BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

Application of PACIFIC GAS AND ELECTRIC COMPANY (U 39-E), for Approval of 2006–2008 Demand Response Programs and Budgets.
Application 05-06-006
(Filed June 1, 2005)

Southern California Edison Company’s (U 338-E) Application for Approval of Demand Response Programs for 2006-2008 and Cost Recovery Mechanism.
Application 05-06-008
(Filed June 1, 2005)

Application of San Diego Gas & Electric Company (U 902-E) for Approval of Demand Response Programs and Budgets for Years 2006 through 2008.
Application 05-06-017
(Filed June 2, 2005)

ASSIGNED COMMISSIONER’S RULING
AUGMENTING AUGUST 6, 2006 RULING REQUIRING UTILITY PROPOSALS TO AUGMENT 2007 DEMAND RESPONSE PROGRAMS

On August 6, 2006, I issued a ruling that reopened the record of this proceeding to consider augmented demand response programs for 2007 and 2008. The ruling appended a list of potential program elements for the parties’ consideration. This ruling adds a program element to that list by directing the applicant utilities to propose ways of augmenting their demand response programs using a technology called “AutoDR.” AutoDR is a communication device that links a customer’s energy management control system to the utility’s price or reliability signal over the Internet. This technology may be integrated with various existing utility demand response
programs, such as the critical peak pricing program. Attachment A to this ruling describes the technology and its potential uses in more detail. In addition, utility comments should identify ways to expand the role of demand aggregators, to encourage the deployment of AutoDR, increase program participation, and improve program performance. The utilities should also consider developing and expanding projects similar to PG&E’s Business Energy Coalition (BEC), which provides demand response to large electric customers in San Francisco.

The utilities’ proposals should consider whether the use of Technical Assistance/Technical Incentive (TA/TI) Program funds to support these program elements, including AutoDR, AutoDR administered by third party aggregators and programs similar to the BEC.

IT IS RULED that Pacific Gas and Electric Company, Southern California Edison Company, and San Diego Gas & Electric Company shall include in their August 30 filings proposals for the deployment of AutoDR technology as described herein. The utilities should be prepared to discuss their associated proposals at the September 6 workshop.

Dated August 22, 2006, at San Francisco, California.

/s/ MICHAEL R. PEEVEY
Michael R. Peevey
Assigned Commissioner
Executive Summary
Automated demand response (AutoDR) provides commercial and industrial customers with electronic, Internet-based price and reliability signals that are linked into the facility energy management control system (EMCS) and related whole-building controls. AutoDR price and reliability signals trigger automatic customer-programmed energy management and curtailment strategies. The AutoDR price and reliability signals can be used to automate response to dynamic pricing (CPP and RTP) as well as conventional interruptible and demand bid options.

The LBNL Demand Response Research Center (DRRC) has been operating AutoDR pilot programs since 2003. Over thirty commercial facilities totaling over 10 million ft² have participated in and automatically reduced their electric loads through AutoDR participation. The research and pilots have been funded by CEC/PIER, PG&E, and SDG&E. A research plan for collaboration with SCE Demand Bid programs for summer 2007 has been finalized.

Pilots conducted over the past four years indicate that Auto-DR can deliver low-cost, reliable, consistently repeatable electric demand response in commercial facilities, even during multi-day heat storms. Automating demand response improves the repeatability of the demand response, reduces on-site labor costs associated with manual DR, and hardens the resource by requiring commitment to a consistent set of strategies. Automating DR with standardized, open protocols provides a DR infrastructure for future wide scale implementation that can be extended into future building and appliance controls. Because HVAC and lighting are the facility loads most likely to be controlled, the greatest demand response potential is available on hot summer weekday afternoons.

LBNL is currently planning or conducting Auto-DR pilots with all three California investor owned utilities. The existing LBNL/PG&E Auto-CPP pilot has 13 commercial facilities (2.2 million ft²) currently connected to the LBNL DR Automation Server. The system has the potential to shed up to 2.4 MW. Although facility managers were notified in advance of upcoming events (via e-mail, pager and text message) none exercised their option to “opt-out”. Significant sheds were measured in about 90% of the connected sites. Baselines with high noise and variability account for the remaining 10% of sites where predetermined strategies occurred, but sheds were not measurable.

Based on average results from the pilot program participants, about 1,300 to 2,000 new sites would be required to produce a 15-minute shed of 250 MW. For a 3 to 6 hour shed about 3,000 to 3,500 sites would be required. Both estimates assume that the average peak load reductions per site are also achieved by any new facility additions. This estimate also assumes that the energy usage and load characteristics of existing pilot participants are representative of potential new facility additions.

The technology, customer response and economics of AutoDR continue to provide consistent, reliable year-to-year results. Tests indicate that the existing AutoDR system is capable of supporting expansion to achieve the CEC-CPUC 250 MW demand response objective by summer 2007. Short-duration, high-intensity automated sheds could provide the utilities and ISO with additional low cost reliability and ancillary service options. Less intensive, longer duration sheds may be better suited to mitigate non-emergency adverse economic conditions. AutoDR can support both. While additional research and development is necessary to continue to improve facility response rates and further reduce costs, we believe that AutoDR is ready for broad-based commercialization and rapid expansion.

AutoDR Results
Preliminary results for the summer of 2006 (Table 2) show average facility peak load demand reductions of 13% for three-hour critical peak events and 15-minute peak load reductions per facility that average 33%. While the summer 2006 results are preliminary, results from prior years confirm average facility demand
reductions of 13.4% (Table 1). During six-hour critical peak events AutoDR facilities have demonstrated capability to sustain approximately 10% reductions in peak load. The 10% reduction target has been achieved for small (under 300 kW) and large (over 500 kW) sites. The current Automated Critical Peak Pricing tests with PG&E are providing automated DR for about 10 MW of building load (Figure 1). Both a weather-normalized baseline based on LBNL analysis and the PG&E CPP baseline is evaluated for each CPP event.

Preliminary evidence also seems to indicate that AutoDR reduces facility energy use. Anecdotal evidence indicates that building operator activities to prepare the facility and tune-up the EMCS operation produce conservation benefits. Research results provide a preliminary indication that the shed strategies themselves also reduce overall facility energy use. AutoDR’s ability to integrate efficiency, conservation and demand response by simultaneously reducing energy and peak load will be more fully documented in ongoing research.

AutoDR one-time setup costs averaged approximately $58/kW from 2003 to 2005 (Table 1). One-time setup costs range from an average of $26/kW for a 15-minute interruption to an average of $62/kW for a six-hour interruption for the 2006 participating facilities (Table 2). This compares very favorably to the approximate $250/kW setup cost for a conventional residential air conditioner load control program (cost of a typical load control switch and installation). Since AutoDR automates the facility demand response, ongoing operational costs are insignificant.

In cooperation with PG&E, four years of LBNL DRRC research documents that AutoDR provides a very low cost communication and technology infrastructure capable of supporting a broad range of reliability and economic demand response.

Technology Capabilities

AutoDR requires three basic technologies: a price or reliability signal generator (DR Automation Server); a communications device at each facility to receive the price and reliability signals (gateways and relays have been used), and a customer provided facility energy management and control system or related system for lighting or other controls.

DR Automation Server (DRAS)

AutoDR price and reliability signals are provided through the LBNL DR Automation Server (DRAS). DR price and reliability signals are transmitted using existing public Internet and private wide area networks (WANs). Facilities can be connected to the DRAS using software, hardware or other interface-based gateways.

Once a shed event is initiated the DRAS manages all communications, time buffering, and on-site connections. Unless a facility manager chooses to “opt-out” and override, their pre-programmed strategy sheds will occur without human intervention.

The DRAS version 2.0 was built to meet the high standards required for financial transactions using Internet technology. It was also designed to support a potential commercial implementation involving thousands of customers. The current version 2.0 server has successfully met all performance requirements, specifically:

1. **Flexibility** – Can connect with multiple utilities DR notification systems (Itron, PMC etc.).
2. **Reliability** – Has maintained its availability target of 99.99% (four nines). The DRAS is hosted at a co-location facility with triple redundant back-up UPS and generator systems. It is immune to blackouts and other threats.
3. **Scalability** – Scalability tests indicate that the current system can support approximately 10,000 sites.

4. **Security** - The DR Automation Server architecture was designed to meet industry standards for financially binding transactions.

Client Gateway
The Client & Logic with Integrated Relay (CLIR Box) is a hardware device installed at AutoDR facilities. It receives remote DR signals from the DRAS, translates them into a format that can be read by the facility EMCS, which then enables the EMCS to automatically initiate the customer configured demand response strategies.

The CLIR box can be installed in virtually any site that has access to the Internet. It can interface with virtually any EMCS. The CLIR box can also be used for direct load control (e.g., disable a chiller) for sites without EMCS. It has passed rigorous computer network security tests.

The CLIR box was developed manufactured through collaboration between LBNL and Akuacom Inc. The bill of materials cost is $750 each. Volumes, lead-time, distribution channels and other factors will dictate the unit cost for CLIR boxes during any 2007 expansion effort.

Issues, Potential Problems and Mitigation Measures

1) **Recruitment and on-site implementation** are the two areas that pose the most substantial challenges to the 250 MW demand response objective. Existing utility resources are not sufficient nor are they geared to rapid mass-market expansion. Achieving the 250 MW objective will require support from third-party private industry aggregators, customer associations and other interest groups.

 a) **Mitigation**: Create capacity incentives and contractual arrangements to incent and encourage third-party aggregators.

 b) **Mitigation**: Improve the incentives offered through existing pilot CPP tariffs.

 c) **Mitigation**: Increase access to technical assistance and technology acquisition funds.

 d) **Mitigation**: Create incentives that encourage utilities to outsource AutoDR implementation.

 e) **Mitigation**: Examine and modify demand bid tariff options to increase incentives and relax participation and response conditions.

 f) **Mitigation**: Consider direct subsidies, like those under the AB1X advanced metering initiative to facilitate a more rapid implementation of EMCS and other building automation options compatible with AutoDR.

2) **Lack of energy management and control systems (EMCS) or centralized lighting controls** in many commercial and industrial facilities is a major impediment to Auto-DR. Commercial and industrial facility owners must be provided with educational materials to better explain the benefits of AutoDR, the economics of demand response and efficiency benefits that will come with EMCS implementation.

 a) **Mitigation**: Encourage the utilities to develop and initiate more aggressive customer education programs. Engaging market support from EMCS and other building automation providers, customer associations and other groups should be a priority.

 b) **Mitigation**: Consider expanding the target customer groups and improving the incentives offered through existing pilot CPP tariffs.
Automated Demand Response In Commercial Facilities
Accelerating Deployment for Summer 2007

c) Mitigation: see 1c and 1f.

3) Contractual obligations: Building operators of many multi-tenant office buildings are unable to participate in demand response options due to contractual obligations under their tenant leases. While the DRRC is conducting research to identify potential solutions, this problem may not be resolvable in the near term or it may require legislative or emergency actions under the Resources Code.
 a) Mitigation: Examine legal options under the Resources Code that may under emergency conditions allow building operators to temporarily invoke demand response strategies.

4) Process loads: Some commercial and many industrial facilities perform processes that cannot be varied without significant financial cost. This issue is not necessarily resolvable in the near term as additional research is needed to understand what industrial processes lend themselves to AutoDR approaches. However, HVAC and lighting shed strategies used for the commercial sector may be usable by many industrial sector customers.

5) DRAS Commercialization: To meet IT industry standards for mission critical applications (such as DR during a heat storm) substantial testing and upgrades should be conducted prior to the summer of 2007. This work should begin immediately.
 a) Mitigation: Implement a high priority DRRC task to scope out and complete this work.

6) CLIR Boxes Production: The current design could be produced in the thousands as necessary to meet the 250 MW goal in 2007. Work on this effort would need to begin immediately.
 a) Mitigation: Implement a high priority DRRC task to scope out and complete this work.

7) Demand Response Integration Services Contractor (DRISCO): To facilitate more rapid expansion of AutoDR, the DRRC defined the skills and hired a third-party contractor to assist the 2006 pilot sites with AutoDR implementation. This third-party capability needs to be rapidly expanded to support attainment of the 250 MW demand response objective for 2007. The skills required for a DRISCO may be difficult to obtain in the near term.
 a) Mitigation: Begin an RFI and/or RFQ process to identify potential DRISCO candidates, aggregators and others that might be qualified and interested in supporting AutoDR implementation.
 b) Mitigation: Examine other options for using training or engaging corporate and customer association resources to support the AutoDR implementation requirements.

Based on recent results we recommend accelerating automation in key market segments such as include retails chains and government buildings. LBNL has had significant success with federal government facilities, university buildings, and local government buildings. Stronger motivation for state government buildings would help accelerate automated DR. LBNL and the DRRC will continue to evaluate barriers toward broader scale DR deployment.

Further details on Auto-DR are available at drrc.lbl.gov.
Table 1
Results of LBNL / PG&E Auto-CPP in 2003-2005

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACWD</td>
<td>52</td>
<td>20%</td>
<td>84%</td>
<td>4(0)</td>
<td>$1,284</td>
</tr>
<tr>
<td>BofA</td>
<td>111</td>
<td>2%</td>
<td>227%</td>
<td>3(4)</td>
<td>$1,614</td>
</tr>
<tr>
<td>Chabot</td>
<td>18</td>
<td>5%</td>
<td>46%</td>
<td>3(1)</td>
<td>$4,510</td>
</tr>
<tr>
<td>50 Douglas</td>
<td>61</td>
<td>21%</td>
<td>85%</td>
<td>4(4)</td>
<td>$2,000</td>
</tr>
<tr>
<td>2530 Arnold</td>
<td>61</td>
<td>16%</td>
<td>92%</td>
<td>1(3)</td>
<td>$2,000</td>
</tr>
<tr>
<td>Echelon</td>
<td>78</td>
<td>25%</td>
<td>110%</td>
<td>4(3)</td>
<td>$3,620</td>
</tr>
<tr>
<td>Gilead</td>
<td>71</td>
<td>10%</td>
<td>208%</td>
<td>4(1)</td>
<td>$7,500</td>
</tr>
<tr>
<td>IKEA</td>
<td>219</td>
<td>12%</td>
<td>272%</td>
<td>2(0)</td>
<td>$5,050</td>
</tr>
<tr>
<td>Oracle</td>
<td>45</td>
<td>10%</td>
<td>65%</td>
<td>1(0)</td>
<td>$375</td>
</tr>
<tr>
<td>Target</td>
<td>33</td>
<td>10%</td>
<td>56%</td>
<td>4(1)</td>
<td>$3,312</td>
</tr>
<tr>
<td>USPS</td>
<td>202</td>
<td>15%</td>
<td>265%</td>
<td>0(2)</td>
<td>$12,000</td>
</tr>
<tr>
<td>Total (All Sites)</td>
<td>951</td>
<td>13.4%</td>
<td></td>
<td></td>
<td>$57.62</td>
</tr>
</tbody>
</table>
Table 2
Preliminary Results of LBNL / PG&E Auto-CPP - Summer 2006

Subject to minor changes with temperature data and baseline adjustments

<table>
<thead>
<tr>
<th>Site name</th>
<th>Savings During DR Events</th>
<th># of 2006 events</th>
<th>Total Setup cost $/site</th>
<th>Setup Cost $/kW 6-hour event</th>
<th>Setup Cost $/kW 15-minute event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kW Ave<sup>1</sup></td>
<td>kW Max<sup>2</sup></td>
<td>WBP% Ave<sup>3</sup></td>
<td>WBP% Max<sup>4</sup></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>98</td>
<td>152</td>
<td>29%</td>
<td>43%</td>
<td>11</td>
</tr>
<tr>
<td>Office - Data Center</td>
<td>328</td>
<td>423</td>
<td>7%</td>
<td>8%</td>
<td>11</td>
</tr>
<tr>
<td>Museum</td>
<td>-2</td>
<td>212</td>
<td>-2%</td>
<td>65%</td>
<td>6</td>
</tr>
<tr>
<td>Office</td>
<td>86</td>
<td>234</td>
<td>18%</td>
<td>41%</td>
<td>11</td>
</tr>
<tr>
<td>Detention Center</td>
<td>98</td>
<td>316</td>
<td>16%</td>
<td>48%</td>
<td>11</td>
</tr>
<tr>
<td>Office</td>
<td>99</td>
<td>176</td>
<td>23%</td>
<td>38%</td>
<td>11</td>
</tr>
<tr>
<td>Office - Lab</td>
<td>27</td>
<td>25</td>
<td>11%</td>
<td>13%</td>
<td>5</td>
</tr>
<tr>
<td>Office - Lab</td>
<td>33</td>
<td>85</td>
<td>9%</td>
<td>25%</td>
<td>5</td>
</tr>
<tr>
<td>Retail</td>
<td>76</td>
<td>226</td>
<td>7%</td>
<td>19%</td>
<td>5</td>
</tr>
<tr>
<td>Office</td>
<td>98</td>
<td>231</td>
<td>23%</td>
<td>41%</td>
<td>11</td>
</tr>
<tr>
<td>Retail</td>
<td>72</td>
<td>114</td>
<td>17%</td>
<td>25%</td>
<td>11</td>
</tr>
<tr>
<td>Total (All Sites)<sup>7</sup></td>
<td>1,060</td>
<td>2,429</td>
<td>13%</td>
<td>33%</td>
<td>114</td>
</tr>
</tbody>
</table>

* B of A uses June 23rd data because July data was problematic.

- **kW Ave¹** kW average shed over the last 3 hrs. of a 6 hr. event
- **kW Max²** kW maximum shed during any 15 min. interval.
- **WBP% Ave³** Whole Building Power, % shed over the last 3 hrs. of a 6 hr. event
- **WBP% Max⁴** Whole Building Power, % maximum shed during any 15 min. interval.
- **# of 2006 events**⁵ As of 8/4/06, Qty 11 CPP events have been called in zone-2 and Qty 5 in zone-1. All sites located in zone-2 except Gilead and IKEA.
- **Setup cost**⁶ Includes parts & labor for installation ($1,500 for CLIR box, EMCS programming, wiring etc.). Does not include recruitment costs
- **Total (All Sites)**⁷ Averages were calculated with each site of equal "weight".
Sample total aggregated load on June 23, 2006, one of the PG&E CPP days. Individual loads for 13 buildings are shown along with the aggregated demand response using the LBNL baseline and the CPP baseline. These baselines are nearly identical on this day, though on warmer days the LBNL baseline is higher because it accounts for hourly weather affects. The 87 F shown reflects the average of the daily maximum temperatures at each building. The 13 buildings shed 1100 kW on this day. The horizontal lines reflect the two CPP periods – medium price from noon to 3 and high price from 3 to 6 pm.

(END OF ATTACHMENT A)
INFORMATION REGARDING SERVICE

I have provided notification of filing to the electronic mail addresses on the attached service list.

Upon confirmation of this document’s acceptance for filing, I will cause a copy of the filed document to be served upon the service list to this proceeding by U.S. mail. The service list I will use to serve the copy of the filed document is current as of today’s date.

Dated August 22, 2006, at San Francisco, California.

/s/ KRIS KELLER
Kris Keller
************ APPEARANCES ************

James Weil
Director
AGLET CONSUMER ALLIANCE
PO BOX 37
COOL CA 95614
(530) 885-5252
jweil@aglet.org
For: Aglet Consumer Alliance

Edward G. Poole
Attorney At Law
ANDERSON & POOLE
601 CALIFORNIA STREET, SUITE 1300
SAN FRANCISCO CA 94108-2818
(415) 956-6413
epoole@adplaw.com
For: San Francisco Community Power (SFCP)

Daniel W. Douglass
Attorney At Law
DOUGLASS & LIDDELL
21700 OXNARD STREET, SUITE 1030
WOODLAND HILLS CA 91367
(818) 961-3001
douglass@energyattorney.com
For: Alliance for Retail Energy Markets

Richard H. Counihan
ECOS CONSULTING
274 BRANNAN STREET, SUITE 600
SAN FRANCISCO CA 94107
(415) 371-0604
rcounihan@ecosconsulting.com
For: ENERNOC, INC.

Chris King
EMETER STRATEGIC CONSULTING
1 TWIN DOLPHIN DRIVE
REDWOOD CITY CA 94065
(650) 631-7230
chris@emeter.com
For: SVLG and CCEA

Renee H. Guild
Ceo
GLOBAL ENERGY MARKETS
2481 PORTERFIELD COURT
MOUNTAIN VIEW CA 94040
(650) 279-7692
renee@gem-corp.com
For: GLOBAL ENERGY MARKETS

Leslie Nardoni
ICF CONSULTING
14724 VENTURA BLVD., STE. 1001
SHERMAN OAKS CA 91403
(818) 325-3126
cpuca0506006@icfconsulting.com
For: ICF CONSULTING

William H. Booth
Attorney At Law
LAW OFFICES OF WILLIAM H. BOOTH
1500 NEWELL AVENUE, 5TH FLOOR
WALNUT CREEK CA 94596
(925) 296-2460
wbooth@booth-law.com
For: California Large Energy Consumers Association (CLECA)

Randall W. Keen
Attorney At Law
MANATT PHELPS & PHILLIPS, LLP
11355 WEST OLYMPIC BLVD.
LOS ANGELES CA 90064
(310) 312-4361
pucservice@manatt.com
For: The County of Los Angeles

Peter Ouborg
Attorney At Law
PACIFIC GAS AND ELECTRIC COMPANY
PO BOX 7442 MAIL CODE B30A
SAN FRANCISCO CA 94120
(415) 973-2286
pxo2@pge.com
For: Pacific Gas and Electric Company

Karen P. Paull
Legal Division
RM. 4300
505 VAN NESS AVE
San Francisco CA 94102
(415) 703-2630
kpp@cpuc.ca.gov
For: Office of Ratepayers Advocates

Vicki L. Thompson
Attorney At Law
SAN DIEGO GAS & ELECTRIC COMPANY
101 ASH STREET
SAN DIEGO CA 92101
(619) 699-5130
vthompson@sempra.com
For: San Diego Gas & Electric
Gerald Lahr
ASSOCIATION OF BAY AREA GOVERNMENTS
101 8TH STREET
OAKLAND CA 94607
(510) 464-7908
jerryl@abag.ca.gov

Barbara R. Barkovich
BARKOVICH & YAP, INC.
44810 ROSEWOOD TERRACE
MENDOCINO CA 95460
(707) 937-6203
brbarkovich@earthlink.net
For: CLECA

Reed V. Schmidt
BARTLE WELLS ASSOCIATES
1889 ALCATRAZ AVENUE
BERKELEY CA 94703-2714
(510) 653-3399
rschmidt@bartlewells.com
For: California City-County Street Light Association

Dec 27, 2006

California Energy Markets
517B POTRERO AVE.
SAN FRANCISCO CA 94110
(415) 552-1764

cem@newsdata.com
For: California Energy Markets

Karen Norene Mills
Attorney At Law
CALIFORNIA FARM BUREAU FEDERATION
2300 RIVER PLAZA DRIVE
SACRAMENTO CA 95833
(916) 561-5655
kmills@cfbf.com

James Price
CALIFORNIA ISO
151 BLUE RAVINE ROAD
FOLSOM CA 95630
(916) 608-5725
jprice@caiso.com

Jeanne Clinton
2232 WARD STREET
BERKELEY CA 94705
(510) 665-9715
jeanne.clinton@earthlink.net

Jan Reid
COAST ECONOMIC CONSULTING
3185 GROSS ROAD
SANTA CRUZ CA 95062
(831) 476-5700
janreid@coastecon.com

Gregory A. Lizak
COMPASS ROSE GROUP
PO BOX 80926
SAN MARINO CA 91118
(650) 595-7788
greg@compassrosegroup.com
For: Compass Rose Group

Eric Woychik
COMVERGE
9901 CALODEN LANE, STE 1
OAKLAND CA 94605
(510) 387-5220
ewoychik@comverge.com
For: Comverge

Robert B. Gex
Attorney At Law,
DAVIS WRIGHT TREMAINE LLP
ONE EMBARCADERO CENTER, SUITE 600
SAN FRANCISCO CA 94111-3611
(415) 276-6500
bobgex@dwt.com
For: San Francisco Bay Area Rapid Transit

H. Ward Camp
DISTRIBUTION CONTROL SYSTEMS, INC.
HORNET DRIVE
HAZELWOOD MO 63042
(314) 283-9178
wcamp@twacs.com

Donald C. Liddell
Attorney At Law
DOUGLASS & LIDDELL
2928 2ND AVENUE
SAN DIEGO CA 92103
(619) 993-9096
liddell@energyattorney.com

Walter Mcguire
EFFICIENCY PARTNERSHIP
2183 UNION STREET
SAN FRANCISCO CA 94123
(415) 775-1931 X 311
wmcguire@efficiencypartnership.org

For: Efficiency Partnership

- 4 -
Patricia Thompson
SUMMIT BLUE CONSULTING
1766 LACASSIE AVE. STE 103
WALNUT CREEK CA 94596
(925) 935-0270
pthompson@summitblue.com

Patrick J. Forkin Iii, Cpa
Senior Equity Research Analyst
TEJAS SECURITIES GROUP, INC.
7700 BONHOMME AVE., SUITE 575
CLAYTON MO 63105
(314) 862-2437
Pforkin@tejassec.com

Dan Geis
THE DOLPHIN GROUP
925 L STREET, SUITE 800
SACRAMENTO CA 95814
(916) 447-6206
dgeis@dolphingroup.org

Scott J. Anders
Research/Administrative Director
UNIVERSITY OF SAN DIEGO SCHOOL OF LAW
5998 ALCALA PARK
SAN DIEGO CA 92110
(619) 260-4589
scottanders@sandiego.edu

(END OF SERVICE LIST)