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1 EXECUTIVE SUMMARY 

Pacific Gas and Electric Company (PG&E) contracted with Sunrun to implement the Energy Efficiency 

Summer Reliability Program (EESRP) in 2023. Marketed to customers as the Peak Power Rewards 

Program, the objective of EESRP was to reduce Peak (5 p.m. to 9 p.m.) and Net Peak (7 P.M. to 9 p.m.) 

energy demands from August through October, seven days a week. This program involved recruiting 

single-family homeowners with rooftop solar and battery systems who were incentivized to allow 

Sunrun to manage their battery discharge efficiency, especially during Net Peak hours. 

This report, an Early M&V1 analysis commissioned by PG&E, aims to assess the accuracy of various 

Population-Based Normalized Metered Energy Consumption (Population NMEC) methods to estimate 

payable and claimable savings for battery storage within the EESRP. Additionally, it seeks to identify 

the most effective method for estimating future claimable savings.  

An initial analysis was conducted to compare the results derived from hourly whole-building electric 

interval data (from PG&E) and 15-minute battery discharge data (from Sunrun). This approach was 

important to understand the impact of battery discharge on energy use at participating sites, especially 

considering how energy consumption patterns were influenced by factors beyond weather, season, and 

time of day. Key findings of this analysis include: 

• EESRP saw engagement from 8,483 PG&E customers enrolled, which resulted in an estimated 

energy savings of 10,349 MWh and 10,563 MWh as measured by the battery discharge data 

(supplied by Sunrun) and hourly interval data (supplied by PG&E), respectively. These energy 

savings are the potential estimates of what claimed savings would be but were not claimed by 

PG&E toward its energy efficiency portfolio goals. 

• The average estimated per customer peak reduction  is 1.68 kW when estimated using the 

battery discharge data and 1.69 kW when estimated using hourly interval data.  

• Customers with SolarEdge and Delta brand inverters showed markedly lower peak kW savings 

(0.70 kW) as compared to customers with the Tesla brand inverter (3.97 kW), when calculated 

using hourly meter data. This difference may be the direct result of customers with SolarEdge 

and Delta batteries experiencing an intervention in the pre-period, while customers with the 

Tesla batteries did not. This finding underscores the need to ensure that baselines are based on 

uniform conditions.  

  

 

1 An Early M&V evaluation commissioned by a program administrator “seeks to validate key savings assumptions and to better understand 

how savings are achieved for the purpose of improving programs.” See Decision 10-04-029 (April 21, 2010), p. 25.  
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The report also explores the accuracy of estimating energy savings using “end-use” data (that is, energy 

consumed from the discharge of batteries captured by Sunrun meters) and “whole home” data (that is, 

energy as measured using PG&E’s net meters) through Population NMEC methods. The accuracy 

assessment of the Energy Efficiency Summer Reliability Program resulted in several key findings:  

1. The Time-of-Week and Temperature (TOWT) model and the Difference-in-Difference (DiD) 

model with controls were the most effective, both for end-use and whole-home data sources.  

2. Incorporating battery end-use data significantly enhanced model accuracy and precision, 

surpassing results of methods that incorporated only whole-home data.  

3. In the context of model evaluation for battery programs, error metrics for peak times (7-9 pm) 

perform better than those calculated annually (over 8760 hours). This is because annual metrics 

are less reliable due to their reliance on small denominators. Focusing on peak demand periods 

provides more accurate insight into model performance.2 

4. The large sample size ( > 5,000 customers) allowed for robust estimations, meeting FSU targets 

with a range of savings from 3% to 15%.  

5. Savings varied across inverter brands, with Tesla batteries showing more significant savings 

than SolarEdge and Delta. The TOWT model, while generally effective, was insufficient in 

capturing battery behavior during the atypical conditions in the baseline period that resulted in 

this finding.  

6. The individual-matched controls DiD method demonstrated effectiveness in the whole-home 

evaluation, despite its limitations. Although individually matched controls provide value in a 

pre-post analysis, they do not capture the entirety of the impact due to a subset of participants 

exhibiting consumption patterns not observed within any of the control group members.  

7. Recommendations resulting from the analyses include: 

a. Revising baseline construction methods to consider undisturbed load patterns; 

b. Incorporating battery end-use data for more accurate baseline establishment and 

model evaluation, and 

c. Adding additional right-hand weather variables, such as Solar Irradiance and Cloud 

Cover, to bolster Population NMEC analysis models for battery programs.  

 

 

2 Many readings of battery charge/discharge throughout a year centralize around zero and so measurement of annual effects are low but 

traditional error metrics (e.g., Mean Percent Error) produce large measurement errors due to having denominators very close to zero even 
when in reality measurement error could be +/-.01 kW. 
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2 INTRODUCTION 

On July 30, 2021, Governor Newsom signed an emergency proclamation to “free up energy supply to 

meet demand during extreme heat events and wildfires that are becoming more intense and to 

expedite deployment of clean energy resources this year and next year.”3 The proclamation directs all 

energy agencies, including the California Public Utilities Commission (CPUC or Commission) to act 

immediately to achieve energy stability during this emergency.  

In response, the CPUC received comments from parties to the assigned Administrative Law Judge’s e-

mail ruling seeking input on actions that the Commission could take specific to energy efficiency (EE) 

and reliability to help support the intent of the proclamation and the Commission’s overall goals. Then, 

the Commission issued Decision (D.) 21-12-011 (12-8-2021)4 which orders the IOUs to take action to 

prepare for potential extreme weather in the summers of 2022 and 2023. 

The PG&E Energy Efficiency Summer Reliability (EESRP), marketed as Peak Power Rewards Program, 

is a direct result of that decision. EESRP was designed to support PG&E’s summer reliability efforts by 

providing sustained and scheduled customer load shifting/modification services to PG&E during the 

2023 summer period. 

PROGRAM DESCRIPTION  

PG&E collaborated with Sunrun, a provider in the residential solar and battery space, to launch the 

EESRP with the objective of mitigating Peak (4 p.m. to 9 p.m.) and Net Peak (7 p.m. to 9 p.m.) energy 

demands during the months of August – October, seven days a week in 2023.This initiative was part of 

a broader strategic approach to optimize energy usage across various timeframes, classified distinctly 

by PG&E as follows: 

• Peak Hours: The interval between 4 p.m. and 9 p.m. on business days, extending from June 1st 

to September 30th. 

• Net Peak Hours: This category encompasses the period from 7 p.m. to 9 p.m. on weekdays, 

within the same date range as mentioned above. 

• Non-Peak Hours: This term refers to all remaining hours that do not fall within the peak 

periods. 

Sunrun recruited single-family home participants owning battery systems. The primary objective was 

to leverage advanced charge/discharge algorithms, aiming to maximize the discharge efficiency of on-

site batteries particularly during PG&E’s Net Peak Hours. This operational focus of EESRP spanned 

from August through October of 2023. 

Participants were notified of their enrollment for this initiative by Sunrun and were compensated with 

an incentive of $750 along with a Smart Thermostat (if one hadn’t been provided one as part of a PG&E 

 

3 Available at https://www.gov.ca.gov/wp-content/uploads/2021/07/Energy-Emergency-Proc-7-30-21.pdf?emrc=fe927f  

4 Available at https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M429/K805/429805997.PDF   

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M429/K805/429805997.PDF
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EE rebate previously). This compensation was in exchange for granting Sunrun the authorization to 

manage their battery systems. It is noteworthy that customer inclusion in the program was defaulted to 

qualified customers, yet it provided an opt-out clause for those preferring not to participate.5  

REPORT OBJECTIVE  

The purpose of this Early M&V report is twofold. Its primary purpose is to provide an accuracy 

assessment to determine the best method for estimating payable and claimable savings for battery 

storage for the EESRP. Its secondary purpose is to provide an estimate of potential claimable savings 

utilizing the best method identified in the accuracy assessment.  

It is important to note that this program did not claim any EE savings, and that the objective of this 

specific early M&V effort was to evaluate method accuracy and suitability of the program design for 

NMEC. The non-claimable program savings in this report span from August through October 2023, as 

well as for an entire weather-normalized year.  

The Demand Side Analytics (DSA) team produced estimates of potential gross electric savings that 

would have been attributed to the EESR program using Population NMEC methods.6 These methods 

relied on whole-building granular (hourly) electric AMI data from PG&E and battery end-use discharge 

data from Sunrun to estimate the savings associated with the battery discharge savings at participating 

sites.  

This analysis also included an accuracy assessment to determine which population NMEC methods 

were the most accurate for estimating program savings. Prior to the year 2020, most Population NMEC 

savings methods were simple pre/post models that included weather, seasonal, and hourly components 

as explanatory variables in the regression model. Inherent to these models is the assumption that 

weather, season, and time of day factors were sufficient to build robust counterfactual models of 

participant energy consumption for large, relatively homogenous residential customer groups. With the 

effects of shelter-in-place orders across California during the height of the COVID-19 pandemic that 

resulted in profound disruptions in population energy use, it became clear that this assumption could 

not hold.  

As post-COVID research analyses confirms, Difference-in-Differences(DiD) Population NMEC models 

that incorporate information about non-participant consumption significantly improves the quality of 

Population NMEC methods.7 To quantify the improvements of adding a comparison group, a variety of 

 

5 The program enrollment strategy used by EESRP (whereby qualified customers were enrolled without explicit consent and provided the 

opportunity to disenroll) is referred to as “opt-out” or “default” recruitment. Offering customers an opportunity to participate in a program, 
and requiring their explicit consent prior to enrollment, is referred to as “opt-in” recruitment. 
6 For further reading on population NMEC, refer to the California Public Utility Commission’s NMEC Rulebook. The latest version of the 
rulebook can be found at https://www.cpuc.ca.gov/-/media/cpuc-website/files/legacyfiles/n/6442463694-nmec-rulebook2-0.pdf. Note that an 
updated rulebook is forthcoming in 2024.  

7 For example, see Pacific Gas and Electric Co.: NMEC Control Group Accuracy Assessment (Demand Side Analytics, 2022), available at 

https://www.calmac.org/publications/PGE0476.01.pdf.  

https://www.cpuc.ca.gov/-/media/cpuc-website/files/legacyfiles/n/6442463694-nmec-rulebook2-0.pdf.
https://www.calmac.org/publications/PGE0476.01.pdf
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regression models with controls were tested, and the results of that assessment are also included in this 

report.  

DATA SOURCES USED IN THIS EVALUATION  

The program's primary goal is to reduce energy consumption during the Net Peak hours of 7 p.m. to 9 

p.m. There are two primary sources of data used to estimate savings resulting from EESRP: 

• “Whole-Home” electricity usage as tracked by PG&E Smart Meters. This refers to the hourly 

AMI interval data collected by PG&E’s net meters that track all of the electricity flowing into, 

and out of, participant households. 

• “Battery End-Use” data as tracked by Sunrun inverters. This refers to the 15-minute battery 

charge/discharge data collected by Sunrun.  

In addition to the data referenced above, Sunrun provided participant household level electricity 

consumption data pulled from customer inverters. It was compared to PG&E AMI data and found to be 

sufficiently similar (within ±2%). As both the Sunrun household data and the Sunrun battery 

charge/discharge data are pulled from the same inverters, we assume that both data sets will have the 

same level of accuracy.  

As requested, Sunrun provided additional data on the batteries as available, including state of charge; 

share (%) of battery reserved for backup; whether the premise was being dispatched for a DR event at 

any point in time, and customer battery operation settings (e.g., backup only, self-powered, time-based 

control balanced, time-based control cost-savings). If the customer has enabled time-based control, 

the peak hours set by the customer were requested as well. 
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POTENTIAL ANNUAL WEATHER-NORMALIZED NET PEAK SAVINGS 

FROM EESR PROGRAM COHORT   

Using the data from the program period, DSA projected the potential savings for the EESRP if it were to 

run for an entire calendar year, assuming a similar rate of participation but under typical meteorological 

conditions. Table 1 presents the potential weather-normalized Net Peak (kWh/MWh) savings for all 

customers participating in the EESRP. Savings for each site are estimated using actual program 

performance (August 2023 – October 2023) and modeled for the entire year. This projection suggests 

that the participant cohort would be net contributors of energy (kWh) to the grid, which is reflected in 

net negative annual energy consumption. The variance in predicted impacts by data source are 

discussed in other sections of the report. 

Table 1: Peak Weather Normal kWh/MWh Savings by Data Source and Vendor8 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(kWh) 

Average 
Annual Actual 
Consumption 

(kWh) 

Per 
Customer 

Impact 
(kWh) 

Percent 
Impact 

Energy 
Savings 
(MWh) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

5,917 2,988 50% -1357.5 -1734.2 376.7 -28% 2,229 365 

Tesla 2,566 1,457 57% -400.5 -3565.1 3,164.6 -790% 8,120 365 

All EESRP 8,483 4,445 52% -1068.0 -2288.0 1,220.0 -201% 10,349 365 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

5,917 3,683 62% 218.3 -291.6 509.8 -234% 3,014 365 

Tesla 2,566 1,436 56% 654.4 -2226.7 2,881.0 -440% 7,548 365 

All EESRP 8,483 5,119 60% 350.2 -876.9 1,227.1 -389% 10,563 365 

 

 

8 Premises are included in the analysis only if a complete year of interval data was available before any intervention was implemented. 
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3 ACCURACY ASSESSMENT METHODOLOGY AND 

RESULTS 

To date, studies using Population NMEC methods have relied on the use of utility AMI (whole building) 

data and excluded battery end-use data from their models. Sites with solar and battery installations 

have been excluded from participant cohorts due to their relatively low incidence in customer 

populations and as a result Population NMEC-based models that incorporate battery end-use data have 

yet to be well explored. One of the main methods used for Population NMEC, CalTRACK,9 explicitly 

excludes solar and battery storage and, based on initial tests, does not perform well even when 

comparison groups are introduced. In addition, sites with solar and battery are fundamentally different 

than most residential sites. With AMI data, the solar and battery patterns dominate, and the share of 

weather sensitive loads is smaller. Moreover, homes with solar and battery are more prone to non-

routine events (such as the adoption of electric vehicles during the baseline or performance years).  

As the adoption of solar and battery installations continues to grow, so does the need for a test of the 

accuracy of Population NMEC methods to assess programs that include customers as participants. 

Thus, the test includes an accuracy assessment of six different methods that vary by regression model, 

the use of comparison groups, an examination of how controls are incorporated, and the 

inclusion/exclusion of battery end-use data along with AMI data. Once the most accurate method is 

identified, it will be applied to estimate energy savings for EESRP and serve as a model for future 

evaluations moving forward. 

To determine the best-practice model to assess battery storage savings estimates for the program, the 

DSA team conducted an accuracy assessment to test the performance of various regression models. 

Accuracy assessments provide critical information about how well a particular model and its 

specifications can account for relative drivers of energy consumption in the context of battery 

technology.  

Accuracy assessments involve judging how well a statistical model represents participant consumption 

patterns absent an intervention. These approaches will typically require either: 

1. Contemporary data from pseudo-participants – customers who look like actual participants 
based on eligibility screening or observable characteristics. This is typically referred to as a 
quasi-experimental design. 

2. Pre-intervention data from actual participants – consumption data for periods prior to the 
intervention. This is typically referred to as a pre/post (within groups) approach. 

Both approaches work well; however, whenever possible, option 2 should be selected as it avoids any 

assumptions about how similar pseudo-participants are to the actual participants. However, the within 

 
9 This model is a variant of the Time-of-Week and Temperature (TOWT) model developed by Lawrence Berkeley National Laboratory 

(Matthieu, J.L., P.N. Price, S. Kiliccote, and M.A. Piette, “Quantifying Changes in Building Electricity Use, With Application to Demand 

Response” (2011) available at: https://eta-publications.lbl.gov/sites/default/files/LBNL-4944E.pdf. More information about CALTRACK is 

available at: https://docs.caltrack.org/en/latest/methods.html   

https://eta-publications.lbl.gov/sites/default/files/LBNL-4944E.pdf
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groups approach relies on the assumption that exogenous impacts on energy use (e.g., macroeconomic 

factors) have similar impacts on the entire cohort of participants. PG&E has provided DSA with two 

years of pre-intervention data for EESRP participants, which allows for estimating the premise-level 

counterfactual using unperturbed loads. This historical usage data is the critical component of an 

accuracy assessment: the model is developed based on a period prior to an intervention was in place, so 

the “true answer” is known.  

The procedure for such an estimation mimics the savings estimation: the regression model of interest is 

estimated on one year of pre-intervention data and the resulting coefficients are used to predict a back-

casted counterfactual in the year prior to the pre-intervention year. An example of this approach for a 

batch of residential sites is shown in Figure 1. The gray highlighted period is the baseline year before 

any energy efficiency measures are installed. The model is fit on the observed data in this period and 

then predicted both for the post-intervention year (highlighted in orange) and the out-of-sample year 

(in blue) before the baseline period. Any difference between the observed and counterfactual loads in 

the pre-intervention periods is a model error, while post-intervention, the difference also incorporates 

actual program savings. While the error is lowest in-sample – during the baseline period, the error in the 

out-of-sample period reflects the ability of the model to explain participant consumption trends. 

Figure 1: Out-of-Sample Testing Example 

 

Table 2 provides an overview of the tested methodologies. In the remainder of this section, the model 

frameworks will be discussed in detail, along with a summary of how each model is assessed. Results 

are discussed in section 3, Accuracy Assessment Methodology and Results.  
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Table 2: Summary of Tested Methodologies 

Parameter Options Tested 

Sectors 
Residential Battery Customers participating in EESRP 
 

Fuels Electric 

Control 
Customers 

The control customers come from the pool of sites selected to be part of the granular 
profiles. Only includes customers with a battery installed a year prior to Program Start. 

▪ Control pool of 32,000 Battery Customers 

Regression 
Frameworks 

Four sets of models are tested: 

• CalTRACK Daily and Hourly Methods using Difference-in-Differences 

• Manual Difference-in-Differences with a control group 

• Seasonal Time-of-Week and Temperature Model with control profiles as right-
hand-side (explanatory) variables, including a second difference, with and 
without temperature lags10 

Comparison 
Groups 

Comparison groups are formed either through: 

• Individual customer matching 

• Granular profiles 

Period 

DSA was provided data for EESSRP participants in the years prior to their program 
intervention. The models were run on this period to assess accuracy when no 
interventions were in place. Sites began participating in the program from July 1, 2023 to 
October 31,2023, their baseline period would be July 1, 2022 to June 30, 2023.   
 

Accuracy 
assessed on 

• Fractional Savings Uncertainty (<25% at 90% confidence) 

• Mean Percent Error 

• Normalized Root Mean Squared Error 

• Sum of Squared Errors 

• Percent Bias 

 

  

 

10 Temperature lags and therm interpolation tests were requested specifically to be analyzed for the residential gas sector only. All other 

sectors and fuels relied on same-day only temperature splines.  
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POPULATION NMEC ACCURACY AND PRECISION REQUIREMENTS  

PG&E relies on Population NMEC methods to determine net and gross savings associated with several 

EE programs. While the details of the regression methods may vary from program to program, there 

are fundamental principles that underlie any assessment of program savings. The ability to measure 

energy savings accurately using these methods depends on four key components:  

1. The effect or signal size – The effect size is most easily understood as the percent change in 
energy use following the intervention. It is easier to detect significant changes than it is to 
identify small ones. 

2. Inherent data volatility or background noise – The more volatile the load, the more difficult 
it is to detect small changes attributable to the intervention. Non-routine events effectively 
add noise to the data (or signal).  

3. The ability to filter out noise or control for volatility – Statistical models – no matter how 
simple or complex – are tools to reduce noise (or unexplained variation) and allow the effect or 
impact to be detected more easily.  

4. Sample/population size – The full participant population is analyzed as a group. Regardless, it 
is easier to precisely estimate average impacts for a larger population than for a smaller 
population because individual customer behavior patterns “smooth out” and offset individual 
customer volatility across larger populations.  

Largely, the signal size (1) and data volatility (2) are fixed consequences of program design: specifically, 

the targeted participant sector and the types of installed measures. Similarly, program population size 

(4) is a function of the available participants meeting eligibility criteria, incentive levels, and the amount 

and type of outreach done. At the time of evaluation, the only controllable component is the choice of 

statistical model (3).  

The statistical model should be selected before the savings estimation to avoid “cherry picking” among 

savings estimates to select the method with the most favorable outcome (least amount of noise). In 

particular, the NMEC Rulebook sets precision requirements for any Population NMEC method to ensure 

that savings are accurately estimated. The specific statistic for assessing precision is the Fractional 

Savings Uncertainty (FSU), which measures the relative margin of error of the estimate at a given level 

of confidence. Population NMEC methods must not have more than a 25% FSU at the 90% confidence 

level. For example, a group expected to save 5,000 MWh must not have a margin of error of more than 

±1,250 MWh at 90% confidence to meet this requirement.  

MODEL FRAMEWORKS ASSESSED 

Variations of four main model frameworks were tested in this assessment for whole-home data 

individual customer regressions with the inclusion of synthetic controls, manual difference-in-

differences models, and CalTRACK difference-in-differences models with controls and individually 

matched controls and synthetic controls. The details on the construction of these models are described 

in more detail below. These models were tested with one of two types of comparison groups: individual 

customer-matched controls and aggregated 8760 (hourly) profiles of non-participant data. More detail 
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about how these comparison groups were constructed can be found in subsequent sections of this 

report. Table 3 provides a summary of the model frameworks for each method tested. 

Table 3: Summary of Model Frameworks Tested 

No. Method 
Regression 

Equation Used 

Who are 

participants 

being matched 

to? 

How is the 

control group 

incorporated? 

How is DiD 

calculated? 

1 
CalTrack DiD 

w/GP 

CalTRACK 

TOWT 
GP Segment 

Difference in 

differences 

Recurve 

Difference in 

differences 

2 

Synthetic 

Control with 

Matched GP 

Alternative 

TOWT 
GP Segment 

Right-hand side 

variable 
N/A 

3 

Individually 

Matched 

Control DiD 

N/A 

Stratified 

Euclidean 

distance 

matching with 

Sunrun non-

participants 

Difference in 

differences 

Standard 

Difference in 

differences 

4 

CalTRACK DiD 

with Individual 

Matched 

Control 

CalTRACK 

TOWT 

Stratified 

Euclidean 

distance 

matching with 

Sunrun non-

participants 

Difference in 

differences 

Recurve 

Difference in 

differences 

5 

TOWT model 

without 

controls 

Alternative 

TOWT 
N/A N/A N/A 

6 

CalTRACK 

model without 

controls 

CalTRACK 

TOWT 
N/A N/A N/A 



 

 pg. 14 

Public  

SYNTHETIC CONTROLS 

Synthetic control models are premise-level regressions that incorporate standard temperature, season, 

day-of-week, and hour features, but also add in one or more aggregated profiles11 of hourly 

consumption of non-participants as additional explanatory variables. When included in the regression, 

these profiles allow exogenous factors that influence energy use to be accounted for in the model. The 

granular profiles (GPs) are constructed from the energy data of multiple customers who have not 

installed energy efficiency measures over the evaluation period and are in the same region, have the 

same solar status (with or without rooftop solar installed), and are of similar size to the participant.12 

Their use is aggregated together and uses the same time basis as the participant’s consumption. That 

is, if the participant’s baseline period spans July 1, 2022 to June 30, 2023 and their post-treatment 

period goes through program end, the granular profile would contain hourly data of the constituent 

sites during that same time range.  

A typical regression specification for this approach is shown in Equation 1, with terms explained in Table 

4. This regression would be used in the baseline period to estimate the coefficients listed, which would 

then be used to predict in the out-of-sample period to assess accuracy. It is referred to as a Seasonal 

Time-of-Week and Temperature model because it can be run independently for each season. Currently, 

seasons are defined as Summer (June-September), Winter (November-February) and Shoulder (all 

other months). Note that this equation can be easily adjusted to be estimated on a daily, rather than 

hourly, basis for gas data (daily gas data is available for residential PG&E customers).  

Equation 1: Seasonal Time of Week and Temperature Model 

𝑘𝑊ℎ𝑝,𝑡 = ∑(𝛽𝑖 ∗ 𝐼𝑖,𝑡)

168

𝑖=1

+ ∑ (𝛾𝑏 ∗ 𝐵𝑏,𝑡)

𝑏=[2,7]

𝑏=1

+ ∑(𝛿𝑔 ∗ 𝐺𝑃𝑔,𝑡)

𝑛

𝑔=0

+ 𝜀𝑝,𝑡 

 
11 Aggregated profiles, also referred to as granular profiles (GPs), are hourly (8760 for electric) load profiles that are constructed from actual 
PG&E customer interval data so as to be representative of the loads of customers within specific customer segments.  

12 Residential GP candidates are segmented into groups based on electric heat status (as defined by the electric end-use rate code within 
PG&E’s customer database). For sites without electric heat, they are further segmented based on size bins within each climate zone group. 
The size bins are constructed on the basis of relevant premise characteristics: installed solar capacity for solar customers, annual kWh for non-
solar customers, and annual therms for gas customers. More information is available at: 
https://www.calmac.org/granular/Granular_Profile_Overview_and_Background.docx     

 

https://www.calmac.org/granular/Granular_Profile_Overview_and_Background.docx
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Table 4: Definition of Equation 1 Terms 

Symbol Interpretation 

𝒌𝑾𝒉𝒑,𝒕 The observed kWh consumption for participant p in date-hour t (or date t, for daily 
models). Note that for gas models, the analysis is conducted in therms, not kWh.  

𝜷𝒊 The coefficient representing the base energy consumption for hour-of-week i, above or 
below the participant average. Note that for daily models, this represents day-of-week-
specific base consumption 

𝑰𝒊,𝒕 A dummy variable for each hour-of-week i. Equal to 1 when date-hour t is in that hour-
of-week, and 0 otherwise. Note that for daily models, this represents a day-of-week 
dummy variable 

𝜸𝒃 The coefficient representing the marginal consumption associated with a one-degree 
change in outdoor temperature for temperature bin b 

𝑩𝒃,𝒕 The value of temperature bin b.  

𝜹𝒈 The coefficient representing the marginal effect of one kWh (therm) change in the 
comparison group granular profile g.  

𝑮𝑷𝒈,𝒕 The average consumption of the granular comparison group profile g in date-hour t (or 
date t, for daily models).  

𝜺𝒑,𝒕 The error term for participant p in date-hour t (or date t, for daily models) 

DIFFERENCE-IN-DIFFERENCES 

The simple difference-in-differences (DiD) model relies on a straightforward assumption: any 

exogenous factors affecting energy use in the comparison group apply equally to the participants. Said 

another way, savings for a given participant can be estimated by differencing out the model’s estimate 

of comparison group “savings” from the model’s estimate of participant energy change.  

The mechanics of a DiD model involves comparing usage among a comparison group, selected 

independently for each participant, and treatment group in both the pre-intervention (baseline) and 

post-intervention (reporting) periods. The pre-intervention difference in usage between the treatment 

and comparison group is subtracted from the post-treatment difference in usage between those same 

groups to estimate the effect of treatment, and to control for exogenous impacts of energy use that are 

unrelated to the intervention (the counterfactual). In this way, the DiD model provides both an estimate 

of savings (or error, in the out-of-sample period) and a counterfactual.  

CALTRACK DIFFERENCE-IN-DIFFERENCES 

Broadly, CalTRACK methods are a set of procedures that rely on temperature and time variables to 

model premise-level loads. There are two main modeling strategies defined in this framework: 1) 

analyze consumption by hour and 2) model energy usage at the daily or billing-period level. For 

simplicity, this analysis focuses on hourly methods as prior testing has indicated that results between 

daily and hourly methods are quite similar. The recommended framework for this strategy is to run a 
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premise-level regression using time-of-week dummy variables, temperature bins, and an occupancy 

flag as right-hand-side variables. This model is then fit on a pre-intervention period and used to predict 

for the post-intervention period. The CalTRACK Hourly regression specification is displayed in Equation 

2, with terms explained in Table 5. 

Equation 2: CalTRACK Hourly Model 

𝒌𝑾𝒉𝒑,𝒕 = ∑(𝜷𝒊 ∗ 𝑰𝒊,𝒕)

𝟏𝟔𝟖

𝒊=𝟏

+ ∑ (𝜸𝒃 ∗ 𝑩𝒃,𝒕)

𝒃=[𝟐,𝟕]

𝒃=𝟏

+ ∑(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅𝒊 ∗ 𝜹𝒊 ∗ 𝑰𝒊,𝒕)

𝟏𝟔𝟖

𝒊=𝟏

+ ∑ ∑ (𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅𝒊 ∗  𝜽𝒃,𝒊 ∗ 𝑩𝒃,𝒕)

𝒃=[𝟐,𝟕]

𝒃=𝟏

𝟏𝟔𝟖

𝒊=𝟏

+ 𝜺𝒑,𝒕 

 

Table 5: Definition of Equation 2 Terms 

Symbol Interpretation 

𝒌𝑾𝒉𝒑,𝒕 The observed kWh consumption for participant p in date-hour t 

𝜷𝒊 The coefficient representing the base energy consumption for hour-of-week i, above or 
below the participant average when the premise is unoccupied 

𝑰𝒊,𝒕 A dummy variable for each hour-of-week i. Equal to 1 when date-hour t is in that hour-
of-week, and 0 otherwise 

𝜸𝒃 The coefficient representing the marginal consumption associated with a one-degree 
change in outdoor temperature for temperature bin b when the premise is unoccupied 

𝑩𝒃,𝒕 The value of temperature bin b.  

𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅𝒊 A dummy variable indicating high energy usage in hour-of-week i. 

𝜹𝒊 The coefficient representing the additional base energy consumption for hour-of-week 
i when a premise is occupied 

𝜽𝒃,𝒊 The coefficient representing the additional marginal consumption associated with a 
one-degree change in outdoor temperature for temperature bin b when the premise is 
occupied during hour i.  

𝜺𝒑,𝒕 The error term for participant p in date-hour t 

 

To incorporate a comparison group via a difference-in-differences approach, this regression 

specification is run for both the participant and either a matched control (pseudo-participant) or an 

aggregated profile as if that control profile had the same treatment start and end dates as their 

matched participant. The results for the participants and their controls are then differenced from each 

other, on a percent basis, in the post-treatment period.  

GRANULAR PROFILE SEGMENTATION AND VALIDATION  

Each tested model required the construction of a comparison group of customers like those 

participating in the interventions. Traditionally, these comparison groups have been constructed based 

on individual customer-matched controls selected via propensity score matching. A challenge to the 

application of the individual customer-matched controls method is the amount of non-participant 
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customer energy usage data required, first to identify the customers for the comparison group and 

ongoing through the reporting period to complete the analyses. While the DSA team tested the 

performance of individual matched controls, granular profiles offer an alternative approach in place of 

individual non-participant data.  

Using granular nonparticipant profiles (“granular profiles” or “profiles”) is one way to overcome the 

challenges of using individual customer matched controls. Granular profiles are interval data streams 

that are representative of the energy use of discrete segments of customers that can be used as the 

building blocks for comparison groups. Granular profiles, in contrast to non-participant interval data, 

are anonymized (that is, they contain no personally-identifiably information) so they can be made 

available to the public.  

PG&E’s granular profiles are aggregations of loads from customers that have not recently installed any 

energy efficiency measures and that have been grouped into relevant segments based on an extensive 

segmentation assessment conducted by DSA in the summer of 2023. The granular profiles available for 

the PG&E service territory are comprehensive and representative of unique residential and non-

residential segments of PG&E’s service population. Although the granular profiles developed do not 

include battery customers, solar profiles were used for model testing to monitor exogenous changes 

between battery and solar participants. 

SEGMENTATION OF GRANULAR PROFILES 

The number of granular profiles for the PG&E service territory has increased since their original 

development. A summary of the currently available non-participant profile segments is provided in 

Table 6. Climate Zone Groups are based on CEC Building Climate Zones13 and are grouped in to four 

categories based on their similarity: Coastal (Zones 1, 3, and 5); Inland (Zones 2 and 4); North Central 

Valley (Zones 11 and 12), and South-Central Valley (Zone 13). The result is 160 residential electric 

profiles. Because granular profiles for battery customers are limited, the testing only included solar 

profiles which resulted in 80 residential electric profiles.  

 

13 See https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/climate-zone-tool-maps-and   

https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/climate-zone-tool-maps-and
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Table 6: Granular Profile Segments 

Electric Gas 
▪ Climate Zone Groups (4 Groups) 
▪ Solar Status (2 Groups) 

▪ Size (Annual kWh for Non-Solar, 
Solar Install Size for Solar 
Customers), or Electric Heat 
Designation (5 Groups) 

▪ % of Consumption in Mid-Day (4 
Groups) 

▪ Climate Zone Groups (4 Groups) 
▪ Size based on annual consumption 

(4 Groups) 

CONSTRUCTION AND VALIDATION OF THE GRANULAR PROFILES 

Production of granular profiles relies on identifying valid premises that can be sampled into the profiles. 

At each monthly refresh of profile data, the existing sites selected to be part of the profiles at the prior 

generation are re-screened to ensure they still meet the criteria defined in Table 7. If they do not, they 

are removed from the profiles going forward, and a pre-selected alternate site is introduced in its place.  

Table 7: Granular Profile Candidate Requirements 

Electric Gas 
▪ Full panel of data for the prior year 
▪ No change in solar status (no 

addition of onsite solar, no adding 
of incremental capacity) 

▪ No EV rates 
▪ No other DERs (e.g., batteries) 
▪ No EE program participation in the 

last 12 months 

▪ Full panel of data for the prior year 
▪ No EE program participation in the 

last 12 months 

 

Validation of each set of granular profiles is conducted upon each data refresh to ensure outlier usage 

readings, unusually large sites, interval data gaps and/or other data issues do not compromise the 

integrity of the profiles. Profiles are additionally screened to ensure that they conform to historic 

weather sensitivity, do not exhibit uncharacteristic volatility, and/or exhibit abrupt changes in weekly 

consumption patterns.  

MAPPING PARTICIPANTS TO COMPARISON GROUPS  

Each regression model framework described above requires comparison groups to be constructed. In all 

cases, the choice of comparison groups to incorporate in modeling is another parameter to vary in an 

accuracy assessment. For each participant in a dataset, various comparison groups can be mapped to 

any customer. With synthetic controls, because profiles function as right-hand-side (predictive) 

variables, more than one non-participant profile can be included as part of the comparison group. By 

contrast, for a DiD method, only one non-participant profile can be assigned to each participant.  
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Table 8 provides a summary of the mapping strategies that were assessed in this research. In all 

frameworks, the matched granular profile was tested – that is, the profile which corresponds to the 

segment the participant is in. More concretely, if a EESRP participant resides in the Coastal Climate 

Region, is in the smallest consumption size group and in the group representing the largest % of 

midday consumption, then the matched profile assigned to that participant is the aggregated group of 

non-participants with all of those characteristics. Similarly, in all cases, accuracy was also assessed 

using the comparison group for each customer comprised of their individually matched non-participant 

control. The individual customer match was constructed using Euclidean distance matching of AMI data 

characteristics within fixed segments of Climate Region, Solar Status, Size, Industry and Load Shape.  

Additional options are explained in the table below. For synthetic controls, DSA tested expanding the 

set of profiles included, but restricted them to be within the same climate zone and solar status for 

residential participants. The DiD approaches can only accommodate one non-participant profile for 

each participant; as a result, DSA tested only either individual matched controls or the participant’s 

matched granular profile.  

Table 8: Options for Assigning Non-Participants to Participants 

Synthetic Control Difference-in-Differences CalTRACK DiD 

▪ Matched GP (1) 

▪ All GPs in Climate Region, 
Solar Status, and Size 
Groups (4) 

▪ All GPs in Climate Region 
and Solar Status (20) 

▪ Individual matched control 

▪ Individual matched control 
via Euclidian distance 
matching within Climate 
Region, Solar Status, Size 
Group and Load Shape by: 

• Annual usage 

• Monthly usage profiles 

• Load factor 

• Peak kWh 

▪ Matched GP 

▪ Individual matched control 
via Euclidian distance 
matching within Climate 
Region, Solar Status, Size 
Group and Load Shape by: 

• Annual usage 

• Monthly usage profiles 

• Load factor 

• Peak kWh 
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ACCURACY METRICS 

It is often helpful to conceptualize the process of conducting an accuracy assessment as a tournament: 

the candidates are defined in advance and the rules for how the contest will be conducted and judged 

are not changed after the fact. This section defines the statistics that were used to judge the 

performance of each model described above.  

FRACTIONAL SAVINGS UNCERTAINTY 

Savings estimated using Population NMEC methods will have uncertainty in their estimates. While 

uncertainty is a statistical feature of regression-based savings calculations, aggregating site-level 

estimates of program performance can mitigate the uncertainty by having noise cancel out noise. 

Nevertheless, it is important that the chosen analysis method can accurately detect an effect given the 

expected participant population size. Table 9 below provides an example of the relationship between 

population and effect sizes, quantifying the settlement risks associated with Population NMEC 

methods for battery end-use data FSU calculations. These values were constructed on EESRP 

participants using the synthetic control method described above by bootstrapping 200 iterations of 

each number of sites, aggregating the loads, and computing the distribution of errors in the year prior 

to their baseline year. The table values represent the FSU, or the expected margin of error divided by 

the effect size. Values are color-coded to ensure correct interpretation, where green indicates that the 

FSU target has been met.  

Table 9: Settlement Risk as a Function of Effect Size and Population Size for Battery End-Use Data – 
Annual kWh 

Sample Size 

Fractional Savings Uncertainty 

Using Battery End-Use Data (Time of Week and Temperature Method) 

3% Savings 5% Savings 10% Savings 15% Savings 

5 24.0% 14.0% 7.0% 5.0% 

10 19.0% 12.0% 6.0% 4.0% 

25 10.0% 6.0% 3.0% 2.0% 

50 7.0% 4.0% 2.0% 1.0% 

100 5.0% 3.0% 2.0% 1.0% 

150 4.0% 3.0% 1.0% 1.0% 

200 4.0% 2.0% 1.0% 1.0% 

500 2.0% 1.0% 1.0% 0.0% 

1,000 2.0% 1.0% 0.0% 0.0% 

5,000 0.0% 0.0% 0.0% 0.0% 
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Table 10 shows the same methods for calculating FSU using the whole-home data source. When 

evaluating Fractional Savings Uncertainty (FSU) using whole-home data, incorporating end-use 

measurements for battery consumption enhances the confidence in the results. The reduced noise in 

end-use (battery) data leads to a clearer understanding of the battery's energy savings, thereby 

improving the precision of FSU calculations. 

Table 10: Settlement Risk as a Function of Effect Size and Population Size for AMI Data – Annual kWh 

Sample Size 

Fractional Savings Uncertainty Using AMI Data 

(Difference in Difference with Matched Control Method) 

3% Savings 5% Savings 10% Savings 15% Savings 

5 190.2% 114.1% 57.1% 38.0% 

10 121.0% 72.6% 36.3% 24.2% 

25 61.7% 37.0% 18.5% 12.3% 

50 51.6% 31.0% 15.5% 10.3% 

100 39.4% 23.6% 11.8% 7.9% 

150 30.6% 18.3% 9.2% 6.1% 

200 24.4% 14.7% 7.3% 4.9% 

500 15.5% 9.3% 4.6% 3.1% 

1,000 9.5% 5.7% 2.8% 1.9% 

5,000 2.6% 1.6% 0.8% 0.5% 
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ACCURACY AND PRECISION 

In the quantitative assessment, bias and CVRMSE are measured as key metrics to evaluate the 

program's effectiveness. Bias indicates the tendency of a method to over or underpredict savings, while 

CVRMSE gauges how closely these predictions align with actual results, regardless of the direction of 

error. The FSU statistic, as described earlier, serves as an important measure of expected results and is 

used as a screening tool to ensure that methods meet the established sufficiency criteria. Table 11 

presents a detailed summary of metrics for accuracy (bias) and CVRMSE, which are essential for 

evaluating the performance of each method. 

However, it is important to acknowledge that in instances where the denominators in the calculations 

are very close to zero, the accuracy metrics may become skewed. This issue can lead to metrics that do 

not convey the annual trends. This is less of an issue for peak savings metrics, as the metric considers 

the change in energy consumption during peak hours.  

This issue is particularly evident in the context of annual savings, where the net discharge of batteries 

over a day often sums to approximately zero. This near-zero denominator in the calculations can 

significantly distort the accuracy metrics. Therefore, a revision of these metrics might be necessary in 

future assessments to ensure a more accurate representation of annual savings. 

Furthermore, considering the offset of household consumption by battery charge and discharge, as 

indicated by AMI data, the interaction between these factors becomes evident. The balancing of 

charging and discharging within a household can complicate the accuracy of measurements, 

reinforcing the need for a careful review of these metrics and potentially revising them to better suit the 

data and the program's objectives. 
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Table 11 summarizes metrics for accuracy (bias) and precision that will be used to assess performance. 

Assessing both accuracy and precision is clearly useful for quantifying errors in each method. It is 

important to distinguish the level at which these values can be computed, however. For example, bias 

and precision can be calculated for an individual site, where the % Bias indicates the percent by which 

the method tends to overstate or understate the savings for that site and the relative RMSE 

(CV(RMSE)) represents the relative “noisiness” of errors for an individual hour. Nevertheless, results in 

this report are produced at the portfolio level as that is most appropriate for a population-based 

program. 

Table 11: Accuracy and Precision Metrics 

Type of 
Metric 

Metric Description Mathematical Expression 

Bias % Bias 
Indicates the percentage by which the 

measurement, on average, over or 
underestimates the true energy savings. 

 
 
 
 
 Precision 

Relative RMSE 
or CVRMSE 

 
Measures the relative magnitude of 

errors, weighting more extreme errors 
more heavily. 

 
 

 

  

𝑅𝑅𝑀𝑆𝐸 =  

 1
𝑛   (𝑦 𝑖 − 𝑦𝑖)

𝟐𝑛
𝑖=1

𝑦 
 

% 𝐵𝑖𝑎𝑠 =  

 1
𝑛   (𝑦 𝑖 − 𝑦𝑖

𝑛
𝑖=1 )

𝑦 
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ACCURACY ASSESSMENT RESULTS 

Overall, the methods tested under the accuracy assessment performed well. When using a sample 

population of 5,000 individuals and holding the effect size at 5%, each met FSU targets. Additionally, 

most models had low estimates of percent bias. Table 12 shows the overall results of the accuracy 

assessment with each model broken out by bias and FSU. At the population level, all models meet FSU 

criteria, and many perform well, with unbiased and precise results. The method proposed in the EESRP 

M&V plan (TOWT models without controls for end-use) and Individually Matched Control difference-in-

differences for whole home are bolded on the table. 

Table 12: Accuracy Assessment Results14 

Data Source Method 
 Annual kWh  Peak kWh 

% Bias CVRMSE FSU % Bias CVRMSE FSU 

Battery end-use data 
Battery CalTRACK Hourly no controls 3%  0.11  11% 0%  0.01  -1% 

Battery TOWT no controls 1%  0.03  -2% 0%  0.00  0% 

Whole-home AMI data 

CalTRACK DiD w/ GP 13613%  4.14  1% 591%  0.18  -13% 

CalTRACK DiD w/ Individual Matched 
Control 

13605%  4.16  -5% 13721%  4.19  -4% 

Matched Control DiD 2%  0.00  0% 27%  0.08  8% 

Synthetic Control with Matched GP 21%  0.11  11% 21%  0.09  9% 

While overall program performance is important, the final model selected should also produce results 

that are accurate for subsets of customers with different attributes.   

  

 

14 Green shading shows that the model was +/- 1.5% Bias and < 25% FSU. The sample population was held fixed at 5,000, and the assumed 

savings was 5%. 
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DISCUSSION OF FINDINGS: METHODS ACCURACY ASSESSMENT 

These results of the accuracy assessment of Population NMEC models support several main 

conclusions: 

1. Temperature and time of week and a Difference-in-Difference with controls models performed 
best for models incorporating both battery end-use and whole-home data sources.  

2. Incorporating battery end-use data markedly enhances the accuracy and precision of the 
models, outperforming whole-home metrics even in the absence of a control group. This 
improvement is likely due to the reduced data noise and clearer insights into energy usage 
patterns provided by battery-specific measurements, thereby reinforcing the robustness of the 
M&V plan's methodologies. 

3. The Peak FSU metrics demonstrate better performance compared to the annual FSU metrics, 
largely due to the focused time-window they encompass. A switch to an alternative metric for 
average error in kWh could result in improved insights into model performance 

4. Given the substantial sample size of > 5,000 customers in the program, FSU targets can be 
achieved for both peak and annual measurements, accommodating a range of realized savings 
from 3% to 15%. This extensive participant base provides a robust dataset, enabling precise and 
accurate estimations that meet FSU criteria across different time frames and savings scenarios.  

5. The approach of using an individual matched control appears to perform better than using an 
aggregated profile of non-participants for AMI measures of accuracy and precision. Because 
individual customer consumption is more representative of battery behavior compared to solar 
profiles, it’s more likely to produce a good fit on a participant-by-participant basis. 

6. The customer mix of EESRP is fairly unique as compared to other programs, and while these 
methods performed best for this customer cohort, results of these models may vary as they are 
applied to other customer cohorts.  
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4 PEAK ENERGY SAVINGS 

After selecting the final models to be used for the electric analyses, the DSA team estimated program 

and weather-normalized year savings for each of the data sources. Participants included all customers 

who participated in the EESR program. Normalized savings represent all estimated savings for a 

complete weather-normalized year, and program savings represent all estimated savings for the 

program duration of August 1st, 2023, through October 31, 2023. To reach these estimates, the models 

were trained on a year of pre-installation data, then were used to predict consumption in the post-

period. The difference between the predicted values and what was observed is the avoided energy use 

for each participant.  

Once the avoided energy use for participants was estimated, the DSA team estimated weather-

normalized savings using CZ2022 weather files.15 The weather-normalized impacts were developed by 

estimating the relationship between weather and energy savings during the post period for all 

participants.  

Participants in the EESRP were consistent over time, with 8,552 customers. A breakdown of sites by key 

segments is shown in Table 13. 

Table 13: Participation Site Counts 

Category Subcategory Vendor 

SolarEdge/Delta  Tesla 

All Participants All Participants 5,911 
 

2,621 

Climate Region 

Coastal  808    507  

Inland  1,648    1,000  

North Central Valley  2,385    896  

South Central Valley  1,070    218  

 

The remainder of this section will explore the methods and outcomes of the EESR program with a 

breakdown by battery vendor and data source. The intention is to evaluate the potential savings, with 

particular emphasis on data source. Furthermore, the results are categorized based on battery vendor. 

  

 
15 CZ2022 weather files are available for public use at http://calmac.org/weather.asp as recommended by Version 2.0 of the CPUC’s Rulebook 

for Programs and Projects Based on Normalized Metered Energy Consumption NMEC Rulebook available at: https://www.cpuc.ca.gov/-
/media/cpuc-website/files/legacyfiles/n/6442463694-nmec-rulebook2-0.pdf 

http://calmac.org/weather.asp
http://www.cpuc.ca.gov/-/media/cpuc-website/files/legacyfiles/n/6442463694-nmec-rulebook2-0.pdf
http://www.cpuc.ca.gov/-/media/cpuc-website/files/legacyfiles/n/6442463694-nmec-rulebook2-0.pdf
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SAVINGS ESTIMATION METHODOLOGY 

The final methodology used for this analysis was documented in PG&E’s filed M&V plan for the EESR 

program. A summary of the approach is reviewed in this document for clarity.  

Methods for Estimating Gross Savings  

The regression specification used for estimating participant impact for the end-use data source is based 

on the time of week and temperature (TOWT) model developed by LBNL.16 There are five components 

to the regression, which is run on the hourly participant consumption data:  

1. The regression constant term, representing the average base consumption for the 
participant.  

2. Hour-of-week fixed effects. There are 7 x 24 = 168 dummy variables that capture deviations 
from the base consumption in each hour of the week. 

3. Temperature spline. Between one and seven bins of temperature, with cut points for each 
temperature bin set algorithmically to ensure sufficient coverage.  

4. Granular profiles. These are average hourly consumption profiles for a sample of non-
participants in similar segments to the participant. The role of the granular profile is to 
capture information about non-weather characteristics of each date-hour that may influence 
participant energy consumption. Excluding these granular profiles from the model result in a 
simple pre-post model. 

5. The error term.  

The exact specification is shown in Equation 3: 

Equation 3: Seasonal Time of Week and Temperature Model 

𝑘𝑊ℎ𝑝,𝑡 = ∑(𝛽𝑖 ∗ 𝐼𝑖,𝑡)

168

𝑖=1

+ ∑ (𝛾𝑏 ∗ 𝐵𝑏,𝑡)

𝑏=[2,7]

𝑏=1

+ ∑(𝛿𝑔 ∗ 𝐺𝑃𝑔,𝑡)

𝑛

𝑔=0

+ 𝜀𝑝,𝑡 

 

16 Matthieu, J.L., P.N. Price, S. Kiliccote, and M.A. Piette, “Quantifying Changes in Building Electricity Use, With Application to Demand 

Response” (2011) available at: https://eta-publications.lbl.gov/sites/default/files/LBNL-4944E.pdf  

https://eta-publications.lbl.gov/sites/default/files/LBNL-4944E.pdf
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Table 14: Definition of Equation Terms 

Symbol Interpretation 

𝑘𝑊ℎ𝑝,𝑡  The observed kWh consumption for participant p in date-hour t 

𝛽𝑖 The coefficient representing the base energy consumption for hour-of-week i, above or 
below the participant average 

𝐼𝑖,𝑡  A dummy variable for each hour-of-week i. Equal to 1 when date-hour t is in that hour-
of-week, and 0 otherwise 

𝛾𝑏  The coefficient representing the marginal consumption associated with a one-degree 
change in outdoor temperature for temperature bin b 

𝐵𝑏,𝑡 The value of temperature bin b. The construction of temperature bins is described in 
more detail below.  

𝛿𝑔  The coefficient representing the marginal effect of one kWh change in the control group 
granular profile g.  

𝐺𝑃𝑔,𝑡 The average consumption of the granular control group profile g in date-hour t.  

𝜀𝑝,𝑡 The error term for participant p in date-hour t 

 

The temperature spline is comprised of between one and seven temperature bins that relate outside air 

temperature to participant consumption. A spline model splits temperature from a single value into 

ordered bins that correspond to the degrees Fahrenheit that fall in that bin. As examples, Table 15 

shows how a range of temperatures can be represented as temperature bins. 

Table 15: Relationship Between Temperature and Spline Temperature Bins 

Temperature 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟔 𝑩𝟕 

Condition (F) < 30 30-45 45-55 55-65 65-75 75-90 > 90 

25F 25       

47F 30 15 2     

65F 30 15 10 10    

83F 30 15 10 10 10 8  

101F 30 15 10 10 10 15 11 

 

To ensure that the relationship between temperature and consumption can be robustly estimated, 

there must be sufficient data in each temperature bin. To that effect, the number of bins used in the 

regression are modified dynamically by algorithmically removing cut points between the bins. The 

procedure for this pruning is described in further detail in Section 3.9 of the CalTRACK methods.17 In 

brief, the procedure involves: 

1. Count the number of hours in each temperature bin 𝑩𝟏 through 𝑩𝟕 

2. If any of bins 𝑩𝟏 through 𝑩𝟔 have fewer than 20 observations in that range, combine the 
observations in that bin with the next highest bin:  

 

17 http://docs.caltrack.org/en/latest/methods.html  

http://docs.caltrack.org/en/latest/methods.html
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3. For example, if bin 𝑩𝟐 (30-45F) had 17 observations and bin 𝑩𝟑 (45-55F) has 30 observations, 
combine 𝑩𝟐 and 𝑩𝟑 to create one bin from 30-55F with 47 observations 

4. If 𝑩𝟕 has fewer than 20 observations, combine it with the next lowest bin until the 20-
observation criteria is met 

5. Continue pruning the bins until each bin contains at least 20 observations.  

An example of this pruning procedure is shown in Figure 2, below.  

Figure 2: Pruning of Temperature Bins 

 

If applicable, the final element in this Seasonal TOWT model are the granular profiles. These represent 

the average granular (8760) consumption of a group of non-participants. Participants are matched to 

the correct granular profile(s) based on having similar segmentation. The regression will have one or 

multiple granular profiles added as explanatory (right-hand-side) variables. This approach is called a 

synthetic control and relies on exploiting the correlations that exist between participant loads and 

nearby similar customers. These customers experience similar economic conditions and other 

unobserved conditions that may influence energy use.  

The regression model is estimated independently for each season18 in the baseline period, and then 

predicted for that season in the reporting period. The predicted hourly consumption in the reporting 

period is called the counterfactual consumption. These values represent what the consumption would 

have been had the premises not participated in EESRP. Gross savings in the reporting period are simple 

summations of the hourly impacts by period of interest. As this modeling is done at the hourly level, 

peak period kW and kWh values can be easily estimated by summing or averaging the appropriate 

hourly impacts. For the purpose of the EESRP end-use evaluation, granular profiles and controls were 

not used as explanatory variables, and savings were estimated strictly as a function of temperature, 

past usage, and program effect.  

 

18 Seasons are defined as: Summer: June through September. Winter: December through March. Shoulder: April, May, October, November. 
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For whole-home AMI data, a difference-in-differences with individually matched control was used. The 

standard DiD calculation requires that each participant and the corresponding matched control have 

before and after data for the same periods. It can be implemented at different levels of temporal 

granularity – e.g., hourly 8760, daily, by peak period, or annually. The first step is to aggregate the 

usage for each site and the corresponding matched control to before and after data at the level of 

temporal granularity desired. At that point, the following equation is applied: 

Equation 4: Standard Difference-in-Differences Calculation 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑝,𝑡 = (𝑘𝑊ℎ_𝑡𝑟𝑒𝑎𝑡_𝑝𝑜𝑠𝑡𝑡 − 𝑘𝑊ℎ_𝑡𝑟𝑒𝑎𝑡_𝑝𝑟𝑒𝑡)

− (𝑘𝑊ℎ_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑜𝑠𝑡𝑡 − 𝑘𝑊ℎ_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑟𝑒𝑡) 

 

Table 16: Definition of Equation 4 Terms 

Symbol Interpretation 
𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑝,𝑡  The kWh savings for participant p at time period t 

𝑘𝑊ℎ_𝑡𝑟𝑒𝑎𝑡_𝑝𝑜𝑠𝑡𝑖 Observed participant kWh during the reporting period for time period t 

𝑘𝑊ℎ_𝑡𝑟𝑒𝑎𝑡_𝑝𝑟𝑒𝑖 Observed participant kWh during the training (pre-treatment) period t 

𝑘𝑊ℎ_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑜𝑠𝑡𝑖 Observed control kWh during the reporting period for time period t 

𝑘𝑊ℎ_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑟𝑒𝑖 Observed control kWh during the training period for time period t 

t Is the level of temporal granularity used for the analysis. For the analysis, the time dimension 
will be hour-of-year (same week of year and same hour of week), so it is comparable for the 
training (pre-treatment) and reporting period 

 

The standard Difference-in-Differences (DiD) approach is notable for its consistency, easy to 

understand, and straightforward replication, making it particularly suitable for various applications, 

including solar customers. Its consistency ensures that results across different segments match up, 

providing a clear overall picture of the intervention's impact. This method is easy to comprehend and 

replicate, crucial for widespread application and validation of findings. Unlike methods reliant on 

regression analyses, DiD is more straightforward to implement and quicker to execute. Conceptually, 

the Difference-in-Differences approach is based on the idea that before any intervention occurs, the 

behavior or usage patterns of the group receiving the intervention (the participant group) and a similar 

group not receiving it (the control group) are almost the same. This similarity is crucial for comparing 

the two groups accurately after the intervention. This similarity establishes a baseline against which 

post-intervention divergences are measured. Any pre-existing differences between the groups 

observed during the pre-intervention or training period are accounted for, ensuring that the observed 

changes are attributable to the intervention. 

Weather Normalization 

The claimed savings in this report are normalized to a typical weather year, per the M&V plan. The 

normal weather year data source is CALMAC’s historic and normalized weather data (specifically, the 
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CZ2022 Weather Data).19 This data is publicly available on CALMAC’s website and contains data for 97 

stations that map to climate zones across the state.  

The weather-normalized estimates of savings are produced using a second-stage model of 8,760 

energy savings at the site level. The procedure involves: 

1. Construct the site-level avoided energy use according to the specifications described above.  

2. Run the second-stage model in the performance period for each site. This model uses the 
8,760 savings values from Step 1 as the dependent variable and estimates coefficients using 
historical weather. 

3. Predict weather-normalized savings using the CZ2022 weather data and the estimated 
coefficients. 

4. Summarize the 8,760 weather-normalized savings for each site, enrollment group, and 
EESRP in total by summarizing kWh savings during specific periods of interest (peak, net 
peak, and off-peak) as appropriate.  

Weather-normalization procedures necessarily involve predicting savings for periods that represent a 

hypothetical weather year. They represent savings under a standard scenario, not specific historical 

conditions. For this reason, the control granular profiles that support the development of avoided 

energy use cannot be used as part of the weather-normalized estimates. The value of their inclusion is 

in helping ensure that the savings based on historical weather data are accurate. These savings 

estimates are then used in the second-stage model, where variation in savings can be explained 

according to the time of week and weather conditions. The regression model for the weather-

normalized estimates is shown in Equation 5. Note that this model mirrors that used to construct the 

avoided energy use but removes the granular profiles from the list of covariates.  

Equation 5: Second Stage Model for Weather Normalization 

𝐴𝐸𝑈𝑝,𝑡 = 𝛼𝑝 + ∑(𝛽𝑖 ∗ 𝐼𝑖,𝑡)

168

𝑖=1

+ ∑ (𝛾𝑏 ∗ 𝐵𝑏,𝑡)

𝑏=[2,7]

𝑏=1

+ 𝜀𝑝,𝑡 

 

19 Per California State Law, Title 24 2022 updates must be in effect by January 1, 2023. Since SRP installations span 2022 and 2023, but 

claimable savings for the program are not expected until 2023 or 2024 at the earliest, the CZ2022 data is the most appropriate normalized 
weather file.  



 

 pg. 32 

Public  

Table 17: Definition of Equation 4 Terms 

Symbol Interpretation 

𝐴𝐸𝑈𝑝,𝑡  The avoided energy use from for participant p in date-hour t 

𝛼𝑝 The constant for participant p 

𝛽𝑖 The coefficient representing the base savings for hour-of-week i, above or below the 
participant average 

𝐼𝑖,𝑡  A dummy variable for each hour-of-week i. Equal to 1 when date-hour t is in that hour-
of-week, and 0 otherwise 

𝛾𝑏  The coefficient representing the marginal savings associated with a one-degree change 
in outdoor temperature for temperature bin b 

𝐵𝑏,𝑡 The value of temperature bin b. The construction of temperature bins is described in 
more detail below.  

𝜀𝑝,𝑡 The error term for participant p in date-hour t 

 

These models were applied to each participant from August 1, 2023, through October 31, 2023. The 

model's effectiveness in predicting avoided energy use is showcased in Figure 3 for battery end-use and 

in Figure 4 for whole-home AMI data. It's important to note that the analysis excludes the period from 

July 1, 2023, to July 31, 2023, due to the program's roll-out schedule. The left side of these figures 

illustrates the baseline fit against historical data, providing a clear view of the model's ability to 

replicate past energy usage trends. 

While both models yield valuable insights into the counterfactual, they come with certain limitations. 

For instance, the Time of Weather Temperature (ToWT) model simplifies its approach by only 

accounting for temperature's influence on battery discharge, neglecting other significant factors like 

cloud cover and solar irradiance, which can greatly affect not only solar performance, but battery 

charging behaviors as well. For the Difference in Differences (DiD) approach, the model assumes that, 

without the intervention, the average outcomes for the treated and comparison groups would have 

moved along similar paths over time. This assumption generally holds up in the data presented, apart 

from specific segments of the pre-treatment phase. The discrepancy arises because of a particular 

charging dispatch setting applied to the participant group, which was not present in the control group's 

load.  

Adding to this context, it’s noteworthy that during the pre-year baseline period, the participants 

batteries were specifically dispatched during the hour ending at 20:00 for SolarEdge and Delta 

participants. This operational detail highlights a pre-existing difference in how participant batteries 

were managed compared to the control group, further explaining some of the observed variations in 

the pre-treatment period data. 
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Figure 3: Baseline Model Fit for Time-of-Week and Temperature Model with Battery End-Use Data 
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Figure 4: Baseline Model Fit for Difference-in-Difference Model with a Control Group for Whole-Home 
AMI Data 
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MODELLING TRENDS 

Modelling battery discharge as a function of temperature does not capture any significant temperature 

trends. Figure 5 depicts the daily average battery discharge under both the observed conditions and the 

counterfactual throughout the program's duration. The data shows a discrepancy in discharge levels 

between the counterfactual and the observed outcomes suggesting a clear program effect. However, 

these levels do not exhibit a strong correlation with participant temperatures.  

Figure 5: EESR per Participant 7-9 PM Discharge for Program and Counterfactual 
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Figure 6 illustrates the relationship between EM&V savings, i.e., the incremental 7-9 p.m. discharge 

from the modelled baseline, and temperature categorized into climate regions. It shows four climate 

regions: Coastal (circles), Inland (squares), North Central Valley (diamonds), and South-Central Valley 

(triangles), with temperatures ranging approximately from 50 to 100 degrees. There is a spread of 

discharge values across all regions without a clear temperature trend, but certain climate regions 

perform better than others in terms of program discharge. These figures indicate the potential for 

alternative right-hand variables to model discharge effect.  

Figure 6: EESR Peak 7-9 PM Effect by Climate Region 
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COUNTERFACTUALS COMPARISON BETWEEN CUSTOMER SEGMENTS  

Throughout the analysis of the program, it became evident that a structural difference existed between 

specific customer segments, specifically battery inverter brands. SolarEdge and Delta batteries were 

impacted by previous years of 7 p.m. to 8 p.m. dispatch, resulting in lower predicted EM&V savings. 

Figure 7 and Figure 8 illustrate the counterfactual differences between these segments by the different 

data sources. The observation that participants under Tesla inverters discharge more kW from the 7-9 

p.m. window is a false notion, as Tesla customers did not experience an intervention in the pre-period. 

This is clear in the left pane as there is a definite intervention taking place in the counterfactual period.  

Figure 7: EESRP Whole-Home AMI Baselines by Battery Inverter 

 

Figure 8: EESRP End-Use Battery Baselines by Battery Inverter 

 

HISTORICAL EESR PROGRAM RESULTS 

The tables below present a comparative analysis of energy consumption and impact across the 

different data sources of the Energy Efficiency Summer Reliability Program based on battery inverter 

brands, SolarEdge and Delta, and Tesla, as well as an aggregated view of all EESRP participants. For the 

battery end-use data source, the Tesla cohort exhibits a more substantial reduction in both predicted 

and actual annual consumption compared to SolarEdge and Delta, translating into a higher per 

customer impact and a more significant percentage reduction. The whole-home AMI data mirrors this 
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trend, with Tesla inverters again showing greater average reductions in consumption and higher 

percentage impacts. The table further indicates the breadth of the program's coverage and the peak 

reduction days analyzed, underscoring the differential response in counterfactual development by 

inverter brand within the EESRP. It is important to note that none of these savings were claimed by 

PG&E toward its EE goals but are the potential estimates of what claimed savings would look like.  

Table 18 illustrates the peak kW savings across different segments and data sources. With 8,483 

participants, the per customer aggregated peak reduction impacts falls to 1.68 kW for end-use data and 

1.69 kW for whole-home AMI. As with prior sections, the SolarEdge and Delta impacts are based on the 

deviance from the counterfactual, and don’t represent the actual change from an untreated baseline. 

However, they do represent an incremental difference from the prior year compared to the program.  

Table 18: Historical EESRP Peak 7-9 p.m. kW Savings by Data Source 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(KW) 

Average 
Annual Actual 
Consumption 

(KW) 

Per 
Customer 

Impact 
(KW) 

Percent 
Impact 

Peak 
Reduction 

(MW) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

5,917 2,988 50% -2.1 -2.6 0.52 -25% 3.06 92 

Tesla 2,566 1,457 57% -0.6 -5.0 4.37 -707% 11.21 92 

All EESRP 8,483 4,445 52% -1.6 -3.3 1.68 -183% 14.26 92 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

5,917 3,683 62% 0.1 -0.6 0.70 506% 4.15 92 

Tesla 2,566 1,436 56% 1.2 -2.8 3.97 339% 10.39 92 

All EESRP 8,483 5,119 60% 0.5 -1.2 1.69 357% 14.54 92 

 

Table 19 presents the historical kWh savings for the EESRP program duration by data source and 

vendor. In this case, the end-use data presented higher MWh savings due to nature of being 

unperturbed by the noise of whole-home data. The EESRP total for the end-use falls at 2,619 and 2,598 

MWh during the peak period for end-use and whole-home methods.  

Table 19: Historical EESRP Peak 7-9 p.m. kWh Savings by Data Source 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(kWh) 

Average 
Annual Actual 
Consumption 

(kWh) 

Per 
Customer 

Impact 
(kWh) 

Percent 
Impact 

Energy 
Savings 
(MWh) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

 5,917   2,988  50% -376.3 -471.5  95.1  -25% 563 92 

Tesla  2,566   1,457  57% -113.4 -914.8  801.4  -707% 2,056 92 

All EESRP  8,483   4,445  52% -296.8 -605.6  308.8  -183% 2,619 92 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

 5,917   3,683  62% 24.7 -104.3  129.0  523% 763 92 

Tesla  2,566   1,436  56% 205.4 -495.1  700.5  341% 1,835 92 

All EESRP  8,483   5,119  60% 79.3 -222.5  301.9  361% 2,598 92 
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Table 20 introduces the total energy savings for every hour of the program for the 8,483 participants. 

Whole-home AMI performs significantly better compared to battery end-use as the whole-home data 

captures the full scope of kWh reductions. Analyzing batteries and the end-use data associated, it is 

expected for very minimal shifts as batteries are meant to equalize loads throughout the day. Batteries 

operate by essentially discharging the solar generation that is received. In this case, 76 MWh and 3,406 

MWh were saved by battery end-use and whole-home AMI data sources.  

Table 20: Historical EESRP Program Length kWh Savings by Data Source 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(kWh) 

Average 
Annual Actual 
Consumption 

(kWh) 

Per 
Customer 

Impact 
(kWh) 

Percent 
Impact 

Energy 
Savings 
(MWh) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

 5,917   2,988  50% 59.3 47.1 12.18 21% 72 92 

Tesla  2,566   1,457  57% 100.8 99.4 1.40 1% 4 92 

All EESRP  8,483   4,445  52% 71.8 62.9 8.92 8% 76 92 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

 5,917   3,683  62% 810.8 352.5 458.30 57% 2,709 92 

Tesla  2,566   1,436  56% 497.7 232.0 265.73 53% 696 92 

All EESRP  8,483   5,119  60% 716.1 316.1 400.05 55% 3,406 92 

 

WEATHER NORMALIZED RESULTS FOR EESR PROGRAM YEAR 2023 

The figures below demonstrate the weather-normalized 24-hour shift in consumption patterns 

resulting from the intervention, as observed across various data sources. The color coding is blue for 

observed values, grey for the counterfactual estimates among participants, and orange for the 

calculated savings. In the year before the intervention, the trend lines superimposed on the individual 

data points are expected to match the observed data and the counterfactual predictions.  
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Figure 9 showcases the adjustment in battery behavior, notably the increase in discharge during hour 

ending 20 and the extension of this discharge period to hour ending 21. Simultaneously, Figure 10 

depicts the shift in the overall premise load, echoing the changes observed in the battery behavior. It is 

important to note that savings are not claimed but are an estimation of savings in NMEC context.  

Figure 9: Battery End-Use Weather Normalized 24-Hour Load for EESRP 

 

Figure 10: Whole-Home AMI Weather Normal 24-Hour Load for EESRP 
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EESR WEATHER NORMALIZED PROGRAM SAVINGS 

Table 21 illustrates the annual weather-normalized kWh savings during the Net Peak dispatch window 

of 7 p.m. to 9 p.m., utilizing both end-use and whole-home approaches. The EESRP resulted in 

engagement from 8,483 customers, leading to significant energy savings of 10,349 MWh and 10,563 

MWh for the battery end-use and whole-home AMI methodologies, respectively.  

Table 21: Peak kWh/MWh Savings by Data Source and Vendor 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(kWh) 

Average 
Annual Actual 
Consumption 

(kWh) 

Per 
Customer 

Impact 
(kWh) 

Percent 
Impact 

Energy 
Savings 
(MWh) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

 5,917   2,988  50% -1357.5 -1734.2  376.7  -28% 2,229 365 

Tesla  2,566   1,457  57% -400.5 -3565.1  3,164.6  -790% 8,120 365 

All EESRP  8,483   4,445  52% -1068.0 -2288.0  1,220.0  -201% 10,349 365 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

 5,917   3,683  62% 218.3 -291.6  509.8  -234% 3,014 365 

Tesla  2,566   1,436  56% 654.4 -2226.7  2,881.0  -440% 7,548 365 

All EESRP  8,483   5,119  60% 350.2 -876.9  1,227.1  -389% 10,563 365 

 

Table 22 presents the annual weather-normalized kWh savings during the 7 p.m. to 9 p.m. dispatch 

period, analyzed through both battery end-use and whole-home methodologies. In this period, the 

EESR program engaged 8,483 customers, achieving a potential Net Peak demand reduction of 14.21 

MW and 14.52 MW for the battery end-use and whole-home AMI data sources, respectively, over the 

course of the weather-normalized year. 

Table 22: Peak kW/MW Savings by Data Source and Vendor 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(KW) 

Average 
Annual Actual 
Consumption 

(KW) 

Per 
Customer 

Impact 
(KW) 

Percent 
Impact 

Peak 
Reduction 

(MW) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

 5,917   2,988  50% 
-1.9 -2.4 0.52 -28% 3.07 365 

Tesla  2,566   1,457  57% -0.5 -4.9 4.34 -790% 11.14 365 

All EESRP  8,483   4,445  52% -1.5 -3.1 1.68 -201% 14.21 365 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

 5,917   3,683  62% 
0.3 -0.4 0.70 232% 4.14 365 

Tesla  2,566   1,436  56% 0.9 -3.0 3.96 419% 10.38 365 

All EESRP  8,483   5,119  60% 0.5 -1.2 1.69 374% 14.52 365 

 

Table 23 details the full-year weather-normalized kWh savings for every hour of the year, 

encompassing both end-use and whole-home methods. With the EESR program's current enrollment of 

customers, there is an expected weather normal annual energy savings of 336 MWh and 15,310 MWh 

for battery end-use and whole-home AMI data sources throughout the weather-normalized year.  
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Table 23: Annual Peak kWh/MWh Savings by Data Source and Vendor 

Data 
Source 

Cohort 
Premises in 
Enrollment 

Data 

Premises 
in 

Analysis 

% 
Coverage 

Average 
Annual 

Predicted 
Consumption 

(kWh) 

Average 
Annual Actual 
Consumption 

(kWh) 

Per 
Customer 

Impact 
(kWh) 

Percent 
Impact 

Energy 
Savings 
(MWh) 

Analysis 
Days 

Battery 
End-
Use 

SolarEdge 
+ Delta 

 5,917   2,988  50% 184.1 115.4 68.71 37% 407 365 

Tesla  2,566   1,457  57% 288.0 315.6 -27.55 -10% -71 365 

All EESRP  8,483   4,445  52% 215.5 175.9 39.59 9% 336 365 

Whole-
Home 

AMI 
 

SolarEdge 
+ Delta 

 5,917   3,683  62% 1629.1 -366.0 1995.05 122% 11,795 365 

Tesla  2,566   1,436  56% 1594.4 252.7 1341.76 84% 3,515 365 

All EESRP  8,483   5,119  60% 1618.6 -178.8 1797.44 104% 15,310 365 
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5 DISCUSSION AND RECOMMENDATIONS 

This analysis demonstrates potential savings across both data sources for customers engaged in the 
EESR program. It is important to note that these savings are non-claimable and are only estimates for 
the year based on NMEC methods. Several critical insights emerge from these findings, as detailed in 
this section. Based on these insights, a set of key recommendations has been formulated, presented in 
the recommendations section that follows. 

KEY FINDINGS RESULTING FROM THE ANALYSIS 

1. The EESR program successfully increased battery discharge during the Net Peak hours of 7 
p.m. to 9 p.m. The battery end-use data source resulted in a weather normal 1.68 kW savings 
per customer for the discharge period, and the whole-home AMI data source resulted in a 1.69 
kW savings per customer during that period. Potential estimated savings for these programs 
are seen during peak periods and are not necessarily realized during the 8760 period. 

2. There is a variation of savings across EESR participants based on battery inverter brand. 
Tesla battery loads were unperturbed by discharge programs implemented during the prior 
year, resulting in more significant EM&V savings. SolarEdge and Delta batteries were impacted 
by previous years of 7 p.m. to 8 p.m. dispatch, resulting in lower predicted EM&V savings. 

3. The current method proposed in the M&V plan for whole-home and end-use savings 
estimation meets FSU targets at the expected sample size (fixed at 5,000 participants) and 
savings threshold (about 5%). In essentially all cases, the FSU thresholds are also met from 
FSU savings of 3% to 15%.  

4. The Time-of-Week and Temperature Model proposed in the M&V plan and used for the 
NMEC analysis for the battery end-use data source failed to capture exogenous battery 
patterns during extraneous events. Batteries generally show a relatively consistent 
performance throughout the year, as they are not significantly sensitive to temperature 
variations. In the context of the EESR program, the effectiveness of battery performance is 
predominantly influenced by the efficiency of solar energy generation rather than factors such 
as temperature. 

5. The individual-matched controls and granular profiles, as currently constructed, do not 
follow a similar consumption pattern as participants in the program. Because individual 
customer consumption is volatile, it’s less likely to produce a good fit on a participant-by-
participant basis. This is exaggerated for SolarEdge and Delta participants, since batteries 
independently controlled had a vastly different behavior than those operating under Sunrun’s 
prior dispatch patterns.  
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KEY STUDY RECOMMENDATIONS 

1. The current Population NMEC analysis and baseline penalize prior good faith actors. In 
their baseline periods, SolarEdge and Delta batteries exhibited disrupted load patterns due to 
being dispatched as part of prior programs. Consequently, the observed EM&V impacts in 
these cases are less pronounced than other programs, due to pre-existing interventions. When 
analyzing whole-home AMI data, it was found that participants using SolarEdge and Delta 
inverters achieved an average reduction in consumption of 0.70 kW. In contrast, participants 
with Tesla inverters, which had undisturbed load profiles, showed a more significant average 
decrease of 3.96 kW, indicating a notable difference in outcomes between the two groups. 
Adjusting the methods to create baselines based on actual, non-disturbed participant loads is 
recommended.  

 
2. The analysis of battery end-use data for the creation of baselines, as well as the evaluation 

of model accuracy, led to results with better valuation metrics. The analysis of battery end-
use data for establishing baselines and verifying model accuracy has led to more confidence in 
valuation metrics, partly because it minimizes noise in the data. By determining baselines, the 
program's effect is more isolated and results in a measure of genuine battery performance, 
filtering out extraneous fluctuations or anomalies that might otherwise skew results. This 
method of filtering the data to its most relevant parts ensures that the insights and 
conclusions are based on clear, noise-reduced information.  

 
3. Future analysis in battery-centered programs for Population NMEC purposes should 

feature adjustments that include alternative right-hand variables. Incorporating variables 
such as solar irradiation and cloud cover into models for future study of battery-centered 
programs, especially for Normalized Metered Energy Consumption (NMEC) purposes, is 
crucial due to their direct impact on battery performance. Solar irradiation, which represents 
the amount of sunlight reaching the solar panels, is a key factor in determining the energy 
production capacity of solar-powered battery systems. Including this variable allows for a 
more accurate assessment of the energy that the batteries can store and utilize. Similarly, 
cloud cover significantly influences the solar radiation reaching the panels. On cloudy days, 
reduced solar irradiation can lead to lower energy generation, directly impacting how batteries 
charge and discharge. By accounting for these environmental factors, the models potentially 
become more reflective of real-world conditions, leading to more precise evaluations and 
predictions of battery performance in various weather scenarios. This enhancement of current 
NMEC methods could allow for better assessment of both solar and battery programs. 


