The Customized Incentives Program offers financial incentives to customers who undertake large or complex projects that save gas or electricity. These customers must submit calculations for the projected first year energy savings, along with an application, prior to the start of the customers' installation of high-efficiency equipment. The maximum total incentive amount for the Customized Program is \$500,000 per account. The minimum qualifying incentive amount is \$2,500 per project.

## 3. End Uses and/or Measures Covered

End Use Covered: HVAC Technologies.

Measures Covered: For the list of RE and REO Program measures covered in this evaluation, see Exhibit B-3 in the main report. Customized Incentives Program measures generally map into related technology categories.

## 4. Methods and Models Used

The PG&E Commercial HVAC Technologies consisted of three key analysis components: engineering analysis, billing data regression analysis, and net-to-gross analysis. This integrated approach reduces a complicated problem to manageable components, while incorporating the comparative advantages of each analysis method. This approach describes per-unit net impacts as follows:

Net Impact = (Gross Impact) x (SAE Realization Rate) x (Net-to-Gross)

**Gross Impact** – Gross impact is computed as the change in energy consumption for a particular HVAC technology relative to a baseline, typically defined by Title 24, and computed using CEC long term weather data. A detailed discussion of the HVAC impact calculations can be found in *Section 3.2.* 

**SAE Realization Rates** – The SAE Realization Rates were estimated based on a Statistically Adjusted Engineering (SAE) analysis using cross-sectional time series data and incorporating prior engineering estimates. As a result, the SAE realization rates could be defined as the percentage of a savings estimate that is detected or realized in the statistical analysis of actual changes in energy usage. The SAE realization rates were then applied to an impact estimate based upon the program baseline, equipment purchased under the program, and typical weather. A detailed discussion of the final SAE model specification can be found in *Section 3.3*.

**Net-to-Gross** – The net-to-gross (NTG) ratio adjusts the program baseline, derived using estimates of free-ridership and spillover (associated with the program). The HVAC end-use NTG ratio's were calculated based on survey self-report using a representative nonparticipant sample to account for naturally occurring conservation. The NTG analysis approach is presented in detail in *Section-3.4*, and a thorough discussion surrounding the methods used to score those results is provided in *Appendix D*.

## 5. Participant and Comparison Group Definition

## Participant

Participants are defined as those PG&E commercial customers who received PG&E rebates in the 1995 calendar year for installing at least one lighting measure under the Nonresidential EEI Program.

#### Comparison Group

The comparison group for this study is defined as a group of PG&E commercial customers who did not receive any HVAC end-use rebates in the 1995 calendar year under the Nonresidential EEI Program, and who share as many characteristics as possible with the commercial sector participant group in terms of annual usage and business type distribution. Customers who

participated in the previous years or those who simply participated by installing a non-HVAC enduse measure, are eligible for the comparison group.

## 6. Analysis Sample Size

The final analysis dataset has 2,025 observations based upon 2,025 telephone survey completes (of which 487 were HVAC end-use participants, and the remaining 1,538 served as a comparison group for that sample). In addition, 107 on-site audits were conducted at HVAC end-use participant sites, which included the installation of end-use meters at 20 of these sites. The distribution of the sample by business type and technology is presented in *Appendix A, Section A-3*.

## **B. DATABASE MANAGEMENT**

## 1. Data Description and Flow Chart

The Evaluation of PG&E Commercial HVAC Technologies was based on a nested sample design approach (see Section 3.1.1). The main feature of this approach is that it consists of four groups of customers subsetted according to the availability of detailed evaluation data (within each group). The largest customer group included all of the commercial customers who received rebates for eligible HVAC technologies in 1995 (the "participant population") with monthly PG&E billing data and participant tracking data. The smallest group included the participants with the most comprehensive information available -- EUM data, on-site audit data, telephone survey, participant tracking data, and billing data. A similar nested sample design was also implemented for the comparison group, the exception being that EUM data were not collected for the comparison group. The advantage of the nested sample design was that it yielded overlapping samples which were used to compute bias in many of the intermediate engineering parameters derived.

All data elements mentioned above were linked to the final analysis database through the unique customer identifier -- the evaluation 'site\_id' variable. For this evaluation, the analysis database served as a centralized tracking system for each customers' billing history, program participation, and sampling status, which helped to reduce data problems such as account mis-match, double counting, or repeated customer contacts. Exhibit A illustrates how each key data element was used to create the final analysis database for the Evaluation.

## 2. Key Data Elements and Sources

A complete list of data elements and their sources can be found in *Section 3.1.1* and *Appendix C, Section 2* of the report. The key analysis data elements and their sources are listed below:

**Program Participant Tracking System**. The participant tracking system for the RE and Customized Incentives programs was maintained as part of the PG&E MDSS. It contains program application, rebate, and technical information about installed measures, including measure description, quantity, rebate amount, and ex ante demand, energy, and therm saving estimates.

**PG&E Billing Data**. Initially, the PG&E billing data were obtained from two PG&E data sources. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG&E's service territory, and was used in the sample design as described in *Appendix A*. The billing histories contained in this database only run through September 1995.

The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG&E's Load Data Services.<sup>1</sup> This billing dataset contains bill readings that run through September 1996, and was therefore used in the billing regression analysis. In addition, the billing series from this database is the PG&E pro-rated monthly usage data, a series calculated by PG&E for each calendar month, from January 1992 to September 1996.

**Telephone Survey Data.** Two telephone survey samples (487 participants and 1,538 comparison group customers) were collected as part of this evaluation. They were designed to be representative of the population of each business type. The telephone survey supplies information on customer decision-making, equipment operating characteristics, equipment stocks, and energy-related changes at each site for the billing period covered by the statistical billing analysis.

**On-Site Audit Data.** On-site audit data were collected as part of this evaluation for both the participant and comparison group. The on-site audit is designed to support the telephone sample for the largest participation segments. This sample contributes site-specific equipment details, and better estimates of operating hours and operating factors. There were a total of 107 participant on-site audits conducted for this HVAC end-use evaluation.

**End Use Metered Data.** The EUM logger data collected for the Evaluation provides operating information for both Central Air Conditioner (CAC) and Variable Speed Drive (VSD) measures. For the CAC measures, the EUM data are used to better estimate the peak duty cycles of CAC's in actual operation. For VSD's, EUM data provided a basis for determining the level at which a given fan is operating.

**Weather Data**. The hourly dry bulb temperature collected for 25 PG&E load research weather sites is used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site is linked to that customer by using the PG&E-defined weather site to PG&E's local office mapping.

Other data elements include PG&E program marketing data, PG&E internal SIC code mapping/segmentation scheme, program procedural manuals and other industry standard data sources.

## 3. Data Attrition Process

All data elements mentioned above were first validated and then merged together to form the final analysis dataset. Records with out-of-range or questionable data were either deleted or flagged to ensure that only those records with sufficient data, both in terms of data quality and representativeness, were used in the analysis. The key data attrition decisions are summarized in *Appendix C*, *Section 5*.

## 4. Internal Data Quality Procedures

The Evaluation contractor of this project, Quantum Consulting Inc. (QC), has performed extensive data quality control on all categories of program data, including utility billing data, program tracking data, telephone survey data, on-site audit data, and EUM data. QC's data quality procedures are consistent with PG&E's internal database guidelines and the guidelines established in the Protocols.

<sup>&</sup>lt;sup>1</sup> A preliminary analysis has concluded that the monthly usage and bill read date information in these two datasets is consistent.

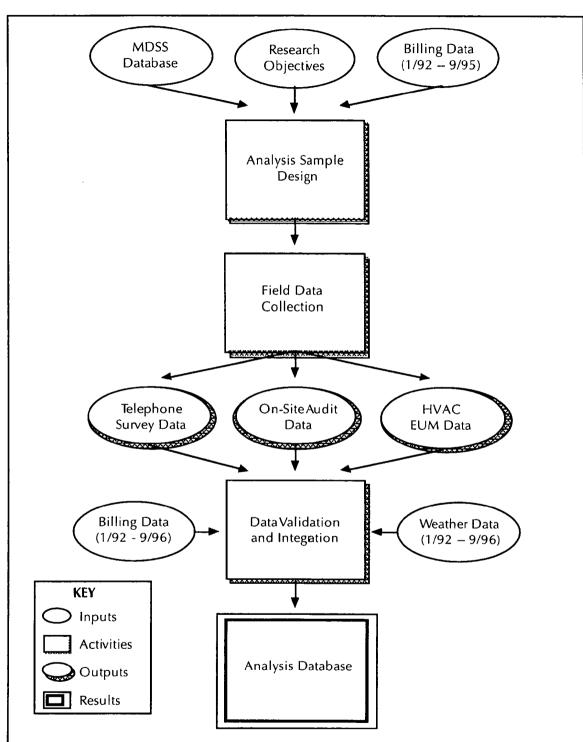



Exhibit A Analysis Database Development

Throughout the course of sample design and creation, survey data collection, and data analysis, several data quality assurance procedures were in place to insure that all energy usage data used in analysis and all telephone survey data collected was of high quality and would prove useful in

later analysis. The stages of data validation undertaken and the methods employed are detailed below:

**Pre-Survey Usage and Account Characteristic Data Validation.** The goal of this stage of data validation was to screen out customers who had unreasonable or unreliable usage data, or who had changes in key elements of their billing data over the 1992 to 1995 period. Accounts for which changes were observed in account numbers, service addresses, SIC codes, electric rate schedules, electric meter numbers, or corporation and premise identification variables, were excluded from sample eligibility. Usage data reliability screening first eliminated from sample accounts which experienced service interruptions, exhibited inconsistent read dates, or for which bills were estimated. Additionally, based on comparisons of account usage between years, and between different months in the same year, customers with unusual usage patterns such as unusually high variation in monthly or yearly usage were given special attention and, in some cases, excluded from the sample frame. A more detailed discussion of the steps undertaken in the pre-survey usage and account characteristics data validation, is provided in the discussion of survey sample creation in *Appendix A*.

**Real Time Survey Data Validation.** Survey data collection was performed using QC's 24 station Computer Aided Telephone Interviewing (CATI) center. Data entry applications, programmed using SAS/AF software, employed logical branching routines and real-time data validation procedures to insure that survey questions were appropriate for each customer's situation and that recorded responses were reasonable and logical. Data entry applications also performed real time range checks and field protection for out of range values during the data collection process thereby affording an additional means of ongoing data validation. Finally, because SAS/AF was used to program the data collection software, the survey data was on-line in the form of a SAS dataset continuously throughout the course of data collection. This allowed for the generation of frequency distributions and cross-tabs on data at regular stages throughout the survey fielding to facilitate QC's internal early detection and correction of data entry errors.

**Final Survey Data Validation.** Following the completion of survey data collection, all data was subjected to a final stage of validation and cleaning during which illogical responses were identified and corrected or flagged, and corrections were made to any mis-coding of data not detected in earlier stages of cleaning and validation. All activities undertaken in the course of survey were documented in accordance with QC's Enumerated Quality Assurance Logs and Standards (EQUALS) survey data collection documentation protocols.

## 5. Unused Data Elements

Without exception, all data collected specifically for the Evaluation were utilized in the analysis.

# C. SAMPLING

## 1. Sampling Procedures and Protocols

The sample design for the Commercial HVAC Evaluation was based upon analysis of 1995 program participation data and PG&E billing data. The goal of the sample design was to achieve the most efficient utilization of project resources in order to estimate the first-year gross and net impacts in a manner that met the sample size and evaluation accuracy requirements defined by the Protocols.

The telephone survey sample was selected based upon the stratified random sampling techniques for both participant and comparison group. The objective of stratification is to improve the overall reliability of estimates by restricting the sample to reasonably homogeneous segments, while at the

same time ensuring that sufficient representation of the population is preserved. The sample segmentation is developed across two dimensions: business types and technology groups.

The customer segment is defined primarily by the business types, which were determined based upon the MDSS database (for participants), and the Second Standard Industrial Classification (SIC2) code—which represents building activity—from the billing dataset (for the comparison group). Within each business type, the annual energy consumption is used as a proxy to group customers into usage bins, and sample points are selected to reflect the underlying distribution of the participant population.

Technology segmentation is important because the use of electricity, and therefore the program impacts, varies by program measure. Therefore, by grouping together common technologies, the variation in impacts is reduced, which, in turn, results in more accurate estimates of the SAE realization rates. For example, all CAC (S1-S5) retrofit measures are grouped together, despite the fact that variation in capacity and efficiency will yield different levels of projected energy impacts. These factors are directly accounted for in the engineering estimates. That is, the engineering estimates account for interparticipant variation so that what is assumed is that the fraction of the expected impact is stable within a segment, rather than the level of the impact. This assumption is the basis for SAE models.

Twelve business types and nine technology groups were defined and used in the sample design and sample allocation for the RE/REO programs. For each business type and technology combination, the sample was allocated in proportion to avoided costs. The purpose of this weighting scheme is to identify which technologies and/or business types account for the greatest impact on the program's resource and shareholder values.

Given the low participation in the Customized Incentives program, all hard copy application forms were reviewed and a census was attempted for all eligible participants.

The sampling unit for both participant and comparison groups was defined as customer premise. A premise is defined as all billing accounts that correspond to the same location and customer. The final participant sample frame consists of 2,560 premises drawn from the eligible population of 5,694 program participants who were paid in 1995 from both the RE, REO and Customized Incentives programs.

The comparison group sample frame consists of 4,153 customers drawn from the eligible population of 172,354 commercial customers that satisfied all of the screening criteria used in construction of the sample frame. In drawing the sample frame, targets are established for each business type and usage segment, so that the sample frame distribution, by business type and usage segment, is the same as that of the participant population.

The process of reduction to the eligible sample involved the elimination of customers that had 1) moved during the period of interest; or 2) had billing records with significant missing data. Customers were further screened to identify those who had high-quality data for each month, for all three years of the analysis window.

Finally, the achieved samples and their distributions can be found in *Appendix A*. Based on the total energy usage, the samples relative precision was estimated to be 4.6 percent at the 90 percent level. The procedures used in the relative precision calculation and a summary of how the Evaluation sample design meets the Protocols' requirement in terms of sample size and relative precision are presented in *Appendix A*.

# 2. Survey Information

Telephone survey instruments are presented in the Survey Appendix, Section S-1 (for participants) and Section S-2 (for comparison group customers). Participant and comparison group customer's survey response frequencies are presented in Section S-9. Finally, reasons for refusals are presented in Section S-10.

On-site audit instruments are presented in the Survey Appendix , Section S4.

# 3. Statistical Descriptions

As mentioned above, a complete set of participant and comparison group customer's responses frequencies are presented in *Survey Appendix S-9*. In addition, statistics on usage and engineering impact variables that were used in the billing data regression models are also presented in *Appendix C*.

# D. DATA SCREENING AND ANALYSIS

A detailed discussion of the billing data regression data analysis is presented in *Appendix C*. The statistical billing model described in this section incorporates analysis for three distinct end uses, lighting, HVAC and refrigeration (for Study ID's 324, 326 and 330, respectively). Specific procedures and modeling issues are discussed below.

## 1. Outliers, Missing Data and Weather Adjustment

Three types of data censoring screens were applied to the billing analysis sample frame to remove customers that have invalid billing data, that may not have had their bill properly aggregated to the Site ID level, or that were extremely large users.

# Invalid Usage

For customers to be included in the final billing analysis, customers had to have billing data that met the following three criteria.

The pre- and post-installation annual bills had to have been comprised of at least six non-zero monthly bills. If there were seven or more monthly bills with zero energy, the customer was removed from the analysis. If there were between one and six monthly bills with zero energy, the remaining months were prorated to an annual estimate.

The pre-installation annual bill could not be more than three times or less than one third of the post-installation bill. If this occurred, the customer was removed from the analysis.

The pre-installation annual bill could not be more than twice or less than one half the postinstallation bill, unless the telephone survey responses indicated that the customer had a change at the site that may have caused an increase or decrease in usage, respectively. For example, if a customer doubled their usage and reported an increase in square footage, or an increase in employees, or an additional measure installed, the customer remained in the sample. However, if the customer reported no changes, or only changes that would indicate a decrease in usage, such as a removal of a measure, then the customer was removed from the analysis.

Appendix C presents the number of participants and nonparticipants that were deleted for each of the above criteria. Note that only 22 nonparticipants were deleted, whereas 123 participants were deleted. This is due to the fact that the nonparticipants were pre-screened to have relatively valid billing data prior to being selected into the nonparticipant survey sample frame. The participants,

however, were often a census and no pre-screening was done on their billing data prior to being selected into the participant survey sample frame. Of the 123 participants, 87 were deleted due to the zero bill criteria.

## Large Customers

Customers whose annual post-installation energy consumption exceeded three million kWh were excluded from the billing analysis. Customers of this size were deleted for a number of reasons. First, there were 98 participants dropped for this reason, compared to only 10 nonparticipants. This indicated that the nonparticipants would not provide a good control for this group of participants. Very large customers are more likely to participate because they are more aware of the program, since they have more contact with PG&E representatives. Therefore, it is difficult to find a sample of nonparticipants that adequately represents these customers.

Large customers installing measures that provide relatively low levels of savings are particularly problematic in billing analyses of this type. It is very difficult to detect an annual impact even as large as 10,000 kWh in a customer's bill which exceeds 10 million kWh, for example. In addition, large customers are more likely to have made changes at the site, which could significantly affect their energy usage. If the model does not adequately capture all of these changes (possibly due to the unique nature of the change, or an error in the self-reported survey responses) it is likely that the coefficient on the program *energy* impact may reflect the change. While this is true of all customers, regardless of size, it is more of a concern for larger customers because the magnitude of their changes can have significant influence over the results of the model.

## Aggregation to Site ID Level

As mentioned above, one concern with aggregating to the Site ID level is that there may be control numbers associated with a different premise number, service address, or corporation number that are in the same physical site and are being affected by the installed measures. If this is the case, the billing analysis will have the effect of underestimating the impacts. Therefore, a comparison was made between the engineering energy impact and the pre- and post-installation bills to identify any customers where this problem of bill aggregation may exist.

There were 148 participants that were identified as having total Commercial Sector Program energy impacts that were either more than 50 percent of their pre-installation usage or more than 100 percent of their post-installation usage. These 148 participants were further analyzed to determine whether the impact was large relative to usage because of a problem in aggregating the bill, or if the engineering estimates were just over-estimated, in which case the customer would not be removed from the billing analysis.

Three criteria were used to determine if there was a problem with aggregating the bill for these 148 participants. If a participant failed any of these criteria, the customer was removed from the analysis on the basis that the bills were not properly aggregated and the entire impact would not be detected in an analysis of the customer's billing data.

If the customer's annual kWh per square foot was in the bottom tenth percentile of all participants, the customer was removed.

If the customer's annual kWh per employee was in the bottom tenth percentile of all participants, the customer was removed.

The first billing data pull, which consisted of every nonresidential customer in PG&E's service territory over the period of January 1992 to September 1995, was compared to the second data pull, which is being used for the billing analysis. Customer bills from the first billing data pull were

aggregated to the Site ID level in the same way described above. These annual aggregated bills were compared to the aggregated bills used in the analysis. If the aggregated bills from the first data pull were more than 50 percent larger than the bills being used in the billing analysis, the customer was removed. This would indicate that either not all of the control numbers that link to a site were provided in the second data pull or, more likely, since 1995 (when the first billing data was pulled and when the customer participated) there has been customer turnover at the site, and there are now additional premise numbers that no longer link to one unique site.

As a results of these three criteria, 102 of the 148 premises were removed. Of the 102 removed customers, 45 failed the invalid usage data screening checks as well. Therefore, only 57 premises were removed solely on these data screening criteria alone.

Appendix C presents the number of participants that were removed from the analysis for each of the above criteria.

## Other Censoring

In addition to all of the above censoring, three other participants were removed from the analysis for the following reasons:

One customer was removed from the analysis because the customer was noted as a "Z-Customer" in the MDSS. PG&E does not claim impacts on "Z-Coded" customers.

Another site had a retrofit performed that will affect a neighboring customer's utility bill. The refrigeration equipment (compressors and condensers) serving the participant are maintained and operated by a nonparticipant. The participant buys liquid ammonia from the nonparticipant via lines running under an adjacent road (driveway) and suction gas is returned to the nonparticipant following use. The impacts of this retrofit (which affect ice production) will be realized by the manufacturer of the liquid ammonia product, a nonparticipant. Therefore, the participating customer was removed from the analysis.

Finally, two other customers were identified as having added the rebated measure installed under the Commercial Program, causing a net increase in energy from the pre- to post-installation period. One of these customers was previously identified as being a large customer and deleted. Therefore, only one extra customer was removed.

Appendix C summarizes all of these data screening criteria and provides the pre- and post-censoring sample sizes by technology and business type.

## 2. Background Variables

Background variables, such as interest rates, unemployment rates and other economic factors, were not explicitly modeled in the final model. However, the effect of these factors was explicitly accounted for when a cross-sectional time series model was used with a comparison group. This is based on the assumption that the comparison group was equally impacted by the same set of background variables.

## 3. Data Screen Process

As explained in *Appendix C*, the final model was fitted in two steps. The first step is to estimate a baseline model to develop the relationship between the pre-installation year usage and the post-installation year usage, followed by an SAE model to estimate the SAE realization rates based on the engineering estimates of program impacts. Section 1 above describes in detail all of the data

screening criteria. Appendix C also details the number of customers that were screened for each criteria.

## 4. Regression Statistics

The billing regression analysis for the lighting program uses two different multivariate regression models under an integrated framework of providing unbiased and robust model estimates in the commercial sector. The key feature of our approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variations in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for both participants and the comparison group, as a function of pre-installation-year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group. The outputs of the baseline model are presented in *Appendix C*.

The estimated SAE realization rates are used to adjust the engineering estimates of expected annual energy impacts for the entire participant population. The regression statistics for the final SAE model are presented in the following exhibits and a more detailed discussion can be found in *Appendix C*.

The dependent variable is the difference between the actual and predicted 1996 usage using the 1994 baseline model.

SAE coefficients were calculated for 16 different combinations of business type and measure. Primarily those measures that have broad participation and relatively high expected impacts were supported by separate SAE coefficients. In addition, a separate SAE coefficient was calculated for other Commercial Program measures outside Lighting, HVAC, and Refrigeration.

Attempts were made to estimate the SAE coefficients at a finer level of segmentation, but generally either one of two problems were encountered. First, available sample sizes were too small to support a finer level of segmentation. Second, certain parameters were correlated with each other and needed to be combined into a single parameter (a standard econometric solution to solving the problem of colinearity). For example, it was determined that there was a high incidence of compact and standard fluorescent installations at the same site in office buildings. Therefore, there was enough correlation between the compact and fluorescent engineering estimates to warrant combining the two estimates into a single fluorescent estimate in the model.

All but three of the SAE coefficients are significant at the 95 percent confidence level (t-statistics greater than 1.96). In addition, all of the statistically significant SAE coefficients were the correct sign, and therefore were used in the calculation of the final ex post energy calculations. The three SAE coefficients that were not significant at the 95 percent confidence interval (HIDs in warehouses and schools, and thermostats in offices) were not used in the final ex post energy calculations. Because each of the insignificant SAE coefficients were also the wrong sign, they were set to zero. Therefore, no energy impacts are being claimed for these three segments.

### Exhibit B Final SAE Model Output

| Parameter Descriptions                  | Units            | Parameter<br>Estimate | t-Statistic         | Sample<br>Size            |
|-----------------------------------------|------------------|-----------------------|---------------------|---------------------------|
| SAE Coefficients                        |                  | LSumate               | t-Statistic         | 5120                      |
| Lighting End Use                        |                  |                       |                     |                           |
| Office Flourescents                     | kWh              | 1.00                  | 1467                | 114                       |
| Other Flourescents                      | kWh              | -1.00<br>-0.68        | <u> </u>            | <u> </u>                  |
| · · · · · · · · · · · · · · · · · · ·   | <u>kWh</u>       |                       | 2.09                | 57                        |
| Controls<br>Warehouse HIDs              | kWh              | -1.38                 | 0.07                |                           |
| School HIDS                             | kWh              | 0.02                  | 0.30                | <u> </u>                  |
|                                         | kWh              | -1.26                 | 2.15                | 119                       |
| Other RE Lighting                       | kWh              |                       | 3.07                | 119                       |
| Custom Lighting<br>HVAC End Use         | KVVN             | -0.51                 | 3.07                | 15                        |
|                                         | kWh              | 2.07                  | 2 (7                | 104                       |
| Central A/Cs                            | <u>kWh</u>       | <u>-2.07</u><br>-1.90 | <u>3.67</u><br>6.75 | <u>    184     </u><br>27 |
| ASDs<br>Chillers                        | kWh              |                       |                     | 275                       |
| EMS                                     | kWh              | -1.58                 | 2.39                |                           |
|                                         | kWh              | -1.03                 | <u>8.38</u><br>4.76 | 20                        |
| Other Custom HVAC                       | kWh              | -0.65                 |                     | <u> </u>                  |
| Office Thermostats<br>Other RE/REO HVAC | kWh              | 0.05                  | 1.06                |                           |
|                                         | <u> </u>         | -0.90                 | 2.89                | 153                       |
| Refrigeration<br>Custom Refrigeration   | kWh              | -0.75                 | 2.00                | 3                         |
| RE/REO Refrigeration                    | kWh              | -0.73                 | 1.98                | 181                       |
| Other End Uses                          | kWh              | -0.53                 | 1.98                | 181                       |
| Other Charles                           | kWh              | 1 71                  | 2.90                | 62                        |
|                                         | kWh              | 1.71                  | 2.90                | 02                        |
| Change Variables                        |                  | 0.03                  | 0.70                | 10                        |
| Cooling System Replacement              | (0,1)*kWh        | -0.03                 | 0.70                | <u> </u>                  |
| Lighting System Replacement             | (0,1)*kWh        | 0.08                  | 4.17                |                           |
| Change in Employees                     | (±1,0)*kWh       | 0.01                  | 0.64                | <u> </u>                  |
| Square Foot Change                      | $\pm sqft$       | 4.42                  | 2.37                |                           |
| Heating System Replacement              | (0,1)*kWh        | -0.07                 | 0.04                | 4                         |
| Other Equipment Change                  | (0,1)*kWh        | 0.03                  | 1.17                | 42                        |
| Remove Equipment                        | (0,1)*kWh        | 0.08                  | 0.64                | 2                         |
| Refrigeration Replacement               | (0,1)*kWh        | 0.00                  | 0.01                | 3                         |
| Add Equipement                          | (0,1)*kWh        | 0.11                  | 0.49                | 11                        |
| Other Additions                         | <u>(0,1)*kWh</u> | 0.14                  | 12.41               | 375                       |

All of the HVAC technologies are represented in the SAE billing analysis, except for REO Variable Frequency Drives (VFD), REO CAV to VAV, and Customized Incentive Chillers. Although these measures represent only ten percent of the energy impact, an approach needed to be developed for adjusting the engineering energy impact estimate for these measures.

• The REO VFD measure is very similar to those installed under the RE and Customized Incentive programs, and the engineering estimate is calculated using the same approach. Therefore, engineering energy impact estimate for the REO VFD measure was adjusted by the SAE coefficient estimated for the RE and Customized Incentive measures.

- Three approaches were considered for adjusting the engineering energy impact estimate for the REO CAV to VAV measure: (1) applying the Other RE HVAC SAE coefficient, (2) applying the Other Custom HVAC SAE coefficient, or (3) leaving the engineering estimate unadjusted. Because the REO CAV to VAV measure is usually installed in large businesses, typical of those installing Customized Incentive measures, the Other Custom HVAC SAE coefficient was used to adjust the engineering energy impact estimate for the REO CAV to VAV measure. This is also the most conservative approach since the SAE coefficient is only 0.65.
- The engineering energy impact for Chillers was estimated differently for Customized Incentive applications than for RE and REO applications, due to the different types of businesses that install these measures. Therefore, the engineering energy impact estimate for Customized Incentive Chillers was left unadjusted, which is conservative compared to the alternative approach of applying the 1.58 SAE coefficient estimated for the RE and REO applications.

The SAE coefficient of 0.65 for Other Custom HVAC measures is based on a sample size of only five sites, compared to the 43 unique sites that installed "Other" Customized Incentive HVAC measures in 1995. In addition, these five sites represent only seven percent of the total ex ante energy impact contributed by these 43 sites. Also, one third of the customers installing "Other" Customized Incentive HVAC measures have usage over 3 million kWh per year, which are not represented in the SAE analysis.

The larger customers (usage over 3 million kWh per year), however, are very well represented in the on-site audit sample, for which calibrated engineering energy impacts were estimated. Sixteen sites, which represent 53 percent of the total ex ante energy impact, were on-site audited, one of which was included in the SAE billing analysis. The ratio of the engineering energy impact estimate to the ex ante estimate is 0.79 for the on-site audit sample. This can be directly compared to the SAE coefficient, because ex ante estimates were used as the engineering energy impact estimates for the billing analysis, as mentioned above.

Three approaches were considered for estimating the ex post gross energy impact for the "Other" Customized Incentive HVAC measures:

- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population.
- The 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate from the on-site audit sample could be applied to the ex ante estimate of gross energy impact for the population.
- The SAE coefficient of 0.65 could be applied to the ex ante estimate of gross energy impact for the population that is most similar to the SAE sample, and the 0.79 ratio of engineering energy engineering energy impact estimate to the ex ante estimate could be applied to the population most similar to the on-site audit sample.

The approach of applying the SAE coefficient to the ex ante estimate of gross energy impact for the population, which is the most conservative method, was chosen for two reasons. First, the SAE coefficient provides a statistically adjusted result that is significant at the 95 percent confidence level. Second, the 0.79 ratio based on the on-site audit is very sensitive to a few individual on-site results. For example, the ratio of the engineering to ex ante estimate is 1.51 for the site with the largest energy impact. If the engineering estimate was set equal to the ex ante estimate for this customer, the overall ratio for all on-sites would be 0.64. Conversely, if the site with the second

largest energy impact, which has a ratio of 0.41, had an engineering estimate set equal to the ex ant estimate, the overall ratio would be 0.95.

The SAE coefficient of 0.75 for Customized Incentive Refrigeration measures is based on a sample size of only three sites, compared to the 53 unique sites that installed Customized Incentive Refrigeration measures in 1995. Adjusting the engineering estimates of energy impact by 0.75 for all Customized Incentive measures should be considered conservative because it is likely that a sample size of three may not be representative of the population. An alternative approach would be to adjust only those measures that are similar to the three represented in the billing analysis, and leave the remaining measures unadjusted. It was found that the ratio of the engineering energy to the ex ante gross energy estimate was 98 percent over all 53 unique sites, and 94 percent for the three sites used in the SAE analysis. Because the ratio for the SAE sample is similar to the population's ratio and because the SAE coefficient was statistically significant at the 95 percent confidence level, the conservative approach of adjusting all Customized Incentive Refrigeration measures by 0.75 was chosen.

Impact estimates from the MDSS for other end uses were included in the model for customers that installed measures outside the Lighting, HVAC, and Refrigeration end uses. Although this result is statistically significant and the correct sign, it is not recommended that this value be used because the sample may not be representative of the population of participants installing these measures.

The majority of the change variables that were included in the model were not statistically significant at the 95 percent confidence level. Most of the parameter estimates are the correct sign, and those that are not have very low t-statistics. All but one variable, was determined solely on telephone survey responses. The change variable termed "other additions" was determined by comparing the predicted estimate of post-installation usage, based on the baseline model, to the actual post-installation usage. If the predicted usage is less than the actual post-installation usage, it is likely that some change occurred at the premise that would cause the usage to increase. An analysis of these customers revealed that two thirds of them indicated through the telephone survey that some change did occur at the premise. However, almost half of these customers did not provide a date for when the change occurred. Therefore, the "other additions" variable was created in an attempt to capture other changes that would cause usage to increase, which were not explained by the other independent variables in the model.

## 5. Model Specification

The model specifications are presented in *Appendix C*. Specific model specification issues are further discussed below:

**Cross-sectional Variation.** The final model specification recognizes the potential heterogeneity problem in the model and uses the following procedures to eliminate the impacts of the cross-sectional variation: (1) observations with highest usage values were removed in the model to reduce the overall variance of the sample in terms of usage and size; and (2) independent variables were all intercepted with the pre-installation usage to ensure that change of independent variable will be proportional to the usage value.

**Time Series Variation.** The key factors to control for the time series variation in the final model are: (1) use of the comparison group to define the relationship of the energy consumption between two different time periods and (2) eliminate the multiple time period interactions by only one yearly pre-installation period and one yearly post-installation period for each stage.

**Self-selection.** Self-selection is not treated explicitly in the billing regression analysis. The reasons for excluding such a correction is based on the following considerations: (1) the objective of the billing regression analysis is to estimate the program gross energy impacts, where self-selection

bias is believed to have a limited effect on the regression result (when both cross-sectional and time series data are used), and (2) the existing self-selection correction procedures all have serious flaws in their underlying assumptions. For example, the Mills ratio approach was attempted, but resulted in serious multi-collinearity problems between the double inverse Mills ratio variable and the engineering estimates of impact.

**Collinearity.** Various statistical tests (such as COLLIN and VIF options in SAS) were used to check multiple collinearity problem among independent variables in the model to ensure that the final parameter estimates are robust.

**Net Impact.** As mentioned in the Self-selection section, a net billing model was implemented using the double inverse Mills ratio approach, but resulted in problems with multi-colinearity that were uncorrectable. Therefore, a gross billing analysis model was used and adjusted by a net-to-gross ratio using discrete choice and self report methods.

#### 6. Measurement Errors

For the billing data regression analysis, the main source of measurement errors is the telephone survey. Our approach has been to proactively stop the problem before it happens so that statistical corrections are kept to a minimum.

Measurement errors are a combination of random and non-random error components that plague all survey data. The non-random error frequently takes the form of systematic bias, which includes, but is not limited to, ill-formed or misleading questions and mis-coded study variables. In this project, we have implemented several controls to reduce the systematic bias in the data. These steps included (1) thorough auditor/coder training; (2) instrument pretest; and (3) cross-validation between on-site audit data and telephone survey responses.

The random measurement error, such as data entry error, has no impact on estimating mean values because the errors are typically unbiased. For the measures that were modeled in the billing regression analysis, the impact of random unbiased measurement errors was accounted for as part of the overall standard variance in the parameter estimate.

#### 7. Autocorrelation

The autocorrelation problem exists if the residuals in one time period are correlated with the residuals in the previous time period. Since the final model is based on a yearly pre- and post-installation period comparison with only one year in each period, the autocorrelation problem was unlikely to occur under this scenario, as was confirmed by examining the Durbin-Watson statistic for these models.

#### 8. Heteroskdasticity

See discussion above.

#### 9. Collinearity

See discussion above.

#### 10. Influential Data Points

See discussion above.

#### 11. Missing Data

See discussion above.

### 12. Precision

The precision calculation for the gross SAE realization rates are presented in *Section 3*. Relative precision's for net estimates were calculated using the following procedure:

- First, NTG ratios, N<sub>i</sub>, were computed for all technology groups that were represented in the telephone survey.
- Then, the program level NTG and program level standard error for the NTG were calculated using the classic stratified sample techniques. The program level NTG was a weighted average of technology level NTG values with adjusted gross impacts per technology group providing the weights.<sup>2</sup> The functional relation can be best described in the following equations:

$$\overline{N} = \Sigma_{i} w_{i} * \overline{N}_{i} \text{ with } w_{i} = MWh_{i}$$
  
StdErr<sub>NTG</sub> =  $\sqrt{\Sigma_{1}((w_{i})^{2} * \text{StdErr}_{i}^{2})}$ 

where

N = Net-to-Gross Value i = Technology Group w = Weight

• Then, the relative precision<sup>3</sup> for the program NTG value for energy was calculated and combined with the relative precision of the gross energy impact to yield an overall relative precision for the net energy impacts:

$$RP_{NTG\_Energy} = \frac{t_{\alpha=10} * StdErr}{NetMWH}$$

$$RP_{NetEnergy} = \sqrt{RP^2_{NTG\_Energy} + RP^2_{GrossEnergy}}$$

• Finally, the relative precision net demand impacts was calculated using a scaled version of the relative precision for the net energy impact. The sample sizes of the on-site audits and telephone surveys served as the scalars:

 $<sup>^{2}</sup>$  Technology groups with no standard errors were excluded from this calculation.

 $<sup>^3</sup>$  The example shown is for the 90 percent confidence level. Relative precision was also calculated at the 80 percent confidence level.

$$RP_{NetDemand} = RP_{NetEnergy} * \sqrt{\frac{N_{OnSite}}{N_{Telephone}}}$$

• Per-unit NTG relative precision's appearing in Table 6 (Items 1-5) were calculated in a similar fashion.

# E. DATA INTERPRETATION AND APPLICATION

The program net-to-gross analysis was conducted based on a survey self-report analysis. For a detailed NTG analysis discussion, see *Appendix D*.

The self-report method used to score free-ridership uses participant responses to survey questions regarding the timing of and reasons for equipment replacement actions. The complete text of the participant surveys may be found in *Survey Appendix S-1*. Questions used for the self-report analysis are summarized in *Appendix D*.

As described in Appendix D, a series of questions was posed to program participants. If the customer indicated that he had not been shopping for new equipment before becoming aware of the program, he was scored initially as a net participant. A customer was then classified as a freerider if he (1) stated that he would have installed high-efficiency equipment within the year and had already selected the equipment; and (2) stated that he would have purchased high-efficiency equipment if the program had not existed.

The net-to-gross ratio using the self-report method relied only on free ridership and did not include any estimate of spillover. This conservative approach was used for all HVAC technologies.